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We introduce a new method for simulating colloidal suspensions with spherical colloidal particles of
dielectric constant different from the surrounding medium. The method uses an approximate calcu-
lation of the Green function to obtain the ion-ion interaction potential in the presence of a dielectric
discontinuity at the surface of the colloidal particle. The method is very accurate and is orders of
magnitude faster than the traditional approaches based on series expansions of the interaction poten-
tial. © 2011 American Institute of Physics. [doi:10.1063/1.3615940]

I. INTRODUCTION

Colloidal suspensions are of fundamental interest for var-
ious applications. One of the basic problems of colloidal
science is how to stabilize a lyophobic colloidal suspen-
sion against flocculation and precipitation. A common ap-
proach is to synthesize particles with acidic or basic charged
groups on the surface.1, 2 When placed in a polar medium,
such as water, these groups become ionized and the parti-
cles acquire a net charge. Repulsion between like-charged
colloidal particles then prevents them from coming into
a close contact where the short-range van der Waals forces
become important. Addition of electrolyte to the colloidal sus-
pension leads to screening of the Coulomb repulsion.3 At the
critical coagulation concentration, the repulsive energy bar-
rier disappears and the van der Waals forces drive colloidal
coagulation and precipitation.4–7 It is also well known that
the addition of even very small amount of multivalent ions
leads to a rapid precipitation. The correlation induced attrac-
tion between the colloidal particles produced by the multi-
valent ions is sufficient to precipitate colloidal suspensions
even without taking into account the van der Waals forces.
The like-charge attraction has been extensively explored in
colloidal and polyelectrolyte literature.8–12 A related phe-
nomenon, known as the charge reversal, has also attracted
a lot of attention over the recent years.13–18 In this case, the
electrostatic correlations result in a strong colloid-counterion
association.3 The counterion condensation can be so signif-
icant as to reverse the electrophoretic mobility of colloidal
particles.19, 20

Most of the theoretical work on the stability of colloidal
suspensions and charge reversal, however, neglects the effects
of the dielectric discontinuity at the particle/solvent interface.
In fact, in many colloidal suspensions the static dielectric con-
stant of colloidal particles can be 20–40 times lower than the
static dielectric constant of the surrounding water. This means

a)Electronic mail: levin@if.ufrgs.br.

that an ion in the vicinity of a colloidal surface will encounter
a strong ion-image repulsion. This repulsion can significantly
affect the effective charge of the colloid-counterion complex
and modify the colloid-colloid interaction potential. The
polarization effects, however, have been mostly neglected in
almost all of the theoretical studies. The reason for this is that
it is very hard to include the dielectric discontinuities in any-
thing but the simplest planar geometry. Thus, even to perform
a Monte Carlo simulation that accounts for the dielectric
discontinuity requires a significant computational effort.
Some years ago, Linse21 proposed to account for the induced
charges by treating the low dielectric colloidal particle as if it
was an “inverse” conductor. It is well known that if one places
a charge near a conducting sphere, a surface charge will be
induced on the sphere.22 The field produced by the surface
charge is exactly equivalent to the field produced by two point
charges of opposite sign, one located at the spheres inversion
point and another at its center. In the case of a conductor,
the charge at the inversion point has the opposite sign to
the charge placed outside the sphere, so that this charge is
attracted to the conductor. Linse suggested that the low di-
electric sphere in water might be approximated by an “inverse
conductor,” meaning that the same construction should apply
to locate the images, but that their sign will be the opposite
of the images inside the conducting sphere. The complicated
boundary conditions (BCs) imposed by the Maxwell equa-
tions at the dielectric interface make this an uncontrolled
approximation—one cannot satisfy the BCs with only two
pointlike image charges, one needs an infinite number of
images.23, 24

Polarization effects have also been explored in ionic
liquids25–28 and for polyelectrolyte adsorption29–31 in a slab
geometry. In this paper, we will derive the explicit inter-ionic
interaction potential which very accurately accounts for the
dielectric discontinuity for spherical colloidal particles. We
compare our results with the Monte Carlo simulations of
Messina,32 who obtained the ion-ion interaction potential as
an infinite series in Legendre polynomials. In the final part of
the paper, we will analyze the effect of 1:1 electrolyte on the
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distribution of trivalent and monovalent counterions near the
colloidal surface.

II. METHOD

We will use a primitive model of a colloidal suspen-
sion in which the colloidal particle is represented by a sphere
of radius a and dielectric constant εc. Water will be mod-
eled as a uniform dielectric of permittivity εw. The system
is at room temperature, so that the Bjerrum length, defined
as λB = q2/εwkBT , is 7.14 Å. Consider an α-valent ion of
charge Q = αq, where q is the proton charge, at position ri

from the center of the colloidal particle. The Maxwell equa-
tions require the continuity of the tangential component of the
electric field and the continuity of the normal component of
the displacement field across the colloid-water interface. It is
possible to show23, 24 that these boundary conditions can be
satisfied exactly by placing an image charge Q′ = γQa/ri

inside the colloid at the inversion point r′
i = ria

2/r2
i , and a

counterimage line-charge λ(u), distributed along the line con-
necting the center of colloid with the inversion point r′

i . The
line-charge density is

λ(u) = −Q′(1 + γ )

2r ′
i

(
u

r ′
i

) γ−1
2

, (1)

where γ = (εw − εc)/(εw + εc) and 0 ≤ u ≤ r ′
i is the distance

along the line, see Fig. 1. Note that this construction does not
change the net charge of the colloidal particle, that is the total
counterimage line-charge sums up to −Q′.

