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Abstract 

The AGL equation includes all multiple pomeron exchanges in the double logarithmic ap- 
proximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This 
equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this 
paper that the AGL equation and, consequently, the GLR equation, can also be obtained from 
the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, 
which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our 
conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at 
small x in the DLA limit. (g) 1999 Elsevier Science B.V. All rights reserved. 

PACS: 11.80.La; 24.95.+p; 
Keywords: Small-x QCD; Unitarity corrections; Evolution equation 

1. Introduction 

The physics  of  high-densi ty QCD has become an increasingly active subject o f  re- 

search, both from experimental  and theoretical points of  view. Presently, and in the near 

future, the coll ider  facilities such as the DESY ep coll ider HERA (ep,  eA) ,  Fermilab 

Tevatron (p-if, p A ) ,  BNL Relativistic Heavy Ion Coll ider  (RHIC) ,  and CERN Large 

Hadron Col l ider  ( L H C )  (p-if, AA)  will be able to probe new regimes of  dense quark 

matter at very small  Bjorken x o r / and  at large A, with rather different dynamical  prop- 

erties. The descript ion of  these processes is directly associated with a correct description 

of  the dynamics  in this kinematical  region. 
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The behavior of the cross sections in the high-energy limit (s ~ c~) and fixed 
momentum transfer is expected to be described by the BFKL equation [ 1 ]. The simplest 
process where this equation applies is the high-energy scattering between two heavy 
quark-antiquark states, i.e. the onium-onium scattering. For a sufficiently heavy onium 
state, high-energy scattering is a perturbative process since the onium radius gives the 
essential scale at which the running coupling as is evaluated, This process was studied 
in the dipole picture [2-4] ,  where the heavy quark-antiquark pair and the soft gluons 
in the limit of large number of colors Nc are viewed as a collection of color dipoles. In 
this case, the cross section can be understood as a product of the number of dipoles in 
one onium state times the number of dipoles in the other onium state times the basic 
cross section for dipole-dipole scattering due to two-gluon exchange. The cross section 
grows rapidly with the energy (o- oc asZe (~p-l)r, where (c~e - 1) = -~(4asNC)In 2 
and Y = In s / Q  2) because the number of dipoles in the light-cone wavefunction grows 
rapidly with the energy. In Ref. [2] Mueller demonstrated that the QCD dipole picture 
reproduces the BFKL physics. 

One of the main characteristics of the BFKL equation is that it predicts a very high 
density of partons in the small x region. Therefore a new dynamical effect associated 
with the unitarity corrections is expected to stop further growth of the parton densities. 
The understanding of the unitarity corrections has been a challenge of perturbative QCD 
(PQCD). 

About seventeen years ago, Gribov, Levin, and Ryskin (GLR) [5] performed a 
detailed study of this problem in the double logarithmic approximation (DLA). They 
argued that the physical processeS of  interaction and recombination of partons become 
important in the parton cascade at a large value of the parton density, and that these 
shadowing corrections could be expressed in a new evolution equation - the GLR 
equation. This equation considers the leading non-ladder contributions: the multi-ladder 
diagrams, denoted as fan diagrams. The main characteristics of this equation are that 
it predicts a saturation of the gluon distribution at very small x, it predicts a critical 
line, separating the perturbative regime from the saturation regime, and it is only valid 
in the border of this critical line. Therefore, the GLR equation predicts the limit of its 
validity. In the last decade, the solution [6 -8 ]  and possible generalizations [9,10] of 
the GLR equation have been studied in great detail. Recently, an eikonal approach to 
the shadowing corrections was proposed in the literature [11-13]. The starting point 
of these papers is the proof of the Glauber formula in  QCD [ 14], which considers 
only the interaction of the fastest partons with the target. In :Ref. [ 12], a generalized 
equation which takes into account the interaction of all partons in a parton cascade with 
the target in the DLA limit was proposed by Ayala, Gay Ducati, and Levin (AGL). The 
main properties of the generalized equation are that (i) the iterations of this equation 
coincide with the iteration of the Glauber-Mueller formula; (ii) its solution matches the 
solution of the DGLAP evolution equation in the DLA limit of PQCD; (iii) it has the 
GLR equation as a limit, and (iv) it contains the Glauber-Mueller formula. Therefore, 
the AGL equation is valid in a large kinematical region. 
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The AGL equation resums all multiple pomeron exchanges in the DLA limit. Its 
asymptotic solution is given by xG oc Q2 R 2 In ( l / x ) ,  where R is the size of the target, 
i.e. differently from the GLR equation, it does not predict saturation of the gluon 
distribution in the very small x limit. 

