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Abstract: The linear scale-space kernel is a Gaussian or Poisson function. These 

functions were chosen based on several axioms. This representation creates a good base for 

visualization when there is no information (in advanced) about which scales are more 

important. These kernels have some deficiencies, as an example, its support region goes from 

minus to plus infinite. In order to solve these issues several others scale-space kernels have 

been proposed. In this paper we present a novel method to create scale-space kernels from 

one-dimensional wavelet functions. In order to do so, we show the scale-space and wavelet 

fundamental equations and then the relationship between them. We also describe three 

different methods to generate two-dimensional functions from one-dimensional functions. 

Then we show results got from scale-space blob detector using the original and two new 

scale-space bases (Haar and Bi-ortogonal 4.4), and a comparison between the edges detected 

using the Gaussian kernel and Haar kernel for a noisy image. Finally we show a comparison 

between the scale space Haar edge detector and the Canny edge detector for an image with 

one known square in it, for that case we show the Mean Square Error (MSE) of the edges 

detected with both algorithms. 
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1 Introduction 

There are several different multi-scale signal processing techniques such as quad-tree 

[1], pyramid [1], wavelets [2][3] and scale-space [4]. The linear scale-space, for example, 

defined through its axioms has the Gaussian (and Poisson) as its kernel function, although 

several authors have been discussing if the Gaussian function is the best one for the scale-

space. In order to answer this question it is necessary to compare the results from the 

Gaussian scale-space with other scale-spaces.  

 

The scale-space theory was proposed by Witking [4] and expanded to the bi-

dimensional case by Koenderingk [5]. This theory has been largely used to extract 

information from images. Some examples are edge detection [6], ridge detection [7], 

structure extraction [8, 9] and movement detection [10]. The scale space created from the 

convolution of an image with a Gaussian or Poisson function have the following properties 

[6][7][11]: (i) causality, (ii) isotropy, (iii) homogeneity, (iv) non creation of local extrema, 

(v) non enhancement of local extrema, (vi) semi-group structure and (vii) infinitesimal 

generator. Florack et al. [12] say that these are good properties for image representation 

where there is no previous knowledge about the image because they work equally in any 

direction of the image. But in applications where one wants to emphasize a specific direction 

the Gaussian (or Poisson) function may not be the best choice. Another issue of the Gaussian 

scale-space, as mentioned by Remaki and Cheriet [13], is the length of its kernel that goes 

from minus to plus infinite and this implies the necessity of the use of large masks. Based on 

these limitations several authors have been searching for new scale-space kernels. 

 

Another multi scale theory widely used is the Wavelet Transform [14]. In this work 

the wavelet transform of a signal is defined as being the internal product between the signal 

and the mother wavelet function in a specific scale and shifted by some factor. In the 

definition of the wavelet transform it is not defined a mother wavelet function allowing this 

transform to be very flexible. The most important conditions for these functions (wavelets) 

are admissibility and regularity. Due to the former condition the frequency component of the 

function at frequency zero must be zero. And due to the latter condition the wavelet function 

must be local in both time and frequency domains. These two conditions together imply that 

a wavelet function must be a band pass filter. Due to the enormous flexibility of the wavelet 

transform it became a general case for several others transforms, such as the Canny edge 

detector [15] and the scale-space theory [4]. The scale-space is a particular case of the 

wavelet transform when the derivatives of the Gaussian functions are used to extract 

information [16]. 

 

The relationship between the wavelets and the scale-space that were demonstrated by 

Mallat [16] haven’t been used to solve digital image processing tasks up to now. One of the 

challenges dealt by the scale-space community is the definition of new kernels that are able 

to overcome the Gaussian limitations. In this paper (i) we will use the scale-space theory, (ii) 
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the Wavelet theory and (iii) the relationship between them in order to create a novel method 

to generate scale-space kernels from the wavelet mother functions. With this we want to 

enlarge the discussions about the scale space kernels. 

