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Background: In the search for new antidepressants, clinical researchers have been using drugs that simul- 

taneously modulate multiple targets. During preclinical and clinical trials, the glutamatergic modulators 

riluzole and ketamine have received particular attention. Glutamatergic agents have a modulatory effect 

on synaptic transmission, so they can act on both neurons and astrocytes. In addition to influencing the 

quantity of glutamate released, these modulators can also affect the expression, localization, and func- 

tionality of glutamate-binding sites. 

Objective: This review discusses the complexity of the glutamatergic system, the ambiguity of data re- 

garding glutamate levels in patients with depression, as well as the mechanisms of action for riluzole 

and ketamine, which includes their relation to the physiology of glutamatergic transmission. The prin- 

cipal aim is to contribute to the development of novel glutamatergic antidepressant medications whilst 

emphasizing the need for innovative approaches that evaluate their effects on extracellular glutamate. 

Methods: Literature was obtained via PubMed by searching the term depression in combination with 

each of the following terms: riluzole , ketamine , and glutamate . The search was restricted to full-text 

articles published in English between 1985 and 2018 relating to both the modulatory mechanisms of 

glutamatergic-binding proteins and the antidepressant actions of these medicines. Articles about mecha- 

nisms associated with synaptic plasticity and antidepressant effects were excluded. 

Results: Although experimental data relates glutamatergic signaling to the pathophysiology of major de- 

pression and bipolar disorder, the role of glutamate—as well as its extracellular concentration in patients 

with said disorders—is still unclear. Riluzole’s antidepressant action is ascribed to its capacity to reduce 

glutamate levels in the synaptic cleft, and ketamine’s effect has been associated with increased extracel- 

lular glutamate levels. 

Conclusions: The strategy of using glutamatergic modulators as therapeutic agents requires a better un- 

derstanding of the role of glutamate in the pathophysiology of depression. Gaining such understanding 

is a challenge because it entails evaluating different tar gets as well as the effects of these modulators on 

the kinetics of glutamate uptake. Essentially, glutamate transport is a dynamic process and, currently, it 

is still necessary to develop new approaches to assay glutamate in the synaptic cleft. ORCID: 0 0 0 0-0 0 02- 

3358-6939. 

© 2019 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The primary target for 7% of approved drugs is still unknown.

oreover, in the case of up to 18% of such drugs, the mechanism
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f action (MOA) is not fully understood. It is important to bear in

ind that the effects of many drugs are mediated by more than

 target, so identifying only 1 target may be insufficient for the

etermination of a drug’s MOA. 1 High specificity and affinity for

 target have long been used for drug discovery. However, this

trategy often proves unsuccessful for complex disorders such as

epression. In fact, seeking single-target drugs (so-called magic

ullets) for multifactorial disorders—that often relate to subtle

ysfunctions—has proved costly and inefficient. Recently, a new
 under the CC BY-NC-ND license. 
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trategy appears to be emerging in relation to the use of drugs

hat simultaneously modulate multiple targets. 2 With several

OAs, these medicines are called dirty drugs (ie, multitarget

rugs), and they are used by clinical researchers engaged in the

tudy of depression. 3 

Riluzole and ketamine are among the multiple-target drugs

nitially used for other applications, and these are currently

escribed as glutamatergic modulators (for a review, see Pałucha-

oniewiera 3 as well as Zarate and Manji 4 ). It is well known that,

hrough different trophic actions, riluzole and ketamine may

lter the connectivity among cells. 3 , 4 That said, such mechanisms

ssociated with synaptic plasticity and antidepressant effects

ill not be explored in this review. Instead, the focus shall be

n glutamatergic binding proteins (receptors and transporters)

nd their modulatory mechanisms, which are, potentially, related

o the antidepressant actions of these medicines. To highlight

he challenges in the evaluation of new modulators, both the

lutamatergic actions of riluzole and ketamine as well as the

omplexity of glutamate signaling will be discussed. In essence, to

omplement current methods of neuroimaging, it shall be argued

hat it is necessary to create novel technologies for evaluating

xtracellular glutamate and/or its transport. 

