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Abstract

We investigate two solvable models for Bose–Einstein condensates and extract physical information by
studying the structure of the solutions of their Bethe ansatz equations. A careful observation of these so-
lutions for the ground state of both models, as we vary some parameters of the Hamiltonian, suggests a
connection between the behavior of the roots of the Bethe ansatz equations and the physical behavior of the
models. Then, by the use of standard techniques for approaching quantum phase transition – gap, entan-
glement and fidelity – we find that the change in the scenery in the roots of the Bethe ansatz equations is
directly related to a quantum phase transition, thus providing an alternative method for its detection.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The study of Bose–Einstein condensates has provided in recent years several new exciting
possibilities of research, either experimental or theoretical. One of these is the investigation of
different phases of ultracold atoms. Whether, for instance, one can take them from an insulator
to a superfluid behavior, as in [1]. Now, given the fact that these condensates reside in the realm
of near to absolute zero temperatures new tools are needed to approach this quantum phase
transition. One possibility lies in the field of quantum information and make use of quantities
such as the entanglement entropy or the fidelity. Another possibility that we would like to advance
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is the use of quantum integrable systems which contributed with several models of Bose–Einstein
condensates [2–7] where one has exact control over their solutions through Bethe ansatz methods
and whose importance has been highlighted in [8,9].

Quantum phase transitions most distinctive feature, when compared with a classical phase
transition, is that they take place at zero temperature. That is, in practical terms, when quantum
fluctuations are more relevant than thermal ones. This is reflected in the behavior of the ground
state, of the investigated physical system, which changes in some essential manner when some
parameter of the associated Hamiltonian takes different values. The typical image is presented
in [10] for a Hamiltonian given by a linear combination of commuting operators, when changing
a coefficient of the combination, the ground state may reach a non-analytic point for some critical
value of this coefficient.

For quantum integrable systems one can have access to the ground state through the exact
solution of the corresponding models by the quantum inverse scattering method that leads to the
algebraic Bethe ansatz equations [11–14]. A careful observation of the behavior of solutions of
these equations for the ground state, as we vary some parameters of the Hamiltonian, suggests a
connection between the behavior of roots of the Bethe ansatz equations and the physical behavior
of such models. Which is exactly what we expect to happen in quantum phase transitions.

Our aim is then, for two different integrable models, the two-site Bose–Hubbard model and the
hetero-atomic molecular Bose–Einstein condensate (BEC), to compare our results, coming from
the study of the solutions of the Bethe ansatz equations, with the results of other more standard
methods for finding quantum phase transitions such as the study of the entanglement, energy
gap and fidelity. Notwithstanding that rigorously a quantum phase transition is only defined in
the limit where N , the number of particles in the system, approaches infinity, the previously
mentioned concepts show a clear response to variations in the ground state of the system for
finite N and unequivocally indicate the presence of quantum phase transitions [15]. Very recent
experiments incorporating the realization of a quantum system exhibiting classical bifurcations
as well as the determination of a suitable criteria for measuring the entanglement between two
wells in a BEC [16–18] turn this kind of investigation for such models even more appealing.

In the next section we analyze the attractive two-site Bose–Hubbard model where a bifurcation
in its classical analysis indicates the possibility of a quantum phase transition; we investigate the
structure of the ground state distribution of roots of the Bethe ansatz equations for this model in
order to examine if its behavior could be used to unveil a quantum phase transition. A comparison
is done with the behavior of such quantities as the entanglement, energy gap and fidelity. We also
provide an image of which processes occur in the phase transition. In the third section we apply
the same kind of analysis to the hetero-atomic molecular Bose–Einstein condensate, which is
described by a three mode Hamiltonian that allows for atomic and molecular states to exist as a
superposition. In Section 4 we summarize our results and draw some conclusions.

