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Using molecular dynamic simulations we study a family of continuous core-softened potentials
consisting of a hard core, a shoulder at closest distances, and an attractive well at further distance.
The repulsive shoulder and the well distances represent two length scales. We show that if the first
scale, the shoulder, is repulsive or has a small well, the potential has a region in the
pressure-temperature phase diagram with density, diffusion, and structural anomalies. However, if
the closest scale becomes a deep well, the regions in the pressure-temperature phase diagram where
the three anomalies are present shrink and disappear. This result helps in defining two length scales
potentials that exhibit anomalies. © 2009 American Institute of Physics. �doi:10.1063/1.3213615�

I. INTRODUCTION

Most liquids contract upon cooling. This is not the case
of water, a liquid where the specific volume at ambient pres-
sure starts to increase when cooled below T�4 °C.1,2 Be-
sides, in a certain range of pressures, water also exhibits an
anomalous increase in compressibility and specific heat upon
cooling.3–5 Experiments, for Te,6 Ga, Bi,7 S,8,9 and
Ge15Te85,

10 and simulations, for silica,11–14 silicon,15 and
BeF2,11 show the same density anomaly.

Water also has dynamic anomalies. Experiments show
that the diffusion constant, D, increases on compression at
low temperature, T, up to a maximum Dmax�T� at p
= pD max�T�. The behavior of normal liquids, with D decreas-
ing on compression, is restored in water only at high p, e.g.,
for p� pD max�1.1 kbar at 10 °C.2,3 Numerical simulations
for SPC/E water16 recover the experimental results and show
that the anomalous behavior of D extends to the metastable
liquid phase of water at negative pressure, a region that is
difficult to access for experiments.17–20 In this region the
diffusivity D decreases for decreasing p until it reaches a
minimum value Dmin�T� at some pressure pD min�T� and the
normal behavior, with D increasing for decreasing p, is re-
established only for p� pD min�T�.17–19,21 Besides water,
silica13,22 and silicon23 also exhibit a diffusion anomalous
region.

It was proposed a few years ago that these anomalies are
related to a second critical point between two liquid phases,
a low density liquid and a high density liquid.24 This critical
point was discovered by computer simulations. This work
suggests that this critical point is located at the supercooled
region beyond the line of homogeneous nucleation and thus
cannot be experimentally measured. Even with this limita-
tion, this hypothesis has been supported by indirect experi-
mental results.25,26

In order to describe the anomalies present in water and
in other liquids, isotropic models have been used as the sim-

plest framework to understand the physics of the liquid-
liquid phase transition and liquid state anomalies. From the
desire of constructing a simple two-body isotropic potential
capable of describing the complicated behavior present in
waterlike molecules, a number of models in which single
component systems of particles interact via core-softened
potentials27 has been proposed. They possess a repulsive core
that exhibits a region of softening where the slope changes
dramatically. This region can be a shoulder or a ramp.28–49

These models exhibit density, diffusion, and structural
anomalies, but depending on the specific shape of the poten-
tial, the anomalies might be hidden in the metastable and
unstable phases.49 The relation between the specific shape of
the core-softened potential and the presence or not of the
anomalies is still missing.

How does the specific shape of a core-softened potential
affect the location of the anomalies and the critical points? In
order to answer to this question in this paper we analyze a
family of continuous core-softened potentials that exhibit
two length scales, a shoulder followed by an attractive well.
When the shoulder is purely repulsive, this core-softened po-
tential represents the effective pair interaction between two
neighbors tetramers44,50 and the density, the diffusion, and
the structural anomalies are present.44,45 If the shoulder has a
deep well with attractive forces, this potential is related to
the effective interaction potential between two water mol-
ecules obtained from the ST4 �Ref. 51� or TIP5P �Ref. 52�
models for water. In this case the effective potential is de-
rived from the oxygen-oxygen radial distributions function,
solving the Ornstein–Zernike equation by using an integral
equation method.51,52 The resulting potential has a shoulder
with a deep well at closest distance and a second well with
lower energy at furthest distance. The detailed depth of the
softening region depends on the approximations employed.
This potential leads, as we are going see in this paper, to
systems in which the anomalies are in the unstable region of
the phase diagram while in the full ST4 and TIP5P systems
the anomalies can be observed. It is important, therefore, toa�Electronic mail: neybarraz@gmail.com.
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understand what is lost when one goes from the specific an-
isotropic ST4 and TIP5P potentials to the isotropic spherical
symmetric case.

