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A (2 + 1)-dimensionaltheory of chargedscalarparticlescoupledto an abelian gaugefield
with a Chern—Simonsterm in the action is canonically quantized in a generalizedlinear
non-covariantgauge.We find, in all gauges,chargedexcitationsobeyingbosonicand fractional
statistics. On generalgrounds,the fields are seen to develop translationaland rotational
anomalies.The introduction in the action of the conventional — ~ suppressesthe
appearanceof anyons.

1. Introduction

Forthe (2 + 1)-dimensionalChern—Simonstheory*

~= (~~)(D~)+ (1)

describingchargedscalarparticlesminimally coupledto an abeliangaugefield, it
was recently shown [1] that the Coulomb—superaxialgauge transformationis
singular.As a consequence,4) obeysa bosonicequal-timealgebrain the Coulomb
gauge and a graded equal-time algebra in the superaxial gauge. It was also
demonstrated[1] that the absenceof the term — *F~VFJ.~Vis at the root of this
statisticaltransmutation[2—4].

* Supportedin part by Conselho Nacionalde DesenvolvimentoCientlfico e Tecnológico(CNPq),
Brazil.

* The fully antisymmetrictensor�~“ is normalizedsuchthat �012 = + 1, themetric is g°°= —g” =

—g
22 = + 1 and 4, denotesthe complexconjugateof 4,. Contrary to whatwas done in ref. [1], the

coupling constant e (Di’ — ieA~)is not assumedto be dimensionlessand equal to one but
ratherdIe] cm1~2.Then, the engineeringdimensionsof the fields are d[c&] = dL4,] = d[A~’] =

cm1~2,while for the Chern—Simonsconstantone finds d[Ol = cm1. The term —

(Ft” 3’~A~— 3~’A~’)can now be addedto thelagrangian(1) without altering the field dimensions.
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In this paperwe addressthe following questions:
(a) Are the anyons[21physicalexcitationsor gaugeartefacts?
(b) Does the field 4) developrotational and/or translationalanomaliesin all

gauges?
(c) Doesthe additionof the term — ~F)~VF~ to the lagrangian(1) suppressthe

appearanceof anyonsin all gauges?
To answerthesequestions,we start by introducingthe realvariablesB~,~ and

~ throughthe following definitions:

1
4)(x) —~- exp[iq(x)] ~(x), (2)

1

A’~(x)~B~k(x) + —d~,(x). (3)

In terms of the new fields the lagrangian(1) is found to read

~‘= + 42 E 5(a~)~B+ ~(d~)(0~) + ~e
2~2B~B~. (4)

Notice that, unlike the case of scalar electrodynamics,the Chern—Simonsla-
grangianunderanalysiscannotbe solelywritten in terms of the gaugeinvariant

fields B~and i~. The surfaceterm in eq.(4), containingthe gauge-dependentfield
~‘, doesnot contributeto the Lagrangeequationsof motionbut will proveessential
for the appearanceof anyons.

After this changeof description,andonly then, the theorybecomeseffectively
quantizablein the generalizedlinear gauge

x~q~(x°,x)+ fd2yK~(x,y)Bl(x0,y)=O, (5)

where K
1 and K2 are realkernelsnot dependingon time. In particular,the Dirac

bracketquantizationprocedure(DBQP) [5,6] is implementable,thusproviding the
basic equal-timecommutationrelations(ETCRs).Furthermore,compositeopera-
tors, such as the Poincarégeneratorsand the electric charge, can be explicitly
constructed.Within the presentapproach,the fields of interest,4) and4~arealso
compositeobjectsto be built from the basic fields, as indicatedin eq. (2). Their
statistical properties, in the generalized linear gauge (5), are easily found by
exploring thebasicETCRs.The behaviorof 4) and4)~underPoincarétransforma-
tions andunderrotationsin chargespaceis similarly obtained.All thesedevelop-
mentsarepresentedin sect. 2.