he Glutamatergic System 

The cellular structures of the glutamatergic synapse are com-

lex and include axons, dendrites, and glial processes. This intri-

ate network of both neurons and glial cells—separated by nar-

ow and winding spaces—is known as neuropil. The glutamatergic

ystem has several particularities that explain its highly complex

unctions, including large differences in the spatial distribution of

lutamate, which ranges from nanomolar (synaptic cleft) to mil-

imolar (intracellularly) (for review, see Murphy-Royal et al 5 ), the

bsence of its extracellular inactivation (for review, see Danbolt 6 ),

nd the similarity between its binding affinity for its receptors and

ransporters. 7 Another characteristic of this neurotransmitter sys-

em is its heavy dependence on the activity of transporters, which

an be modulated at different levels. 6 

Glutamatergic transmission requires fine adjustment to be

aintained under physiological conditions. Such fine-tuning is

hallenged by the absence of an extracellular metabolism that de-

ctivates glutamate. Consequently, the clearance of glutamate is es-

ential to avoid the excitotoxicity that results from the overstimu-

ation of their receptors. This neurotransmitter is removed from the

ynaptic cleft by astrocytes via excitatory amino acid transporters

EAATs). 6 The glutamate uptake limits the temporal and spatial ex-

ent of glutamatergic transmission, which allows local modulation

f signaling in the synaptic cleft. 8 This activity is a high-affinity

rocess with a massive capacity for transport and, also, as the driv-

ng force, it uses the electrochemical sodium and potassium gra-

ients across the plasma membranes. Among the 5 subtypes of

AATs, EAAT2 (glutamate transporter 1, GLT-1) is the major isoform

esponsible for cerebral glutamate uptake. 6 

Regarding glutamate receptors, although the ionotropics include

-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-

soxazole propionic acid (AMPA), and kainate receptors, the

etabotropics are divided into 3 groups and 8 subtypes. 5 , 6 AMPA

eceptors are composed of the subunits GluR1, GluR2, GluR3, and

luR4, which are mainly responsible for the excitatory trans-

ission in the central nervous system. The expression of these

ubunits seems to be an important mechanism for regulating post-

ynaptic responsiveness. The NMDA receptor is a tetra-heteromeric

omplex that is typically formed through an assembly of 2

luN1 and 2 GluN2 (ie, GluN2A, GluN2B, GluN2C, and GluN2D)

ubunits. The composition of GluN2A shows quicker kinetics

n relation to structures with GluN2B subunits. 9 , 10 Concerning
luN2B-containing NMDA receptors, another difference is their

ellular location; that is, they are predominantly extrasynaptic.

n comparison with GluN2A-containing receptors, the presence of

luN2B subunits in NMDA endows it with a higher sensitivity to

gonists as well as a decreased sensitivity to magnesium-mediated

locks (for a review, see Miller et al 11 ). 

Glutamate uptake is a dynamic process with different levels of

omplexity and modulation. 6 , 12 Glutamate transporters are subject

o various types of controls and regulations, such as transcription

nd translation, 13 , 14 cell surface expression, stabilization, 15–18 and

nternalization. 19–22 This transport may be influenced by astrocyte

ytoarchitecture, 23 by EAATs’ surface diffusion, 24 and by presynap-

ic neuronal activity. 8 For instance, as has been shown, the ex-

ression 

12 and functionality 8 of astrocytic EAAT can be rapidly and

ransiently modulated by neurons. The fact that neuronal activity

s known to depolarize astrocytes 25 —which may reduce the glu-

amate uptake 8 —is another example of the modulatory cross-talk.