The electrostatic potential produced by the image charge
at an arbitrary position r outside colloid is

ψim(r; ri) = Q′

εw

∣∣∣r − a2

r2
i

ri

∣∣∣ (2)

and the electrostatic potential produced by the counterimage
line-charge is

ψci(r; ri) = a2

εwri

∫ 1

0
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)
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i
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For r = ri , the integral can be performed exactly in terms of
the hypergeometric function 2F1. We find the counterimage-
ion interaction potential to be

ψ
self

ci (ri) = −γαqa

εwr2
i
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(
1

2
+ 1

2
γ, 1,

3

2
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2
γ,

a2

r2
i

)
,

(4)
where self refers to the self-energy interaction.

Although Eqs. (3) and (4) are exact, they are not very
useful for Monte-Carlo or molecular dynamics simulations—
the integral in Eq. (3) must be done numerically for each
new configuration of ions, making simulations very slow.
However, we can consider a simplifying approximation. We
note that the dielectric constant of a colloidal particle is
much smaller than the dielectric constant of the surrounding
medium. Thus, to leading order in εc/εw we can take γ ≈ 1.
In this case, the counterimage charge is uniformly distributed,
λ̄(u) = −Q′/r ′

i , and the integral in Eq. (3) can be performed

exactly, yielding the counterimage potential at an arbitrary
position r,

ψ̄ci(r; ri) = αq

εwa
log

×
⎛
⎝ rri − r · ri

a2 − r · ri +
√

a4 − 2a2(r · ri) + r2r2
i

⎞
⎠ ,

(5)

where the over-bar is used to denote the uniform line-charge
approximation. The ion-counterimage interaction potential
also reduces to a simple equation,

ψ̄
self

ci (ri) = αq

εwa
log

(
1 − a2

r2
i

)
. (6)

III. MONTE CARLO SIMULATIONS

The simulations are performed inside a spherical
Wigner-Seitz (WS) with a colloidal particle of charge −Zq

placed at the center. The cell also contains N = Z/α α-valent
counterions, each of diameter d. For highly charged colloidal
suspensions, the interaction of counterions of one cell with
the counterions of other cells is not important, since most
of the counterions are located near the colloidal particle.
If we approximate the Wigner-Seitz cell by a sphere of
radius R determined using the colloidal volume fraction, the
charge neutrality requires vanishing of the electric field on
the boundary of WS cell. Therefore, there is no interaction
between the different cells. This is an approximation which
is often used in colloidal science. The electrostatic potential
produced at position r by an ion located at ri is

φ(r; ri) = αq

εw|r − ri | + γαqa

εwri

∣∣∣r − a2

r2
i

ri

∣∣∣ + γ ψ̄ci(r; ri), (7)

where the first term is the electrostatic potential produced by
the ion and the second and the third terms are the potentials
produced by the image and the counterimage charges,
respectively. The first two terms of Eq. (7) are exact. In the
third term, we have used the condition of charge neutrality
to correct the ion-counterimage interaction from Eq. (5) by
including a prefactor γ in front of ψ̄ci(r; ri). This, then, is
the Green function for the present geometry. The interaction
potential between two ions i and j is αqφ(ri ; rj ). The work
required to bring all the ions from infinity to their respective
positions inside the cell is

U =
N∑

i=1

−Zαq2

εwri

+
N∑

i=1

U
self

i +
N−1∑
i=1

N∑
j=i+1

αqφ(ri ; rj ) , (8)

U
self

i = γα2q2a

2εw(r2
i − a2)

+ αqγ ψ̄
self

ci (ri)

2
, (9)

where U
self

i is the interaction energy of the ion i with its own
image and counterimage charges.

Equation (8) is then used in a typical Metropolis
algorithm,33 with 105 MC steps for equilibration and 104 steps
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FIG. 1. An illustrative representation of an ion of charge Q located at ri

and its image charge Q′ located at the inversion point r′
i . The counterimage

charge λ(u) is distributed from the center of colloid to the inversion point.

for production. We obtain the ionic density profiles by divid-
ing the WS cell into volumetric bins and counting the num-
ber of particles inside each bin for the uncorrelated config-
urations. In Fig. 2, the profiles are compared with the ones
obtained by Messina.32 The agreement between the two sim-
ulations is excellent, with a huge gain in computational time.
To take into account the correct boundary conditions, Messina
calculated the inter-ionic interaction potential as an infinite se-
ries in Legendre polynomials. This method is extremely slow,
since one needs to calculate hundreds of terms of the infi-
nite series for each new configuration in order to obtain a
good convergence. To compare the time of processing, we
perform the simulation of Messina for parameters described
in Fig. 2 with trivalent ions. Even for a very small num-
ber of counterions—20 counterions—used by Messina, ex-
pansion in Legendre polynomials is ≈ 458× slower than the
method presented in the current paper. To speed up the simu-
lations, Messina tabulated the counterion-counterion interac-
tion potential. Nevertheless, we expect that even this approach
is going to be significantly slower than our Green function
method and is much more difficult to extend to larger system
sizes.

