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A (2 + 1)-dimensional theory of charged scalar particles coupled to an abelian gauge field
with a Chern-Simons term in the action is canonically quantized in a generalized linear
non-covariant gauge. We find, in all gauges, charged excitations obeying bosonic and fractional
statistics. On general grounds, the fields are seen to develop translational and rotational
anomalies. The introduction in the action of the conventional — %F‘“’FM suppresses the
appearance of anyons.

1. Introduction

For the (2 + 1)-dimensional Chern-Simons theory*

)
Z=(D,)(D*¢) + —5 €,,,A*"4*, (D

A
Qg2

describing charged scalar particles minimally coupled to an abelian gauge field, it
was recently shown [1] that the Coulomb-superaxial gauge transformation is
singular. As a consequence, ¢ obeys a bosonic equal-time algebra in the Coulomb
gauge and a graded equal-time algebra in the superaxial gauge. It was also
demonstrated [1] that the absence of the term — %F ‘“’FM is at the root of this
statistical transmutation [2-4].

* Supported in part by Conselho Nacional de Desenvolvimento Cientifico ¢ Tecnoldgico (CNPg),
Brazil.

* The fully antisymmetric tensor €*”* is normalized such that €2 = +1, the metric is g® = —g!! =
—g”> = +1 and ¢ denotes the complex conjugate of ¢. Contrary to what was done in ref. [1], the
coupling constant ¢ (D* =" —je4A*) is not assumed to be dimensionless and equal to one but
rather dle] = cm™!/2. Then, the engineering dimensions of the fields are d[¢]=dl$]=d[A*]=
cm~ /2, while for the Chern-Simons constant one finds d[6]=cm™'. The term — %F‘“’FM
(F* = %4 — 3*4*) can now be added to the lagrangian (1) without altering the field dimensions.
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In this paper we address the following questions:

(a) Are the anyons [2] physical excitations or gauge artefacts?

(b) Does the field ¢ develop rotational and/or translational anomalies in all
gauges?

(c) Does the addition of the term — zF**F,, to the lagrangian (1) suppress the
appearance of anyons in all gauges?

To answer these questions, we start by introducing the real variables B, n and
¢ through the following definitions:

1
¢(x) = o= explie(x)] n(x), (2)
1
A*(x)=B*(x) + ;a”go(x). (3)

In terms of the new fields the lagrangian (1) is found to read

8
L= ——€,, B*"B* +

oa(3#9)d”B* + 1(3,m)(0%n) + 3°n°B*B, . (4)
4

4rie )
Notice that, unlike the case of scalar electrodynamics, the Chern-Simons la-
grangian under analysis cannot be solely written in terms of the gauge invariant
fields B* and 7. The surface term in eq. (4), containing the gauge-dependent field
¢, does not contribute to the Lagrange equations of motion but will prove essential
for the appearance of anyons.

After this change of description, and only then, the theory becomes effectively
quantizable in the generalized linear gauge

x=o(x° x) +fd2yK,-(x,y)B"(x°,y)=0, (5)

where K, and K, are real kernels not depending on time. In particular, the Dirac
bracket quantization procedure (DBQP) [5, 6] is implementable, thus providing the
basic equal-time commutation relations (ETCRs). Furthermore, composite opera-
tors, such as the Poincaré generators and the electric charge, can be explicitly
constructed. Within the present approach, the fields of interest, ¢ and ¢' are also
composite objects to be built from the basic fields, as indicated in eq. (2). Their
statistical properties, in the generalized linear gauge (5), are easily found by
exploring the basic ETCRs. The behavior of ¢ and ¢' under Poincaré transforma-
tions and under rotations in charge space is similarly obtained. All these develop-
ments are presented in sect. 2.

The Coulomb, superaxial and unitary gauges are separately analyzed in sect. 3.
These three gauges are, of course, particular cases of eq. (5). As far as the
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Coulomb and superaxial gauges are concerned, we recover the results in ref. [1]
and examine them further on. The formulation of the Chern-Simons theory in the
unitary gauge is, as far as we know, new and starts from the observation that, in
this gauge, the field ¢ becomes singular. We nevertheless show that two regular
charged fields, describing bosons and anyons, can be constructed.

Sect. 4 is dedicated to studying the modifications induced by the term — F e
when added to the lagrangian (1), while sect. 5 contains the conclusions.