his depolarization can remain restricted to microdomains because

f the properties of the astrocyte membrane. It can then result

n areas of astrocyte surface with distinct uptake activity. 26 , 27 The

lowing of this transport results in increased glutamate perma-

ence in the extracellular space, which prolongs the duration of

ostsynaptic currents by GluN2A-containing NMDA receptors. 8 

The importance of cell membrane polarization for glutamate

ptake is well known 

28 because the depolarization of astrocytes

ay also reduce glutamate uptake. 8 Indeed, astrocytic transporters

re much more effective at negative resting potentials 29 and, also,

hey depend on channels identified as inwardly rectifying potas-

ium channels 4.1 (Kir4.1). 30–33 In these channels, the current flow

s increased when the astrocyte membrane shows a more negative

otential. Further, Kir4.1 channels are responsible for the strongly

egative resting potential that is essential to glutamate uptake. 31 

he reduction of the Kir4.1 channel activity evokes astrocyte depo-

arization, which impairs the driving force of the glutamate trans-

orter. Consequently, both the concentration and the permanence

f glutamate in the synaptic cleft can increase and potentiate the

xcitatory action of this neurotransmitter. 29 , 34 

Glutamatergic transmission is also partly regulated by the lat-

ral diffusion of receptors in neurons 35 and astrocytes. 36 Likewise,

urface trafficking of the EAAT2 (GLT-1) has an active role in mod-

lating glutamate transmission by providing a sufficient number of

ransporters to compete with the receptors for released glutamate.

nce again, cross-talk in the synaptic cleft seems to exert a modu-

atory action because the neuronal activity affects the distribution

f EAAT2, increasing or reducing their surface diffusion in response

o high or low activity, respectively. 24 In terms of shaping synap-

ic transmission, the physiological role of EAAT2 surface diffusion

reatly increases the complexity of glutamate modulation in the

ynaptic cleft. 

Morphologic alterations in astrocytes as well as in the char-

cteristics of their cell membranes are also potential targets for

lutamate modulation. It has been shown that the processes of

strocytes have high mobility, 37–39 and also that their movement

ay, over time, affect astrocytic morphology, 40 which may inter-

ere with the time course of glutamate in the synaptic cleft. 5 An-

ther important movement occurs on the astrocytes’ surface, and

hat is where EAAT2 diffusion varies according to the cell region

nd the glutamate presence. 24 , 41 EAATs have an affinity for glu-

amate that is similar to glutamate receptors, which means the

 may compete and thereby reduce the receptors’ activation. 7 , 42 

hus, the mobility of these transporters along the astrocytic mem-

rane may readily interfere with the permanence of glutamate in

he extracellular space, 5 and as a result, alter the kinetics of its

ransport. 34 

Essentially, neuron-astrocyte communication may affect gluta-

ate clearance in the synaptic cleft, which is where astrocytes are
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ctively involved in shaping excitatory transmission. In response to

ncreased presynaptic neuron activity, glutamate uptake can be lo-

ally reduced in the microdomains of the astrocyte membrane. 8 , 24 

his indicates that glutamate uptake is a mechanism that dynam-

cally controls the extracellular permanence of glutamate. 8 The

ctivity-dependent slowing of the uptake prolongs the time dur-

ng which glutamate remains free in the extracellular space, and

hus may potentiate the activation of glutamatergic receptors. 

The events occurring in the glutamatergic synapse depend

n the number of glutamate molecules released, where they

re released, and both the characteristics and the density of

heir binding sites. Together, these conditions may determine

he permanence of glutamate in this extracellular space and,

hus, modulate its signaling. Glutamatergic modulators—such as 

etamine and riluzole—mainly act in these complex zones of neu-

opils, which is where components from different cells cooperate

o ensure the efficiency of synaptic transmission. 