2. Attractive two-site Bose–Hubbard model

From the theoretical point of view, the two-site Bose–Hubbard model, also known as the
canonical Josephson Hamiltonian [2,19], has been a useful model in understanding tunneling
and self-trapping phenomena. The Hamiltonian is given by

Ĥ = k
(N̂1 − N̂2)

2 − μ
(N̂1 − N̂2) − ε (

â
†
1 â2 + â

†
2 â1

)
, (2.1)
8 2 2
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where {â†
j , âj | j = 1,2} are the creation and annihilation operators for the condensate j , associ-

ated respectively to two bosonic Heisenberg algebras, with the following commutation relations
[
âi , â

†
j

] = δij , [âi , âj ] = [
â

†
i , â

†
j

] = 0 (2.2)

also the operators N̂j = â
†
j âj are the corresponding boson number operators for each conden-

sate. Since the Hamiltonian does not depend explicitly on time and commutes with the total
boson number N̂ = N̂1 + N̂2, the total number of bosons N is a conserved quantity and it is pos-
sible to set ourselves to a subspace with fixed value of N . The coupling k provides the strength of
the scattering interaction between bosons and may be attractive (k < 0) or repulsive (k > 0). The
parameter μ is the external potential which corresponds to an asymmetry between the conden-
sates and ε is the coupling for the tunneling. Despite its apparent simplicity, this model exhibits
very interesting behavior. In particular, an investigation of its quantum dynamics predicts non-
trivial threshold couplings [20,21], in qualitative agreement with experimental results [22]. We
restrict ourselves to study the case k < 0 because it is known that in the attractive case the system
presents a quantum phase transition (QPT) [21,23].

2.1. Classical analysis

Let {N̂j , θ̂j | j = 1,2} be quantum variables satisfying the canonical commutation relations.
In order to go to the classical limit it is convenient to make a change of variables from the
operators {â†

j , âj | j = 1,2} to a number–phase representation via

âj = eiθ̂j

√
N̂j , â

†
j =

√
N̂j e

−iθ̂j , (2.3)

such that the Heisenberg canonical commutation relations are preserved. Now we define the
variables

ẑ = 1

N̂
(N̂1 − N̂2) (2.4)

representing the fractional occupation imbalance and

θ̂ = N̂

2
(θ̂1 − θ̂2) (2.5)

representing the phase difference. Note that (ẑ, θ̂ ) are canonically conjugate variables. In the
classical limit where N is large, but still finite, we may equivalently consider the Hamiltonian
[2,24]

H(z, θ) = εN

2

[
λ

2
z2 − βz −

√
1 − z2 cos

(
2θ

N

)]
, (2.6)

where λ = kN
2ε

, β = μ
ε

are the parameters governing the different dynamic regimes of the con-
densates atomic tunneling. The Hamilton’s equations of motion of the system are given by

θ̇ = −∂H

∂z
= εN

2

[
λz − β + z√

1 − z2
cos

(
2θ

N

)]
, (2.7)

ż = ∂H = −ε

[√
1 − z2 sin

(
2θ

)]
. (2.8)
∂θ N
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Fig. 2.1. Coupling parameter space diagram identifying the different types of solutions for the equations of fixed points
ż = θ̇ = 0. In the region I there is one solution for θ = Nπ

2 and one solution for θ = 0 and in region II there is one

solution for θ = Nπ
2 and three solutions for θ = 0.

Here we would like to mention that the above classical equations of motion were also derived
in [24]. Now we study the fixed points of the Hamiltonian (2.6), determined from the above
equations by the condition ż = θ̇ = 0. By performing a numerical analysis we find that these
equations may have one, two or three solutions, depending on the values of the coupling param-
eters (see [25] for details). This allow us to construct a diagram of parameters identifying the
different types of solutions, depicted in Fig. 2.1. We remark that in the absence of the external
potential (β = 0), we have a fixed point bifurcation given by λ0 = −1.

It has been conjectured [26,27] that fixed points in the classical analysis can be used to identify
quantum phase transitions in a general level, regardless of the nature of the bifurcation. This
model exhibits a bifurcation point in the parameter diagram and becomes a natural candidate to
study quantum phase transitions.

