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“Luck is unreliable.”

— AMANDA RIPLEY



ABSTRACT

Using data consisting of Brazilian indexes available from 1993 to 2019 on Economatica’s

platform, we employ a Mean-CVaR portfolio optimization through the use of a mixture

of multidimensional Clayton, t and Gumbel copula for modelling dependence between

assets and an ARMA-GARCH model for univariate fitting. Given a target return, the

methodology focuses on minimizng CVaR as the risk measure in replacement of vari-

ance used in traditional Markowitz optimization frameworks. We implement a dynamic

investing strategy where portfolios are optimized using a rolling daily calibration win-

dow. The out-of-sample performance is evaluated using four different daily target returns

for the optimizations and compared against three benchmarks: a Gaussian copula Mean-

CVaR, an equally weighted portfolio and IBOV’s index. Our empirical analysis shows

that the Mixture Copula Mean-CVaR portfolio generates a portfolio with better downside

risk statistics and lesser drawdowns, with annualized returns similar or better than returns

presented in the benchmarks.

JEL classification: G11, G17, G32.

Keywords: Portfolio Choice. Financial Risk. Optimization. Copula. Computational

Finance. Econometrics.



RESUMO

Utilizando dados de índices brasileiros disponíveis na plataforma Economatica de 1993

a 2019, nós realizamos uma otimização de portfólio de Média-CVaR a partir do uso de

uma mistura de cópulas multidimensionais Clayton, t e Gumbel para modelagem da de-

pendência entre os ativos e um modelo ARMA-GARCH para ajuste univiariado. Dado

um retorno alvo, a metodologia foca em minimizar o CVaR como medida de risco em sub-

stituição da variância, utilizada em modelos tradicionais de Markowitz de otimização de

carteiras. Nós implementamos uma estratégia dinâmica de investimento na qual os port-

fólios são otimizados utilizando uma janela móvel diária de calibração. A performance

fora-da-amostra é avaliada utilizando quatro retornos-alvo diferentes para as otimizações

e comparada com três benchmarks: um portfólio de Média-CVaR com cópula Gaussiana,

um portfólio com pesos iguais para cada ativo e o índice IBOV. A análise empírica mostra

que a otimização de Média-CVaR com mistura de cópulas gera portfólios com melhor

downside risk e menores drawdowns, com retornos anualizados similares ou melhores

que os retornos dos benchmarks.

Classificação JEL: G11, G17, G32.

Palavras-chave: Escolha de Portfolios. Risco Financeiro. Otimização. Copulas. Fi-

nanças Computacionais. Econometria.
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1 INTRODUCTION

Two types of decision-making frameworks are typically adopted in financial op-

timization: the utility maximization and the return-risk trade-off analysis. As trade-off

analysis explicitly specifies and quantifies risk as a real number, empirically, it is the

most utilized optimization framework (ZHU; FUKUSHIMA, 2009). As an important

trade-off financial analysis, Markowitz (1952) in his seminal paper "Portfolio Selection"

introduces the Modern Portfolio Theory (MPT), or mean-variance framework. In MPT,

the estimation of portfolio’s return and risk is given by the mean of the expected returns

and variance, respectively. He identified that by diversifying a portfolio among different

assets and return patterns, one can build an efficient portfolio, with either (i) maximum

expected return for a given level of risk (ii) minimum risk for a given level of portfolio

returns.

As pointed out by Black and Litterman (1992), however, in the classical mean-

variance analysis, the portfolio weights allocation is very sensitive to the mean and co-

variance matrix. The authors showed that a small change in the mean can produce a large

change in portfolio’s decision. Therefore, risk modelling necessity arises as there is uncer-

tainty of the underlying probability distribution of the assets. Kakouris and Rustem (2014)

argue that the most common measure for the estimation of portfolio returns remains the

expected (mean) return, but many other ways of calculating risk have been developed, par-

ticularly following 1990s decade. As Pfaff (2012) elaborated, through 1990s and 2000s

the focus of investors shifted, not only because of the financial crisis therein, but also by

the need of adequately measuring risks and potential losses during more tranquil market

episodes.

Downside risk, as defined in Sortino and Meer (1991), is the risk of asset’s actual

return being lower than the expected return as well as the uncertainty of the magnitude

of this difference. Variance is not a downside risk measure because it measures the both

the upside and the downside portfolio risk. Given the need of different risk measures,

Value-at-Risk (VaR), a measure of downside risk, has become very popular in financial

risk management over the last decades (MORGAN et al., 1996). However, as explained

by Zhu and Fukushima (2009), VaR has been criticized in recent years mainly by three

aspects. First, VaR is not subadditive in the general distribution case, which means that

the portfolio risk is bigger than the sum of the single risk measures of the assets contained

in the portfolio. By violating subadditivity, it is not a coherent risk measure as defined by
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Artzner et al. (1999). Second, it is non linear and not a convex measure of risk and thus

it may not have a single global extrema. Third, it gives a percentile of loss distribution

that does not provide an adequate picture of the possible losses in the entire tail of the

distribution.

Conditional Value-at-Risk (CvaR), presented by Artzner et al. (1999) and Szego

(2005) can be defined as the mean of the tail distribution exceeding VaR. As a measure

of risk, CVaR exhibits better properties than VaR and it is further explored by Rockafel-

lar and Uryasev (2000) and Rockafellar and Uryasev (2002). The authors showed that

that minimizing CVaR can be achieved by minimizing an auxiliary and more tractable

function which computes VaR and CVaR simultaneously, given that outright numerical

optimization of CVaR is difficult due to its dependency on VaR. It is also shown that

CVaR is a convex function for continuous and discrete distributions, with optimization

problems that can be reduced to linear programming, presenting efficient algorithms to

optimize portfolios with large dimensions.

Following the ground work for CVaR optimization provided by the authors, one

has to make assumptions on the underlying distribution of the assets composing the port-

folio. Zhu and Fukushima (2009) model the distribution issue assuming an uncertainty

domain (like a ellipsoidal set) in which all feasible uncertainty values lie and applying a

robust worst-case technique. However, they also state that assuming a multivariate distri-

bution between the assets is possible. Gaussian distribution is the most commonly used

multivariate case, but the use of Gaussian distribution to represent dependence between

assets means not respecting financial markets stylized facts about non-normality of returns

data (PFAFF, 2012). Hu (2006) and Kakouris and Rustem (2014) explain that the use of

Gaussian distribution implies that the probability of losses is the same as the probability

of gains, but in the context of financial markets, assets exhibit stronger comovements dur-

ing crises. One can also use linear correlation as a dependence measure. However, linear

correlation correctly depicts the dependence between the random variable of returns only

if these are jointly elliptically distributed (SZEGO, 2005; ARTZNER et al., 1999; PFAFF,

2012).

To address the dependence question, Kakouris and Rustem (2014) propose fitting

to data a mixture of archimedean copulas. Copulas are multivariate distribution functions

whose one-dimensional margins are uniformly distributed on the closed interval [0,1].

Also, copulas consider the dependency between the marginal distribution of the random

variables instead of the dependency between the random variables themselves. An im-



13

portant feature of using copulas is that you can separate the selection of multivariate de-

pendency from the selection of the univariate distributions. (CHERUBINI; LUCIANO;

VECCHIATO, 2004; NELSEN, 2000). A mixture of copula functions allows modelling a

wider range of possible multivariate dependence structure of the assets. In this work, it’s

applied the Worst-Case Copula CVaR optimization described by Kakouris and Rustem

(2014) to Brazilian indexes from January 3, 1993 to June 27, 2019.

