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Using molecular dynamic simulations, we study three families of continuous core-softened potentials
consisting of two length scales: a shoulder scale and an attractive scale. All the families have the same
slope between the two length scales but exhibit different potential energy gap between them. For
each family three shoulder depths are analyzed. We show that all these systems exhibit a liquid-liquid
phase transition between a high density liquid phase and a low density liquid phase ending at a critical
point. The critical temperature is the same for all cases suggesting that the critical temperature is only
dependent on the slope between the two scales. The critical pressure decreases with the decrease
of the potential energy gap between the two scales suggesting that the pressure is responsible for
forming the high density liquid. We also show, using the radial distribution function and the excess
entropy analysis, that the density, the diffusion, and the structural anomalies are present if particles
move from the attractive scale to the shoulder scale with the increase of the temperature indicating
that the anomalous behavior depends only in what happens up to the second coordination shell.

© 2011 American Institute of Physics. [doi:10.1063/1.3630941]

. INTRODUCTION

The phase behavior of single component systems as par-
ticles interacting via the so-called core-softened (CS) poten-
tials is receiving a lot of attention recently. These potentials
exhibit a repulsive core with a softening region with a shoul-
der or a ramp.'™® These models originate from the desire of
constructing a simple two-body isotropic potential capable of
describing the complicated features of systems interacting via
anisotropic potentials. This procedure generates systems that
are analytically and computationally tractable and that one
hopes are capable to retain the qualitative features of the real
complex systems.’!?

The physical motivation behind these studies is the re-
cently acknowledged possibility that some single component
systems interacting through a core-softened potential dis-
play density and diffusion anomalies. This opened the dis-
cussion about the relation between the existence of thermo-
dynamic anomalies in liquids and the form of the effective
potential. '3!3

These anomalies appear in two different ways. First, it
is the density anomaly. Most liquids contract upon cooling.
This is not the case of water and other fluid systems. For wa-
ter, the specific volume at ambient pressure starts to increase
when cooled below T = 4°C. The anomalous behavior of
water was first suggested 300 years ago'® and was confirmed
by a number of experiments.”'? Besides, between 0.1 MPa
and 190 MPa water also exhibits an anomalous increase of
compressibility?*2! and, at atmospheric pressure, an increase
of isobaric heat capacity upon cooling.?>??
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Experiments for Te,”* Ga, Bi,” S,°%?7 and Ge,sTegs,'!
and simulations for silica,'%28-30 silicon,’! and BeF,,!? show
the same density anomaly.

But density anomaly is not the only unusual behavior that
these materials have. For a normal liquid the diffusion con-
stant, D, decreases under compression. This is not the case
of water. D increases on compression at low temperature, 7,
up to a maximum Dy, (T) at p = P max(T).1%32 Numerical
simulations for SPC/E (extended simple point charge) water
model®? recover the experimental results and show that the
anomalous behavior of D extends to the metastable liquid
phase of water at negative pressure, a region that is difficult to
access for experiments.>*>7 In this region, the diffusivity D
decreases for decreasing p until it reaches a minimum value
Dnin(T') at some pressure ppmin(7'), and the normal behavior,
with D increasing for decreasing p, is re-established only for
P < Pomin(T)3* Besides water, silica®?’ and silicon*
also exhibit a diffusion anomalous region.

Acknowledging that CS potentials may engender density
and diffusion anomalous behavior, a number of CS potentials
were proposed to model the anisotropic systems described
above. They possess a repulsive core that exhibits a region
of softening where the slope changes dramatically. This re-
gion can be a shoulder or a ramp.!615:1641-59 These mod-
els exhibit density and diffusion anomalies, but depending
on the specific shape of the potential, the anomalies might
be hidden in the metastable phase.'® Also there are a num-
ber of core-softened potentials in which the anomalies are not
present.®:%! The relation between the specific shape of the
effective core-softened potential and the microscopic mecha-
nism necessary for the presence of the anomalies is still under
debate. 16-37:62.63