2.2. Bethe ansatz solution

The two-site Bose–Hubbard model has a very special property, it is an exactly solvable model.
The integrability of this model was demonstrated using the Quantum Inverse Scattering Method
(QISM) [2]. A major advantage of the QISM, or algebraic Bethe ansatz method is that it leads
to an exact solution for the integrable models, furnishing the energy eigenvalues and the Bethe
ansatz equations (BAE) for the models. The set of BAE and energies for the Hamiltonian (2.1)
can be written in two different ways: (i) in a product form as well as (ii) in an additive form [28].
Here we will employ the additive form, given by [28]

E = kN2

8
− μN

2
+ ε

2

N∑
υj , (2.9)
j=1
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where the parameters υj must satisfy the following BAE:

ευ2
j + [k(1 − N) − 2μ]υj − ε

kυ2
j

=
N∑

k �=j

2

υk − υj

. (2.10)

Thus, each set {υj , j = 1, . . . ,N} solution of BAE (2.10), provides an energy eigenvalue (2.9)
of the Hamiltonian. In principle, it is not realizable the analytical solution of these equations.
There are, however, a few studies in asymptotic limits for the repulsive case [29]. Nevertheless
due to their structure, in order to achieve a more accurate analysis of the model, we may employ
numerical tools. The numerical solution of Eq. (2.10), shows that the ground state in the attractive
case has the structure of a N -string – i.e., it presents itself as a collection of symmetric solutions
in the complex plane like {νj | j = 1, . . . ,N} = {xk ± iyk | k = 1, . . . , N

2 } – in contrast with the
repulsive case, where the ground-state solution has always real roots. All these solutions have
been checked with the exact diagonalization of the Hamiltonian and there is a full agreement. In
the following charts we show the solutions of the BAE for some values of the total number of
particles and we adopted μ = 0 by the consideration of two main reasons: (i) non-zero values
of μ do not significantly alter the behavior of the system, just shifting the energy levels [21];
(ii) much of the experimental realizations with these systems are made on the condition of zero
external potential [16]. For further analysis, it is useful to take into account the parameter λ−1,
borrowed from the classical analysis:

λ−1 = 2ε

kN
. (2.11)

In Fig. 2.2, notice the abrupt change in the distribution of roots of Eq. (2.10) in the complex
plane from a certain critical value λ−1

C . For values of λ−1 larger then λ−1
C the roots begin to

distribute about distinct families of curves. The same characteristic behavior of the ground state
roots of the Bethe ansatz equations is observed for other values of N – see Figs. 2.3 and 2.4.

The largest value of N for which we have numerically solved the BAE (2.10) and to determine
the configurations of the roots into the ground state was N = 120, as illustrated in Fig. 2.4. It is
interesting to note that equations similar to (2.10) were found and solved for other integrable
models of interest such as the reduced BCS model [30] and the BCS wave-p type model [31],
where it was possible to solve the BAE for N = 100 and N = 30 Cooper pairs, respectively.

Later we will discuss this peculiar behavior of the solutions of BAE (2.10) under the light of
the physical phenomena occurring in the system.

2.3. Quantum phase transitions

As discussed in the classical analysis, the fixed points can be used to identify quantum phase
transitions in a general level. The two-site Bose–Hubbard model has a bifurcation point that can
be seen in the parameters diagram presented in Fig. 2.1 and becomes a natural candidate for the
study of entanglement and quantum phase transitions. Quantum Phase Transitions (QPT) occur
at absolute zero temperature due to quantum fluctuations when we vary some parameter [10].
Although QPT are rigorously defined only in the thermodynamic limit, when N goes to infin-
ity, the analysis made in finite systems, using the techniques below, indicates points that show
a response to variations in the ground state and indicates the presence of quantum phase transi-
tions [15]. Then in order to simplify the nomenclature we use the terminology QPT also when
referring to these points. There are different techniques to identify them and, in particular, the
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Fig. 2.2. Solutions of Bethe ansatz equations (2.10) in the complex plane for the ground state considering the particular
case N = 80. Each curve corresponds to a value of the parameter λ−1 as the color table, right, and sits on a set of points
(roots of Eq. (2.10)). Here, and in the subsequent figures, the inset shows an enlarged view of the delimited area. The
abrupt change in the distribution of roots occurs at λ−1 ≈ −0.833.