So, in this paper we study what happens with the region
in the pressure-temperature phase diagram where the anoma-
lies are located as the potential changes from a repulsive
shoulder to a very deep well. Our results will shade some
light not only in the use of spherical symmetric approxima-
tions of asymmetric potentials but will also help in designing
potentials for new systems with anomalies.

The paper is organized as follows. In Sec. II the family
of potentials is introduced and its link with the derivation the
framework of the integral equations is presented. In Sec. III
these potentials are tested for presence density, diffusion, and
structural anomalies and for the existence of two liquid
phases and a critical points by molecular dynamic simula-
tions. Conclusions are presented in Sec. IV.

II. THE MODEL

We study a system of N particles, with diameter �,
where the pair interaction is described by a family of con-
tinuous potentials given by

U�r� = ����

r
�a

− ��

r
�b	 + 


j=1

4

hj exp�− � r − cj

wj
�2	 . �1�

The first term is a Lennard-Jones potential-like and the sec-
ond one is composed by four Gaussians, each one centered in
cj. This potential can represent a whole family of intermo-
lecular interactions, depending of the choice of the param-
eters a ,b ,� , �hj ,cj ,wj�, with j=1, . . . ,4. The parameters are
chosen in order to obtain a two length scale potential.51

In order to make the simulations in dimensionless units,
the potential and the distances are given in dimensionless
units, U�=U /� and r�=r /r0, where � is the energy scale and
r0 is the length scale chosen so the closest approach between
particles is about r�=1. All the parameters of the model are
used in the simulations in units of � and r0. In this work
� /�=0.02 and � /r0=1.47. Modifying h1 in Eq. �1� allows us
to change the depth of the hard-core well, as illustrated in
Fig. 1. Here we use four different values for h1 and they are
expressed as a multiple of a reference value h1

ref as shown in
the Table I. For all the four cases the values of a ,b , �cj ,wj�
with j=1, . . . ,4 and href. Table II gives the parameter values
in angstroms and kcal/mol consistent with modeling ST4
water.51 The depth of the region of softening of the potentials
illustrated in Fig. 1 where chosen so that potential B is the
shallow shoulderlike potential similar to the one studied by
de Oliveira et al.,44 which exhibits the anomalies, while for
the potential D the region of softening has the same depth as
the potential obtained by using the oxygen-oxygen radial dis-
tribution function for the ST4 model.51 In this case, the
shoulder region has attractive forces. For comparison we also
analyzed two other cases: Potential A with a ramplike shoul-
der and potential C with a very shallow shoulder.

The properties of the system were obtained by NVT mo-
lecular dynamics using Nose–Hoover heat-bath with cou-
pling parameter Q=2. The system is characterized by 500
particles in a cubic box with periodic boundary conditions,
interacting with the intermolecular potential described above.
All physical quantities are expressed in reduced units and
defined as

t� =
t�m/��1/2

r0
,

T� =
kBT

�
,

TABLE I. Parameters h1 for potentials A, B, C, and D.

Potential Value of h1

A 0.25h1
ref

B 0.50h1
ref

C 0.75h1
ref

D 1.00h1
ref

0.9 1.2 1.5 1.8

r
*

0

4

8

U
*

A case
B case
C case
D case

FIG. 1. Interaction potential obtained by changing parameters h1 in Eq. �1�.
The potential and the distances are in dimensionless units U�=U /� and r�

=r /r0.

TABLE II. Parameters for potentials A, B, C, and D in units of angstrom
and of kcal/mol.

Parameter Value Parameter Value

a 9.056 w1 0.253
b 4.044 w2 1.767
� 0.006 w3 2.363
� 4.218 w4 0.614
c1 2.849 h1

ref �1.137
c2 1.514 h2 3.626
c3 4.569 h3 �0.451
c4 5.518 h4 0.230
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p� =
pr0

�
,

�� = �r0
3,

D� =
Dm

�r0
2 .

Standard periodic boundary conditions together with
predictor-corrector algorithm were used to integrate the
equations of motion with a time step �t�=0.002 and poten-
tial cut off radius rc

�=3.5. The initial configuration is set on
solid or liquid state and, in both cases, the equilibrium state
was reached after teq

� =1000 �what is in fact 500 000 steps
since �t�=0.002�. From this time on the physical quantities
were stored in intervals of �tR

� =1 during tR
� =1000. The sys-

tem is uncorrelated after td
�=10, from the velocity autocorre-

lation function. 50 decorrelated samples were used to get the
average of the physical quantities. The thermodynamic sta-
bility of the system was checked analyzing the dependence
of pressure on density, by the behavior of the energy and also
by visual analysis of the final structure, searching for cavita-
tion.