The unitarity corrections in the leading logarithmic limit can be studied using the 
dipole picture. In this picture the unitarity corrections (multiple interactions between 
the onia) become important at high energies [ 15,16]. These corrections in general are 
neglected as being of higher order in 1 INc. However, when the energy is high, there is a 
large number of dipoles in each onium, and the total number of possible interactions is of 
order e ( '~p-1)(y+(Y-y) )  (the product of the number of dipoles in each onium) [ 16]. So 
when oz 2 e (~p-1)Y ~ 1, one should take into account the multiple scattering corrections 
- multiple pomeron exchange - despite the fact that they are suppressed by 1/N2c . 
Recently, an equation which includes all pomeron exchanges in the leading logarithmic 
approximation using the dipole picture was proposed (Eq. (15) in Ref. [17] ). In this 
paper we will denote this equation as K equation. As the K equation and the AGL 
equation resums the same group of diagrams, both should be identical in a common 
limit. Our goal in this paper is to demonstrate that the K equation reproduces the AGL 
equation and, consequently, the GLR equation in the DLA limit. 

This paper is organized as follows. In Section 2 the AGL approach for the unitarity 
corrections is briefly reviewed. We clarify some steps and obtain the GLR equation as 
a limit case. In Section 3 we obtain the nuclear structure function F a in the Glauber- 
Mueller approach and compare it with the expression proposed in [ 17]. It allows us to 
obtain precisely the relation between the propagator of the q~ through the nucleus and 
the gluon distribution. In Section 4, we obtain the AGL equation from the dipole picture 
and, as a limit, the GLR equation. Finally, in Section 5, we present our conclusions. 

2. The AGL equation 

In the nucleus rest frame we can consider the interaction between a virtual colorless 
hard probe and the nucleus via a gluon pair (gg) component of the virtual probe. In the 
region where x << 1/2mR (R is the size of the target), the gg pair crosses the target 
with fixed transverse distance rt between the gluons. Moreover, at high energies the 
lifetime of the gg pair may substantially exceed the nuclear radius. The cross section 
for this process is written as [ 11 ] 

1 

0 "c-A= dz ---~--Iqtr (e2,  r,,x,z)120-gg+A(z, r2t), (1) 

0 

where G* is the virtual colorless hard probe with virtuality Q2, z is the fraction of energy 
carried by the gluon and ~ff* is the wave function of the transverse polarized gluon in 
the virtual probe. Furthermore, o-gg+A(z, r 2) is the cross section of the interaction of the 
gg pair with the nucleus. 
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As our goal in this paper is to obtain the AGL from the dipole picture, we should 
make a transformation of Eq. (1) for q~ dipoles, since in this picture they are the basic 
configuration. Considering that o-gg+A = (CA/CF)o'qq we have that the cross section for 
the interaction between the virtual probe G* and the nucleus via the q~ component of 
the virtual probe is given by 

1 

---- CA [ dz [ "~Z[g~t~* (0  2, rt,x,z)120qq+A(z,r 2) o_G*A (2) 
- ~  j J _ _  

0 

To estimate the unitarity corrections we have to take into account the rescatterings of 
the quark-antiquark pair inside the nucleus. The contributions of the rescatterings can 
be estimated using the Glauber-Mueller approach proposed in Ref. [ 11]. Following the 
same steps used in [ 11], i.e. considering the s-channel unitarity and the eikonal model, 
one obtains that the o -c*A cross section is written as 

1 

...-_ ..._. /.z/d2rt J ~]~G*(Q2. rt.z),22[l_e- ~'c." ' 2.(x,4/r,)S(b,)], 
0 

(3) 

where x'  = x / ( z  r~ Q2) (x is the Bjorken variable), bt is the impact parameter, S(bt) = 
(A/crR2)e -b2,/R~ is the gaussian profile function and o-ff is the cross section of the 
interaction of the q~ pair with the nucleons inside the nucleus. In Ref. [ 18] the authors 

q~ -~(3as(4/r])/4) ¢r2r]XGN(x,4/r2t), where xGN(X, 4/r2t) is have shown that tr N = 
the nucleon gluon distribution. 