The approximation of the counterimage charge by a
uniform line-charge density should work very well for col-
loids of low dielectric constants, which are of most practical
interest. However, it is interesting to examine up to what
value of εc does this approximation remain accurate. Using
the exact numerical evaluation of the integral in Eq. (3) and
the hypergeometric representation of the counterimage-ion
interaction potential Eq. (4), we have performed the simu-
lations for different values of εc using the exact numerically
calculated interaction potential and compared the counterion
density profiles with the ones obtained in simulations with
the approximate interaction potentials, Eqs. (5) and (6). In
Fig. 3, we show the results of these simulations. We see that
the approximation works very well up to εc ≈ 20, which are
in the range of most practical interest.
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(r-r

c
)/d

0

0.01
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0.03

ρ(
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 d
3

α = 1
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α = 3

FIG. 2. The dashed lines represent the density profiles obtained using
the present method and the symbols represent the profiles obtained by
Messina (Ref. 32). The parameters of the simulations are: εw = 80, εc = 2,
d = 3.57 Å, a = 7.5d, R = 40d, Z = 60, and rc = a + d/2 is the contact
distance.

The simulations using the method developed in the
present work are so quick that it is easy to study systems
which contain mixtures of multivalent and monovalent
electrolytes. We next consider a WS cell which, in addition to
Z monovalent counterions derived for the colloidal particle,
contains 3:1 electrolyte at concentration ρt and 1:1 electrolyte
at concentration ρm. The number of trivalent counterions
inside the system is Nt = ρt (4π/3)(R3 − a3), the number of
monovalent counterions is Nm = ρm(4π/3)(R3 − a3) + Z,
and the number of monovalent co-ions is N− = 3Nt + Nm

− Z. In Fig. 4, the density profiles of trivalent counterions
are presented for various concentrations of 1:1 salt. As
expected, with increase of the monovalent salt concentration,
more trivalent cations prefer to be solvated in the bulk of
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FIG. 3. Density profiles for various εc . The symbols represent the density
profiles obtained using the exact counterimage line-charge distribution, while
the dashed lines are calculated using the approximate uniform counterimage
line-charge distribution, Eqs. (5) and (6). The parameters of the simulations
are the same as in Fig. 2, for α = 3.
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FIG. 4. Density profiles of trivalent counterions for various concentrations
of 1:1 electrolyte. The parameters of the simulations are the same as in Fig. 2
for R = 25d and Z = 40. The 3:1 concentration is fixed at 20 mM for all the
curves.

suspension, where their electrostatic self-energy is screened
most effectively by the other ions.14, 18

The charge-image repulsion results in density profiles of
trivalent ions which have a characteristic maximum near the
colloidal surface. In Fig. 5, we examine the effects of 3:1 and
1:1 electrolyte on the maximum density of trivalent counte-
rions near the colloidal surface. Again, we see that increasing
the concentration of 1:1 electrolyte diminishes the counterion
condensation—resulting in a smaller counterion density in
the vicinity of the colloidal surface. More surprising, perhaps,
is the behavior of the contact density of the monovalent
counterions, Fig. 6. The figure shows that with increasing
3:1 concentration, the condensed monovalent counterions
are rapidly replaced by the trivalent ones. We also see that
at small concentrations of 3:1 electrolyte the contact density
varies significantly with the concentration of 1:1 electrolyte.
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FIG. 5. Maximum density of trivalent salt counterions as function of con-
centration of 1:1 electrolyte. The parameters of the simulations are: εw = 80,
εc = 0, d = 4 Å, a = 30 Å, R = 70 Å, Z = 90.
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FIG. 6. The density at contact of monovalent counterions for varying con-
centrations of 3:1 electrolyte. The parameters of the simulations are the same
as in Fig. 5.

This dependence, however, rapidly saturates, so that for
50 mM of 3:1 electrolyte, we no longer see any variation of
the contact density with the concentration of 1:1 salt.

IV. CONCLUSIONS

We have presented an efficient method for simulating
colloidal suspensions composed of colloidal particles of low
dielectric constant. The method relies on the exact calcula-
tion of the Green function for the spherical geometry. The
results are in excellent agreement with the earlier simulations
of Messina (Ref. 32)—who used expansion in Legendre poly-
nomials to account for the dielectric discontinuity at the col-
loidal surface—with a huge gain in the computation time. At
the moment, we have only implemented the simulation inside
a WS cell geometry. In the future, an effort should be made
to extend the theory to take into account periodic boundary
conditions through the use of Ewald summation.
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