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We present a simulation method to study electrolyte solutions in a dielectric slab geometry using a
modified 3D Ewald summation. The method is fast and easy to implement, allowing us to rapidly
resum an infinite series of image charges. In the weak coupling limit, we also develop a mean-field
theory which allows us to predict the ionic distribution between the dielectric charged plates. The
agreement between both approaches, theoretical and simulational, is very good, validating both
methods. Examples of ionic density profiles in the strong electrostatic coupling limit are also
presented. Finally, we explore the confinement of charge asymmetric electrolytes between neutral
surfaces. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921221]

I. INTRODUCTION

Complex charged liquids present a variety of interesting
phenomena such as like-charge attraction1,2 and charge inver-
sion.3–5 These phenomena arise as a result of electrostatic
correlations of counterions in the double layer.6 To explore the
ionic correlations between the overlapping double layers, one
must have accurate and reliable methods to study electrolytes
in a slab geometry. Similar difficulties are encountered when
one wants to understand the thermodynamics of ionic liquid
based supercapacitors.7

Electrolytes in a slab-like geometry have been extensively
studied in the past.8–12 However, the dielectric contrast be-
tween the solvent and the confining surfaces is usually not
taken into account. This dielectric mismatch leads to polari-
zation of interfaces, which dramatically increases the math-
ematical complexity of the problem. For a single interface,
the dielectric heterogeneity and the resulting induced surface
charge can lead to a repulsion of electrolyte from the charged
dielectric surface.13,14 Similar behavior has been observed near
charged colloidal particles.15–21

Most of the theoretical and simulational works involving
confined electrolytes neglect the dielectric contrast which
results in an infinite series of image charges. While this signif-
icantly simplifies the calculations, it also fails to account for
some of the fundamental physics of the overlapping dou-
ble layers. Recently, Wang and Wang22 presented a mean-
field theoretical discussion of confined electrolytes between
charged and neutral plates. In the same year, Zwanikken and de
la Cruz23 developed a liquid state theory which predicted that
neutral confining polarizable interfaces can attract each other
inside an electrolyte solution. Similar result can be found in
other works.24–26 Samaj and Trizac27 and Jho et al.28 developed
theories to study the distribution of confined counterions be-
tween charged plates, in a salt free system in a strong-coupling
limit. Some studies focused on the specific case in which
the dielectric constant of the surrounding medium is much

a)Electronic mail: alexandre.pereira@ufrgs.br
b)Electronic mail: levin@if.ufrgs.br

lower than of water.29–31 Jho et al.32 developed a simulation
method for confined counterions based on the electrostatic
layer correction (ELC) method.33 Also, Tyagi et al.34,35 con-
structed the ICMMM2D method which is the generalization
of the MMM2D algorithm,36 previously developed to study
homogeneous dielectric slab systems. Although these methods
account for the surface polarization, they require a calcu-
lation of a sum of terms for the electrostatic potential that
make simulations quite slow. Similar difficulties are encoun-
tered with other simulation approaches.26 Boundary element
methods (BEM) consider the minimization of functionals and
can be applied to systems with general geometries. Some BEM
consider local polarization charge densities as dynamic vari-
ables,37,38 and others attempt to explicitly calculate the bound
charge.39,40 Even though BEM are expensive computationally,
they have been extensively used to study general soft matter
problems.41–43

In this paper, we present a simulation method based on
3D Ewald summation with a modified correction for the slab
geometry.44 The method is simple to implement. It does not
require summations of a slowly convergent infinite series of
images during the simulation and is comparable in time with a
regular 3D Ewald method. The paper is organized as follows.
In Sec. II, we show how to construct the electrostatic energy of
the system. In Sec. III, we study confined electrolytes between
polarizable charged surfaces. In Sec. IV, we present a mean-
field theory for 1:1 electrolytes and compare it with simula-
tions. In Sec. V, we present the general results, and in Sec. VI,
the conclusions.