The paper is organized as follows: Section 2 presents a mathematical revision

of the different CVaR optimization frameworks as well as the final model specification;

Section 3 will display the data and empirical methodology used for the implementation

of the model; Section 4 provides results and comparison between optimizations; Section

5 concludes the study.
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2 MODEL ESPECIFICATION

2.1 Conditional Value-at-Risk

Pflug (2000) defines CVaR and it’s optimization problem as follows. Let Y be

a stochastic vector standing for market uncertainties and FY be its distribution function,

i.e., FY (u) = P (Y ≤ u). Let also F−1Y (v) = inf{u : FY (u) ≥ v} be its right continuous

inverse and assume that it has a probability density function represented by p(r). Define

V aRβ as the β-quantile by

V aRβ(Y ) = argmin{α ∈ R : P (Y ≤ α) ≥ β}

= F−1Y (β),
(2.1)

and the CV aRβ as the solution to the following optimization problem:

CV aRβ = inf{α ∈ R : α +
1

1− β
E[Y − α]+}. (2.2)

An easier interpretation of CVaR is given byRockafellar and Uryasev (2000) and Artzner

et al. (1999). They have shown that the CV aR is the conditional expectation of Y given

that Y ≥ V aRβ , that is,

CV aRβ(Y ) = E(Y |Y ≥ V aRβ(Y )). (2.3)

In a numerical approach, CVaR function at a confidence level β can be written as

CV aRβ =
1

1− β

∫
f(w,r)≤V aRβ(w)

f(w, r)p(r) dr, (2.4)

where f(w, r) is defined as a loss function depending upon a decision vector w that be-

longs to any arbitrarily chosen subsetX ∈ Rm and a random vector r ∈ Rm. In a portfolio

optimization problem, as in Silva and Ziegelmann (2017), the decision vector w can be

a vector of portfolio’s weights, X a set of feasible portfolios subject to linear constraints

and r a vector that stands for market variables that can affect the loss of the assets (a

vector of random log returns of each asset).

Given equation 2.4, its clear that CVaR optimization uses VaR in its definition.

As stated before, VaR is not convex nor linear. Rockafellar and Uryasev (2000) in their

main contribution define a simpler auxiliary function which can be used to calculate CVaR
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without any need to compute VaR first:

Fβ(w, α) = α +
1

1− β

∫
f(w,r)≥α

(f(w, r)− α) p(r) dr, (2.5)

where

F (w, α) =

∫
f(w,r)≤α

p(r) dr (2.6)

is the non-decreasing and right-continuous cumulative distribution function for the loss

function f(w, r) with respect to α. It is also shown that Fβ(w, α) is convex with respect

to α.

Artzner et al. (1999) defines a risk measure as coherent if it satisfies four axioms:

• monotonicity

• translation invariance

• positive homogeneity

• sub-additivity.

Pfaff (2012) gives a brief explanation of the axioms. Let ρ denote a risk measure and ρ(L)

the risk value of a portfolio, where the loss L is a random variable.

The axiom of monotonicity requires for two given losses, L1 and L2, that L1 ≤

L2 =⇒ ρ(L1) ≤ ρ(L2). The axiom of translation invariance ensres that re risk measure

is defined in the same unites as the losses and if formally written as ρ(L1) = ρ(L) +

l, l ∈ R. The axiom of positive homogeneity is satisfied if ρ(λL) = λρ(L), λ > 0.

This axiom would be violated if the size of a portfolio position directly influenced its

riskiness. Finally, the axiom of sub-additivity states that ρ(L1 + L2) ≤ ρ(L1) + ρ(L2).

Intuitively, it means that the portfolio risk shall be less than or equal to the sum of the

single risk measures of the assets contained in portfolio, i.e., due to diversification effects,

the holding of a portfolio is less risky.

Acerbi and Tasche (2002) give a formal proof of the coherence of CVaR as a risk

measure, i.e, satisfying the axioms above. Also, WCVaR is said to be a coherent risk

measure, and it is demonstrated by Zhu and Fukushima (2009). As stated before, VaR is

not coherent because sub-additivity does not hold.
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2.2 CVaR Optimization Problem

Following Wuertz et al. (2010), an intuitive mean-CVaR optimization problem can

be written as
min
w∈X

CV aRβ(w)

s.t wT µ̂ = R

wT1 = 1,

(2.7)

where R is a given target return, w is an assets weights vector an β the desired CVaR’s

significancy.

Rockafellar and Uryasev (2000) give a formal proof that by minimizing the auxil-

iary function Fβ(w, α), one can find the optimal weights of the portfolio, CVaR and VaR

simultaneously over an feasible set, i.e.,

min
w∈X

CV aRβ(w) = min
(w,α)∈X×R

Fβ(w, α). (2.8)

They also develop a method to approximate Fβ(w, α) using J scenarios, rj, j = 1, ..., J ,

sampled from the density function p(r), assuming that the analytical representation for

the density p(r) in (2.5) is not available. Then, it’s possible to approximate

Fβ(w, α) = α +
1

1− β

∫
f(w,r)≥α

(f(w, r)− α) p(r) dr

= α +
1

1− β

∫
r∈Rm

(f(w, r)− α)+ p(r) dr,

(2.9)

where z+ = max(z, 0), by its discretized version:

F d
β (w, α) = α +

1

(1− β)J

J∑
j=1

(f(w, rj)− α)+. (2.10)

If it’s assumed that the feasible set X and the loss function f(w, rj) are convex,

it’s possible to solve the following convex optimization problem:

min
w∈X,α∈R

F d
β (w, α). (2.11)

By solving (2.11) we can then obtain the optimal portfolio vector of weights, w∗, the

portfolio’s corresponding VaR, α∗, and the optimal CVaR, which equals to F d(w∗, α).

Finally, if the loss function f(w, rj) is linear with respect to w and the set X is given by
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linear inequalities, then we can reduce (2.11) to the Linear Problem (ROCKAFELLAR;

URYASEV, 2002):

min
w∈Rn,z∈RJ ,α∈R

α +
1

(1− β)J

J∑
j=1

zj

s.t zj ≥ f(w, rj)− α, j = 1, ..., J,

zj ≥ 0, j = 1, ..., J,

w ∈ X,

wT = 1,

wT µ̂ = R.

(2.12)

This is done adding auxiliary variables, zj , to replace (f(w, rj) − α)+, imposing the

constraints zj ≥ f(w, rj)− α and zj ≥ 0.

Therefore, CVaR optimization can be carried out using efficient Linear Program-

ming algorithms (for instance Simplex), provided that f(w, rj) is linear with respect to w

and both the feasible set X and the loss function f(w, rj) are convex.

2.3 Copulas

The theory of Copula functions was first introduced by Sklar (1959) and by mid-

1990s, it started being used as a tool for modelling dependencies between assets in em-

pirical finance (PFAFF, 2012). Copulas are multivariate distribution functions whose

one-dimensional margins are uniformly distributed on [0, 1]. A copula C is a function

such that

C(u1, ..., un) = P (U1 ≤ ui, ..., Un ≤ un) (2.13)

where Ui U [0, 1] and ui are realizations of Ui for i = 1, ..., n. It is possible to use copulas

to replace probability distribution functions due to Sklar’s theorem and its corollary:

Theorem 2.3.1 (Sklar’s Theorem) Let F be an n-dimensional distribution function with

margins F1, ...Fn. Then there exists an n-copula C such that for all x ∈ Rn,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (2.14)

Furthermore, if F1, ...Fn are continuous, then C is unique.
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Corollary 2.3.1.1 Let F be an n-dimensional distribution function with margins F1, ...Fn

and let C be and n-copula. Then, for any u = (u1, ..., un) ∈ U [0, 1]n,

C(u1, ...un) = F (F−11 (u1), ..., F
−1
n (un)), (2.15)

where F−1i , i = 1, ..., n are the quasi-inverses of the marginals.

Kakouris and Rustem (2014) show that by using Theorem 2.3.1 and Corollary 2.3.1.1, it

is possible to derive a relation between the probability density functions and the copulas.

They define the copula density of an n-copula as:

Definition 2.3.1 Let f be the multivariate probability density function the probability

distribution F and f1, ..., fn the univariate probability density functions of the margins

F1, ..., Fn. The copulas density function of an n-copula C is the function c: U [0, 1]n 7→

[0,∞) such that

c(u1, ..., un) =
∂nC(u1, ..., un)

∂u1, ..., ∂un
=
f(x1, ..., xn)∏n

i=1 fi(xi)
. (2.16)

The definition allows us to separate the modelling of the marginals Fi(xi) from the

dependence structure represented by C. The copula probability density function is then

the ratio of the join probability function to what it would have been under independence.