2 Theoretical Fundamentals 

2.1 The Scale Space 

The scale-space representation of an image is a set of images that represent the 

original image in different scales. Mathematically, given a bi-dimensional 

function ( ) ℜ→ℜ∈ 2, yxf , its scale space representation ( ) ℜ→ℜ×ℜ∈ +
2,, tyxL  is: 

( ) ( ) ( )tyxgyxftyxL ,,*,,, =  (1) 

where t is the scale, * is the convolution operator and ( ) ℜ→ℜ×ℜ∈ +
2,, tyxg  is the 

Gaussian kernel defined as: 
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where the scale (t) is the variance (σ2
) of the Gaussian function. 

2.1.1 Scale-space blob detector 

When a gray scale image is represented as a tri-dimensional surface its objects will 

become blobs [8]. There are two types of blob detectors, (1) one that has clear object in a 

dark background and (2) one that has dark objects in a clear background. The blob detector 

[17, 18] is defined using the image Laplacian: 

yyxx LLL +=∇2
 (3) 

where L2∇ is the image Laplacian, 
xxL and 

yyL are the second derivative of L in the x and y 

directions respectively. Images with clear regions and dark background, for example, have 

their blob detector operator defined as follows: 

0,1),(

0,0),(
2

2

≤∇=

>∇=

LyxI

LyxI
 (4) 

where I is a binary image, where 0 = black= background and 1 = white = blob.  

2.1.2 Scale space edge detector 

 

Lindeberg [19] proposed the detection of edges based on the second and third 

derivatives of the scale space image using the (u,v) coordinate system. In this system v is the 

direction parallel to the gradient direction and the u direction is perpendicular to the gradient 

direction. Then, a pixel will be an edge pixel if the next two conditions are met: 
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02 22 =++= yyyxyyxxxxvv LLLLLLLL  (5) 

033 3223 <++= yyyyxyyyxxxyyxxxxxvvv LLLLLLLLLLL  (6) 

where 
vvL and 

vvvL are the second and third derivatives of L in the v direction. 

2.2 Wavelet Theory 

The wavelet transform is an efficient tool for local analysis of non-stationary and 

transient signals [20]. The wavelet functions are created by scaling and shifting the mother 

wavelet. For a function to be a wavelet function it must have the admissibility and regularity 

conditions. This means that these functions must be local in the time (or space) and 

frequency (or scale) domains. 

 

The wavelet transform can be implemented in two different ways, the Continuous 

Wavelet Transform (CWT) or the Discrete Wavelet Transform (DWT). In this paper we are 

going to use the CWT definitions because the scale space is also continuous and then it is 

possible to relate these two theories. 

2.2.1 Bi-dimensional Continuous Wavelet Transform (CWT2D) 

 

The CWT can be extended to two or more dimensions and keep the same properties 

of the 1D case [21]. Given a bi-dimensional signal (2D), for example an image f(x,y), its 

CWT2D for a wavelet function ψ is: 
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where  is the internal product, ψ is a bi-dimensional wavelet, shifted by bx in the x 

direction and by in the y direction, scaled by s ( 0>s ) and rotated by θ ( πθ 20 <≤ ) 

where rθ is a rotation matrix. For (7) to hold it is necessary that the image f(x,y) needs to be 

squared integrable and defined in the plane 
2ℜ , or ( ) 2, Lyxf ∈  (or in other words, have 

finite energy). For ψ be a mother wavelet, it must satisfy the admissibility and regularity 

conditions as mentioned before. The CWT2D defined by (7) has four parameters (s, θ, bx, by) 

[22]. In order to be possible to visualize this transform it is necessary to lock some of them. 

There are several different combinations but the combinations where (bx, b y) or (s, θ) are 

kept locked have been more used because it’s physical interpretation. 

2.2.2 The mother wavelet families 
The mother wavelets can be defined in different ways. One option is using its 

equation in the time (space) domain. Another option is to use the function properties in the 

frequency domain. As examples of mother wavelets, there are those that are defined in the 
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Matlab version 5.3: Morlet; Mexican hat; Meyer; Haar; Daubechies; Symlets; Coiflets; 

Splines; bi-orthogonal. 