Fig. 2.3. Solutions of Bethe ansatz equations (2.10) in the complex plane for the ground state considering the particular
case N = 100. Each curve corresponds to a value of the parameter λ−1 as the color table, right, and sits on a set of points
(roots of Eq. (2.10)). The abrupt change in the distribution of roots occurs at λ−1 ≈ −0.909.
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Fig. 2.4. Solutions of Bethe ansatz equations (2.10) in the complex plane for the ground state considering the particular
case N = 120. Each curve corresponds to a value of the parameter λ−1 as the color table, right, and sits on a set of points
(roots of Eq. (2.10)). The abrupt change in the distribution of roots occurs at λ−1 ≈ −0.926.

critical values of the parameters for which the transitions happen. We will use three different
ones, all of them sensible to the ground state behavior, entanglement, energy gap and fidelity.

2.3.1. Entanglement
We can consider the pair of coupled Bose–Einstein condensates as a bipartite system of two

modes, “1” and “2”. In this case, the standard measure of entanglement is the von Neumann
entropy of the reduced density operator of either of the modes [20]. The state of each mode
is characterized by its occupation number. Using the fact that the total number of atoms N is
constant, a general state of the system can be written in terms of the Fock states by

|Ψ 〉 =
N∑

n=0

cn|n〉|N − n〉, (2.12)

where cn are complex numbers and for N1 = n atoms in condensate 1 there will be N2 = N − n

atoms in condensate 2. The density operator of the system is given by

ρ = |Ψ 〉〈Ψ | =
N∑

m,n=0

c∗
mcn|m〉|N − m〉〈n|〈N − n|. (2.13)

Taking the partial trace with respect to mode “2” yields the reduced density operator for
mode “1”,

ρ1 = Tr2(ρ) =
N∑

|cn|2|n〉〈n|. (2.14)

n=0
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Fig. 2.5. Entanglement entropy of the ground state as a function of λ−1 for different values of the total number of
atoms N . The maximum of the entanglement, indicating the QPT point, occurs at λ−1 = −0.88, −0.91, −0.93 for
N = 80, 100, 120, respectively. As N increases the maximum entropy moves to the critical point λ−1

C
= −1.

Thus the entropy of entanglement of the ground-state of the system is given by

E(ρ1) = −Tr
[
ρ1 log(ρ1)

] = −
N∑

n=0

|cn|2 log
(|cn|2

)
. (2.15)

The value of the parameter for which the entropy of entanglement has a maximum identifies the
parameters of the QPT [32], depicted in Fig. 2.5. We fix the parameter ε = 1 and use k as the
negative variable coupling parameter.

2.3.2. Energy gap
We consider now the energy gap, which is defined as the difference between the first excited

state and the ground-state of the system,

E = E(1) − E(0). (2.16)

The value of the parameter for which the gap is zero, or has a minimum, identifies the parameters
of the QPT [10]. In Fig. 2.6 we present the energy gap as a function of λ−1 for N = 80, 100 and
120.

2.3.3. Fidelity
Another possibility to investigate the QPT is through the behavior of the fidelity, which is a

concept widely used in the Quantum Information Theory [33]. The fidelity is basically defined
as the modulus of the wave-function overlap between two states

F (ψ,φ) = ∣∣〈ψ |φ〉∣∣. (2.17)
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Fig. 2.6. Energy gap of the ground state as a function of λ−1 for different values of the total number of atoms N . The
minimum of the energy gap, indicating the QPT point, occurs at λ−1 = −0.80, −0.83, −0.85 for N = 80, 100, 120,
respectively. As N increases the minimum of the energy gap moves to the critical point λ−1

C
= −1.

Basically, the point where the fidelity has a sharp decline defines a critical value for the parame-
ter [34].