Following Silva and Ziegelmann (2017) interpretation, it’s possible to consider the copula

as the adjustment that we need to make in order to convert the independent probability

density function into the multivariate density function. I.e., copulas decompose the joint

p.d.f from its margins. As in Hofert et al. (2018b), we can estimate the multivariate

distribution in two parts: (i) finding the marginal distribution of for each xi (ii) finding

the dependency between the filtered data from (i). This methodology allows us to derive

join distributions from the marginal independently from each other, as no assumption of

the joint behavior of the marginals is needed. As such, modelling with copula functions

provides a great deal of flexibility in regard to joint distribution models. An extensive

review of copula modelling in econometrics and finance can be found on Fan and Patton

(2014) and Patton (2008).

As presented in Nelsen (2000) and Pfaff (2012), we consider two copula distinct

copula families to model joint p.d.fs: Archimedean Copulas and Elliptical Copulas. An

Elliptical Copula, like Gaussian/Normal or t-student, is a copula in which the dependence

between the random variables are captured implicitly by a distribution parameter. Ellip-
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tical copulas are simple and easy to simulate, however, they are symmetric and this can

be a problem, since given stylized facts of financial data, empirical distributions of the

loss functions are generally skewed. Gaussian copula is one of the most used copula in

modelling. Regarding risk modelling, it has a limited application since a characteristic

of Gauss copula is having zero tail dependency. A second example of elliptical copula is

Student’s t copula. In contrast to Gaussian copula, t-copula’s tail dependency is not zero,

it has a symmetric lower and upper tail dependency. However, the use of a single t-copula

to financial modelling can also be problematic, since another financial data stylized fact

is that returns gains and losses are not symmetric: there is a stronger comovement of

financial assets in crises periods.

An Archimedean copula is defined as

C(u1, ...un) = Ψ−1(Ψ(u1) + ...+ Ψ(un)), (2.17)

where Ψ is a copula-generating function. Extended literatureregaring Archimedian cop-

ulas can be found in Cherubini, Luciano and Vecchiato (2004); Hofert et al. (2018b);

Nelsen (2006). As opposed to Elliptical copulas, Archimedian copulas are not necessarily

symmetric, since tail dependency is modelled via the particular copula-generating func-

tion. Two useful and well-known Archimedean copulas are Clayton Copula and Gumbel

Copula, each having their characteristics.

A Clayton copula have its copula-generation function given by

Ψ(t) = (t−δ − 1)/δ, δ ∈ (0,∞), (2.18)

where δ −→ ∞ implies perfect lower tail dependency and δ −→ ∞ implies lower tail

independence.

A Gumbel copula is a copula with generating function

Ψ(t) = (− ln t)θ, θ ≥ 1, (2.19)

where perfect upper tail dependence exists for θ −→ ∞ and upper tail independence

exists for θ −→ 1.

In this work, a linear combination of the best mixture of Clayton, t and Gum-

bel copula is considered for each optimization period. This mixture is chosen because

these three copulas have different tail dependence characteristics. It combines a copula
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with lower tail dependence, a symmetric tail dependence and an upper tail dependence.

Hence, a wide range of possible dependence structures are considered within the model,

with the aim to capture best the dependence between the individual assets contained in

the portfolio. The mixture is derived by the mixture used in the works of Pfaff (2012),

Kakouris and Rustem (2014) and Hu (2006), but using an Elliptical t-copula instead of an

Archimedean Frankel copula.

2.4 Worst Case Copula CVaR

Now that the CVaR optimization problem for a random vector of distributions

have been defined, as well as theorems to associate copulas and these distributions, it is

possible to define a Worst Case CVaR optimization with (mixture) copula functions. This

is accomplished following Kakouris and Rustem (2014), which gives us the Worst Case

CVaR using copula functions, and Zhu and Fukushima (2009), which gives us Worst Case

CVaR using a mixture of distributions.

Let w ∈ W be a decision vector, u ∈ U [0, 1]n a random vector that follows a

continuous distribution with copula density function c(.) and F (r) = (F1(r1), ..., Fn(xn))

a set of marginal distributions where u = F(r). The copula corresponding equation of 2.9

is

GB(w, α) = α +
1

1− β

∫
f(w,u)≥α

(f(w, u)− α) c(u) du

= α +
1

1− β

∫
u∈U [0,1]n

(f(w, u)− α)+ c(u) du,

(2.20)

where the discretized version following K scenarios is represented as

Gd
β(w, α) = α +

1

(1− β)K

K∑
j=1

(f(w, uj)− α)+. (2.21)

Using a mixture of copulas,

C(.) ∈ Cmix = {
l∑

i=1

πiCi(.) :
d∑
i=1

πi = 1, πi ≥ 0, i = 1, ...l}, (2.22)

we can then express equation (2.20) as an equation for for evaluation using Monte Carlo

simulations. We do this by sampling realizations from the copulas Ci(.) using as inputs
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the filtered uniform margins,

Gd
β(w, α) = α +

1

(1− β)Ki

K∑
j=1

(f(w, uij)− α)+, i = 1, 2...l, (2.23)

where uij and Ki are the j-th sample drawn from the copula Ci(.) of the mixture copula

using as inputs the filtered uniform margins and its corresponding size, respectively.

Following assumptions of convexity and linearity of the loss function f(w, u) with

respect to w, the optimization problem,

min
w∈W,α∈R

Gd
β(w, α), (2.24)

can be modelled following Rockafellar and Uryasev (2002) mean-CVaR approach as

min
x∈Rn,z∈RK ,α∈R

α +
1

(1− β)Ki

Ki∑
k=1

zi,

s.t zi ≥ f(w, uik)− α, k = 1, ..., K,

zi ≥ 0, i = 1, ..., d,

w ∈ W,

wT µ̂ ≥ R,

wT1 = 1.

(2.25)
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3 METHODOLY AND DATA

The empirical study of the Worst Case Copula-CVaR portfolio optimization out-

lined above considers a sample data of 8 Brazilian indexes contained in Economatica’s

Platform from January 3, 1993 to June 27, 2019 - a total of 5811 trading days. L = 5810

daily log-returns are calculated from the following indexes:

• DOLX19: Commercial Dollar contract,

• DOLOF: Future Dollar contract,

• INDV19: Future IBOV contract,

• IBOV: Ibovespa index,

• IBXX: index of Ibov’s 100 most liquid assets,

• IEEX: index of Ibov’s most relevant energy companies,

• OZ1D: Gold contract,

• TBF: Brazillian Basic Financial Rate.

For the model estimation, we consider a period T = 1260 days. A rolling window opti-

mization approach similarly from Xi (2014) is applied for L− T = 4550 optimizations:

• Optimization 1: Use day 1 to day 1260 to estimate the Worst-Case Copula-CVaR

model and determine portfolio weights for day 1261.

• Optimization 2: Use day 2 to day 1261 to estimate the Worst-Case Copula-CVaR

model and determine portfolio weights for day 1262.

• ...

• Optimization 4550: Use day 1260 to day 5809 to estimate the Worst-Case Copula-

CVaR model and determine portfolio weights for day 5810.

Next, descriptive statistics about the sample are presented.

3.1 Data and descriptive statistics

Figure 3.1 shows the indexes price evolution of the data set for the whole sample

period L, where t = 1 has base value of 100 for every asset. Figure 3.2 shows the log-

return plots of the data. It is worth commenting that DOLX19 and DOLOF present very

low returns in the initial period of data. This is due to Brazil’s fixed exchange rate regime

that lasted until January, 1999. As shown on Table 3.1, all but one of the asset’s log
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Figure 3.1: Price Indexes

returns distribution have positive skewness, which indicates non-symmetric right skew of

returns and attends stylized facts of financial data presented in Pfaff (2012). Regarding

kurtosis, all of the assets log returns have positive values. This indicates the log returns

distributions have heavier tails than Normal distribution. In particular, IEEX Index has a

kurtosis of approximately 111.71, which indicates tails a lot heavier than Normal ones.