The Coulomb,superaxialandunitary gaugesare separatelyanalyzedin sect.3.
These three gaugesare, of course, particular casesof eq. (5). As far as the
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Coulomb and superaxialgaugesare concerned,we recoverthe results in ref. [1]
andexaminethem further on. The formulation of the Chern—Simonstheoryin the
unitary gaugeis, as far as we know, new and startsfrom the observationthat, in
this gauge,the field 4) becomessingular.We neverthelessshow that two regular
chargedfields, describingbosonsand anyons,canbe constructed.

Sect.4 is dedicatedto studyingthemodificationsinducedby theterm —

whenaddedto the lagrangian(1), while sect.5 containsthe conclusions.

2. Statisticalpropertiesin the generalizedlinear gauge

Within the hamiltonian framework the system (4) is characterizedby the
canonicalhamiltonian

H0 = fd2y ~ + ~(o3~)(a~) + ~e
2~j2B°B°+ ~~e2~q2B3BJ], (6)

the primarysecond-classconstraints

(7a)

0 1
~ B3+—ô3~’ ~O, i=1,2, (7b)

e

theprimary first-classconstraint

U
2 c’3a’B3~O, (8)4ir e

andthe secondarysecond-classconstraint

~/
0—e

2~2B°+a’7r~+ ~ (9)

Herewe havedesignatedby ~ ~ and the momentacanonicallyconjugateto
B~,ij and ~‘, respectively.According to Dirac’s conjecture [7], all first-class
constraintsact as independentgeneratorsof gauge transformations.Hence, it
follows from (8) that ~, ~ B~,~ and are gauge invariant phase-space
variables,while ~ and ir,B changeundergaugetransformations.

The quantization of the model through the DBQP is straightforward but
algebraicallycumbersome.The enlargedset of constraintsresulting from adding
the gauge condition (5) to the original set ~ 0, ~, 0, i = 1,2, ~ 0,

0} is second-class,which enablesus to introduce the Dirac bracket in the

standardmanner.The classical—quantumtransitionis thenperformedby abstract-
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ing the equal-timecommutators(ETCs) from the correspondingDirac brackets,

the constraintsand gauge conditions thereby translating into strong operator
relations[5,6]. For the non-vanishingETCsone,thus, obtains(h = 1)*

[BO(x),Bh(y)] = e2~2(x)d~5(x-y), (lOa)

[B°(x), ~)‘ = — e2~2(x)~K
1(y, x), (lOb)

[B0(x),~p(y)] = — 42~02() ~‘1(ö.~(x_~) — ~ (lOc)

B°(x)
[B0(x),7~(y)] = —2i ‘q(x) ~(x—y), (lOd)

[B~(x), B’(y)I = ~e’~~(x —y), (lOe)

[B~(x), ~(y)] = — ~ x), (lOf)

[B’(x),~r(y)J = ~~~~(x—y) + ~EztEkJakK(yx) (log)

[B3(x),ir~,,(y)J = — ~—3~~6(x—y), (lOh)

[n(x),ir,~(y)~=i~(x—y), (lOi)

217-
2i

[q(x),ç(y)J = ___è__Et~fd2zKj(x,z)Kj(y,z), (lOj)

[~(x) , ~r(~)J= — ~K
1(x, y) + ~EJtctmfd2zK/(x, Z)~Km(Y,z) ,(lOk)

[~(x),~(y)~ = — ~a~K1(x, y), (101)

[~-~(x),~r(y)I = iO(() — _�tkakK.(xy) — Ek~t9j~K~(y,X)

— ~tkE1JfrsJd2zakK (x, z)a~K~(y, z))~ (lOm)

= — 8~2e2E XY) +3~Kk(x,y)), (iOn)

* To simplify thenotation we shall not distinguishbetweena quantumfield operatorandits classical

counterpart.Wheneverpossible,thetime labelwill be omittedin the field argument.
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wherethe factors 1/i~(x)and 1/s~2(x)are to be understoodas regularizedin the
senseof Bardakci and Samuel [81.This algebra carries, by construction,the
constraintsand gauge conditions as strong operator relations [5,6]. Moreover,
the ETCsinvolving onlygauge-independentvariablesdo not dependon the K’s, as
mustbe the case.