2.4. BAE and QPT

Observing the graphs – Figs. 2.5, 2.6 and 2.7 – we identify the critical points of QPT for a
given set of parameters and we note the striking correspondence between the points obtained
by investigating the entanglement, energy gap and fidelity, that indicate a QPT, and the point
where the respective ground state solutions of the BAE change their behavior. We also note that,
as the number of particles increases, the correlations between the transition point predicted by
standard methods and the one predicted by the change of behavior of solutions of BAE agrees
with greater precision and in all cases it tends the value λ−1

C = −1, as predicted by the classical
analysis. Therefore the behavior of the ground state of the model translated as the behavior of
the set of solutions of the BAE, when the relevant parameters are changed, can be used as an
alternative method to locate the points of the phase transition of the system.

We interpret this QPT through the behavior of the expected value of the normalized number of
atoms in the condensates. In Fig. 2.8 we show the ground state expectation value of the normal-
ized number of particles in the condensates 1 and 2, for N = 120 particles. We observe that for
low values of λ−1, the expected value of the normalized number of atoms in the condensates 1
and 2 is 〈N1〉

N
∼= 0.5 and 〈N2〉

N
∼= 0.5, respectively, meaning that approximately half of the atoms

is in the condensate 1 and the other half is in the condensate 2. By varying the parameter λ−1

we find that this value suffers a sharp drop near the critical point λC = −1, approaching the
values 〈N1〉 ∼= 1.0 and 〈N2〉 ∼= 0.0, respectively, after crossing this point. So we can interpret this
N N
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Fig. 2.7. Fidelity of the ground state as a function of λ−1 for different values of the total number of atoms N . The value
at which the fidelity has an abrupt decay, indicating the QPT point, occurs at λ−1 = −0.88, −0.91, −0.93 for N = 80,
100, 120, respectively. As N increases the sharp decline moves to the critical point λ−1

C
= −1.

Fig. 2.8. Ground state expectation values for the fraction of the number of atoms in the condensates 1 and 2 as a function
of λ−1. We can observe an abrupt change in the behavior near the critical point λ−1

C
= −1.
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transition as the separation between a delocalized phase, with tunneling of atoms between two
condensates, and a localized phase.

3. Hetero-atomic molecular Bose–Einstein condensate

We now consider a model for two distinct species of atoms that form a hetero-nuclear molec-
ular Bose–Einstein condensate and is described by a three mode Hamiltonian. A novel feature of
a molecular Bose–Einstein condensate is that atomic and molecular states can exist as a super-
position [35]. For the cases where the molecules are heteronuclear, the presence of a permanent
electric dipole moment also opens the possibility for manipulating the condensate through elec-
trostatic forces [36]. These characteristics make the study of such models increasingly interesting
allowing to access phenomena that goes from novel quantum phase transitions to ultracold chem-
istry [37]. The Hamiltonian reads

Ĥ = μcN̂c + Ω
(
â†b̂†ĉ + ĉ†âb̂

)
, (3.1)

where we label each atomic species by a and b, which can combine to produce a molecule labeled
by c. This is the Hamiltonian studied in [38] and also known as the optical Hamiltonian. Again
{ĵ , ĵ† | j = a, b, c} are the canonical creation and annihilation operators satisfying the usual
bosonic Heisenberg commutation relations of Eq. (2.2) and N̂j = ĵ†ĵ are the corresponding
boson number operators. The parameter μc is the external potential and Ω is the amplitude for
interconversion of atoms and molecules. The Hamiltonian commutes with Ĵ = N̂a − N̂b and
with the total number N̂ = N̂a + N̂b + 2N̂c. We refer to Ĵ as the atomic imbalance and introduce
k = J

N
, k ∈ [−1,1], as the fractional atomic imbalance. A discussion of the physical implications

of the imbalance can be found, for example, in [39–41].