etamine 

Ketamine is a rapid-acting antidepressant drug that modulates

lutamate neurotransmission. 43 , 44 A meta-analysis review of short-

erm, randomized, acute-phase trials reported an antidepressant

ffect of ketamine. The effect appeared within hours and lasted,

ostinfusion, up to 1 week. 45 Furthermore, a magnetic resonance

pectroscopy (MRS) study of patients with major depressive dis-

rder described a rapid and robust ketamine-induced increase in

lutamatergic compounds (glutamate and glutamine) in the medial

refrontal cortex. 46 More recently, among humans, a ketamine-

nduced increase in the release of prefrontal glutamate has been

hown. 44 According to the dose used, a paradoxical effect of ke-

amine on glutamate neurotransmission has been described by

reclinical studies. Although anesthetic doses block glutamater- 

ic transmission, 47 subanesthetic doses present a stimulatory ac-

ion. 48 , 49 Ketamine acts on several pharmacologic targets, which

nclude, among others, receptors (eg, NMDA , AMPA , and opioid)

nd channels (eg, L-type voltage-dependent calcium, voltage-gated

odium, and hyperpolarization-activated cyclic nucleotide) (for a 

eview, see Li and Vlisides 50 ). 

The rapid antidepressant action of ketamine seems to be related

o its modulation of the glutamatergic system. 51 This hypothesis

s consistent with several studies that have reported the involve-

ent of different glutamate receptors in ketamine’s MOA. 3 It is

ell known that ketamine binds to and antagonizes NMDA recep-

ors, so its MOA has been related to this glutamate receptor. Ke-

amine is a noncompetitive and voltage-dependent blocker 52 that

qually blocks GluN2A- and GluN2B-containing receptors. 53 More-

ver, the cellular response triggered by this blocking action indi-

ates that the NMDA receptor is tonically active. 11 However, there

s some conflicting evidence as to whether or not the NMDA re-

eptor’s blockade activities are a necessary condition for ketamine

ction 

3 , 54 , 55 ; that is, although such a blockade has been shown to

nduce antidepressant-like activity when triggered by other NMDA

eceptor antagonists (for a review, see Paul and Skolnick 56 ). Con-

ersely, recent data have indicated that the significant role of

he NMDA receptor in ketamine’s MOA is related to its GluN2B

ubunit. 11 Ketamine suppresses the GluN2B function in cortical

yramidal neurons, enhancing the synthesis of the brain-derived

eurotrophic factor, the phosphorylated mammalian target of ra-

amycin, and the AMPA receptor subunit GluR1 (GluA1). 57 

Regarding the AMPA receptor, experimental data support that

ts activation both maintains synaptic potentiation and is respon-

ible for the rapid and sustained antidepressant effects of ke-

amine or its metabolites. 3 It has been further shown that the

MPA receptor antagonism abolishes the antidepressant effect of

etamine 58–63 or its metabolites, 54 whereas the agonism of this
eceptor may potentiate its antidepressant effect. 61 The mGlu re-