II. ELECTROSTATIC ENERGY

To perform simulations, we use a rectangular simulation
box of sides Lx, Ly, and Lz. The box contains N ions of charges
qj = α jQ, where α j is the valence of the ion and Q is the pro-
ton charge, confined in the region −Lx/2 < x < Lx/2, −Ly/2
< y < Ly/2, and −L/2 < z < L/2. We set Ly = Lx and Lz

= 5L. The uniform dielectric constants are ϵw, inside the slab
containing electrolyte, and ϵo, outside. The dielectric contrast
results in an infinite set of “images of images,” which must be
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FIG. 1. Representation of a charge between the dielectric surfaces. Only the
first and second order images are shown, Ni = 2.

resummed to obtain the total electrostatic energy. We define
Ni as a number of images of an ion at each interface. To
calculate the exact electrostatic energy, Ni should be infinite.
This, however, is not practical in a simulation. Instead, we
explore the convergence of simulations as the number of im-
ages Ni is increased. For example, if Ni = 2, we consider one
image charge at each dielectric interface and the image of
image, producing 4 image charges for each ion, see Fig. 1.
The electrostatic potential at the position r (in the region with
ϵw), created by all ions (excluding ion i), their image charges
(including the image of ion i), and the periodic replicas is

φi(r) =
∞
n

N′

j=1


ρ j(s)

ϵw |r − s| d
3s

+

Ni
m=1

∞
n

N
j=1



 ρ+jm(s)
ϵw |r − s| d

3s +

 ρ−jm(s)
ϵw |r − s| d

3s

,

(1)

where ρ j(s) = qjδ(s − r j − rep) and ρ±jm(s) = γmqjδ(s
− r±jm − rep) are the charge densities of ions and their replicas
and of dielectric images and their replicas.

The replication vector is defined as rep = Lxnx x̂
+ Lyny ŷ + Lznz ẑ and r±jm = x j x̂ + y j ŷ +

�(−1)mz j ± mL
�
ẑ.

The vectors n = (nx,ny,nz), where nx, ny, and nz are positive
and negative integers, represent the infinite replicas of the
main cell. The constant γ is defined as γ = (ϵw − ϵo)/(ϵw + ϵo)
and the prime on the summation signifies that j , i, when
n = (0,0,0). The total electrostatic energy of the system is

U =
1
2

N
i=1

qiφi(ri). (2)

The energy above is very difficult to calculate because of
a slow conditional convergence of the series in Eq. (1). To
speed up the convergence, we use the Ewald method in which
the ionic charge is partially screened by placing a Gaussian-
distributed charge of opposite sign on top of each ion.45 We
then add and subtract an opposite Gaussian charge at the posi-

tion of each ion and its images, ρ j(s) and ρ±jm(s), respectively.
The potential, Eq. (1), then becomes

φi(r) = φS
i (r) + φL(r) − φ

sel f
i (r), (3)

where

φS
i (r) =

∞
n

N′

j=1

 ρ j(s) − ρGj (s)
ϵw |r − s| d3s

+

Ni
m=1

∞
n

N
j=1



 ρ+jm(s) − ρG+jm(s)
ϵw |r − s | d3s

+

 ρ−jm(s) − ρG−jm(s)
ϵw |r − s | d3s


, (4)

φL(r) =
∞
n

N
j=1

 ρGj (s)
ϵw |r − s | d

3s

+

Ni
m=1

∞
n

N
j=1



 ρG+jm(s)
ϵw |r − s| d

3s

+

 ρG−jm(s)
ϵw |r − s | d

3s


,

(5)

and

φ
sel f
i (r) =


ρGi (s)

ϵw |r − s| d
3s, (6)

where

ρGj (s) = qj(κ3
e/
√
π3) exp(−κ2

e|s − r j − rep |2), (7)

ρG±jm(s) = γmqj(κ3
e/
√
π3) exp(−κ2

e |s − r±jm − rep |2), (8)

and κe is a damping parameter. Note that we have subtracted
the self-potential, Eq. (6), from Eq. (3), in order to remove the
prime over the summation in the long-range (L) part of the
potential, Eq. (5). The electrostatic potential produced by the
Gaussian charges can be calculated using the Poisson equation,
yielding

φL(r) =
∞
n

N
j=1

qj

erf(κe|r − r j − rep |)
ϵw |r − r j − rep |

+

Ni
m=1

∞
n

N
j=1

γmqj



erf(κe|r − r+jm − rep |)
ϵw |r − r+jm − rep |

+
erf(κe |r − r−jm − rep |)
ϵw |r − r−jm − rep |


, (9)

where erf(x) is the error function. The short-range part of the
potential (S), Eq. (4), can then be obtained in terms of the
complementary error function, erfc(x) = 1 − erf(x),