3.1. Classical analysis

Let {N̂j , θ̂j | j = a, b, c} be quantum variables satisfying the canonical commutation relations

[N̂j , θ̂k] = iδjkI, [N̂j , N̂k] = [θ̂j , θ̂k] = 0. (3.2)

As in Section 2.1 we make a change of variables from the operators ĵ†, ĵ to a number–phase
representation via

ĵ = eiθ̂j

√
N̂j , ĵ† =

√
N̂j e

−iθ̂j , (3.3)

such that the Heisenberg canonical commutation relations are preserved. Now we define the
canonically conjugate variables ẑ and θ̂ as

ẑ = 1

N̂
(N̂a + N̂b − 2N̂c), (3.4)

θ̂ = N̂

4
(θ̂a + θ̂b − θ̂c). (3.5)

In the limit of large N we can obtain from the optical Hamiltonian the approximate (rescaled)
classical Hamiltonian

H(z, θ) = 2α(z − 1) + √
2(1 − z)(z + c+)(z + c−) cos

(
4θ

)
, (3.6)
N
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where α = − μc

Ω
√

2N
, and c± = 1 ± 2k. The Hamilton’s equations of motion are given by

θ̇ = −∂H

∂z
= 2α + 2(1 − z)(1 + z) − (z + c+)(z − c−)√

2(1 − z)(z + c+)(z + c−)
cos

(
4θ

N

)
, (3.7)

ż = ∂H

∂θ
= − 4

N

√
2(1 − z)(z + c+)(z + c−) sin

(
2θ

N

)
. (3.8)

From these equations, the fixed points of the system can be determined by the condition ż =
θ̇ = 0. It was shown in [39] that this model exhibits a QPT just in the case of zero imbalance,
i.e., k = 0. For this reason we deal here only with this case, for which it was demonstrated that
there are two fixed points α = 1 and α = −1, associated to a minimum and to a maximum in the
parameter phase diagram, respectively [39]. Therefore, for the quantized system, it is expected
that α = 1 may indicate a QPT.

3.2. Bethe ansatz solution

The Hamiltonian (3.1) is also an integrable model [2]. The energy eigenvalues of the hetero-
atomic molecular Bose–Einstein condensates are given by

E = −Ω

(N−J )/2∑
j=1

νj , (3.9)

where the parameters νj must satisfy the following Bethe ansatz equations (BAE):

J + 1

νj

− νj − μ

Ω
=

(N−J )/2∑
k �=j

2

νk − νj

. (3.10)

The numerical solution of Eq. (3.10) shows that the ground state has the structure of real roots
solely. All these solutions have been checked with the exact diagonalization of the Hamiltonian
and there is a full agreement.

Notice the abrupt change in the distribution of roots of Eq. (3.10) from a certain critical
value αC , shown in Fig. 3.1. For values of α smaller than αC the roots are tightly packed when
close to the origin and we have a distribution beginning exactly at the origin. By increasing
the value of the parameter α the density of roots are not so dense at the origin and tend to get
distanced from it. This process reaches its culmination in αC approximately 1, where no roots
are at zero. After αC the set of roots moves away from the origin. Therefore, a different behavior
of the BAE-solutions when we cross the region α < 1 to the region α > 1 is observed. For other
values of N , such as N = 80 and N = 100, a very similar behavior of the ground state BA-roots
is also obtained. In the case of non-zero imbalance (k �= 0), all roots are away from the origin,
independent of the value of α. In this case, where it is known that there is no QPT, we also do
not observe a different behavior in the solution of the BAE.

3.3. Quantum phase transitions

Here as in Section 2.3 we will use three different techniques to identify quantum phase transi-
tions: entanglement, energy gap and fidelity. We use the same definitions as in Eqs. (2.15)–(2.17)
and the results are shown in the next Figs. 3.2–3.4.
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Fig. 3.1. Solutions of Bethe ansatz equations (3.10) for the ground state versus α considering the case N = 120. Each
line corresponds to a BA-solution for a particular value of the parameter α. There is a change in the behavior of the
distribution of the BA-roots around the critical value αC = 1.

Entanglement

Fig. 3.2. Entanglement entropy of the ground state as a function of α for different values of the total number of atoms N .
The entanglement entropy exhibits a sudden decrease close to the critical point αC = 1 that becomes more pronounced
as N increases.
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Energy gap

Fig. 3.3. Energy gap of the ground state as a function of α for different values of the total number of atoms N . As N

increases the minimum of the energy gap moves to the critical point αC = 1.