eptors also seem to be related to the rapid antidepressant effect

ediated by ketamine. Some mGlu receptors’ ligands have been

hown to have potential antidepressant-like effects, 64 , 65 and what

s more, they even evoke effects that seem to be involved in the

OA of ketamine. 66–68 

The NMDA antagonism mediated by ketamine and its influ-

nce on the excitatory synapses of the corticolimbic brain regions

an be explained by 2 hypotheses. The first hypothesis is that

etamine, selectively, antagonizes NMDA receptors in cortical in-

ibitory interneurons, which results in an indirect excitation of the

yramidal neurons, and that is followed by an increase in the glu-

amatergic synapses of these cells. The second hypothesis proposes

 direct antagonism of the NMDA receptors in excitatory pyramidal

eurons, which are then tonically activated by extracellular gluta-

ate and, thereby, functionally reinforce the excitatory synapses. 11 

Hence, the modulation of glutamatergic transmission seems to

e the pivotal mechanism for the rapid antidepressant action of

etamine. 51 More specifically, through inhibiting NMDA receptors

ocated in inhibitory interneurons, ketamine induces glutamate ef-

ux in the prefrontal cortex, initiating alterations that result in

ts antidepressant effects. 47 Recently, several studies have reported

n increase in the glutamatergic compounds evoked by ketamine

n patients with depression, 44 , 46 which reinforces the importance

f glutamatergic modulators for the development of novel rapid-

cting antidepressant drugs. 3 However, the absence of a functional

iomarker for glutamate is seen as a great barrier for tracing glu-

amatergic transmission and, consequently, for evaluating the MOA

f ketamine and other novel potential glutamate-based antidepres-

ants. 44 

iluzole 

Riluzole is a neuroprotective agent with anticonvulsant proper-

ies, and it is the only drug approved for the treatment of amy-

trophic lateral sclerosis. 4 Currently, it is considered a glutamater-

ic modulator and a promising candidate for the treatment of psy-

hiatric disorders. 4 The first glutamatergic activity attributed to

iluzole was an anticonvulsant action 

69 that was related to the an-

agonism of the NMDA receptors, 70 which was then followed by an

nhibitory effect on glutamate release. 71 After that, the effects of

iluzole on the potentiation, 72 membrane localization of the AMPA

eceptor, 73 and the enhancement of glutamate uptake 74–76 have

lso been described. 

Initially, riluzole’s activities were related only to neuronal

echanisms, but a stimulatory effect upon glutamate uptake has

een described in astrocytes, which ascribes a novel cellular target

o this drug. 75 Moreover, based on its capacity for reducing glu-

amatergic activity, preclinical and clinical studies have suggested

he application of riluzole in the treatment of mood disorders and

bsessive-compulsive disorders (for a review, see Zarate et al 77 ).

ver the years, various mechanisms of action have been attributed

o riluzole, and some of them have been related to its antidepres-

ant effects. Among the mentioned mechanisms are the distinct

ays of controlling extracellular glutamate as well as the regula-

ion of neurotrophic factors. 4 However, although preclinical data

uggested the antidepressant effect of riluzole 78–80 clinical studies

roduced inconclusive results. 81–87 

Despite riluzole’s use as a neuroprotective agent, the multiple

echanisms of action ascribed to it enormously complicate the un-

erstanding of its biological effects. It has been shown that this

rug acts on a variety of ion channels and elicits varied cellular

ffects. 4 , 88 In essence, riluzole inhibits voltage-gated sodium chan-

els and activates or deactivates different potassium channels. Its

ontrasting effects on potassium channels seem to depend on the

hannel subtype involved. For instance, it inhibits both delayed
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ectifier potassium channels—Kv1.5 and Kv3.1—in a concentration-

ependent manner. 88 This inhibitory effect suggests a stimulatory

ction of riluzole on neuron excitability because A-type potassium

hannels regulate the duration and frequency of the action poten-

ial. 88 Another example is its inhibitory effect on Kv4.3 channels, 89 

hich could also stimulate neuron activity because the activation

f these channels limits the back-propagation of the action poten-

ial into dendrites while, at the same time, regulating membrane

xcitability in the hippocampus. 90 

hat Is Known about Glutamate Levels in Depression? 

The research on major depression and bipolar disorder related

o glutamatergic transmission is becoming more attractive for clin-

cal researchers, especially regarding the search for new methods

f diagnosis and treatment (for a review, see Wise et al 91 ). In an

ttempt to find correlations with mood disorders, there is a great

eal of interest in measuring the glutamate in specific brain re-

ions. MRS is employed to measure glutamate levels in vivo. Like-

ise, the discovery of a peripheral marker of cerebral glutamater-

ic function would be of great relevance—particularly, if it could be

sed in the diagnosis or treatment of mood disorders. 92 Because

here is growing evidence that glutamatergic signaling is involved

n the pathophysiology of these disorders, many researchers have

ot only been describing glutamate levels in diverse brain areas of

atients (for a review, see Henter et al 93 ), but also peripherally, in

heir blood samples. 94 

Imaging studies have also been reporting both higher and lower

lutamate levels in different brain areas of depressed patients. 95–97 

ndeed, glutamate levels have been largely investigated in unipo-

ar depression and bipolar disorder, but the findings are divergent.