Table 3.1: Descriptive Statistics of log returns
Index Min Max Aritm. Mean Std.dev Skewness Kurtosis

DOLX19 -0.08327 0.10436 -0.00014 0.01023 0.39413 8.87790
DOLOF -0.09359 0.10529 0.00024 0.00945 0.53673 16.77306
IND19 -0.20634 0.21396 0.00003 0.02099 -0.05957 7.59111
IBOV -0.17229 0.28818 0.00054 0.01993 0.27245 13.44936
IBXX -0.15616 0.24109 0.00064 0.01796 0.08856 12.30610
IEEX -0.34612 0.53201 0.00071 0.01984 2.33441 111.71610
OZ1D -0.15441 0.12402 0.00046 0.01483 0.20076 8.27108
TBF -0.19368 0.41310 -0.00029 0.05368 0.76468 1.16543

3.2 Empirical Strategy

To apply the Worst Case Copula-CVaR portfolio optimization, we follow mainly

the steps presented in Pfaff (2012), Hofert et al. (2018a), Hofert et al. (2018b) and Xi
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Figure 3.2: Log Returns

(2014). These steps are presented below and repeated for every optimization step we

previously shown. In addition, we consider for benchmarking an Equal Weight Portfolio

(EWP) and a Gaussian Copula Portfolio (GCP).

(1) First, we fit an ARMA(p,q)-GARCH(1,1) model with skewed t-distributed

innovations to each univariate time series. Note that p, q ∈ [[0, 2]], where [[0, 2]] is a

discrete interval. The choice of (p, q) is given by the (AR,MA) order that minimizes

BIC information criteria for the univariate ARMA model fit of each asset.

(2) Using the estimated parametric model, for each asset we construct standardized

residuals vector,

ε̂t,j
σ̂t,j

, t = 1, ..., (L− T ) and j = 1, ..., 8. (3.1)

(3) Calculate pseudo-uniform variables from the standardized residuals parametri-

cally using the Skewed-t distribution of the GARCH error process. This can also be done

semiparametrically using the empirical distribution functions of the standardized residual

vectors, see Pfaff (2012) or Hofert et al. (2018a) for an example.

(4) Estimate the multivariate Clayton-t-Gumbel Mixture Copula model to data that
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has been transformed to [0,1] margins from the linear combination of copulas,

CCtG(Θ, u) = π1C
C(θ1, u) + π2C

t(θ2, θ3, u) + π3C
G(θ4, u), (3.2)

where Θ is the Clayton, t and Gumbel copula parameters, πi is a copula weight parameter

such that πi ∈ [0, 1] and
∑
πi = 1 and u is the vector of pseudo-uniform observations for

each asset.

The estimation of the copula parameters and weights are jointly obtained by the

minimization of the negative log-likelihood of the weighted densities from the Clayton,

t and Gumbel copulas. Copula densities are computed as in Hofert et al. (2018b). A

general non-linear augmented Lagrange multiplier method solver is employed based on

Ye (1987) work.

(5) Use the dependence structure determined by the estimated Copula Mixture for

generating K = 10000 scenarios of random variates for the pseudo-uniformly distributed

variables.

(6) Compute Skewed-t quantiles for these Monte Carlo draws, zj,t, for j = 1, .., 8

and t = 1, ..., (L− T ).

(7) For each j asset, determine the K scenarios of simulated daily log-returns for

the out-of-sample following day we are forecasting,

rj,t = Xj + εj,t, (3.3)

where Xj is provided by the ARMA(p,q) model,

Xj,t = εj,t +

p∑
i=0

φj,i Xj,t−i +

q∑
i=0

θj,i εj,t−1 (3.4)

and εj,i is the error term following a GARCH(1,1) process given as

εj,t = σj,t zj,t

σ2
j,t = αj,0 + αj,1 ε

2
j,t−1 + βj,1 σ

2
j,t−1

(3.5)

(8) Finally, use the simulated data as inputs when optimizing portfolio weights by

minimizing CVaR for a confidence level of 5% and a given portfolio target return. This is

done using the works of Wuertz et al. (2010), in which the Rockafellar and Uryasev (2002)

method is applied for optimizing CVaR with a linear program. To access optimization
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performance, we run the optimization for target daily returns of 0, 0.012%, 0.024% and

0.036%. This is approximately 0%, 3.07%, 6.23% and 9.5% annually.

Similar steps are applied for optimizing the Gaussian Copula Portfolio for each

period. However, as there is no need to estimate a mixture of copulae functions, step (4)

of the optimization only fits a Gaussian Multivariate Copula to given pseudo-uniform data

following Hofert et al. (2018b) method.

For each period in (L − T ), the respective estimated vector of the assets weights

and the simple returns of the data-set are used to calculate out-of-sample portfolio returns

for MCP and GCP, as

Rport
t =

8∑
j=1

wj,t rj,t, t = 1, ..., (L− T ). (3.6)

For EWP, the weight of each asset is simply 1/N .

Using calculated out-of-sample portfolio returns for Mixture Copula Portfolio,

Gaussian Copula Portfolio and Equal Weighted Portfolio, several performance measures

are calculated as in Peterson and Carl (2019).

3.3 Performance Measures

The following performance measures are computed in Peterson and Carl (2019)

and based on Bacon (2008): annualized mean excess return, annualized standard devia-

tion, V aR0.95, CV aR0.95, Semi-Deviation, CDaR0.95, Worst-Drawdown, Average Draw-

down, Average Drawdown Lenght, Annualized Sharpe Ratio, Burke Ratio, Sortino Ratio,

Upside Potential, Downside Frequency, Calmar Ratio, Drawdown Deviation and Omega

Sharpe Ratio.

Annualized returns are calculated as

prod(1 +R)scale/n − 1 =
√
prod(1 +R)scale

n
− 1 (3.7)

and Annualized Standard Deviation is calculated as

An.StdDev =
√
σ
√

252. (3.8)

From an absolute return investor’s perspective wishing to avoid losses, Drawdown
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is a famous measure of risk. Average Drawdown is the average continuous negative return

over an investment period, and calculated as

Av.DD = |
j=d∑
j=1

Dj

d
|, (3.9)

where Dj is the jth drawdown over the entire period and d is the total number of draw-

downs in entire period.

The Maximum Drawdown (WorstDD.), is the maximum potential loss over the

out-of-sample period. It represents the maximum loss an investor can suffer buying at the

highest and selling at the portfolio’s lowest.

Average Length (Av.Length) is similar to Average Drawdown, but calculates

length instead of the depth.

Drawdown Deviation (DDDev.) calculates a stantard deviation-type statistic us-

ing individual drawdowns:

DDDev. =

√√√√ j=d∑
j=1

D2
j

n
. (3.10)

It is also possible to define a Sharpe-type measure using the maximum drawdown

rather than the standard deviation to reflect investor’s risk. The CalmarRatio is calcu-

lated as

CalmarRatio =
An.Return

WorstDD.
. (3.11)

Standard deviation and symmetrical normal distribution are foundations of MPT.

However, Standard deviation measures both upside and downside risk, thus, it makes

sense to measure the deviation strictly regarding the losses of the portfolio.

Downside Risk measures the variability of underperformance below a minimum

accepted return (MAR). It is defined as

σD =

√√√√ n∑
t=1

min[Ri −MAR, 0]2

n
. (3.12)

.

Semi-Deviation (Semi.Dev) is a special case of σD where MAR = mean(Ri).

To calculate Downside Frequency (DownsideFreq.) we take the subset of returns

that are less than the target (or Minimum Acceptable Returns (MAR)) returns and divide

the length of this subset by the total number of returns.
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The Omega-Sharpe ratio is a conversion of the omega ratio to a ranking statistic

in familiar form to the Sharpe ratio. It is calculated as

OmegaSharpe =
Rp −MAR

1
n

∑i=n
i=1 max(RP −MAR, 0)

, (3.13)

where RP is the return of the portfolio and n is the number of observations.