We nextassertthat the hermitiandensityoperators*

000 = ~. + ~(tF~)(3J~) + ~e2ij2B°B° + ~e2’rj2B~B~, (ha)

(lib)

verify, undereqs.(iO), the Dirac—Schwingerequation[9, 10]

[000(x) 000(y)] = —i(0°”(x) + e0/~(y))0~3(x—y) . (12)

Then, the Poincarégeneratorscanbewritten as follows:
(i) Momenta:

p°= fd2x000(x) —=H, (13)

pk = fd2x ~90k(x) (14)

(ii) Rotations:

J= fd2xe~x~~00I<(x), (15)

(iii) Boosts:

JOkxOpk_Kk, (16)

Kk = fd2xxk000(x). (17)

It is easyto checkthat theLagrangeequationsof motion deriving from eq.(4) can
be recoveredfrom the Heisenbergequationsof motion derivingfrom eqs.(13) and
(10). Moreover, for the Poincaréalgebra to hold, the kernels K,, i = 1,2, are

* We securethe hermiticity of thecompositeoperatorscalling for symmetrizationin the productsof

Bosefields.As usual,A B ~(AB + BA).
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required to satisfy the boundaryconditions

lim K12(y,x) —~O, (18a)
xJ—0 00

lim a~K12(y,x)—90, (l8b)
IxI-.oo

lim a~,K12(y,x)—~O, (h8c)
lxi —0 00

which compatibilize the ETCRs (ho) with the vanishingof all gauge-independent
fields at spatial infinity. We emphasizethat translationalinvariancefor the K’s is
not assumed.

On the other hand,the quasi-invarianceof (4) underthe global transformation
—* ~‘ + a (a = constant)leadsto the existenceof the conservedelectriccurrent

(19)

with the correspondingelectricchargegivenby

Q ~fd2x40=e2fd2xii2B0. (20)

From eqs.(19) and(10) one arrivesat

[~°(x),~°(y)J =0, (2la)

[~°(x),~”(y)} =ie
2ij2(y)9~5(x—y), (21b)

wherethe hermitiancharacterof ~ securesKOIi~2(y)IO)> 0, as required[ill.
Having completedthe quantizationof (4) we turn our attention to the fields of

interest4), 4)~andtheir respectiveconjugatemomentap, p~.The structureof 4)
and4~in termsof the basicfields is alreadyspecifiedat (2), while from (1) and(3)
oneobtains

p(x) = ~[ieB0(x)~(x) +~(x)Iexp[-i~(x)]. (22)

Due to the lack of commutativityof B°and ~ [seeeq.(lOb)], the order of factors
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in eq. (22) is fixed. By usingeqs.(2), (22) and(10)onefinds the equal-timealgebra

- exp[~(x~Y)]4)(Y)4)(x) = 0, (23a)

4)(x)4)~(y)_exp[_~4(x,y)14)(y)t4)(x)=0, (23b)

4)(x)p(y) _exp[_~(x,Y)1P(Y)4)(x)

= ~3(x-y) - ~4)(x)(4)(y)Y’8~K1(x,y), (23c)

4)(x)p
t(y) _exp[~(x,Y)JPt(Y)4)(x)

=

+ ~ exp[ (x,y)J4)(x)(4)t(y)Y’a~Kj(x, y), (23d)

p(x)p(y) _exp[~4(x,Y)1P(Y)P(x)

= _~exp[(~(x,Y)JP(Y)(4)(x)ybo~Kj(Y,x)

+ ~—p(x)(4)(y)Y’a~K~(x,y), (23e)

p(x)pt(y)_exp[_~(x,y)]pt(Y)P(x)

= ~[~(x_~) + _o~Kj(y,x)](4)(x)Y1pt(Y)

+ _a~KJ(x,y)jp(x)(4)t(y))1

+ ~(x-y)a~K~(y,x)

+ 4 [o~K~(x, y)] [a~K
1(y, x)I}(4)(x)) 1(4)t(y))1, (23f)
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where*

~(x, y) iU[~(x), q~(y)] = _2ir2e~3fd2zKj(x, z)K1(y,z). (24)