2.3 Relationships between the Scale Space and the Continuous Wavelet Transform 

It was shown by Mallat [16] that the scale space is a special case of the wavelet 

transform. In that work, besides proving that these two transforms are related, the author also 

defined a method to generate new wavelets from a smoothing function. This method is 

described as follows: 

 

A smoothing function is defined as: 

( ) 







=

s

x

s
xs θθ

1
 (14) 

 

The wavelet functions generated from the smoothing function are defined as: 

( ) ( )
dx

xd
x

θ
ψ =1

 (15) 

( ) ( )
2
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2
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xd
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θ
ψ =  (16) 

 

In that work Mallat used the bi-dimensional Gaussian function as the smoothing 

function and he had generated two wavelets. In [23] Sheng claims that any derivative of 

order ‘n’ of the Gaussian function can be a wavelet. This allows us to expand the Malat’s 

method to the ‘n’ order (for n > 0) and then the wavelets are defined as: 

( ) ( )
n

n
n

dx

xd
x

θ
ψ =  (17) 

 

The scale space is a special case of the wavelet theory when the function θ(s) is the 

Gaussian function. 

3 The Method Proposed 

In this section the method proposed to generate new kernels for the scale space from 

wavelet functions is defined, as well the results obtained. The functions needed to realize this 

task were developed using the software Matlab 5.3. The image processing was done in a 

Athlon XP 1.2 GHz with 256 Mb of RAM memory. 
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3.1 Method to generalize the scale space from different wavelet families 

One of the objectives of this work is to generate the scale space and its operators from 

different wavelet families. The scale space operators are defined using the Gaussian 

derivatives, and this function works as a smoothing filter. The wavelet functions are band 

pass filters. So it is necessary to associate each wavelet function to a smoothing function and 

from this smoothing function it is possible to apply the scale space operator definition. In 

order to associate a smoothing function to each wavelet function it will be used the Mallat’s 

method described in section 2.3 backwards. This means that we are going to start with the 

wavelet function ( ( )xnψ ) looking for a smoothing function ( ( )xsθ ), as will be shown later. 

 

It is assumed that the wavelet function under test is a derivative of some unknown 

smoothing function, but it is unknown which derivative order is the wavelet from this 

smoothing function. Based on wavelet theory, it is known that the wavelet function is a band 

pass filter and the smoothing function is a low pass filter. Using these characteristics it is 

going to be determined which is the derivative order of the wavelet function (if exist such a 

scaling or smoothing function). To do that the following algorithm is used: 

1. The wavelet is considered the n-order derivative of some smoothing function. 

2. The wavelet is integrated. 

3. The frequency response of the new function is obtained by means of FFT. 

4. If the frequency response shows that the new function is a band bass function then 

steps 2 and 3 are repeated for the new function. 

5. If the new function is a low pass filter then it is defined as the smoothing function 

that is associated to the wavelet function under test. 

6. The derivative order is defined as being equal to the number of times that steps 2 

and 3 were executed, or the number of times that the function was integrated. 

 

To exemplify the use of this algorithm we will apply it to the Haar wavelet function. 

Figure 1(a) shows the Haar wavelet and Figure 1(b) shows its frequency response. From the 

frequency response one can see that this function is a band pass filter as expected because 

this is a wavelet function. Following the algorithm, on step 1 this function is considered the 

n-order of a smoothing function. On step 2 we integrate this function and the resulting 

function is shown in Figure 1(c).  On step 3 we generate its frequency response and show it 

in Figure 1(d). Step 4 we evaluate the frequency response and conclude that this is not a band 

pass filter and then we proceed to step 5. In 5 we define this new function as being the 

smoothing function of the wavelet Haar because its frequency response is a low pass filter. 

Step 6 determines the order of the wavelet function as being 1 since the wavelet function was 

integrated once to get to the smoothing function. 
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(a)  (b) 

 (c)  (d) 

Figure 1- (a) wavelet Haar on scale 32 and (b) first integral of the wavelet Haar on scale 32, 

(c) magnitude and phase of the frequency response of the function wavelet Haar and (d) first 

integral of the wavelet Haar. 