A natural extension of the Omega-Sharpe ratio is Sortino Ratio. The difference is

that Sortino uses the second-order Lower Partial Moment instead of the first-order Lower

Partial Moment as OmegaSharpe,

SortinoRatio =
RP −MAR

σD
. (3.14)

Lastly, we also consider tail downside risk measures: V aR0.95, CV aR0.95 and

CDaR0.95. V aR and CV aR calculation is already explained. A thorough definition of

CDaR can be consulted in Chekhlov, Uryasev and Zabarankin (2004).
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4 EMPIRICAL RESULTS

Tables 4.1 and 4.2 computes out-of-sample annualized mean excess return, an-

nualized standard deviation, V aR0.95, CV aR0.95, Semi-Deviation, CDaR0.95, Worst-

Drawdown, Average Drawdown, Average Drawdown Lenght, Annualized Sharpe Ratio,

Burke Ratio, Sortino Ratio, Upside Potential, Downside Frequency, Calmar Ratio, Draw-

down Deviation and Omega Sharpe Ratio for optimizations using daily target returns of

0%, 0.012%, 0.024% and 0.036% respectively. For calculation of risk measures it is

considered a Risk Free Rate of 0 and a Minimum Accepted Return of 0.

By analyzing Table 4.1 and Table 4.2, we find that the Worst Case Mixture Cop-

ula CVaR optimization offers better hedges against losses than the 1/N Portfolio, IBOV

Portfolio and Gaussian Copula CVaR Portfolio in every daily target return constrained

optimization realized. The Mixture Copula Mean-CVaR portfolio shows in almost every

performance measure better downside risk performance, better drawdown performance

and better VaR and CVaR while offering similar or greater annual returns than 1/N , IBOV

and Gaussian portfolios. It has also bigger Sortino and Omega Sharpe ratio than the other

benchmark portfolios in every target return considered.

When comparing solely the Mixture Copula and the Gaussian Copula Portfolio,

it is clear that the former has better performance measures on the different target returns

considered. Furthermore, Mixture Portfolio offers consistent performance over the differ-

ent target returns constraints. An increase in target return is followed by an increase in

both Annualized Returns and risk measures, while Gaussian Portfolio seems to be very

sensitive regarding the constraint. For 0 and 0.00012 target return, Gaussian Portfolio

shows somewhat similar performance measures considering the Mixture one, but as the

target return increases, the difference between the two quickly increases as well.

Lastly, Figure 4.1 depicts out-of-sample drawdowns of the considered portfolios

for the different target returns of the period. Although the minimization of drawdowns or

CDAR0.95 is not the aim of the optimization, it’s analysis still provides insights about the

considered portfolio performance.

Considering the Mixture Portfolio (red line), it is possible to see a relatively big

drawdown period in the beginning of the out-of-sample performance, which tends to de-

crease as the target return increases. This could be due to the need of diversifying into

higher return assets in order to fulfill the target return constraint, which consequently leads

to a lower drawdown. It is also worth noting that in sensitive moments for global markets
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and Brazilian financial market (9/11 terrorists attack, 2007-2008 financial crisis, 2016

Brazilian impeachment), Mixture portfolio shows lower drawdowns than other strategies.

Table 4.1: 1/N Portfolio and IBOV Performance Measures
1/N IBOV

An. Return 0.0988 0.1045

An. StdDev 0.1560 0.2660
VaR 0.0152 0.0276

CVaR 0.0215 0.0389

Semi-Dev 0.0069 0.0124
CDaR 0.0712 0.0989

Worst DD 0.3818 0.5996
Av. DD 0.0266 0.0407

Av. Length 26.389 40.844
An. Sharpe 0.6333 0.3774
Burke Ratio 0.1551 0.0871

Sortino 0.0629 0.0451
Upside Potential 0.7745 0.7302
Downside Freq. 0.4798 0.4787

Calmar Ratio 0.2587 0.1743
DD Dev. 0.0099 0.0148

Omega Sharpe 0.1212 0.0893

Table 4.2: Daily Rebalancing Mixture copula portfolio and Gaussian copula portfolio Perfor-
mance Measures

.000%
Mix

.000%
Gauss

.012%
Mix

.012%
Gauss

.024%
Mix

.024%
Gauss

.036%
Mix

.036%
Gauss

An. Return 0.1049 0.0748 0.1125 0.1170 0.1212 0.1265 0.1551 0.0319
An. StdDev 0.1181 0.1237 0.1218 0.1535 0.1286 0.2240 0.1398 0.2724

VaR 0.0107 0.0110 0.0112 0.0135 0.0117 0.0184 0.0133 0.0240
CVaR 0.0167 0.0177 0.0172 0.0219 0.0182 0.0304 0.0194 0.0398

Semi-Dev 0.0052 0.0054 0.0053 0.0066 0.0045 0.0092 0.0061 0.0113
CDaR 0.0512 0.0570 0.0617 0.0580 0.0495 0.1066 0.0532 0.1645

Worst DD 0.2918 0.3403 0.2590 0.2357 0.2160 0.4312 0.2035 0.6388
Av. DD 0.0215 0.0215 0.0228 0.0241 0.0203 0.0417 0.0215 0.0526

Av. Length 29.735 37.084 26.000 25.650 22.251 41.607 19.062 88.569
An. Sharpe 0.8880 0.6044 0.9236 0.7623 0.9424 0.5646 1.1094 0.1173
Burke Ratio 0.2110 0.1464 0.2266 0.1927 0.2307 0.1557 0.2762 0.0312

Sortino 0.0853 0.0603 0.0887 0.0756 0.0904 0.0641 0.1057 0.0241
Upside Potential 0.7200 0.7028 0.7272 0.6724 0.7299 0.6663 0.7548 0.6296
Downside Freq. 0.4655 0.4666 0.4691 0.4641 0.4670 0.4747 0.4664 0.4846

Calmar Ratio 0.3594 0.2198 0.4344 0.4965 0.5611 0.2933 0.7621 0.0501
DD Dev. 0.0075 0.0077 0.0078 0.0092 0.0076 0.0126 0.0087 0.0118

Omega Sharpe 0.1794 0.1285 0.1867 0.1673 0.1887 0.1454 0.2184 0.0546
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Figure 4.1: Drawdown Comparison
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5 CONCLUDING REMARKS

This work incorporates copula-based dependence structure and time-varying mean

and volatility in asset returns using a Copula-ARMA-GARCH model in order to perform

a Mean-CVaR portfolio optimization. Using Brazilian indexes data from 1993 to 2019,

we evaluate performance of the described portfolio and compare it to three benchmarks: a

Gaussian Copula-Mean-CVaR portfolio, an equally weighted (1/N ) portfolio and IBOV

index.

By optimizing Mean-CVaR portfolio with the dependence structure of the assets

modelled with a mixture of Clayton, t and Gumbel copula, we found that the resulting

portfolio offers better downside-risk measures and drawdown measures than the Gaussian,

1/N and IBOV index portfolio considering the different target returns of the Mean-CVaR

optimizations proposed. Moreover, the portfolio in question offers consistent downside-

risk measures as the target return constraint increases, as well as similar or bigger annu-

alized returns considering the different portfolio benchmarks presented.

However, we have to bear in mind that the CVaR optimization has been carried

out in the absence of transaction costs and using a daily rebalancing strategy. As a con-

sequence, the benefit of the Mixture Copula portfolio over the others can be hindered if

high transaction costs are present. As solution to such problems, we may (i) incorporate

transaction cost as an additional constraint in the CVaR optimization (ii) reduce rebalanc-

ing frequency (iii) compute Turnover measure for the portfolios, where higher Turnover

means higher transaction costs.