hereas glutamate levels are reduced in unipolar depression 

92 , 98 

hey seem to be increased in bipolar disorder. 99 Nevertheless, ke-

amine is known to increase glutamate levels, 100 and it seems to

e effective in treating both disorders. Regarding bipolar depres-

ion, ketamine’s effectiveness arouses curiosity because this con-

ition already seems to be previously associated with increased

evels of glutamate. 92 This contrariety could be explained by the

ifferential effectiveness of ketamine as it accords to the cerebral

rea studied because, although it demonstrates antidepressant ef-

ects in some cortical areas, 100 it is ineffective in others. 101 How-

ver, it is important to consider that, in 2 studies that recruited

edication-free patients with bipolar depression, a reduction in

lutamate levels was observed. 92 , 102 Despite both studies not being

tatistically significant, when considered together, they could sug-

est that bipolar depression, in the absence of medication, could

e associated with a glutamatergic hypofunction, and that addi-

ional investigations are necessary to settle this issue. If confirmed,

his reduction in glutamate levels would be in accordance with the

linical efficacy of ketamine in both unipolar and bipolar depres-

ion. 92 

In a study carried out with medication-free patients, Wyse

t al 92 examined whether or not peripheral glutaminase levels

ould positively correlate with anterior cingulate cortex gluta-

ate levels. The enzyme glutaminase is responsible for the conver-

ion of glutamine to glutamate, and its peripheral levels measured

n serum were correlated with cortical glutamate levels obtained

hrough MRS. The authors reported that, irrespective of diagnosis,

lutamate was reduced in the depressive state, and the results did

ot confirm this enzyme as a peripheral biomarker of central glu-

amate levels. In another investigation, a meta-analysis of 12 as-

ociation studies concerning peripheral blood glutamate levels and

ajor depressive disorder demonstrated elevated levels of gluta-

ate in depressed patients. 94 However, the sample sizes were rel-

tively small and, in the meta-analysis, the heterogeneity among

he outcomes of these studies was high. 
Concerning glutamate levels associated with mood disorders, it

hould be considered that the complexity of glutamatergic dys-

unctions goes beyond either increased or decreased glutamate lev-

ls. 77 There is not a simple association between glutamate levels

nd mood disorders, but it seems essential to first consider which

egion of the brain is evaluated (for a review, see Sanacora et al 97 ),

nd then exclude the effects of previous or concomitant pharmaco-

ogic therapies. 92 Although it is known that different brain regions

an demonstrate distinct levels of glutamate in mood disorders, it

s still poorly understood whether or not the current antidepres-

ants may affect the extracellular levels of this neurotransmitter in

ome way. For example, it has been shown that selective serotonin

euptake inhibitors block Kir4.1 potassium channels, depolarize as-

rocytes, and reduce EAAT2 activity. 103 A likely consequence of this

lockade would be an increase in glutamate levels in the synaptic

left. 29 , 34 

rug Effects on Extracellular Glutamate: Important 

nformation for Antidepressant Development? 

The discovery of new glutamatergic modulators has attracted

he attention of researchers looking for potential alternative drugs,

n particular for the treatment of mood disorders. However, con-

idering the complexity of glutamatergic signaling, it is possible

o predict that there will be many challenges in the development

f these drugs before their application in humans. The repurpos-

ng of commercial drugs such as riluzole and ketamine is among

he strategies employed in this search for new therapeutic agents

or depression. Another approach is the development of bioactive

olecules that act as glutamatergic modulators that should be

ubmitted to preclinical evaluations. 