The wavefunction g~G* was calculated in [ 14,11 ] using the technique of Ref. [ 19]. 
Here we only explicitate the result for the squared wavefunction, which is given by 

]g.tO.(Q..rt.z), 2 1 [(e2K2(ert ) eK,(ert)~2 ~ ] - + ( e K 1  ( c o ) ) 2  , 
Z(1 --Z) rt / 

(4) 

where e 2 = QZz (1 - z )  and the Ki are the modified Bessel functions. The main 
contribution in expression (3) comes from the region of small z, where err << 1. Using 
the expansion of the modified Bessel functions for small values of the argument gives 
that the squared wavefunction simplifies to 

2 
]gttG* (Q2, r,, x, z)l  2 = zr--~t" (5) 

The condition ~r t << 1 implies that 

1 1 
z ( 1 - z )  < ~ <  4 '  (6) 

where the last inequality comes from symmetric pairs (z = 1/2).  From the expres- 
sion (6) results that x' ) x. 
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1 2 n 

Fig. 1. Space-time picture of the Glauber-Mueller approach. The virtual colorless hard probe G* decays into 
a pair with transverse distance rt which interacts with the n nucleons within the nucleus. 

The relation O'a*A(x, Q2) = (4¢rZas/Q2)xGa(x, Q2) is valid for a virtual probe G* 
with virtuality Q2. Consequently, using the expression (5) of the squared wavefunction 
and making the change of variables z --~ x t, we obtain that the Glauber-Mueller formula 
for the interaction of the q~ pair with the nucleus is written as 

1 oo 

4 Ca f dx' f d2rt f d2bt 2 [ l _ e_½~(x, 4/~)S(b,)] . (7) 
XGA ( X, O2) _ q'r 2 CF - ~  crr---~t "n" 

X 4/Q 2 

The lower limit in rt integration comes from the expression (6). 
The space-time picture of the Glauber-Mueller approach is presented in Fig. 1. It 

takes into account only the interaction of the fastest partons with the target. As in 
QCD we expect that all partons from the cascade interact with the target, a generalized 
equation was proposed in [ 11 ]. 

The AGL equation can be obtained directly from Eq. (7) differentiating this formula 
Q2/A2 Therefore the AGL for the interaction of q~ with respect to In 1Ix and In / QCD- 

dipole is given by 

a2XGA(x,  Q 2) 2Q 2 CA f l o . ~  2 I d2bt [ 1 - - e - ~  N(x'Q )S(bt)] ( 8 )  
0 ln(1/x)O ln(QZ/A~ci) ) = ¢r---T-C--FF j qr 

where the dependence of o-ff in the virtuality of the virtual probe results from the 
derivative. The non-perturbative effects coming from the large distances are absorbed 
in the boundary and initial conditions. This equation is valid in the double logarithmic 
approximation (DLA).  

For a central collision (b = 0) the AGL equation (8) reduces to 

02XGA (X, Q 2 )  CA 2 QZ R a _~q~ 2 
- - -  [ 1  - e  2 ~ ( x ' o  ) s ( o ) ] ,  ( 9 )  

Oln(1/x)Oln(Q2/A~,cD) CF ~2 

where we have set db 2 = R 2 for a b = 0 collision. This limit is important since the cross 
section is strongly unitarized at small impact parameters [ 12,16]. 

Considering that the transverse cross-sectional area of the nucleus is S± = ~R 2 and 
that S(0) = A/(crR2), the AGL equation for b = 0 is obtained as 
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n 

Fig. 2. First iteration of the Glauber-Mueller approach. The AGL equation takes into account the interation 
of all partons of the parton cascade with several nucleons within of the nucleus. 

c92XGA ( X' Q2) Nc CF S-I- O 2 [ 1 - e  -(2a'~r2/Ncs± )-d~xGa(x'Qz) ] (10) 
a In( 1 /x ) a  ln(QZ/A~cD) = --~ ~ 

where Nc = 3 and we have assumed that CF = Nc/2 in the large Arc limit. Eq. (10) 
agrees with the expression (2) of [ 17]. 

The AGL equation takes into account the interaction of all partons in a parton cascade 
with the target. In other words, the AGL equation takes into account that each parton 
in the parton cascade interacts with several nucleons within of the nucleus (Glauber 
multiple scattering). In Fig. 2 we present the result of the first iteration from the 
Glauber-Mueller formula, which is one of the terms summed by the AGL equation. 