Meanwhile,under rotations in chargespace4) transformsaccordingto [see eqs.
(2), (20) and(10)]

[4)(x),Q] = _4)(x)fd2y3~Kj(x,y). (25)

By combining eqs.(23) and (25) one arrivesto some interestingconclusions.We
observethat for any gaugein the set

a~K1(x,y)= —e~(x—y), (26)

the correspondingfield 4) describeschargedexcitationswith chargee, while, at the
sametime, the algebra(23) collapsesinto

4)(x)4)(y) _exp{~(x~Y)]4)(Y)4)(x)=0, (27a)

4)(x)4)
t(y) _exp[_~(x,y)I4)t(y)4)(x)=0, (27b)

4)(x)p(y) - exp[_ ~(x, ~)]P(Y)4)(x)= i6(x-y), (27c)

4)(x)pt(y) _exp[~
4(x,y)jpt(y)4)(x)=0, (27d)

p(x)p(y) - exp[~(x, ~)]~(~)~(x) = 0, (27e)

p(x)pt(y) — exp[_ ~(x, y)jpt(y)p(x) = 0, (27f)

where ~(O) in eq. (23f) has cancelledagainst the other two terms in the curly
bracket.Hence, for all thosegaugesin set (26), the chargedexcitationsdescribed
by the field 4) will obeyfractional statisticsif L1(x, y) ~ 0. Needlessto say, when

* Notice that .i(x, y) = —~(y,x) and, therefore,~1(x,x) = 0, securingthe consistencyof the algebra

(23) underthe operationof hermitianconjugation.
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zl(x, y) = 0 the field 4) describeschargedbosons. We stress the relevant role
played by the commutator[q(x), q(y)] in the appearanceof anyons[see eq.(24)1.

On the other hand,for the gaugesnot in the set (26), the algebra(23) becomes
singular.This calls for the introductionof new compositefields verifying a regular
equal-timealgebra.This situation will be illustrated in sect. 3 in connectionwith
the unitarygauge.

We close this sectionby investigatingthe behaviorof 4) underspatialrotations
and translations.For obvious reasonsof regularity,we shall limit our analysisto
thosegaugesin the set (26). The applicationof the generators(14) and(15) to the
field 4) is found to yield

[4)(x),Pk] = jdk4)(x) + 4)(x)fd2Y{e6(x_Y)[Bk(Y) +

2~2 \ 2~2e
— ... ekJK.(x y)~°(y) + ~ eI~4)(x)K~(x,x) (28)

and

2ir2
[4)(x), J] = ieJkxJ3~~4)(x)+ ~ y)~0(y)

+eeik4)(x)x1[Bk(x) + ~3~(x)j —e~4)(x)x1K
1(x,x). (29)

Had we kept h # 1, the last termsof (28) and(29) would havebeenof order h
2.

Hence, for the gaugesin the set (26) the field 4) develops,in general,transla-
tional and rotational anomalies[12]. As we shall see in sect. 3, the absenceof
anyonsdoesnot necessarilyimply the absenceof anomalies[1].

3. The Coulomb, superaxial and unitary gauges*

3.1. THE COULOMB GAUGE

By combining(3) andthe Coulomb condition,äjAc,1 = 0, one arrives at

,PC(x) + ef d2y~9~G(x—y)B-’(y) = 0, (30)

* Gauge-dependentfield variables belonging to Coulomb, superaxial and unitary gaugeswill be

denotedwith the superscripts“C”, “S” and “U”, respectively.
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where V~2G(x—y)=~(x—y),i.e.

G(x—y)=(4~r)’ln(Ix—yI2)+const. (31)

From (5) and (30)one obtainsthe Coulomb gaugekernel

Kf(x,y)=ea~G(x—y), (32)

which togetherwith (24) leadsto

~C(xy) =0. (33)

Since KF(x — y) obeys(26), oneconcludesthat, in the Coulombgauge,the graded
algebra (27) collapses into a bosonic algebra. Correspondingly,4~describes
chargedbosons[1].