Further studies could investigate the role of transaction costs and the performance

of different rebalancing periods. The employ of canonical vine copulas as in Xi (2014)

or time-varying copulas as in Ausin and Lopes (2010) to model dependence can also be

investigated. Finally, Reality Checks and Data Snooping tests as Hansen (2005) should

be employed to test for predictive ability.
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6 APPENDIX

6.1 Arma-Garch Fitting Code

library(xts)

library(quantmod)

library(rugarch)

library(forecast)

setwd("C:/Users/gusta/Desktop/tccGustavo/tccGustavo")

##########load data

returns <- read.csv("returnsIndBr.csv")

returns <- returns[1:5809,]

plot(returns[,3])

####creating a window for each period of opt

per_est = 1260 #number of days used in each estimation

rolling = 1 #you move one observation forward

i=2

window_sup <- 0

window_sup[1]=0

while(window_sup[i-1] < nrow(returns)){

if(i==2){

window_sup[i]=per_est

}

else{

window_sup[i]=window_sup[i-1]+rolling

}

i=i+1

}

window_sup <- window_sup[-1]

#tail(window_sup)

#window_sup

length(window_sup)

######

#############ARMA GARCH ESTIMATION
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#list of lists to save data

residuos<- vector(’list’, length(window_sup))

coeficientes <- vector(’list’, length(window_sup))

sigma <- vector(’list’, length(window_sup))

aux_list<-vector(’list’, 9)

for (i in 1:length(window_sup)){ #period 1 to (L-T)

if(i==1){

RZ <- returns[1:window_sup[i],]

}

else{

RZ <- returns[(window_sup[i]-per_est+1):window_sup[i],] #goes from

↪→ window_sup-per_est to window_sup

}

for (j in 2:ncol(RZ)) #for each period fits every column (indexes)

{

xx <- forecast::auto.arima(y=RZ[,2], max.p=2, max.d = 0, max.q=2,

↪→ seasonal=F, stationary = T, ic = c(’bic’), allowmean =F,

↪→ allowdrift = F)

###max.d=0: wont diff the serie. max(p,q) = 2

ordem <- forecast::arimaorder(xx) #getting ARMA order

ordem <- c(ordem[1], ordem[3])

##fiting ARMA(p,q)-GARCH(1,1) with skewed t

armagarchspec <- rugarch::ugarchspec(list(model="sGARCH",

↪→ garchOrder = c(1,1), variance.targeting = T), mean.model=

↪→ list(armaOrder=ordem,include.mean = F), distribution.model =

↪→ ’sstd’)

garch_fit <- rugarch::ugarchfit(armagarchspec, data = RZ[,j],solver

↪→ = "hybrid")

#storing data

residuos[[i]][[j-1]] = garch_fit@fit$residuals

#creating an easy-to-deal matrix of coeficients

#in the form: (AR1, AR2, MA1, MA2, GARCH coefs)

if(ordem[1] == 0 && ordem[2] == 0){

aux_list[1:4] = 0

aux_list[5:9] = garch_fit@fit$coef[1:5]

}else

if(ordem[1] == 1 && ordem[2] == 0){
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aux_list[2:4]=0

aux_list[1]=garch_fit@fit$coef[1]

aux_list[5:9]= garch_fit@fit$coef[2:6]

} else

if(ordem[1] == 2 && ordem[2] == 0){

aux_list[3:4]=0

aux_list[1:2]=garch_fit@fit$coef[1:2]

aux_list[5:9]= garch_fit@fit$coef[3:7]

}

else

if(ordem[1]==2 && ordem[2]==1){

aux_list[4]=0

aux_list[1:3]=garch_fit@fit$coef[1:3]

aux_list[5:9]= garch_fit@fit$coef[4:8]

}

else

if(ordem[1]==2 && ordem[2] ==2){

aux_list[1:4]=garch_fit@fit$coef[1:4]

aux_list[5:9]= garch_fit@fit$coef[5:9]

}

else

if(ordem[1]==0 && ordem[2]==1){

aux_list[1:2]=0

aux_list[4]=0

aux_list[3]=garch_fit@fit$coef[1]

aux_list[5:9]= garch_fit@fit$coef[2:6]

}

else

if(ordem[1]==0 && ordem[2]==2){

aux_list[1:2]=0

aux_list[3:4]=garch_fit@fit$coef[1:2]

aux_list[5:9]= garch_fit@fit$coef[3:7]

}

else

if(ordem[1]==1 && ordem[2] ==2){

aux_list[2]=0

aux_list[1]=garch_fit@fit$coef[1]

aux_list[3:4]=garch_fit@fit$coef[2:3]

aux_list[5:9]= garch_fit@fit$coef[4:8]

} else

if(ordem[1]==1 && ordem[2]==1){
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aux_list[2]=aux_list[4]=0

aux_list[1]=garch_fit@fit$coef[1]

aux_list[3]=garch_fit@fit$coef[2]

aux_list[5:9]=garch_fit@fit$coef[3:7]

}

coeficientes[[i]][[j-1]] = aux_list

sigma[[i]][[j-1]] = garch_fit@fit$sigma

cat("\nFit Col/Per: ",j,i)

}

}

#################saving data in R file

saveRDS(coeficientes, file = "coef.Rds")

saveRDS(residuos, file = "residuos.Rds")

saveRDS(sigma, file = "sigma.Rds")

#######generating parametric cdf with uniform margins

residuos <- readRDS("residuos.Rds") ##reading our data

sigma <- readRDS("sigma.Rds")

garch_coef <- readRDS("coef.Rds")

##initializing an empty list to save data

unif <- vector(’list’, 4550 )

##generating Cdf with a parametric skewd t, given degrees of freedom

↪→ and skewness

for(i in 1:length(residuos)){

for(j in 1:8){

unif[[i]][[j]] = fGarch::psstd(q=residuos[[i]][[j]]/sigma[[i]][[j

↪→ ]],

nu = garch_coef[[i]][[j]][[8]],

xi = garch_coef[[i]][[j]][[7]])

}

}

####saving ecdf data

saveRDS(unif, file = "Unif_ParDist.Rds")

6.2 Mixture Copula Parameter Fit Code
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library(copula) #for estimating copulae

library(Rsolnp) #for non linear optimization

setwd("C:/Users/gusta/Desktop/tccGustavo/tccGustavo")

#X <- readRDS("unif_EmpDist.RDS") #reading our empirical cumulative

↪→ unif. distr.

X <- readRDS("unif_ParDist.RDS") #reading our parametric cdf

weight_t <- vector(’list’, length(X) ) #creating a list to store each

↪→ period’s parameters

#negative log likelihood function for estimating copulae weights and

↪→ parameters

LLCG <- function(params,U, copC, copG, copt){

slot(copC, "parameters") <- params[1]

slot(copG, "parameters") <- params[2]

slot(copt, "parameters") <- params[3:4]

pi1 <- params[5]

pi2 <- params[6]

pi3 <- params[7]

opt <- log(pi1 * dCopula(U, copC) + pi2 * dCopula(U, copG)

+ pi3 * dCopula(U, copt))

if(any(is.infinite(opt))){

opt[which(is.infinite(opt))]<-0

}

-sum(opt)

}

#constrain function so that sum(weights)=1

eqfun <- function(params,U,copC,copG,copt){

z <- params[5]+params[6]+params[7]

return(z)

}

#initializing 8d t copula

copt <- copula::tCopula(param = 0.5, dim = 8) #

#initializing archimedian copula objects

copC <- copula::claytonCopula(2, dim = 8) # delta= 2
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copG <- copula::gumbelCopula(2, dim = 8) # theta= 2

#lower and upper bounds of the parameters and weights

lower <- c(0.1, 1, -0.9,(2+.Machine$double.eps), 0,0,0)

upper <- c(copC@param.upbnd, copG@param.upbnd, 1,100, 1,1,1) #2+eps so

↪→ that variance of t copula is defined

for(i in i:length(X)){ #for i in 1:4550

##unif dataframe

v<-as.matrix(do.call(cbind, X[[i]]))

U<-v[,1:8]

## Creating elliptical copula objects

par1 <- copula::fitCopula(copC, U, "itau",estimate.variance= T)

↪→ @estimate #inversion of Kendall’s tau

par2 <- copula::fitCopula(copG, U,"itau", estimate.variance= T)

↪→ @estimate

par3 <- copula::fitCopula(copt, U,"mpl",estimate.variance= F)@estimate

↪→ ###you need to use mpl in order to estime Degrees of freedom as

↪→ well

par4 <- 1/3

par5 <- 1/3

par6 <- 1/3

##non linear constrained optimization

opt <- Rsolnp::solnp(pars = c(par1,par2,par3,par4,par5,par6), fun =

↪→ LLCG, LB = lower,

UB = upper, copt=copt,copC = copC, copG = copG, U=

↪→ U,eqfun = eqfun,

eqB=c(1)) ####RSOLNP

weight_t[[i]]<-opt$pars ##saving parameters in a list

}

saveRDS(weight_t, file = "copulaParams.Rds") #saving the parameters in

↪→ a file
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6.3 Gauss Copula Parameter Fit

library(copula) #for estimating copulae

setwd("C:/Users/gusta/Desktop/tccGustavo/tccGustavo")

#X <- readRDS("unif_EmpDist.RDS") #reading our empirical cumulative

↪→ unif. distr.