φS
i (r) =

∞
n

N′

j=1

qj

erfc(κe|r − r j − rep |)
ϵw |r − r j − rep |

+

Ni
m=1

∞
n

N
j=1

γmqj



erfc(κe|r − r+jm − rep |)
ϵw |r − r+jm − rep |

+
erfc(κe |r − r−jm − rep |)

ϵw |r − r−jm − rep |

. (10)
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This potential decays exponentially fast, with the decay length
controlled by the damping parameter which we set to κe
= 4/Rc, where Rc = Lx is the distance cutoff. It is then neces-
sary to consider only the term n = (0,0,0), with the usual
periodic boundary condition. Furthermore, for sufficiently
large values of κ, it is sufficient to include only a few images-
of-images. The damping parameter, however, cannot be too
high since its value controls the number of k-vectors that
will have to be used to calculate the long-range potential. For
systems studied in this paper, we find that Ni = 2, in the short
range potential, is sufficient. Depending on the separation
between the plates, more images may be necessary. Prior to
accumulation of data, we, therefore, check for convergence
by varying the value of Ni. The short-range potential then
becomes

φS
i (r) =

N′

j=1

qj

erfc(κe |r − r j |)
ϵw |r − r j | +

2
m=1

N
j=1

γmqj

×


erfc(κe|r − r+jm |)
ϵw |r − r+jm |

+
erfc(κe|r − r−jm |)

ϵw |r − r−jm |

. (11)

The self-potential, Eq. (6), reduces to

φ
sel f
i (r) = qi

erf(κe|r − ri |)
ϵw |r − ri | . (12)

We next calculate the long-range part of the potential, Eq. (9).
This is most easily obtained using the Fourier representa-
tion, φ̂L(k) = 

d3r exp(−ik · r)φL(r), since in the reciprocal
space, all sums, once again, converge very rapidly. The Fourier
transform ρ̂T(k) = 

d3r exp(−ik · r)ρT(r), of the Gaussian
charge density,

ρT(r) =
∞
n

N
j=1

qj

κ3
e√
π3

exp(−κ2
e |r − r j − rep |2)

+

Ni
m=1

∞
n

N
j=1

γmqj

κ3
e√
π3


exp(−κ2

e|r − r+jm − rep |2)

+exp(−κ2
e|r − r−jm − rep |2)


, (13)

is

ρ̂T(k) = (2π)3
V

exp(− |k |
2

4κ2
e

)


N
j=1

qj exp(−ik · r j) +
Ni
m=1

N
j=1

γmqj


exp(−ik · r+jm) + exp(−ik · r−jm)

 
, (14)

where k = (2πnx/Lxy,2πny/Lxy,2πnz/Lz) and V = LxLyLz. Using the Poisson equation, |k |2φ̂L(k) = (4π/ϵw) ρ̂T(k), we can
evaluate the Fourier transform of the potential,

φ̂L(k) = 8π4

ϵwV |k |2 exp(− |k |
2

4κ2
e

)


N
j=1

qj exp(−ik · r j) +
Ni
m=1

N
j=1

γmqj


exp(−ik · r+jm) + exp(−ik · r−jm)

 
. (15)

The corresponding real-space electrostatic potential is
calculated using the inverse Fourier transform, φL(r) = 1

(2π)3
k φ̂

L(k) exp(ik · r),

φL(r) =

k

4π
ϵwV |k |2 exp(− |k |

2

4κ2
e

) exp(ik · r)

×


N
j=1

qj exp(−ik · r j) +
Ni
m=1

N
j=1

γmqj

×

exp(−ik · r+jm) + exp(−ik · r−jm)

 
. (16)

The long-range contribution to the total electrostatic en-
ergy is then given by UL = (1/2)N

i=1 qiφL(ri), where φL(r) is
obtained from Eq. (16). It is convenient to rewrite this in terms
of functions

A(k) =
N
i=1

qi cos(k · ri), (17)

B(k) = −
N
i=1

qi sin(k · ri), (18)

C(k) =
Ni
m=1

N
i=1

γmqi
�
cos(k · r+im) + cos(k · r−im)

�
, (19)

and

D(k) = −
Ni
m=1

N
i=1

γmqi
�
sin(k · r+im) + sin(k · r−im)

�
. (20)