As for the anomalies,we start by noticing that (7b), (9), (19) and I9)ACJ= 0 lead
to

Bk + = ~ ekifd2y 8~G(x—y)~°(y), (34)

which in turn allows one to cast(28) and(29) respectively,as follows:

[4)C(x)pk] jök4)(x) (35)

i~re[4)c(x)J] =ie~”x~3”4)+ —4)(x)Q— —~----4)(x), (36)

where Cauchyprincipal value regularizationhasbeenused.Therefore,4~devel-
ops rotationalbut not translationalanomalies[1, 121.

3.2. THE SUPERAXIAL GAUGE

The superaxialgaugeis specifiedby the conditions[1, 13]

As2(xo,xI,x2) =0, (37a)

ASt(xO,xl,x(~))=0, (37b)

As.o(xo,X~
0),X(Q)) =Ac.o(xo,~ x(O)) . (37c)

Here, X(0) (x~),x~)denotessomearbitrary fixed point. A little thought reveals
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that this time

K~(x,y) = _eQ(x’, x~);y1)5(y2 x(O)) — ea~G(x(
0)—y) , (38a)

K~(x,y) = —eI2(x
2,X(Ø); y2)6(y’ —x’) — eä~G(x(O)—y), (38b)

where

fl(x,y;z)=fdu6(u—z)_-ö(z—y)—ë(z—x) (39)

and ~(x) is the Heavisidestepfunction.
It is straightforwardto check that K7(x,y) verifies (26) and that, in this case,

(24) yields

~s(xy) = _2~2e2[fl(x1,x~);y1)fl(y2,x(~);x(~))

X(o); x1)f1(x2, 1(0);

+i~-e2e(x~)—y’)arctan 1 — 1
Ix(O) )‘

x~—x2
—6(4)_x1)arctan(~ ) (40)

where 6(X) iS the sign function.The ambiguitiesin fl(x, y; y) are circumventedby
adoptingthe regularizationö(O) = 1/2. Then, after somerearrangements,eq.(40)
canbe castas

X2 —y2 X2

0 —X

2
~S(

1y) =~e2{e(x1 Y1)[arctan((~) ‘I) +arctan(1~i~_~i~)]

X~))~Y
1 X1 —y1

_s(4)_y2) arctan IX(O)yI —arctan x(O)—yI

+e(4)_x2)[arctan( ~ ) +arctan( ~0~2 )J) ~0, (41)
IX(O) I (0)

in agreementwith previousresults[1].
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Therefore, it follows from eqs. (26) and (27) that 4)5 describeschargedexcita-
tions obeyingfractional statistics.The existenceof a gaugetransformationlinking

the Coulomb and superaxial gauges[1] enablesone to think of 4)5 as of a
compositeCoulomb gaugeoperator.The same is, of course, true for 4~with
respectto the superaxialgauge.Hence,chargedanyonsandbosonsarepresentin
bothgauges.

The specializationof eqs.(28) and(29) to the caseof the superaxialgaugeis not

very meaningfulbecauseof the peculiarstructureof the gaugeconditions(37).

3.3. THE UNITARY GAUGE

The unitary gaugeis definedby the condition[14, 15]

(42)

implying that [seeeq. (5)]

K~(x,y)=0. (43)

Hence, K,~~r(x,y) does not satisfy eq. (26). One may erroneouslyconclude from
(42) that 4~-~is a neutral field, whenwhat reallyhappensis that 4)~and~U arenot

well-defined quantum mechanicaloperators [see eq. (23f)]. This calls for the
introductionof new fields. Onemay choose

exp{—if d
2yKF(x, ~)BJ(Y)] ,~ , (44a)

~u(x)~ ~[ieB0(x)~(x)+~(x)Jexp[_ifd2yKjC(x,y)B3(y)J, (44b)

which are,respectively,nothingbut the Coulombfields
4)c(x), pC(x) now consid-

ered as compositeobjects in the unitary gauge.Therefore,4)U(1) and 13U(x) are
regularfield operatorsdescribingchargedbosonicexcitations.Needlessto say, the
fields 4)s(x) and ps(x) can also be thought as regular composite objects in the
unitary gauge.One can,namely,define

exp[_ifd2yK~(x, ~)B3(~)J ~) , (45a)

ftU(x) ~[ieB0(x)~i(x) + ~(x)]exp[_if d
2yKr(x, ~)BJ(~)]~ (45b)

Then, chargedbosonsandanyonsalso emergein the unitary gauge.
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We shall next study the modifications inducedby the term — when
addedto the lagrangian(1).