 

Once the smoothing functions are known and which is the derivative order of the 

wavelet function, it is possible then to apply scale space operator definition to them. As seen 

in the previous section the scale space operators are defined from the derivatives (Lx, Lxx, ...) 

of some smoothing function.  

3.2 Choosing the mother wavelet function 

The choice of the mother wavelet is of fundamental importance to the analyses of a 

given signal when this transformation is used. This is independent of the signal dimension 

(1D, 2D, …). Antoine [21] defines some options to solve this task. The first of them is to 

choose the mother wavelet that gives the best result for a given problem. The second option 

is to create a new mother wavelet for the application. The third option is to use some wavelet 

families that have their behavior and definition known, at least for the 1D case. This work 

uses the third option to choose the mother wavelet added of some requirements necessary to 

allow the comparison between the wavelet and the scale space. These conditions are 

postulated as follows: (1) the existence of a smoothing function created by integrating the 

wavelet function n times; (2) the smoothing function is real and symmetric; (3) the 

smoothing functions derivatives must follow the properties of the wavelet transform 

(admissibility and the regularity conditions).  

 

It is important to remark that this work does not have the intention to prove the 

necessity or sufficiency of the postulates stated above because it is out of its scope. The 

wavelet functions that don’t have such characteristics will not be used in this work. The list 

of functions that fulfill the postulated above are: the Gaussian derivatives (Mexican Hat); 

Haar; Bi-ortogonal 1.3; Bi-ortogonal 1.5; Bi-ortogonal 2.2; Bi-ortogonal 2.4; Bi-ortogonal 

2.6; Bi-ortogonal 2.8; Bi-ortogonal 4.4; Bi-ortogonal 5.5; Bi-ortogonal 6.8. 
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The results got for each one of these functions using the algorithm explained in 

section 3.1 are summarized in Table 1.  

Table 1: Summary of the features that the wavelet functions have when they were 

tested with the algorithm defined in section 4.3. 

Function name Function Order* 

Bi-orthogonal 1.3  1 

Bi-orthogonal 1.5  1 

Bi-orthogonal 2.2  2 

Bi-orthogonal 2.4  2 

Bi-orthogonal 2.6  2 

Bi-orthogonal 2.8  2 

Bi-orthogonal 4.4  4 

Bi-orthogonal 5.5  6 

Bi-orthogonal 6.8  6 

Haar  1 

Mexican Hat  2 
*number of times that the function was integrated in order to get a smoothing function. 

3.3 Generation of bi-dimensional functions from one-dimensional functions 

Some of the functions mentioned on the last section don’t have a mathematical 

definition in the time (space) domain for the bi-dimensional case. It was used in this work 

three different ways to solve this task.  

 

The first method to generate the bi-dimensional functions uses a given 

function )(xfy = , symmetric and the bi-dimensional function is generated by rotating the 

uni-dimensional function. This rotation is done numerically and the function is rotated in 

relation to the z axis. Figure 2 shows the one-dimensional and bi-dimensional Gaussian 

function generated using this method. 

 

 
(a) 

 
(b) 

Figure 2 – (a) one-dimensional and (b) bi-dimensional gaussian function generated by 

rotation of (a). 
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The second method used to generate a bi-dimensional function from a one-

dimensional function receives one function f(x) and one function f(y), both symmetric to 

some point and then generate a bi-dimensional function using tensor product. The tensor 

product between these two functions f(x) and f(y) is defined as: 

f(x,y) = f(x) . f(y) (18) 

 

The third method used to generate a bi-dimensional function from a one-dimensional 

function receives a given function y = f(x), symmetric to some point and generates a bi-

dimensional function by convolution. The convolution between these two functions is 

defined as follows: 

F(x,y) = f(x) * f(y) (19) 

where * is the convolution operator. 