2. Statistical properties in the generalized linear gauge

Within the hamiltonian framework the system (4) is characterized by the
canonical hamiltonian

Hy= [d?y [Smm, +3(0/n)(9/n) + 3e?n?B°B + Je*nB'B’|,  (6)

the primary second-class constraints

Py=mwf =0, (7a)
A O ,
giE‘ﬂi —4—11-261(Bj+;a]§0)z0, l=1a2, (7b)

the primary first-class constraint

©

o
Po=1, — Ho'B =0, 8
3=T 4% ‘ (8)
and the secondary second-class constraint
A 6
%E€2n2B0+3’7TlB+ Fe”&’szO. (9)
w

Here we have designated by wf, m, and 7 the momenta canonically conjugate to
B*, m and ¢, respectively. According to Dirac’s conjecture [7], all first-class
constraints act as independent generators of gauge transformations. Hence, it
follows from (8) that n, m,, B*, w; and m, are gauge invariant phase-space
variables, while ¢ and 7# change under gauge transformations.

The quantization of the model through the DBQP is straightforward but
algebraically cumbersome. The enlarged set of constraints resulting from adding
the gauge condition (5) to the original set {¥#,=0, & =0, i=1,2, ¥;=0,
5 = 0} is second-class, which enables us to introduce the Dirac bracket in the
standard manner. The classical-quantum transition is then performed by abstract-
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ing the equal-time commutators (ETCs) from the corresponding Dirac brackets,
the constraints and gauge conditions thereby translating into strong operator
relations [5, 6]. For the non-vanishing ETCs one, thus, obtains (A = 1)*

[B(x),Bi(y)] = 5—5——d/8(x—y), (10a)

22()

[BO(x),0(y)] = TT-V) K (y,x), (10b)

0 o 1.
(8%, 7] = = gy (400 =) = et () (100

(B9, 7)) = ~212 s, (100)
[Bi(x), Bi()] = 2T (v —y), (10¢)
[Bi(x),e(»)] = - 2ie""K,-(y,x), (10f)
[B(2), m2(3)] = £898(x—3) + 2o ecleH 3K (1. x) (10g)
[B/(x), 7 ()] = - Za,{a(x—y), (10h)
[n(x), m,(9)] =id(x-y), (10i)
[o(x),o(0)] = e R DK ) (105)
[e(x), mP(»)] = - —K(x Y) + Soeem (422K (x,2)3K (3, 2) ,(10K)
[e(x), 7 (¥)] = - ZajKj(x,y), (101)

[72(x), 7P(y)] = TB( Ye(x — .V) L ”‘a"K,-(x,_v)— %e""a;‘K,-(y,x)

1
- ?e’kel’e”fdzz(?fK,(x, z)3 K (y, z)) , (10m)
B 0 k
[7P(x), 7 ()] = - Py 5€0(8(x —y) + 9K, (x,)), (10n)

* To simplify the notation we shall not distinguish between a quantum field operator and its classical
counterpart. Whenever possible, the time label will be omitted in the field argument.
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where the factors 1/7(x) and 1/m%(x) are to be understood as regularized in the
sense of Bardakci and Samuel [8]. This algebra carries, by construction, the
constraints and gauge conditions as strong operator relations [5,6]. Moreover,
the ETCs involving only gauge-independent variables do not depend on the K'’s, as

must be the case.
We next assert that the hermitian density operators*

6% = b m, + H(o'n)(oin) + beP"BUB + ket BB,
0% = ™, -0%n +e’n*B°- B/,

verify, under egs. (10), the Dirac—Schwinger equation [9, 10]
[0%(x),0%(y)] = —i(0"(x) + ©%(y))d;8(x—y).

Then, the Poincaré generators can be written as follows:
() Momenta:

P°=[d2x@°°(x)sH,

Pk = fdzx 0%(x),
(ii) Rotations:
J= /dzx e*x/0%(x),

(iii) Boosts:

J()k =xOP" _Kk ,

Kk = fdzxxk@(’”(x) .

(11a)

(11b)

(12)

(13)

(14)

(15)

(16)

(17)

It is easy to check that the Lagrange equations of motion deriving from eq. (4) can
be recovered from the Heisenberg equations of motion deriving from egs. (13) and
(10). Moreover, for the Poincaré algebra to hold, the kernels K, i=1,2, are

*We secure the hermiticity of the composite operators calling for symmetrization in the products of

Bose fields. As usual, A -B= 1(AB + BA).
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required to satisfy the boundary conditions

'l‘lm K1,2(y7x) —)07 (183.)
lim K, (3,) 0, (18b)
|llim K, ,(y,x) -0, (18c)
x|—

which compatibilize the ETCRs (10) with the vanishing of all gauge-independent
fields at spatial infinity. We emphasize that translational invariance for the K’s is
not assumed.