X <- readRDS("unif_ParDist.RDS") #reading our parametric cdf

weight_gauss<- vector(’list’, length(X))

copGauss <- copula::normalCopula(dim = 8)

for(i in i:length(X)){

##unif dataframe

v<-as.matrix(do.call(cbind, X[[i]]))

U<-v[,1:8]

## Creating elliptical gaussian copula object

opt <- copula::fitCopula(copGauss, U, "itau")@estimate #inversion of

↪→ Kendall’s tau

weight_gauss[[i]]<-opt ##saving parameters in a list

}

saveRDS(weight_gauss, file = "copulaGauss.Rds")

6.4 Mixture Copula Scenario Generation and Portfolio Optimization Code

library(copula) ##for generating copula observations

library(fGarch) ##for using skew t quantile function

library(fPortfolio) ##portfolio optimization library

cop_pars <- readRDS("copulaParams.Rds") #reading copula par

garch_coefs <- readRDS("coef.Rds") #reading ArmaGarch par



43

arma_order <- readRDS("armaOrder.Rds")

sigma_fit <- readRDS("sigma.Rds") ##reading armaGarch fitted

↪→ residuals and sigma. We need this to estimate J one-steap ahead

↪→ returns

residual_fit <- readRDS("residuos.Rds")

returns <- read.csv("returnsIndBr.csv") #reading return data

returns <- returns[1:5809,] #this is all data we use

nsim = 10000 #K number of scenarios

##initializing needed matrix

cvar_opt <- matrix(0, nrow= 4550, ncol=9)

Cc <- Cg <- Ct <- matrix(0,nrow = 10000, ncol = 8)

ctg <- matrix(0,nrow = 10000, ncol = 8)

zsim <- matrix(0,nrow = 10000, ncol = 8)

ret_ <- matrix(0, nrow=10000, ncol = 8)

##setting up a fGarch portfolio

frontierSpec <- portfolioSpec()

setType(frontierSpec) <-"CVaR"

setSolver(frontierSpec) <- "solveRglpk.CVAR"

setAlpha(frontierSpec) <-0.05

setTargetReturn(frontierSpec) <- 0.00012 #we do this for 0, 0.00012,

↪→ 0.00024 and 0.00036

for (i in 1:length(sigma_fit)) {

ret_ <- matrix(0, nrow=10000, ncol = 8)

##generating simulated copula data

Cc[,]<- cop_pars[[i]][[5]]*copula::rCopula(n = 10000, copula =

↪→ claytonCopula(param = cop_pars[[i]][[1]],dim= 8))

Cg[,]<- cop_pars[[i]][[6]]*copula::rCopula(n = 10000, copula =

↪→ gumbelCopula(param = cop_pars[[i]][[2]],dim= 8))

Ct[,]<- cop_pars[[i]][[7]]*copula::rCopula(n = 10000, copula =

↪→ tCopula(param = cop_pars[[i]][[3]], df=cop_pars[[i]][[4]],

↪→ dim= 8))

ctg <- Cc + Ct + Cg #linear combination of copula
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##calculating Zsim for each j asset every i day

for(j in 1:8){

zsim[,j] <- fGarch::qsstd(ctg[,j], nu = garch_coefs[[i]][[j

↪→ ]][[8]], xi =garch_coefs[[i]][[j]][[7]]) /

sd(fGarch::qsstd(ctg[,j], nu = garch_coefs[[i]][[j

↪→ ]][[8]], xi = garch_coefs[[i]][[j]][[7]]))

#nu = DF da t, xi = skew da t

}

##K scenarios returns simulation using Zsim and ARMA-GARCH

#matrix of real returns for AR term

RZ<-returns[i:(1259+i),2:9]

#sigma and residual matrix for MA and GARCH

sigma_per <- sigma_fit[[i]]

resid_per <- residual_fit[[i]]

##generating K returns scenarios for each asset

for(j in 1:8){

sigma_f_t1 <- tail(sigma_per[[j]],1) ##(t-1)

e_f_t2_t1 <- tail(resid_per[[j]],2) ##(t-2, t-1)

for(z in 1:10000){

ret_[z,j] = ((garch_coefs[[i]][[j]][[1]] * RZ[1260,j]) + (

↪→ garch_coefs[[i]][[j]][[2]] * RZ[1259,j]) + #AR1 * R_t

↪→ -1, AR2 * R_t-2

(garch_coefs[[i]][[j]][[3]] * e_f_t2_t1[1]) + (

↪→ garch_coefs[[i]][[j]][[4]] * e_f_t2_t1[2])

↪→ + #MA1*e_t-1, MA2*e_t-2

(zsim[z,j] * (sqrt(garch_coefs[[i]][[j]][[9]]) +

↪→ ##alfa0

sqrt(garch_coefs[[i]][[j]][[5]]) *

↪→ e_f_t2_t1[2] + ##alfa1 * e_t

↪→ -1

sqrt(garch_coefs[[i]][[j]][[6]]) *

↪→ sigma_f_t1))) ##beta1 * s_t

↪→ -1

}

}
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##optimizing portfolio for period i in 1:4550 using simulated returns

retornofPort <- as.timeSeries(ret_[,1:8])

frontier1g <- fPortfolio::efficientPortfolio(data = retornofPort ,

↪→ spec = frontierSpec ,constraints ="LongOnly")

cvar_opt[i,1:8] <- fPortfolio::getWeights(frontier1g)

cvar_opt[i,9] <- fPortfolio::getTargetRisk(frontier1g)[3]

}

saveRDS(cvar_opt, file = "mixW0pct.Rds") ##we repeat this for 0,3,6 and

↪→ 9%

6.5 Gauss Copula Scenario Generation and Portfolio Optimization Code

cop_pars <- readRDS("copulaGauss.Rds") #reading gaussian copula par

garch_coefs <- readRDS("coef.Rds") #reading ArmaGarch par

arma_order <- readRDS("armaOrder.Rds")

sigma_fit <- readRDS("sigma.Rds") ##reading armaGarch fitted

↪→ residuals and sigma. We need this to estimate J one-steap ahead

↪→ returns

residual_fit <- readRDS("residuos.Rds")

returns <- read.csv("returnsIndBr.csv")

returns <- returns[1:5809,]

nsim = 10000 #number of scenarios

#initializing matrix

cvar_opt <- matrix(0, nrow= 4550, ncol=9)

Gcop <- matrix(0,nrow = 10000, ncol = 8)

zsim <- matrix(0,nrow = 10000, ncol = 8)

ret_ <- matrix(0, nrow=10000, ncol = 8)

#fPortfolio mean-CVaR spec

frontierSpec <- portfolioSpec()

setType(frontierSpec) <-"CVaR"

setSolver(frontierSpec) <- "solveRglpk.CVAR"
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setAlpha(frontierSpec) <-0.05

setTargetReturn(frontierSpec) <- 0.00012

for (i in 1:1) {

ret_ <- matrix(0, nrow=10000, ncol = 8)