The electrostatic energy then becomes

UL =

k

2π
ϵwV |k |2 exp(− |k |

2

4κ2
e

)

×
�
A(k)2 + B(k)2 + A(k)C(k) + B(k)D(k)� . (21)

The terms in Eqs. (19) and (20) are multiplied by the γm param-
eter, leading to a converging sum for realistic γ < 1 parameter
values. However, we do not know a priori a minimum number
of images necessary to obtain an accurate result for the long-
range potential. For example, we find that for γ ≈ 0.9, we need
Ni = 50 to obtain a good convergence. However, such a large
number of images make simulations extremely slow. We note,
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however, that Eqs. (19) and (20) can be rewritten as

C(k) =
N
i=1

qi
�
c1(k) cos(kxxi + ky yi) cos(kzzi)

+ c2(k) sin(kxxi + ky yi) sin(kzzi)� (22)

and

D(k) = −
N
i=1

qi
�
d1(k) sin(kxxi + ky yi − kzzi)

+d2(k) sin(kxxi + ky yi + kzzi)� , (23)

where

c1(k) = 2
Ni
m=1

γm cos(mkzL),

c2(k) = 2
Ni
m=1

(−1)m+1γm cos(mkzL),

d1(k) = 2
Ni

mo=1

γmo cos(mokzL), (24)

d2(k) = 2
Ni

me=2

γme cos(mekzL), (25)

and m are integers: mo are odd and me are even. The parameters
c1(k), c2(k), d1(k) , and d2(k) can be obtained once (up to
any desired accuracy) at the beginning of the simulation since
they do not depend on the ionic positions. The functions, A(k),
B(k), C(k) , and D(k), can now be easily updated for each new
configuration in a Monte Carlo (MC) simulation.

The electrostatic energy resulting from the short-range
part of the potential is US = (1/2)N

i=1 qiφS
i (ri), where φS

i (r)
is given by the Eq. (11), and the self-energy contribution is
Usel f = (1/2)N

i=1 qiφ
sel f
i (ri). In the limit x → 0, the erf(x)

function vanishes as (2/√π)x and the self-energy contribution
reduces to Usel f = (κe/ϵw√π)N

i=1 q2
i . The total electrostatic

interaction energy of the ions is given by the expressions above,
plus the correction needed to account for the slab geometry.44

Yeh and Berkowitz44 found that a regular 3D Ewald
summation method with an energy correction which accounts
for the anisotropic summation of a conditionally convergent
series in a slab-like geometry can reproduce the same results
as the 2D Ewald method, with a significant gain in perfor-
mance. For more details on the Ewald summation method,
applied to different geometries, an interested reader can consult
Refs. 46–48. Following Yeh and Berkowitz44 and Smith49 and
taking into account the dielectric discontinuity and the induced
image charges, we find the correction for the slab geometry to
be

Ucor = −
π

ϵwV

N
i=1

qi



N
j=1

qj(zi − z j)2

+

Ni
m=1

N
j=1

γmqj

(zi − z−jm)2 + (zi − z+jm)2


, (26)

where z±jm = (−1)mz j ± mL. Using the electroneutrality, this
expression can be rewritten as

Ucor =
2π
ϵwV

M2
z


1 + 2

Ni
m=1

(−γ)m

, (27)

where Mz =
N

i=1 qizi is the magnetization in the ẑ direction.
Again, the constant between the brackets can be evaluated
once at the beginning of the simulation, so that Mz can be
easily updated in the simulation process. The total energy of
the system is then

U = US +UL +Ucor +Uself . (28)

III. MONTE CARLO SIMULATIONS

We now study an electrolyte solution confined between
two negatively charged dielectric surfaces. The two charged
plates contain 256 point charges each, uniformly distributed on
the surface on a square lattice. The magnitude of point charges
is adjusted to obtain the desired surface charge density. The
surfaces are located at z = −L/2 and z = +L/2. Counterions
are modeled as hard spheres with the charge q located at the
center. Besides the counterions, salt ions can also be present in
the system, all with the same ionic radius, 2 Å. The solvent is
modeled as a uniform dielectric medium. The Bjerrum length
λB = βQ2/ϵw of the system is 7.2 Å, corresponding to water
at room temperature. The MC simulations are performed using
the Metropolis algorithm. The method developed in Sec. II
is used to obtain the electrostatic energy. Care must be taken
in the calculation of the electrostatic energy of wall particles.
For these particles, the self-image electrostatic interaction di-
verges, leading to an infinite constant which must be renormal-
ized. We use 1 × 106 attempted particle moves to equilibrate
and 100 moves per particle to create a new state. After 40 000
states, we calculate the average ionic density profiles.