On the other hand, the quasi-invariance of (4) under the global transformation
¢ = ¢ +a (a = constant) leads to the existence of the conserved electric current

£ =e’n’B*, (19)

with the corresponding electric charge given by
Q= fdzx g0= ezfdzx n2B°. (20)

From egs. (19) and (10) one arrives at

[£°(x),€%(»)] =0, (21a)

[£°(x), £5(y)] =ie*n?()d*6(x —y), (21b)

where the hermitian character of 7 secures (0|n?(y)|0) > 0, as required [11].

Having completed the quantization of (4) we turn our attention to the fields of
interest ¢, ¢ and their respective conjugate momenta p, p'. The structure of ¢
and ¢' in terms of the basic fields is already specified at (2), while from (1) and (3)
one obtains

p(x) = == [ieB"(x)m(x) + ()] expl ~i ()] (22)
7z

Due to the lack of commutativity of B® and ¢ [see eq. (10b)], the order of factors
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in eq. (22) is fixed. By using egs. (2), (22) and (10) one finds the equal-time algebra
$()8(3) — o] (5,9 [6()6(6) =0, (23a)
H2)81(3) - exp| — 5402 )| (' 0() =0, (23b)
$(2)0(9) ~ x| ~ 5059 | P80
= 33(x =) = 5 ($(3) K (x,3), (23¢)
¢(x)p'(y) - eXp[%A(x, y)]p*(y)tﬁ(x)
= %t‘S(x—y)qﬁ(X)(dfr(y))_1
+ - o] 54 B0 K (e, (@30)
p(2)5(3) - exp| 5 4(x.) | p(1) ()
- — 5 |5 ) 460 s 6000 etk (3,
+2p(0) () UK (x,9), (230)
p(x)p'(y) - eXp[* %A(x, y)]p*(y)p(x)
i 1. -1
= E[S(x—y) + ;9x’K,-(y,x)](¢(x)) p'(y)
i 1 . —1
~3ate=9 + SR |0 (87)
1 2 _
-1 {6@a(x ) + Za(x =)tk (3, 2)

+;lz—[a;Ki(x,y)][a,{K,-u,x)]}(¢(x))“(¢*(y))“, (230)
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where*
A(x,y) =i0[e(x), ()] = —27%" [d2K (2, 2)K,(,2).  (24)

Meanwhile, under rotations in charge space ¢ transforms according to [see egs.
(2), (20) and (10)]

[6(x),0] = —¢(x) [y &K, (x,y). (25)

By combining egs. (23) and (25) one arrives to some interesting conclusions. We
observe that for any gauge in the set

K (x,y)=—ed(x—y), (26)

the corresponding field ¢ describes charged excitations with charge e, while, at the
same time, the algebra (23) collapses into

Bx)8(3) = exp| 545, [#(3)0() =0, (27
H)#() - exp| ~ 34,0 |#1(08(6) =0, )
Sx)p(3) ~ |~ 54(x, ) P00 =i0(x-2), (70
8()0'(2) —exp| a0 ()0 =0, (274)
p(2) () = o] 540, | p(2)0(0) =0, (27¢)
P(2)7(2) - o] - 545, | p' (10 0, (7

where 8(0) in eq. (23f) has cancelled against the other two terms in the curly
bracket. Hence, for all those gauges in set (26), the charged excitations described
by the field ¢ will obey fractional statistics if A(x, y)# 0. Needless to say, when

* Notice that A(x, y) = —A(y, x) and, therefore, A(x, x) =0, securing the consistency of the algebra
(23) under the operation of hermitian conjugation.
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A(x,y) =0 the field ¢ describes charged bosons. We stress the relevant role
played by the commutator [¢(x), ¢(y)] in the appearance of anyons [see eq. (24)].

On the other hand, for the gauges not in the set (26), the algebra (23) becomes
singular. This calls for the introduction of new composite fields verifying a regular
equal-time algebra. This situation will be illustrated in sect. 3 in connection with
the unitary gauge.

We close this section by investigating the behavior of ¢ under spatial rotations
and translations. For obvious reasons of regularity, we shall limit our analysis to
those gauges in the set (26). The application of the generators (14) and (15) to the
field ¢ is found to yield

1
[6(x), PH] = id0(x) + (%) [ dzy{eau—y)[Bk(y) + k()

272 y 2mle
- (x)E ) |+ T K ) (29

and

272 ,
[6(x),J] =ie™xdtg(x) + = —d(x) [dyy'K,(x, »)E(3)

1 27 )
+ee”‘¢(x)xj[3k(x) + ;‘7!:4’(")] —er’(x)x’Kj(x,x). (29)

Had we kept # # 1, the last terms of (28) and (29) would have been of order #°.