The GLR equation can be obtained directly from Eq. (10). I f  we expand the right- 
hand side of this equation to the second order in xGa we obtain 

OZxGA(x, Q 2) = _  o l 2 q ' i  " l 
asNCxGA(x,  QZ) [xGA(x, QZ)] 2 ( l l )  

Oln(1/x)Oln(Q2/A~cD) 7"r ~ QZ ' 

which is the GLR equation for a cylindrical nucleus case (see Eq. (19) in [17]) .  
Moreover, if  the unitarity corrections are small, only the first order in XGA contributes. 
In this limit, Eqs. (10) and (11) match with the DGLAP evolution equation in the 
DLA limit. 

Therefore the AGL equation (i) matches the DGLAP evolution equation in the DLA 
limit of PQCD, (ii) it has the GLR equation as a limit, and (iii) contains the Glauber- 
Mueller formula. We have that the AGL equation is valid in a large kinematical region. 

Recently, a comprehensive phenomenological analysis of the behavior of distinct 
observables was made for the HERA kinematical region using the Glauber-Mueller 
approach [ 13,22,23]. In this kinematical region the solutions from the AGL equation 
and the Glauber-Mueller approximately coincide. The results f rom these analysis agree 
with the recent HERA data and allows us to make some predictions which will be 
tested in the near future. In Ref. [22] we have analysed the behavior of the longitudinal 
structure function FL and the charm component of  the proton structure function F~ and 
have shown that our results agree with the H1 data. New data, with better statistics, 
will allow us to evidentiate the unitarity corrections. In Ref. [23] we have shown that 
the recent ZEUS data can be described if the unitarity corrections for the F2 slope are 
considered. Our main conclusion is that the unitarity corrections cannot be disregarded 
in the HERA kinematical region. 



302 M.B. Gay Ducati, V.P. Gonfalves/Nuclear Physics B 557 (1999) 296-306 

3. The nuclear structure function 

The unitarity corrections to the nuclear structure function can be estimated in the rest 
frame of the target. This intuitive point of view was proposed by Gribov many years 
ago [24]. Gribov's assumption is that at small values of x the virtual photon fluctuates 
into a q~ pair well before the interaction with the target, and this system interacts 
with the target. This formalism has been established as a useful tool for calculating deep 
inelastic and related diffractive cross section for 3'* P scattering in the last years [25,26]. 
The Gribov factorization follows from the fact that the lifetime of the q~ fluctuation 
is much larger than the time of the partonic interactions. According to the uncertainty 
principle, the fluctuation time is ~ 1/m x, where m denotes the target mass. 

The space-time picture of the DIS in the target rest frame can be viewed as the decay 
of the virtual photon at high energy (small x) into a quark-antiquark pair long before 
the interaction with the target. The q~ pair subsequently interacts with the target. In the 
small x region, where x << 1/2mR, the q~ pair crosses the target with fixed transverse 
distance rt between the quarks. It allows us to factorize the total cross section between 
the wave function of the photon and the interaction cross section of the quark-antiquark 
pair with the target. The photon wave function is calculable and the interaction cross 
section is modelled. Therefore, the nuclear structure function is given by 

Q2 
ffA(x, Q2 ) 4,  omf dZ f d2rt 2 q~+A 

- - -  - - ~ - I ' / ' ( z , r , ) ]  o" (z, rt), ( 1 2 )  

where 

Igr( z , r t ) l  2 _ 60/ern nf ( 2 ~ r ) 2 ~ _ e } { [ z 2 + ( a - z ) 2 ] e 2 K l ( e r t ) a + m 2 f K g ( e r t ) 2 } ,  (13) 
i 

O/em is the electromagnetic coupling constant, e = z (1 - z)Q2 + m}, mf  is the quark 
mass, ny is the number of active flavors, e} is the square of the parton charge (in 
units of e) ,  K0,1 are the modified Bessel functions and z is the fraction of the photon's 
light-cone momentum carried by one of the quarks of the pair. In the leading log(1 /x)  
approximation we can neglect the change of z during the interaction and describe the 
cross section trqq+A(z, r2t) as a function of the variable x. 