IV. MODIFIED POISSON-BOLTZMANN (MPB)
EQUATION

To test the simulation method developed above, we
compare the results with a mPB equation. The mPB equation
is constructed to account approximately for the ion-image and
charge-charge correlations near an interface and is expected to
work well in the weak coupling limit. It was tested against MC
simulation for a single dielectric interface with 1:1 electrolyte
and was found to be very accurate. Therefore, we expect that
for a slab geometry, a suitably modified mPB equation will also
remain very accurate, allowing us to test the new simulation
method.

The electrostatic potential between two negatively
charged dielectric surfaces satisfies the exact Poisson equation

∇2φ(z) = −4π
ϵw

[Qρ+(z) −Qρ−(z)] , (29)

where φ(z) is the mean electrostatic potential at a distance z
from the first plate (for simplicity it is placed at z = 0), and
ρ+(z) and ρ−(z) are the concentrations of cations and anions
derived from salt and surface dissociations. In equilibrium, all
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the ions will be distributed in accordance with the Boltzmann
distribution, exp(−βωs), where ωs is the potential of mean
force of ion of type s. We will approximate ωs by the mean-
electrostatic potential plus the correlation contribution, W (z).
Suppose that there are N+ cations, and N− anions per square
Angstrom, their distributions are then given by

ρ+(z) = N+
e−βQφ(z)−βW (z) L−rc

rc
dz e−βQφ(z)−βW (z) , (30)

ρ−(z) = N−
eβQφ(z)−βW (z) L−rc

rc
dz eβQφ(z)−βW (z) . (31)

If the expression for W (z) is known, we can solve the mPB
equation numerically to obtain the ionic density profiles.

The correlational and charge-image contribution W (z) can
be calculated approximately as follows. Consider N+ ions (per
Å2), with charge Q, and N− ions (per Å2), with charge −Q, all
with hydration radii rc, confined between two neutral dielec-
tric walls with separation L, see Fig. 2. Due to the hardcore
repulsion of ions from the surfaces, they are restricted to the
regions z > rc and z < L − rc. To keep the charge neutrality
of this region, we introduce a uniform neutralizing background
charge density −QNc/(L − 2rc), where Nc = N+ − N−. In the
exterior regions z < 0 and z > L, the dielectric constant is ϵo,
while in the interior region, it is ϵw. The function W (z) then
corresponds, approximately, to the energy penalty that an ion
located at a distance z from one of the surfaces feels due to
asymmetry of its ionic atmosphere and due to its hard core
repulsion from the wall. To obtain this potential, we calculate
the Green’s function for a system of differential equations:
Laplace equation,

∇2φ(s, z) = 0, (32)

in the region with no electrolyte and a linearized Poisson-
Boltzmann (LPB) equation,

∇2φ(s, z) = κ2φ(s, z), (33)

in the region accessible to ions,50 where φ(s, z) is the
potential at position (s, z) in cylindrical coordinates and

FIG. 2. Representation of an electrolyte in the region rc < z < L−rc used
to calculate W (z).

κ =


4πλB(N+ + N−)/L is the inverse Debye length. LPB
equation is used to account for the electrostatic correlations
between the ions.6 For 1:1 electrolyte, linearization of the
Poisson-Boltzmann equation is justified since the ionic inter-
actions are weak. Because of the azimuthal symmetry of the
problem, it is convenient to work with the Fourier transform
of the potential, φ̂(k, z), defined in terms of50

φ(s, z) = 1
2π

 ∞

0
dk k J0(ks)φ̂(k, z). (34)

For dielectric interfaces between hydrocarbons and water,
ϵo/ϵw ≪ 1, so that to leading order we can set ϵo = 0. Taking
into account the continuity of the electrostatic potential and
of the normal component of the displacement field at z = 0,
z = rc, z = zQ, z = L − rc, and z = L, the Fourier transform
of the electrostatic potential in the region 3, see Fig. 2, can be
calculated to be

φ̂3(k, z) = A3epz + B3e−pz, (35)

where k is the wave vector and p =
√
κ2 + k2. The constants

are given by

A3 =
πQ f1

ϵw f3

�
epzQ

�(p + k)e2rcp−rck + (p − k)e2rcp+rck
�

+ e−pzQ
�(p + k)e2Lp+rck + (p − k)e2Lp−rck�� ,

B3 = A3e2rcp f2

f1
,

f1 = p cosh(krc) + k sinh(krc),
f2 = p cosh(krc) − k sinh(krc),

f3 = p
�
e2Lp f 2

1 − e4rcp f 2
2

�
.