Recently, it was suggested that the link between the
presence of the density and diffusion anomaly and the

© 2011 American Institute of Physics
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FIG. 1. Interaction potential obtained by changing parameters /; in the Eq. (1). The potential and the distances are in dimensionless units U* = U/y and

r* =r/ro. Here, we use €/y = 0.02 and o/rp = 1.47.

microscopic details of the system can be analyzed in the
framework of the excess-entropy-based formalism® applied
to similar systems by Errington ef al.®> and Chakraborty and
Chakravarty.®® Within this approach, the presence of the den-
sity and the diffusion anomalies is related to the density de-
pendence of the excess entropy, Sex-

The computation of the excess entropy, however, requires
integrating the radial distribution function in the whole space.
The anomalous behavior, however, seems to depend only on
the two length scales present in the system and, therefore,
should not depend on the particle distributions far away. Here,
we propose that the two length scales potentials will have
density and diffusion anomalies, if the two scales would be
accessible. In principle, the accessibility only depends on
the distribution of particles in these two distances. Therefore,
the knowledge of the complete excess entropy is not neces-
sary for knowing if the system has or not anomalies. The be-
havior of the partial excess entropy computed only up to the
second coordination shell should give enough information to
determine if a system has anomalies or not.

In this paper, we test this assumption by computing the
pressure-temperature phase diagram and the excess entropy
for three families of core-softened potentials that have two
length scales: a shoulder scale and an attractive scale.'®%7 In
all the three families, the slope between the two scales is the
same.'® The shoulder scale is made more favorable by de-
creasing the energy gap between the two length scales (see po-
tentials A, B, and C in Fig. 1). In addition, the shoulder scale
becomes more favorable by making the depth of the shoulder
scale deeper (see potentials Al, A2, and A3 in Fig. 1). The
slope between the two length scales is kept fixed in order to
have the liquid-liquid critical point and the density anomalous
region in the same region of the pressure temperature phase
diagram.'?

The remaining of this paper goes as follows. In Sec. II
the model is introduced. The simulations details are given in
Sec. III. In Sec. IV the results are discussed. Finally, Sec. V
presents the conclusion.

Il. THE MODEL

We consider a system of N particles, with diameter o,
where the pair interaction is described by a family of contin-

uous potentials given by

=[G =Y gree (52

1)

The first term is a Lennard-Jones potential and the sec-
ond term is composed by four Gaussians, each Gaussian is
centered in c;. This potential can represent a whole family of
intermolecular interactions, depending of the choice of the pa-
rameters a, b, o, {h;,c;, w;}, with j =1, ..., 4. The values
of these parameters are in Table I. The parameters are cho-
sen in order to obtain a two length scales potential®’~® that is
related to the interaction between two tetramers.®’-8

The simulations are made in dimensionless units; there-
fore, all the physical quantities are given in terms of the en-
ergy scale y and the distance scale ry, where y is the energy
scale and ry is the length scale chosen so the minimum of
the potential in the B; case is about »* = 1. Here, we use
€/y =0.02ando/ry = 1.47.

Modifying the parameters c¢; and 4 in Eq. (1), accord-
ing to Table II, allow us to change the depth of the shoul-
der well as illustrated in Fig. 1. Here, we use nine different
values for /1 and they are expressed as a multiple of a refer-

ence value hlref . We also use three different values of ¢; and

they are expressed as a multiple of a reference value c;ef . For
all the nine cases, the values of a, b, {w;} with j =1, ..., 4,
c; withi =2,...,3, b, and "¢/ are fixed and given by
Table I. Table III gives the parameter values in A and
kcal/mol consistent with modeling ST4 water.®’

Modifying the distance between the two minima of the
two scales, shoulder scale and attractive scale, leads to the
three families A, B and C as shown in Fig. 1. The changes
in the distance between the two length scales were done in
such way to preserve the slope between the two scales and,

TABLE I. Parameters for potentials A, B, and C in reduced unit.