Hence, for the gauges in the set (26) the field ¢ develops, in general, transla-
tional and rotational anomalies [12]. As we shall see in sect. 3, the absence of
anyons does not necessarily imply the absence of anomalies [1].

3. The Coulomb, superaxial and unitary gauges*

3.1. THE COULOMB GAUGE

By combining (3) and the Coulomb condition, 8’4/ = 0, one arrives at
¢C(x) +e[d2y3iG(x—y)B(y) =0, (30)

* Gauge-dependent field variables belonging to Coulomb, superaxial and unitary gauges will be
denoted with the superscripts “C”, “S” and “U?”, respectively.
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where V2G(x —y) = 8(x —y), ie.
G(x—y)= (477')_lln(lx—y|2) + const. (31)
From (5) and (30) one obtains the Coulomb gauge kernel
K(x,y) =ed/G(x—y), (32)
which together with (24) leads to
A%(x,y) =0. (33)
Since K “(x —y) obeys (26), one concludes that, in the Coulomb gauge, the graded
algebra (27) collapses into a bosonic algebra. Correspondingly, ¢© describes
charged bosons [1].

As for the anomalies, we start by noticing that (7b), (9), (19) and 4/4“/ = 0 lead
to

1 27 ;
B + ;3k C= —e—ek/fdzya;G(x—y)fo(y), (34)

which in turn allows one to cast (28) and (29) respectively, as follows:
[¢°(x), P*] = io*p(x), (35)
. e e’
[6°(x), ] =ie*xate + —=a(x) 0~ —=(x), (36)

where Cauchy principal value regularization has been used. Therefore, ¢< devel-
ops rotational but not translational anomalies [1, 12].

3.2. THE SUPERAXIAL GAUGE

The superaxial gauge is specified by the conditions [1, 13]

AS2(x% x1,x?) =0, (37a)
AS‘](xO,xl,x(ZO)) =0, (37b)
AS’O(xO,x(‘O),x(ZU)) =AC’°(x0,x(10),x(20)). (37¢)

Here, x, = (xy, x5) denotes some arbitrary fixed point. A little thought reveals
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that this time
Ki(x,y) = —eQ(x', xgy yl)é(y2 —x(zo)) —ed)G(xg =), (38a)
K3 (x,y) = —e.()(xz, X&) y2)6(y1 —x') —ed’G(xq —¥), (38b)
where

Q(x,y;z)EfxduS(u—z)=0~(z—y)—6~(z—x) (39)

and 6(x) is the Heaviside step function.
It is straightforward to check that K js(x, y) verifies (26) and that, in this case,
(24) yields
AS(x,y) = —277262[.(2(x',x(10); y').()(yz, X%y x(zo))

—-(2( Y Xy xl)Q(XZ’ X{oy3 x(ZO))]

xa —y?
+ae?|g(xg, —y')arctan i—)—l
|x(0)—y |
2 _ 2
XO —X
—s(x(lo)—xl)arctan (‘1)1 , (40)
lx(O)—x |

where &(x) is the sign function. The ambiguities in £2(x, y; y) are circumvented by
adopting the regularization #(0) = 1/2. Then, after some rearrangements, eq. (40)
can be cast as

2 2 2 2

Xgy—Y Xy —X
A(x,y) =me?{e(x' —y")|arctan| =2 | + arctan| -2
( y) ( y) |x1_y1| ’xl_yll

| 1 1y

Xay—_ X oy

—&(xg, —y?)|arctan % —arctan| ———-
Xy —¥°I Xy, = Y7l

. t 1

xt—y Xy —x

+e&(x{, —x?)|arctan| ———- | + arctan #——2— #0, (41)
Xy —x ey —x°|

in agreement with previous results [1].
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Therefore, it follows from eqs. (26) and (27) that ¢° describes charged excita-
tions obeying fractional statistics. The existence of a gauge transformation linking
the Coulomb and superaxial gauges [1] enables one to think of ¢° as of a
composite Coulomb gauge operator. The same is, of course, true for ¢ with
respect to the superaxial gauge. Hence, charged anyons and bosons are present in
both gauges.

The specialization of egs. (28) and (29) to the case of the superaxial gauge is not
very meaningful because of the peculiar structure of the gauge conditions (37).