III. RESULTS

A. Pressure-temperature phase diagram

First, we are going to show the effects of the shoulder
depth in the presence or not of the thermodynamic anomalies
and the location in the pressure-temperature phase diagram
of the different phases. Figure 2 illustrates the pressure-
temperature phase diagram of the four cases. The system at
high temperatures has a fluid phase and a gas phase �not
shown�. These two phases coexist at a first order line that
ends at a critical point �see Table III for the pressure and the
temperature values�. At low temperatures and high pressures
there are two liquid phases coexisting at a first order line �not
shown� ending at a second critical point �see Table IV and
Fig. 3 for the pressure and the temperature values� that is
identified in the graph by the region where isochores cross.

In Fig. 2 at low temperatures and low pressures the dot-
ted line separates the fluid phase from the amorphous region.
The amorphous region is identified by the diffusion coeffi-
cient that becomes zero. For potential A, the amorphous re-
gion is located in a pressure range −0.91	 p�	3.40, for the
B case this region is located in the range −0.89	 p�	1.80,
and for the C case it is located in the range −1.00	 p�

	0.48. The potential D does not have a stable amorphous
phase. Hence, as the shoulder becomes deeper, the amor-
phous phase shrinks and moves to a lower pressure range.

At low temperatures and high pressures two liquid
phases are present. As the shoulder becomes deeper the
liquid-liquid coexistence line slides down to lower pressures
and it goes to higher temperatures. This indicates that the
deeper the shoulder the liquid-liquid phase transition stays
stable for higher temperatures. Therefore, even though this

TABLE III. Critical point location for potentials A, B, C, and D.

Potential Tc1
� pc1

�

A 1.93 0.072
B 1.98 0.078
C 2.02 0.080
D 2.15 0.094

TABLE IV. Second critical point location for potentials A, B, C, and D.

Potential Tc2
� pc2

�

A 0.35 3.44
B 0.48 1.86
C 0.57 0.49
D 0.81 �0.33
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FIG. 2. Pressure-temperature phase diagram for cases A, B, C, and D. The
thin solid lines are the isochores 0.30����0.65. The liquid-liquid critical
point is the dot, the TMD is the solid thick line, the diffusion extrema is the
dashed line, and the structural extrema is the dashed-dotted line. The dotted
line indicates the limit between the fluid and the amorphous regions.
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FIG. 3. Location of the critical points on pressure-temperature phase dia-
gram for cases A, B, C, and D.
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transition only exists if the attractive part of the potential is
present �the second length scale�, the stability of the liquid
phases is determined by the depth of the shoulder �the first
length scale�.

B. Thermodynamics anomaly

The Fig. 2 also shows the isochores 0.30
��
0.65 rep-
resented by thin solid lines. The temperature of maximum
density �TMD� at constant pressure coincides with the mini-
mum pressure on isochores, ��p /�T��=0. From the equation

� �V

�T
�

p

= − � �p

�T
�

V
� �V

�p
�

T

, �2�

it is possible to see that, for a fixed density, a minimum in the
pressure as a function of temperature represents a maximum
in the density as a function of temperature, named TMD
given by ��V /�T�p=0. The TMD is the boundary of the re-
gion of thermodynamic anomaly, where a decrease in the
temperature at constant pressure implies an anomalous in-
crease in the density and therefore an anomalous behavior of
density �similar to what happens in water�. Figure 2 shows
the TMD as a solid thick line. For potentials A, B, and C, the
TMD is present but for potential D no TMD is observed.

Similar to what happens with the location of amorphous
region and of the second critical, as the shoulder becomes
deeper, the region in the pressure-temperature phase diagram
delimited by the TMD goes to lower pressures, shrinks, and
disappears for case D, the potential with the deepest shoul-
der. As the region delimited by the TMD shrinks, it also goes
to lower temperatures. For potential C the TMD line is lo-
cated at temperatures bellow the temperature of the liquid-
liquid critical point. The thermodynamic parameters that lim-
its the TMD in phase diagram are shown in the Table V,
where pl represents the values of ��� ,T� , p�� for the point of
the lowest pressure in the TMD line, pm is the point with the
highest temperature, and ph is the point with the highest pres-
sure.