#there is no linear combination of copulas to be generated, only

↪→ GaussianCopula data

Gcop[,]<- copula::rCopula(n = 10000, copula = normalCopula(param =

↪→ cop_pars[[i]],dim= 8))

for(j in 1:8){

if(j==8 && anyNA(fGarch::qsstd(ctg[,j], nu = garch_coefs[[i]][[j

↪→ ]][[8]], xi =garch_coefs[[i]][[j]][[7]]))){

garch_coefs[[i]][[j]][[7]] <- 1

}

zsim[,j] <- fGarch::qsstd(Gcop[,j], nu = garch_coefs[[i]][[j

↪→ ]][[8]], xi =garch_coefs[[i]][[j]][[7]]) / # garch_coefs[[i

↪→ ]][[j]][[7]]

sd(fGarch::qsstd(Gcop[,j], nu = garch_coefs[[i]][[j]][[8]], xi =

↪→ garch_coefs[[i]][[j]][[7]])) #nu = GL da t, xi = skew da t

}

RZ<-returns[i:(1259+i),2:9]

sigma_per <- sigma_fit[[i]]

resid_per <- residual_fit[[i]]

for(j in 1:8){

sigma_f_t1 <- tail(sigma_per[[j]],1) ##(t-1)

e_f_t2_t1 <- tail(resid_per[[j]],2) ##(t-2, t-1)

for(z in 1:10000){

ret_[z,j] = ((garch_coefs[[i]][[j]][[1]] * RZ[1260,j]) + (garch_

↪→ coefs[[i]][[j]][[2]] * RZ[1259,j]) + #AR1 * R_t-1, AR2 *

↪→ R_t-2

(garch_coefs[[i]][[j]][[3]] * e_f_t2_t1[1]) + (

↪→ garch_coefs[[i]][[j]][[4]] * e_f_t2_t1[2])

↪→ + #MA1*e_t-1, MA2*e_t-2
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(zsim[z,j] * (sqrt(garch_coefs[[i]][[j]][[9]]) +

↪→ ##alfa0

sqrt(garch_coefs[[i]][[j]][[5]]) *

↪→ e_f_t2_t1[2] + ##alfa1 * e

↪→ _t-1

sqrt(garch_coefs[[i]][[j]][[6]]) *

↪→ sigma_f_t1))) ##beta1 * s

↪→ _t-1

}

}

retornofPort <- as.timeSeries(ret_[,1:8])

frontier1g <- efficientPortfolio(data = retornofPort , spec =

↪→ frontierSpec ,constraints ="LongOnly")

cvar_opt[i,1:8] <- getWeights(frontier1g)

cvar_opt[i,9] <- getTargetRisk(frontier1g)[3]

}

6.6 Portfolio Benchmark

##every function here is from PerformanceAnalytics

library(PerformanceAnalytics)

library(openxlsx)

w_mix_3 <- readRDS("mixW9pct.Rds") ##reading 3% yearly mixture

↪→ optimized portfolio weights

w_gaus_3 <- readRDS("gaussW9pct.Rds") ##reading 3% yearly gaussian

↪→ optimizaed portfolio weights

##reading real log returns data-set

returns <- read.csv("returnsIndBr.csv")

##subsetting to keep only the out-of-sample returns we will use

returns <- returns[1261:5810, ,drop=F]

time <- as.Date(returns[,1]) ###converting data-sets date into Date



48

returns <- returns[,2:9,drop=F] ##dropping Date column

simple_ret <- matrix(0,nrow=4550, ncol=8)

####transforming from log-returns to simple-returns

simple_ret <- exp(returns)-1

##transforming weights to xts

aux_date <- as.Date(c("2001-02-05","2001-02-06"))

w_mix_31 <- as.xts(w_mix_3[1:2,1:8],order.by = aux_date)

w_mix_31 <- w_mix_31[1,]

w_mix_3 <- as.xts(w_mix_3[-1,1:8], order.by = time2)

w_mix_3 <- rbind(w_mix_31, w_mix_3)

simple_ret <- as.xts(simple_ret, order.by = time)

w_gaus_31 <- as.xts(w_gaus_3[1:2,1:8],order.by = aux_date)

w_gaus_31 <- w_gaus_31[1,]

w_gaus_3 <- as.xts(w_gaus_3[-1,1:8], order.by = time2)

w_gaus_3 <- rbind(w_gaus_31, w_gaus_3)

#w_markowitz_3 <- as.xts(w_markowitz_3[,1:8], order.by = time)

#w_markowitz_3_shrink <- as.xts(w_markowitz_3_shrink[,1:8], order.by =

↪→ time)

##assingning names to xts matrix (needed for return calculation using

↪→ Return.portfolio)

colnames(simple_ret) <- colnames(w_mix_3) <- colnames (w_gaus_3) <- c("

↪→ a","b","c","d","e","f","g","h")

#colnames(w_markowitz_3) <- colnames(w_markowitz_3_shrink)

colnames(simple_ret) <- colnames(w_gaus_3) <- c("a","b","c","d","e","f"

↪→ ,"g","h")

######out of sample returns (i=1)

outSamRet_3_ctg <- Return.portfolio(simple_ret, w_mix_3, geometric = T,

↪→ wealth.index = F)

outSamRet_3_gaus <- Return.portfolio(simple_ret, w_gaus_3, geometric =

↪→ T, wealth.index = F)

outSamRet_3_1n <- Return.portfolio(simple_ret, geometric = T, wealth.

↪→ index = F)
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outSamRet_3_IBOV <- Return.portfolio(simple_ret[,4], geometric = T) ##

↪→ simple_ret[,4] = ibov

returnsmatrix9 <- cbind(outSamRet_3_ctg, outSamRet_3_gaus, outSamRet_3_

↪→ 1n,outSamRet_3_IBOV) # creating a matrix of portfolios returns

colnames(returnsmatrix9) <- c("Ctg", "Gauss", "1n", "IBOV")

##########performance measures and plots

charts.PerformanceSummary(returnsmatrix)

#chart.Drawdown(returnsmatrix, legend.loc = "bottomright", colorset =

↪→ rainbow6equal)

###Risk-Free rate and MAR = 0

bench<-NULL

bench <- rbind(Return.annualized(returnsmatrix), sd.annualized(

↪→ returnsmatrix),

VaR(returnsmatrix, method = "historical"), CVaR(

↪→ returnsmatrix, method = "historical"),

SemiDeviation(returnsmatrix), CDD(returnsmatrix, method

↪→ = "historical"),

maxDrawdown(returnsmatrix, method = "historical"),

AverageDrawdown(returnsmatrix, method = "historical"),

↪→ AverageLength(returnsmatrix, method = "historical

↪→ "),

SharpeRatio.annualized(returnsmatrix, Rf = 0),

BurkeRatio(returnsmatrix, Rf = 0),

SortinoRatio(returnsmatrix, MAR = 0),

↪→ UpsidePotentialRatio(returnsmatrix, MAR = 0),

DownsideFrequency(returnsmatrix, MAR = 0)

, CalmarRatio(returnsmatrix),

DrawdownDeviation(returnsmatrix),

Kappa(returnsmatrix,MAR=0, 1),

OmegaSharpeRatio(returnsmatrix, MAR=0))

write.xlsx(bench, file = "benchmark6pct.xlsx", colNames = T, rowNames =

↪→ T) ##saving performance measures

###drawdowns plot
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chart.Drawdown(R=returnsmatrix0, legend.loc = "bottomright", colorset =

↪→ rainbow6equal, main = "0.000000")

chart.Drawdown(returnsmatrix3, legend.loc = "bottomright", colorset =

↪→ rainbow6equal,main = "0.000120")

chart.Drawdown(returnsmatrix6, legend.loc = "bottomright", colorset =

↪→ rainbow6equal,main = "0.000240")

chart.Drawdown(returnsmatrix9, legend.loc = "bottomright", colorset =

↪→ rainbow6equal,main = "0.000360")