Fidelity

Fig. 3.4. Fidelity of the ground state as a function of α for different values of the total number of atoms N . As N increases
the minimum moves to the critical point αC = 1.
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Fig. 3.5. Normalized ground state expectation value of the number of atoms and molecules in the condensate as a function
of the parameter α. We can observe a sharp transition close to the critical point αC = 1.

3.4. BAE and QPT

Again, we find an agreement between the point αC = 1 where the behavior of the solutions
of the BAE sharply changes and the critical point obtained from the other techniques. So in the
same way as for the Bose–Hubbard model, we are led to the conclusion that the solutions of the
BAE can also be used as an alternative method for the identification of QPT.

We can see in Fig. 3.5 the correlation between the saturation of the number of molecules
and the critical point αC = 1. We note that the ground state expectation value of the normalized
number of molecules increases almost linearly with increasing value of α. When the normalized
number of molecules reaches the saturation point we identify the critical point of the system.
Therefore, this point can be interpreted as the critical value for which there are just molecules in
the system.

4. Summary

The main purpose of this study was to demonstrate how the presence of very significant phys-
ical phenomena can also be inferred from the Bethe ansatz structure of a given integrable model.
To illustrate this idea, we investigated the two-site Bose–Hubbard model and the hetero-atomic
molecular Bose–Einstein condensate, two well known exactly solvable models, and explored
their physical and mathematical properties. We began with a classical analysis for each of mod-
els exploiting the fixed point structure and making explicit the presence of bifurcation points for
critical values of the relevant parameters. We then presented their energy eigenvalues by means
of the quantum inverse scattering method. The BAEs thus obtained are quite involved and, apart
from some limiting situations, it is virtually unfeasible to obtain an analytical solution. Never-
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theless the structure of the BAEs for each model allows the possibility of obtaining well behaved
numerical solutions.

The structure of these solutions, although very different for both models, present a peculiar
behavior when some parameters of the Hamiltonian are varied, indicating that the ground state
solutions of the BAEs are reflecting some change in the system energy spectrum behavior. It is
known that the models in question may experience a QPT and the critical parameters are well
known. So, we compared our results coming from the critical points indicated by the study of the
solution of the BAEs with other methods. We have performed studies of the entanglement, energy
gap and fidelity for both models and the trend unveiled by these methods is highly compatible
with the ground state results coming from the analysis of the solutions of the BAEs.

We have found that the quantum phase transitions for the two-site Bose–Hubbard model and
for the hetero-atomic molecular Bose–Einstein condensate have very different interpretations.
For the first model the transition reflects a separation between a delocalized and a localized
phase, while for the second model the transition occurs when there is a saturation of molecules
in the system. In particular, for the two-site Bose–Hubbard model in the delocalized phase the
roots distribution is largely independent of the coupling, while in the localized phase the roots
lie on different arcs. In the case of the hetero-atomic molecular Bose–Einstein condensate model
all the roots are always on the positive real axis: in the phase with coexistence of atoms and
molecules the roots distribution begins exactly at the origin, while in the phase where there are
only molecules all roots are away from the origin. Correspondingly the profiles for both models
when investigating the entanglement, energy gap and the fidelity are quite different as can be
seen directly by comparing Figs. 2.5 and 3.2, for the entanglement, Figs. 2.6 and 3.3, for the
energy gap, as well as Figs. 2.7 and 3.4, for the fidelity. This suggests that the quantum phase
transition for each model is intrinsically different.

The models that we have analyzed were chosen for their simplicity as well as their physical
relevance in the BEC context. We foresee the possibility of applying this kind of analysis in
many different integrable models and this could possibly lead to some grouping according to
the geometrical patterns formed by the roots such as arcs and lines, or eventually closed curves
in other situations. Our approach will be particularly convenient in those cases where the exact
diagonalization of the model is demanding or when the standard methods used to identify a
QPT are not easily implemented. In any case we firmly believe that the behavior shown by the
solutions of the BAE can be used as an alternative method to identify the presence of a QPT.
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