3.3. THE UNITARY GAUGE

The unitary gauge is defined by the condition [14,15]

¢Y(x) =0, (42)
implying that [see eq. (5)]
KP(x,y)=0. (43)

Hence, K"(x,y) does not satisfy eq. (26). One may erroneously conclude from
(42) that ¢V is a neutral field, when what really happens is that ¢V and pVY are not
well-defined quantum mechanical operators [see eq. (23f)]. This calls for the
introduction of new fields. One may choose

(x) = exp[—i [evKE B 15;—) (44a)

ur Lo [ 12 C j
P(x) = 75 [B(x)m(x) + () exp| i [y KE(x,0) B, (440

which are, respectively, nothing but the Coulomb fields ¢“(x), p©(x) now consid-
ered as composite objects in the unitary gauge. Therefore, $Y(x) and pY(x) are
regular field operators describing charged bosonic excitations. Needless to say, the
fields ¢>(x) and pS(x) can also be thought as regular composite objects in the
unitary gauge. One can, namely, define

8(x) = oxp| i [Py "B 3%) , (452)

1
pY(x) = ﬁ[ieBO(x)n(x) +w"(x)]exp[—ifdzijs(x,y)Bf(y) , (45b)

Then, charged bosons and anyons also emerge in the unitary gauge.
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We shall next study the modifications induced by the term —4F *F,, when
added to the lagrangian (1).

4. The suppression of fractional statistics

We start by adding to eq. (1) the conventional term — ;F*'F,,. The lagrangian
thus obtained, when rewritten in terms of the variables B*, n and ¢, is found to
read

B*(3"B*)

0
£ = —3B¥B,, +3(4,m)(9*n) + ze™n’B,B* + 1—e¢,,,

7]
+ 4—772;6””(3%)(5”3"), (46)

where B** =d*B” — d"B#*. Within the hamiltonian framework, the new system is
characterized by the canonical hamiltonian

H(§=fd2 [277 B+ 1 2T, + 1BYBY + 1(8/n)(8'n)

+3e’n’B°B° + je’n’B’B’ —

02 B (Bf+ Lo )] (47)

the primary second-class constraint
Pl=ml=0, (48)

the primary first-class constraint

)

o
(@3’ = — imle eY9'B' =0, (49)
and the secondary second-class constraint
. 6
Sy =e*n*B ' +d'aP + 4—36”6’81 =0. (50)
o

The second-class constraints (7b) are no longer present and, as a consequence, the
direct connection between the 7%s and B’s disappears. This is the main effect
provoked by the addition of the term — F*'F, .

As before, the system is quantized in the generalized linear gauge (5). The
DBQP provides the corresponding ETCs. We shall not pause here to quote them,
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but we only mention that the algebra (23) is replaced by

[¢(x),8(y)] =0, (51a)
[#(x),07(¥)] =0, (51b)

[6(5), p(N] = 33(x =) = T d(R)((») GK,(x,5),  (510)
[6(),5"(0)] = 35(x=2)$()('(3)) "
+ b (D)(H'(9) YK (53, (1)
[p(x),p(y)] = —zl—ep(y)(tb(x))_l%{K,(y,x)
+ o p(x)(8(0)) " HK,(x,9), (st0)
[p(x),p*(y)]=%[5(x—y)+ B’K,(y,x)](dl(x)) 'p'()
. 1 1
[S(x y) + 3’K,(x y)]p(x)(cb*(y))
1 2 _
-1 {8 -9+ S nKi(r. )

+%[@Kf(x,y)][ain(y,x)]}, (51f)

where the factor exp[ +(i/8)A(x, y)] is missing. Indeed, a careful analysis of the
DB’s structure reveals that, due to the absence of the second-class constraints (7b),
the ETC (10j) has been replaced by

[e(x),0(¥)] =0. (52)

This, together with (24), implies that A(x, y) = 0. The additional term — ;F**F,,
implements, then, an anyon suppression mechanism in all gauges.
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5. Conclusions

We have solved in this work the problem of quantizing the Chern-Simons
theory (1) in the generalized linear non-covariant gauge (5). The lack of flexibility
of the original description was eliminated by introducing the new variables 7, ¢
and B*, as indicated in egs. (2) and (3). As far as the lagrangian is concerned, the
just mentioned change of variables provokes the appearance of a surface term
containing the gauge-dependent phase ¢. Although this term does not affect the
dynamics, we demonstrate that it is responsible for the emergence of excitations
obeying fractional statistics. Our study of the Coulomb, superaxial and unitary
gauges indicates that these excitations are not gauge artefacts.

Furthermore, we show that, on general grounds, the field ¢ develops transla-
tional and rotational anomalies. In particular, the absence of anyons does not
imply the absence of anomalies.

We prove at last that when the standard term —1F *F,, is present in the action
no anyons arise, this being true in all gauges.

We are indebted to Professor V.O. Rivelles for many stimulating discussions.
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