Stimulators of EAATs have been suggested as potential antide-

ressants (for a review, see Lapidus et al 104 ), whereas conversely,

ntagonism of these transporters induces depressive effects. 77 Con-

idering pharmacologic treatment, this could suggest that reduc-

ng the glutamate timecourse in the synaptic cleft would be ex-

ected in an antidepressant drug. This concept motivated the study

f riluzole as an antidepressant agent. The antidepressant action of

iluzole has been attributed to its capacity to reduce extracellu-

ar glutamate, inhibiting its presynaptic release and enhancing the

AAT-dependent uptake. 75 , 76 , 105 That said, many researchers have

een trying to understand the extremely rapid and persistent an-

idepressant effects of ketamine, which, in contrast to riluzole, has

een potentially related to increased glutamate levels. 3 Ketamine

ay act by inhibiting inhibitory interneurons, which are known to

odulate glutamatergic hypofunction 

100 resulting in an increased

lutamate release. 92 , 100 Therefore, although riluzole and ketamine

licit opposite effects on extracellular glutamate levels, both are

onsidered antidepressant agents. 

The identification of a target for a glutamatergic modulator is

ot a trivial task, yet it is much easier than determining its actual

ole in glutamatergic signaling. Usually, a glutamatergic agent may

ct on more than 1 receptor and it may also increase or reduce the

lutamate timecourse in the synaptic cleft. The consequences of

lterations in glutamate clearance seem to be cerebral-region spe-

ific, and this is important because extracellular glutamate is able

o modulate both its receptors and its transporters. 

The activation of AMPA receptors and the elevated glutamate

xtracellular concentrations have both been associated with ke-

amine’s effects. 11 Antidepressant actions evoked by low doses of

etamine (subanesthetic) have significantly increased glutamate in

he medial prefrontal cortex of rats as well as the anterior cin-

ulate cortex of humans. 100 , 106 Miller et al 11 proposed that, fol-

owing ketamine-mediated NMDA receptor antagonism, the activa-

ion of AMPA receptors might be necessary for the maintenance

f excitatory synapses and the persistence of ketamine’s antide-
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ressant effect. In contrast to ketamine, the antidepressant effect