We estimated the unitarity corrections considering the Glanber multiple scattering 
theory [27], which was probed in QCD [ 14]. The nuclear collision is analysed as a 
succession of collisions of the probe with individual nucleons within the nucleus, which 
implies that the F2 structure function can be written as [ 11 ] 

Ea x 2, Qa f / d2rt . . . .  [2 / d 2 b t 2 { 1 - e  lg2q'q(X'rt'bt)}, (14) 
2 ~ , ~  J = 47rcte-----~ dz ~ ~'tz, rt) ~ - 

where the opacity ON(x,  rt, bt) describes the interaction of the q~ pair with the target. 
In the region where /2q~ is small (g2q~ << 1) the bt dependence can be factorized as 

g2q~ = g2NS(bt) [5],  with the normalization f d2bt S(bt) = 1. The eikonal approach 
assumes that the factorization of the bt dependence £2q~ = g2q-4S(bt) , which is valid in 
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the region where Oq~ is small, occurs in the whole kinematical region [12]. The main 
assumption of the eikonal approach in pQCD is the identification of opacity ~2q~ with 
the gluon distribution. In Ref. [18] the opacity is given by J2q~ qq = O" N . 

For a central collision (b = 0), Eq. (14) reduces to 

Q2 
FA(x, Q2) 4__~emR2 j dz j d2rt ]2 = ---~--Iq'(z, rt) 2 { 1 -  e -}'ffs(°)}. (15) 

/" f 

qq and S(0) we obtain that the nuclear structure function for b = 0 is Substituting o- N 
given by 

FA(x, Q2)_ 02 Rg f dz f d2r, r., rt)122{l_e-(a,CvC/~S±)r~axG(x,I/r~)} 
4~°~em - - ~  ~e I Z, 

(16) 

This expression estimates the unitarity corrections to the nuclear structure function 
for central collisions (b = 0) in the DLA limit using the Glauber-Mueller approach. 

Comparing Eq. (16) with the expression to the nuclear structure function in the dipole 
picture proposed in [ 17], we obtain the representation for the total cross section of the 
q~ pair interacting with the nucleus, N(x0l, b0 = 0, Y), used in that reference, 

N(x0,,  b0 : 0, Y) : 2 {1 - -  e-(a'Ceqr2/N2cS±)x21AxG(x'l/x~l)}, (17) 

where xol = xo -x~ =- r t Ix0 (Xl) is the transverse coordinate of the quark (antiquark) ] 
and Y = In (s/Q 2) = In ( l / x ) .  This relation between N(xm, bo = 0, Y) and the gluon 
distribution is valid in the DLA limit and is two times the propagator of the q~ pair 
through the nucleus obtained in [20] at large Q2 (see Eq. (6b) of Ref. [ 17] ). 

We will assume that the correct expression for N in the DLA limit is given by (17). 
In the next section we will use this expression as an input in the evolution equation for 
N obtained in the dipole picture. 

4. The AGL equation from the dipole picture 

Considering the multiple pomeron exchange, Kovchegov [ 17] has obtained an evolu- 
tion equation for N(xm, bo, Y) in the leading logarithmic approximation, 

N(xol,bo, Y)=-y(Xol,bo)exp[- 4asCYln(f~-)Y]~ 

Y 
+o~sCy 4oL,CF _ y)]  --~- f dyexp [---~In(~) (Y 

0 

/ x2 
x dZx2.zg---2~..2°l [2N(xo2, bo, y) - N(xo2, bo, y)N(xx2, bo,y)] , 

-~,02-~ 12 
P 

(18) 
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where xij = xi - xj is the size of the dipole with a quark in the transverse coordinate xi 
and the antiquark in x j, y(xm,  b0) is the propagator of the q~ pair through the nucleus 
and p is an ultraviolet cutoff in the equation which disappears in the physical quantities. 
We have reobtained this equation and denote it as the K equation. 

Eq. (18) was obtained considering the scattering of a virtual photon with a nucleus. 
The physical picture for this interaction is the same as the Glauber-Mueller approach. 
The incoming virtual photon generates a q~ pair which develops a cascade of gluons, 
which then scatters on the nucleus. In the large Nc limit the gluon can be represented as a 
q~ pair. Therefore, in this limit and in the leading logarithmic approximation, the cascade 
of gluons can be interpreted as a dipole cascade, where each dipole in the cascade 
interacts with several nucleons within the nucleus. Therefore, as the K equation and the 
AGL equation, although with distinct basic objects, resums the multiple scatterings of 
its respective degree of freedom, we expect that both coincide in a common limit. 