4. The suppressionof fractional statistics

We startby addingto eq.(1) the conventionalterm — ~ The lagrangian
thusobtained,whenrewritten in terms of thevariablesB~,i~and ~, is found to

read

= — ~ + ~(a~)(a~) + ~e2~2B~B~+

U
+ 2 �~

5(~9~)(a’~B
5), (46)

4~e

where B~~Va/~BV— ,9VB~L Within the hamiltonianframework, the new systemis
characterizedby the canonicalhamiltonian

H~= I ~ + + ~B”B’~ +

0 1
+ ~e2~2B°B°+ -~e2~2B~B~— —~.e’~i~B~+ —3’p , (47)

4~ e

the primarysecond-classconstraint

(48)

the primary first-classconstraint

0
~ —~---�‘~3’B~~O, (49)

4ir e

andthe secondarysecond-classconstraint

e2~2B°+3’~+ ~~“8’B~ 0. (50)

The second-classconstraints(7b) are no longerpresentand,as a consequence,the
direct connectionbetweenthe ~B’

5 and B’s disappears.This is the main effect
provokedby the additionof the term —

As before, the system is quantizedin the generalizedlinear gauge(5). The
DBQP provides the correspondingETCs.We shall not pausehere to quotethem,
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butwe only mentionthat the algebra(23) is replacedby

[4)(x),4)(y)] =0, (51a)

[4)(x),4)~(y)] =0, (51b)

[4)(x),p(y)] = ~6(x-y) - ~—4)(x)(4)(y)~’a~K1(x,y), (Sic)

[4)(x),pt(y)] =

+ ~4)(x)(4)t(y))’a~K1(x, y), (51d)

[p(x),p(y)] =

+ ~—p(x)(4)( y)) ‘a~K~(x,y), (Sic)

[p(x),p
t(y)I = ~[~(x_~) + i~KJ(y,x)](4)(x)Y1pt(y)

- ~ [~x -y) + -a~K~(x,y)1p(x)(4)t(y))1

+ ~8(x-y)ä~K~(y,x)

+ ~ [a~K~(x, ~)] [d~K
1(y, x)1 }, (51f)

where the factor expE±(i/U)~i(x,y)] is missing. Indeed,a careful analysisof the
DB’s structurerevealsthat,due to the absenceof the second-classconstraints(7b),
the ETC (hOj) hasbeenreplacedby

[q(x),q~(y)J 0. (52)

This, togetherwith (24), implies that L1(x, y) = 0. The additional term — ~
implements,then,an anyonsuppressionmechanismin all gauges.
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5. Conclusions

We have solved in this work the problem of quantizing the Chern—Simons
theory (1) in the generalizedlinear non-covariantgauge(5). The lackof flexibility
of the original descriptionwaseliminatedby introducing the new variables i~, ~

and Bk’, as indicatedin eqs.(2) and(3). As far as the lagrangianis concerned,the
just mentionedchangeof variablesprovokes the appearanceof a surfaceterm
containingthe gauge-dependentphaseq. Although this term doesnot affect the
dynamics,we demonstratethat it is responsiblefor the emergenceof excitations

obeying fractional statistics.Our study of the Coulomb, superaxial and unitary
gaugesindicatesthat theseexcitationsarenot gaugeartefacts.

Furthermore,we show that, on generalgrounds,the field 4) developstransla-
tional and rotational anomalies. In particular, the absenceof anyons does not
imply the absenceof anomalies.

We proveat last that whenthe standardterm — ~ is presentin the action
no anyonsarise,this beingtrue in all gauges.

We are indebtedto ProfessorV.0. Rivellesfor many stimulatingdiscussions.
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