 

All the three methods shown before generate a bi-dimensional Gaussian function 

identical to the function generated by the mathematical bi-dimensional function definition. 

This demonstrates that all of them could be used. Although, when these methods are used for 

other functions other than the Gaussian the bi-dimensional function that results may vary for 

each method. In this work it is going to be shown only the results got using the bi-

dimensional functions generated by rotation because the operators that result from this 

method are symmetric and this makes them rotational invariant. This is a feature that exists 

in the Gaussian scale space and it will be preserved in this work. 

3.4 Examples of the new scale-space kernels use. 

The scale space representation of an image can be done for the different scale spaces 

using different smoothing function as well as for different methods of generating bi-

dimensional functions. One example is the Lena image representation. Figure 3 shows a 

scale space representation using the Haar’s smoothing function for scales 2, 8 and 16. Figure 

4 shows the blobs of the Lena image using the Haar’s smoothing function for scales 2, 8 and 

16. Figure 5 shows the edges of the Lena image using the scale space edge detector and the 

Haar’s smoothing function for the scales 2, 8, and 16.  These images provide good examples 

to show the different scale space features in a qualitative way.  

 

(a) (b) © 

Figure 3 – Scale space representation of the Lena image using the Haar smoothing function, 

created by convolution on scales 2 (a), 8 (b) and 16 (c). 
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(a) (b) (c) 

Figure 4 – Blobs from the Lena image, when using the scale space blob detector and the 

Haar smoothing function, created by rotation, on scales 2 (a), 8 (b) and 16 (c). 

 

(a) (b) (c) 

Figure 5 – Edges from the Lena image, when using the scale space blob detector and the 

Haar smoothing function, created by rotation, on scales 2 (a), 8 (b) and 16 (c). 

 

In order to analyze some of the new scale spaces properties independently it was used 

an artificial image called phantom1 (Figure 6a). This image has objects with different shapes 

and sizes but the same contrast. This allows us to observe the behavior of the scale space 

operator in different scales. To understand the behavior of the different kernels with respect 

to noise a second phantom image was created (Figure 6b). This phantom besides objects of 

different intensities has noise added to it. The noisy image is defined as: 

 

),(.),(),(
^

yxncyxfyxI +=  (20) 

where Î(x,y) is the noisy image, f(x,y) is the original image, n(x,y) is the normal noise 

with standard deviation set to one and c is a constant that multiplies the noise. This constant 

was arbitrarily chosen to 8. In a future work, it will be presented the robustness of detection 

algorithms with noise level in images using the technique here presented. 
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(a)  (b) 

Figure 6 – Artificial images called (a) phantom1 and (b) phantom2 (b). 

 

Figure 7 shows the phantom1 image’s scale space blobs using the Haar smoothing 

function for scales 2, 54 and 80. Figure 8 shows the edges of the phantom1 image using the 

scale space edge detector for the Haar smoothing function for scales 2, 8 and 16. Figure 9 

shows the blobs of the phantom1 image using the smoothing function of the wavelet Bi-

orthogonal 4.4 for scales 2, 26 and 72. Figure 10 shows the edges of the phantom1 image 

using the scale space edge detector and the smoothing function of the wavelet Bi-orthogonal 

for scales 1, 4 and 16.  

 

(a) (b) (c) 

Figure 7 – Blobs from the phantom1 image, when using the scale space blob detector and the 

Haar smoothing function, created by rotation, on scales 2 (a), 54 (b) and 80 (c). 

 

 

(a) (b)  (c) 

Figure 8 – Edges from the phantom1 image, when using the scale space blob detector and the 

Haar smoothing function, created by rotation, on scales 2 (a), 8 (b), and 16 (c). 
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(a) (b)  (c) 

Figure 9 – Blobs from the phantom1 image, when using the scale space blob detector and the 

Bi-ortogonal 4.4 smoothing functions, created by rotation, on scales 2 (a), 26 (b) and 72 (c). 