In the double logarithmic limit, where the momentum scale of the photon Q2 is larger 
than the momentum scale of the nucleus AQCD, we take the large Q2 limit from (18), 
which reduces to 

ON(xm, bo, Y) 
OY 

1/ A2~D 
olsCF 

r ~ 2  [2N(xo2, bo, Y) 2 

- 7r x ° l  ~Xo2) 

-N(xo2, bo, Y) N(x02, b0, Y) ] • (19) 

This equation describes the evolution of the dipole transverse sizes from a small 
scale XOl to a large scale 1/AQcD. Differentiating the above expression with respect 
to In 2 2 (1/xmA~cD) yields a double differential equation for N(xm, bo, Y), 

02N(Xol, bo, Y) CesCF 
- [2 - N(xm,  b0, Y) ] N(xm, b0, Y) • (20) 

0110 In (1/x~1A~cD) ¢r 

The physical picture for the dipole evolution in the DLA limit is that the produced 
dipoles at each step of the evolution have much greater transverse dimensions than the 
parent dipoles. 

In Ref. [ 17] the connection between the quantity N(xOl, bo, Y) and the nuclear gluon 
distribution was discussed. As there is some freedom in the definition of the gluon 
distribution, the choice for the connection between the two functions was arbitrary. Here 
we use the result obtained in the previous section (Eq. (17))  to make this connection 
more explicit. If Eq. (17) is expanded to the first order in XGA, our result differs from 
the choice used in [17] by a factor of 2. 

Substituting Eq. (17) into Eq. (20) and using x01 ~ 2/Q [ 17], which is valid in the 
double logarithmic limit, we end up with 

02XGA(X, 0 2) Nc CF S± Q2 [1 - e-(~'~/Ncs±)~ xaa(x'a2)] (21) 
a I n ( l / x ) 0  ln(Q2/A~¢D) - ~3 
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which exactly corresponds to the AGL equation (Eq. (10)) .  As demonstrated in Sec- 
tion 2 the GLR equation is a straightforward consequence from the AGL equation. 

A last comment is important. Using the relation between N and x G  from Ref. [ 17] 
a factor e -~'~2x~lxGa/Ncs-L remains in the right-hand side from Eq. (21). Therefore, 
the AGL equation only could be justified for a configuration of very small dipoles, 
as was discussed in [ 17]. Consequently, the connection between the dipole and AGL 
approaches deals with the correct physical relation between the function N and the 
nuclear gluon distribution, given here by Eq. (17). 

5. Conclusions 

The AGL equation, obtained using the Glauber-Mueller approach, resums all multiple 
pomeron exchanges in the double logarithmic limit. Its solution allows us to make 
predictions which agree with the recent HERA data. In this paper we have analysed 
another equation which includes all multiple pomeron exchanges proposed by Kovchegov 
recently. The K equation was obtained in the leading logarithmic approximation using 
the dipole picture. We agree with this result. However, as the relation between the 
function N, whose evolution is described by the K equation, and the nuclear gluon 
distribution has some freedom, we obtained this connection considering the nuclear 
structure function in the Glauber-Mueller approach. Substituting this relation in the 
evolution equation for N we have shown that it reduces directly to the AGL equation 
and, as a limit, to the GLR equation in the double logarithmic limit. This result shows 
that the AGL equation is a good candidate for the unitarized evolution equation at 
small x in the DLA limit, supported by two different frameworks describing small x 
phenomena. 

Another candidate for the unitarized evolution equation was proposed by Jalilian- 
Marian et al. [28]. These authors have derived a general evolution equation for the 
gluon distribution in the limit of large parton densities and leading logarithmic approxi- 
mation, considering a very large nucleus. This work is based on the effective Lagrangian 
formalism for the low x DIS [29] and the Wilson renormalization group. In the general 
case the evolution equation is a very complicated equation, which does not allow one 
to obtain analytical solutions. Recently, these authors have considered the DLA limit 
on their result [30] and have shown that the evolution equation reduces to an equation 
with a functional form similar, but not identical, to the AGL equation. We believe that 
a more detailed analysis of the approximations used in both equations will allow one to 
demonstrate the equivalence of both equations in a common limit [ 31 ]. 
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