f riluzole has been associated with lower extracellular glutamate

evels. However, riluzole administration at a therapeutically rele-

ant concentration is also associated with its effect on AMPA re-

eptors. In these conditions, riluzole increased AMPA GluR1 and

luR2 distribution on the surface of neurons, which was also ac-

ompanied by depolarization of the membrane potential. 73 Con-

erning the increase in AMPA and NMDA neurotransmission, de-

pite molecular differences, the similar effect of ketamine and rilu-

ole 62 , 73 has been suggested as a potential common mechanism of

ntidepressant action that is shared by these medications. 84 

The paradoxical effect of ketamine acting as an antidepres-

ant at low doses and, eventually, evoking anesthesia at higher

oses, has been widely questioned. One possible explanation is

hat GluN2B-containing receptors submitted to tonic activation 

re more sensitive to low-dose antagonism and, also, are mainly

xtrasynaptic, which potentially makes them more accessible to

xogenous antagonism. 11 At higher concentrations of ketamine,

ynaptic NMDA receptors might be gradually blocked, leading to

issociative effects. Furthermore, even a potential blockage of other

on-NMDA receptors cannot be ruled out. 107–109 The blockage of

luN2B seems to be associated with an antidepressant effect, but

ot with an increase in extracellular glutamate. 11 Indeed, this re-

ationship is not clear because the potent antidepressant Ro 25-

981—which is a GluN2B antagonist—does not provoke an eleva-

ion of extracellular glutamate. 110 

Although riluzole is a potent glutamatergic modulator that acts

hrough different MOAs, a recent double-blind clinical trial did not

onfirm its antidepressant action. 111 One may attempt to explain 

his lack of effect by considering that the mechanisms ascribed to

iluzole—suggesting a reduction in extracellular glutamate levels—

ere identified in vitro, which is where its concentrations were

nown and maintained under control. That said, in the studies

ith patients, the effective concentrations of riluzole are much

ore difficult to determine, and this uncertainty must, perhaps,

e considered as a possible explanation for its ineffectiveness. Be-

ond pharmacokinetic studies that show a large variability in rilu-

ole’s clearance and its serum concentrations among individuals,

ood also decreases its absorption. 4 

The structural differences of the 2 drugs notwithstanding, a

ose–dependent effect—as observed with ketamine—could also oc- 

ur with riluzole. It is important to consider that a biphasic effect

f riluzole on glutamate uptake, which was riluzole-concentration

ependent, has previously been described in cortical astrocytes. 75 

nother consideration regarding riluzole doses could be whether

r not this result observed in vitro would also be demonstrated in

atients with depression. If higher riluzole doses reduce glutamate

ptake in patients—as observed in vitro 75 —an increase in the time-

ourse of glutamate in the synaptic cleft as well as the stimulation

f the glutamatergic system would be expected. Although this pos-

ibility may involve different MOAs, it could suggest similar results

or ketamine and riluzole concerning glutamate levels. 

Although several studies have associated the neuroprotective ef-

ect of riluzole with an extracellular glutamate reduction, evidence

f its stimulatory action on glutamatergic transmission has also

een reported. For instance, an unexpected effect of chronic rilu-

ole treatment was previously observed to enhance overall gluta-

ate metabolism in rats. 112 This stimulatory effect was considered

onsistent with, not decreased glutamate release, but rather, in-

reased glutamate release. 112 Likewise, riluzole seemed to rapidly

ncrease glutamate–glutamine cycling in patients with bipolar de-

ression. This effect was more pronounced in the anterior cingu-

ate cortex than in the parieto-occipital cortex. Although this pat-

ern did not reach statistical significance, in terms of glutamatergic

ctivity, it was suggested that these brain regions might respond

ifferently to riluzole treatment. 84 
The nonselective action of riluzole on different ion chan-

els 88 , 89 may potentially affect glutamatergic transmission in 

ifferent ways; for example, by modifying the resting potential of

strocytes. This possibility indicates the complexity of the still un-

nown effects of riluzole. One effect could be the modification of

AATs’ kinetics and, consequently, the time-course of glutamate in

he synaptic cleft. As a real multitarget drug, riluzole acts on dif-

erent ion channels and affects several ionic currents. 88 , 89 Beyond

cting on the neuron membrane potential, riluzole could also be,

otentially, affecting the polarization of astrocytes. This possibility

as not been investigated, but, if this effect is confirmed, it could

xplain previous results related to the effect of riluzole on glu-

amate uptake. 75 In addition to explaining riluzole’s MOA on the

inetic parameters of EAATs, the confirmation of this effect on as-

rocyte membrane potential would open a new field for future in-

estigations concerning this drug. Furthermore, this could suggest

hat higher doses of riluzole would be necessary to evaluate its po-

ential antidepressant action in another double-blind clinical trial. 

onclusions 

Glutamatergic synapses are complex zones with glutamate 

inding proteins whose expression, distribution, and affinity can

e rapidly modulated. As a consequence, the number and location

f receptors and transporters can be dynamically altered to create

icrodomains in cell membranes. These areas may present partic-

lar characteristics and respond unevenly to glutamate. Therefore,

dentifying molecules with glutamatergic bioactivity is a challenge

ecause not only should the evaluation of different targets be con-

idered, but also the potential consequences upon the kinetics of

lutamate uptake. An innovative technology to measure transporter

ctivity and assess glutamate clearance could, functionally, com-

lement data from MRS imaging. Glutamate uptake is dependent

n different functional parameters, such as energetic status and

embrane polarization, among others. Thus, functional informa- 

ion could contribute to understanding the events related to varia-

ion in glutamate levels in the synaptic cleft, which would help to

larify the participation of this neurotransmitter in patients with

epression. Moreover, clinical researchers have not only noted the

mportance of a functional biomarker for glutamatergic transmis-

ion, but also how it would support the diagnoses and identifica-

ion of potential novel antidepressants. Combined with MRS, this

pproach could be used for developing the concept of precision

edicine for patients with depression in the future. 
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