 

(a) (b)  (c) 

Figure 10 – Edges from the phantom1 image, when using the scale space blob detector and 

the Bi-ortogonal 4.4 smoothing function, created by rotation, on scales 1 (a), 4 (b) and 16 (c). 

 

Figure 11 shows the detected edges of the noisy phantom2 image (Figure 6(a)) 

using the Gaussian smoothing function, for scales 2 (a), 16 (b) and 32 (c). Figure 12 shows 

the detected edges of the noisy phantom2 image using the smoothing function of the Haar 

wavelet, for scales 2 (a), 16 (b) and 32 (c). 

 
Noise = 8 and scale = 2

(a)  

Noise = 8 and scale = 16

(b)  

Noise = 8 and scale = 32

(c) 

Figure 11 – Edges detected from the phantom2 image when using the Gaussian scale space 

on scales 2 (a) 16 (b), e 32 (c). 
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Noise = 8 and scale = 2

 (a)  

Noise = 8 and scale = 16

 (b)  

Noise = 8 and scale = 32

(c) 

Figure 12 – Edges detected from the phantom2 image when using the Haar scale space on 

scales 2 (a), 16 (b), e 32 (c). 

 

In order to create a quantitative comparison between the scale space edge detector 

using the Haar kernel and the Canny edge detector we create a phantom with a white box in a 

black background (phantom 3). The edges of this phantom are known and this allowed us to 

calculate the mean square error (MSE) for the edges detected with both algorithms while 

adding different random noise levels. Figure 13 (a) shows the MSE for the Canny edge 

detector and Scale Space Haar edge detector (at scale set to 12) for the phantom 3 using 

different noise levels. Figure 13 (b) shows the number of edge points detected using the 

Canny edge detector and Scale Space Haar edge detector (at scale set to 12) for a phantom3 

using different noise levels. These examples show that the scale space algorithm has a 

superior performance over the Canny edge detector for noisy images. 
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 (b) 

Figure 13 – Mean square error for the Canny edge detector and Scale Space Haar edge 

detector (at scale set to 12) for a phantom versus noise level (a). Number of points detected 

using the Canny edge detector and Scale Space Haar edge detector (at scale set to 12) for a 

phantom versus noise level (b). 
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4 Discussion and Conclusions 

One of the scale space aspects that have been widely discussed by several researchers 

is its kernel (originally the Gaussian function). The objective of these discussions is to know 

if the Gaussian is the best function or in which cases it is the best one. Besides that the 

researches are developing new kernels with new or different features. Once these new 

kernels are known it is possible to compare the scale space generated with them against the 

Gaussian scale space and then find out which one gets the best results for different cases of 

study. In this work, it was used (1) the scale space theory, (2) the wavelet theory and (3) the 

relationships between them to develop a new method to create new scale space kernels from 

wavelet functions. 

 

In the proposed method, we start from a known wavelet function. Then we find the 

smoothing function that is associated to this wavelet through numerical integration and 

analyses of its frequency domain response. Once the smoothing function is available it is 

used the original definition of the scale space operators with this new function. This work 

shows the results from the scale space blob and edge detectors. The only thing that was 

changed was the kernel. 

 

According with the wavelet transform theory the wavelet function is band bass 

function (ψ ). Some of these functions have a low pass function associated (φ ). It is 

important to note that the smoothing function is NOT this low pass function (φ ) and it 

actually is a function generated through the n times integration of the wavelet function. For 

example, the Mexican Hat function does have a smoothing function (the Gaussian) but it 

does not have a φ  function. 

 

The proposed method limits the set of wavelet functions that are used with it based on 

some postulates. These postulates were defined in such a way that once we use a wavelet 

function with the algorithm it must be possible to get a new function that has a low pass filter 

behavior. Besides this only symmetric wavelet functions were used.  

 

The wavelet functions that were studied in this work are the functions that already 

exist in Matlab version 5.3. Among them the wavelet functions Bi-orthogonal 1.3, Bi-

orthogonal 1.5, Bi-orthogonal 2.2, Bi-orthogonal 2.4, Bi-orthogonal 2.6, Bi-orthogonal 2.8, 

Bi-orthogonal 4.4, Bi-orthogonal 5.5, Bi-orthogonal 6.8, Haar and Mexican Hat are the ones 

that have the features required by the postulated defined in this work. Those functions were 

used with the proposed method to generate new scale space kernels. 