The link between the depth of the shoulder and the pres-
ence or not of the TMD goes as follows. The TMD is related
to the presence of large regions in the system in which par-

TABLE V. Limiting values for density ����, temperature �T��, and pressure
�p�� of the thermodynamics anomalies on pressure-temperature diagram.
Here the point pl represents the density, temperature, and pressure of the
point of the lowest pressure in the TMD line, pm represents the point of the
highest temperature and ph represents the point of the highest pressure of the
TMD line.

Cases pl pm ph

A �� 0.47 0.52 0.57
T� 0.71 0.85 0.73
p� 1.50 2.50 3.30

B �� 0.46 0.50 0.54
T� 0.67 0.76 0.63
p� 0.90 1.40 1.80

C �� 0.40 0.42 0.43
T� 0.44 0.54 0.52
p� 0.15 0.29 0.36
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FIG. 4. Radial distribution as a function of the distance for the four potentials. In cases A, B, and C the first peak of g�r�� increases with the increase in the
temperature, while the second peak decreases. For the potential D all the peaks decrease with the increase in the temperature.
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ticles are in two preferential distances represented by the first
scale and the second scale in our potential.49,53–55 For normal
liquids, as the temperature is increased, the percentage of
particles at closest scales decreases �see case D in the Fig. 4�,
for the anomalous liquid �see cases A, B and C in the Fig. 4�
there is a region in the pressure-temperature phase diagram
where as the temperature is increased the percentage of par-
ticles at the closest distance increases. This increase in the
percentage is only possible if particles move from the second
to the first scale. In the first case, the decrease in particles in
the first scale leads to a decrease in density with the increase
in temperature, behavior expected for normal liquids. In the
second case, the increase in particles in the first scale leads to
an increase in density with temperature that characterizes the
anomalous region. The anomaly is, therefore, related to the
increase in the probability of particles to be in the first scale
when the temperature is increased while the percentage of
particles in the second scale decreases.

C. Diffusion anomaly

Now we are going to test the effect the shoulder depth
has in the location of the diffusion anomaly in the pressure
temperature phase diagram. The diffusion coefficient is ob-
tained from the expression

D = lim
t→�

�r� j�t0 + t� − r� j�t0��2�t0

6t
, �3�

where r� j�t� are the coordinates of particle j at time t and
¯ �t0

denotes an average over all particles and over all t0.
Figure 5 shows the behavior of the dimensionless trans-

lational diffusion coefficient, D�, as function of the dimen-
sionless density, ��, at constant temperature for the four

cases. The solid lines are a polynomial fits to the data ob-
tained by simulation �the dots in the Fig. 5�. For normal
liquids, the diffusion at constant temperature increases with
the decrease in the density. For potentials A, B, and C the
diffusion has a region in the pressure-temperature phase dia-
gram in which the diffusion increases with density. This is
the diffusion anomalous region. In Fig. 5 one dashed line
joints the points of the density �or pressure� of minimum
diffusion for different temperatures and another dashed line
links the points of density �or pressure� of maximum diffu-
sion for different temperatures.

Similarly to what happens with the location of the TMD,
as the shoulder becomes deeper, the region in the pressure-
temperature phase diagram delimited by the extrema of the
diffusion goes to lower pressures, shrinks, and disappears for
the case D, the potential with the deepest shoulder.

Figure 2 shows the location at the pressure-temperature
phase diagram of the pressure of maximum and minimum
diffusion as dashed lines �the dashed lines in Fig. 5�. In Fig.
2 we show that in the pressure-temperature phase diagram
the region where the dynamic anomaly occurs englobes the
region where the thermodynamic anomaly is present. This
hierarchy between the anomalies is observed in a number of
models17,18,47 and in the water.2

The link between the depth of the shoulder and the pres-
ence or not of the region of diffusion extrema goes as fol-
lows. The presence of the diffusion anomaly is related to
having the quantity �2�0.42,47,56 where

�2 = � �s2

� ln �
�

T

= s2 − 2�2� ln g�r�
�g�r�
��

r2dr , �4�

where

s2 = − 2�� �g�r�ln g�r� − g�r� + 1�r2dr �5�

is the excess entropy. Figure 6 illustrates the behavior of the
radial distribution function for fixed temperature as the den-
sity varies. For case A the ln g�r� is negative and dg�r� /d� is
positive for the first scale, while for the second scale the
ln g�r� is positive and the dg�r� /d� is negative. As a result
the second parcel in Eq. �5� is positive a requirement for
having �2�0.42 since s2 is negative.47 For case D, also
shown in Fig. 6, the ln g�r� is positive and huge and
dg�r� /d� is positive which leads to a second parcel in Eq. �5�
that is negative what do not fulfill the requirement �2

�0.42.