Considering s → 0 and z → zQ, we find (now omitting
subscript 3)

φ(zQ) = Q
2ϵw

 ∞

0
dk k ( f1

f3
e2pzQ

�(p + k)e2rcp−rck

+ (p − k)e2rcp+rck
�
+

f2

f3
e−2pzQ+2rcp

×
�(p + k)e2Lp+rck + (p − k)e2Lp−rck�) + func, (36)

where func does not depend on the ion-plate distance zQ and
can be ignored. The work necessary to insert an ion at position
z = zQ from the interface can be calculated using the Güntel-
berg51 charging process

W (zQ) = Q2

4ϵw

 ∞

0
dk k ( f1

f3
e2pzQ

�(p + k)e2rcp−rck

+ (p − k)e2rcp+rck
�
+

f2

f3
e−2pzQ+2rcp

×
�(p + k)e2Lp+rck + (p − k)e2Lp−rck�). (37)

The interaction potential W (z) can now be used in the mPB
equation, Eq. (29), to account for the charge-image interaction
and the polarization of the ionic atmosphere.

V. RESULTS

We first show the comparison between the ionic concen-
trations obtained using mPB Eq. (29) and the results of MC
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FIG. 3. Ionic density profiles for the cases: ϵo = ϵw = 80, left, and ϵo = 2 and
ϵw = 80, right. The plate charge density is −0.02 C/m2, the distance between
plates is L = 50 Å, and the monovalent salt concentration is 10 mM. Symbols
represent the simulation data and lines represent the solution of the mPB
equation, Eq. (29). Solid lines and circles represent cations, while dashed
lines and squares represent the anions.

simulations. In Fig. 3, we show the ionic density profiles be-
tween two interfaces for the cases: (1) where ϵo = 2 and ϵw
= 80, for which W (z) is approximately given by Eq. (37), and
(2) where ϵo = ϵw = 80, for which W (z) is zero. The agree-
ment between theory and simulations is very good, validating
both methods.

We next explore the effects of the dielectric heterogeneity
for strongly correlated systems. The valency of the counterions
is modified to α j = 3 and α j = 5. The other parameters are
kept the same as before. If ϵw = ϵo, most of the multivalent
ions adsorb to the charged wall forming a strongly correlated
quasi-2D one component plasma, see Fig. 4. However, in the
case of large dielectric contrast between solvent and the confin-
ing surface, the counterions experience a strong charge-image
repulsion from the surface, see Fig. 4. This can significantly
affect the interaction between charged dielectric bodies in-
side an electrolyte solution.22 Finally, in Fig. 5, we show the

FIG. 4. Counterion density profile for the cases α j = 3, left, and α j = 5, right.
The plate charge density is −0.02 C/m2, and the distance between plates is
L = 20 Å.

FIG. 5. Ionic density profiles for ϵo = 2 and 3:1 salt confined between neutral
surfaces, for various salt concentrations. On the left, 100 mM of salt, while on
the right, 500 mM. The distance between plates is L = 50 Å. Circles represent
trivalent cations and squares represent monovalent anions.

ionic distribution for 3:1 electrolyte between neutral dielectric
surfaces.

VI. CONCLUSIONS

In this paper, we developed a new simulation approach to
study electrolytes and ionic liquids in a dielectric slab geom-
etry. The method is easy to implement and is comparable
in time consumption with the regular 3D Ewald summation
method. In the weak coupling limit, we also presented a mean-
field theory which allows us to predict the ionic distribution
between the dielectric charged plates. The agreement between
both approaches, theoretical and simulational, is very good,
validating both methods. Examples of ionic density profiles
for strongly correlated systems are also presented. Finally, the
simulation method developed here can be used to explore the
interactions between colloidal particles with strong dielectric
contrast. This will be the subject of the future work.
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