 

Some of the wavelets that were used in this work don’t have definition for the 2D 

case. Due to that it was used some methods to create 2D wavelets from 1D wavelets. Three 

different methods to solve this problem were used and they are rotation, tensor product and 

convolution. When these methods were used with the 1D Gaussian function the results match 

the 2D Gaussian function defined analytically. This indicates that any one of them could be 
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used. But the rotation method generates 2D functions that are always symmetric and because 

of it this was the chosen method. 

 

After we have the wavelet function, a method to create scale space kernels and 2D 

functions, it was possible to generate the scale space associated with each function. All 

kernels produced are local and rotational invariant. 

 

The Haar wavelet function used in this work was defined from minus 0.5 to plus 0.5 

because this makes it symmetric in relation to zero. As this function is defined inside a 

limited range it is correct to say that it has compact support. The Gaussian function, for 

example, is defined from minus to plus infinite. In order to apply the latter filter in a signal it 

is necessary to truncate it at some point. Values that are based on the standard deviation, 

such as one, two or three standard deviations are usually chosen. Because this filter is 

truncate, the result of filtering an image with it is an approximation of the continuous case. 

As bigger the point where the function is truncated the better the approximation is. On the 

other hand the bigger this value is then the bigger is the processing cost to solve this task. An 

important advantage for the Haar kernel in relation to the Gaussian is that it is completely 

defined in a given range therefore it doesn’t need to be truncated. Besides that the total 

computational cost to use this kernel will also be lower than the Gaussian. Kernels with 

compact support have been developed as shown in [16].  

 

The Haar wavelet function is usually used to detect discontinuities. For images these 

discontinuities are probably edges of the objects. When the smoothing function of the Haar 

function was used with the scale space edge detector this behavior was preserved, even for 

large scale as shown in Figure 5. For this case the biggest distortions had happened at the 

object’s corners. It was also shown the edges detected with the scale space edge detector 

using the smoothing function of the wavelet Haar and Gaussian. The noise degradation of the 

edges was far less when using the smoothing function of the Haar wavelet than when using 

the Gaussian smoothing function. These results are examples that each kernel has its own 

features, and then the discussion about which is the best kernel for each application is 

extremely valid.  

 

The wavelet transform has several kernels and it is necessary to choose which kernel 

will be used in a given application. The scale space also has several kernels and it is also 

necessary to choose which kernel to use in a given application. Antoine [21] defines some 

options to solve this task, as described in section 3.2. The authors suggest this method to be 

used for the scale space theory too. The main contribution of this work for the task of 

choosing the best scale space kernel is the method to generate new kernels and the ten new 

kernels described earlier. The Mexican hat wavelet generated the Gaussian smoothing 

function and it was used to validate the algorithm that generates new scale space kernels 

from wavelet functions and it is not considered a new kernel. With that there is now a bigger 

set of kernels that can be used to find out which one is the best for each application. 
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We also compared the results got using the Canny edge detector with the scale space 

Haar edge detector. The result of the MSE showed us that for low noise images the Canny 

algorithm has a better performance. But when we added higher noise levels the scale space 

Haar edge detector outperform the Canny algorithm. This shows that for such noisy images 

the scale space Haar edge detector is a better option. The number of edge points detected also 

show us that the Canny edge detector has a better performance when the noise level on the 

image is low while the scale space edge detector has a better performance for noisy images. 

 

In this work it was proposed a new method to create new scale space kernels from 

wavelet functions. Some of the challenges in this field were solved, but there are several 

others that are still open and they are suggested for future work. Some suggestions are: 

• Implement ridge detector; 

• Implement scale-spaces with non-symmetric bases; 

• Verify for the new kernels which axioms the satisfy;  

• Test for detection robustness of noise images. 
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