D. Structural anomaly

Finally we are going to test the effect the shoulder depth
has in the location in the pressure-temperature phase diagram
of the structural anomalous region. The translational order
parameter is defined as13,18,57

t = �
0

�c

�g��� − 1�d� , �6�

where �=r�1/3 is the distance r in units of the mean interpar-
ticle separation �−1/3, �c is the cutoff distance set to half of
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FIG. 5. Diffusion coefficient as a function of density. The dots are the
simulational data and the solid lines are polynomial fits. The dashed lines
connect the densities of minima and maxima diffusivity that limit the diffu-
sion anomalous region.
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the simulation box times45 �−1/3, and g��� is the radial distri-
bution function proportional to the probability of finding a
particle at a distance � from a referent particle. The transla-
tional order parameter measure how structured is the system.
For an ideal gas g=1 and t=0, and the case of crystal phase
g�1 over long distances and t is large. Therefore for normal
fluids t increases with the increase in the density.

Figure 7 shows the translational order parameter as a
function of the density for fixed temperatures. The dots rep-
resent the simulation data and the solid line the polynomial
fit to the data. For potentials A, B, and C there is a region of
densities in which the translational parameter decreases as
the density increases. A dotted-dashed line illustrates the re-
gion of local maximum of t� and minimum of t� limiting the
anomalous region. For the potential D, t� increases with the
density. No anomalous behavior is observed.

Figure 2 shows the structural anomaly for cases A, B,
and C, as dotted-dashed lines. It is observed that the region
of structural anomaly embraces both dynamic and thermody-
namic anomalies. Similarly to other anomalies the effect of
the increase in the depth of the repulsive shoulder is to nar-
row the anomalies asymmetrically. The branch of anomaly in
pressures near to liquid-liquid critical point is most feeling to
the effect of the shoulder compared with the branch obtained

in low pressures. However, the hierarchy of the anomalies is
maintained and the change in the repulsive shoulder does not
affect it.

IV. CONCLUSIONS

In this paper we studied a family of potentials character-
ized by two length scales: A shoulder and an attractive well.
We analyzed the effect in the location in the pressure-
temperature phase diagram of the density, diffusion, and
structural anomalies of making this repulsive shoulder a deep
well. We found that the anomalies shrink and disappear as
the well becomes deeper. This indicates that an important
mechanism for the anomalies is the possibility of particles in
the furthest length scale to move to the closest length scale.
As the shoulder well becomes deeper particles become local-
ized in the closest scale and the mobility between the two
scales decreases.

We find that in the cases of potentials A, B, and C the
thermodynamic, dynamic, and structural anomalies are
present and that the region of structural anomaly embraces
the dynamic and thermodynamic anomalies in the pressure-
temperature phase diagram. This implies that the hierarchy
of the anomalies is preserved independent of the depth of the
repulsive shoulder, however, when the shoulder becomes
deeper, the upper pressure lines of anomaly converge to a
similar value in the pressure-temperature phase diagram.

What is the connection between the studies potentials
and the real system? Effective potentials for water has been
derived based in the oxygen-oxygen radial distribution func-
tion for the ST4 �Ref. 51� and TIP5P �Ref. 52� models for
water. In both cases the effective potential was obtained from
the g�r�� using the Ornstein–Zernike equation and integral
equation approximations. The potential resulting is the case
D in Fig. 1 in the case of ST4 and for the TIP5P model a
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FIG. 6. Radial distribution for cases A and D as a function of r� for various
densities. In case A the temperature is fixed T�=0.90 while in case D the
temperature is T�=1.10.
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FIG. 7. The translational order parameter as a function of density for fixed
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tom�. The dot-dashed lines locate the density of maxima e minima t�.
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potential that exhibits a deep shoulder similar to case D.
Consequently the approximation washes out the anomalies
present in both ST4 and TIP5P. In the case of the TIP5P it
was shown that if instead of deep shoulder a smooth shoul-
der like the one present in the ramp potential would be used,
the anomalies not only would be present but would be lo-
cated in the same region of pressure and temperature of the
TIP5P potential.

Similarly to other previous studies,44,40,58,59 a directional
interaction potential is not a fundamental ingredient to have
waterlike anomalies. Two scales isotropic potential also re-
produces this anomaly if the shoulder closest scale would not
be too deep.
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