Parameter Value Parameter Value Parameter Value Parameter Value
a 9.056 w; 0085 ¢ 096 A 379
b 4.044 wy 0.618 &3 0.529 hy 1.209
€ 0.020 w3 0.826 c3 1.598 h3 —1.503
o 1.475 wy 0.214 cy 1.929 hy 0.767
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TABLE II. Parameters of ¢; and 4 for potentials A, B, and C.

Potentials Values Potentials Values Potentials Values Potentials Values

A 0.90 ¢, Al 0301 B 0251 Ci 0221
B 1.00¢; A 0.60 1) B 0.50 1 C 0.44 1)
c 110 As 0.90 1 B 0.75 1 C3 0.66 1

therefore, to have in all the cases the region of density
anomaly in the same region of the pressure-temperature phase
diagram as proposed by Yan et al.”’

The family A has the largest distance and the largest po-
tential energy gap between the two length scales (a4 = 0.72
in Fig. 2), the family B has the intermediate distance and in-
termediate potential energy gap between the two length scales
(ap = 0.62 in Fig. 2), and the family C has the shortest dis-
tance and the smallest potential energy gap between the two
length scales, (ac = 0.52 in Fig. 2).

For each family, we analyze three different depths of the
shoulder scale represented by 1, 2, and 3 (see Fig. 2). The po-
tentials 1 have the most shallow shoulder scale, the potentials
2 have intermediate shoulder depth, and the potentials 3 have
the deepest shoulder scale. Table III gives the values for the
depths for each one of the families.

In summary, we analyze nine different potentials:
Ay, Ay, A3, By, B, B3, C{,C,, and C5; as illustrated in
Fig. 1. The values of the different /, for each case are listed
in Table II.

Barraz et al.'® investigated the family B. It was shown
that this potential exhibits thermodynamic, dynamic, and
structural anomalies if the shoulder scale is not too deep.
Their result suggests that in order to have anomalies it is
necessary but not sufficient to have two length scales compet-
ing. Both length scales must be accessible. When the shoulder
scale becomes too deep, the particles are trapped in this length
scale and no anomaly is present. By making the shoulder
deeper, we are decreasing the difference in energy between
the scales and, therefore, destroying the competition.

Here, we explore the accessibility or the absence of ac-
cessibility by changing both the energy gap between the two
length scales and the distance between them.

lll. THE SIMULATION DETAILS

The properties of the system were obtained by NVT
molecular dynamics using Nose-Hoover heat-bath with cou-
pling parameter Q = 2. The system is characterized by 500
particles in a cubic box with periodic boundary conditions,
interacting with the intermolecular potential described above.
All physical quantities are expressed in reduced units’! (the

TABLE III. Values for the depths for each one of the families.

Potential Value Potential Value Potential Value
ba, 7.10 bp, 4.94 bc, 2.95
ba, 6.20 bg, 4.07 bc, 2.33
ba, 5.28 bp, 3.32 bc, 1.60

units of length and energy are, respectively, ry and y) and are
given by

t* = tro(m/y)'"?,
o _ kaT
y 9
R i}
y
p* = pry,
pr=p |2 2
By @
Yry

Standard periodic boundary conditions together with
predictor-corrector algorithm were used to integrate the equa-
tions of motion with a time step A¢* = 0.002 and potential cut
off radius ¥ = 3.5. The initial configuration were set on solid
and on liquid states and, in both cases, the equilibrium state
was reached after z;, = 1000 (what is in fact 500 000 steps
since At* = (0.002). From this time on, the physical quanti-
ties were stored in intervals of Aty =1 during ¢z = 1000.
The system is uncorrelated after #; = 10, from the veloc-
ity auto-correlation function. With 50 descorrelated samples
were used to get the average of the physical quantities.

The thermodynamic stability of the system was checked
by analyzing the dependence of pressure on density, namely,

o <0, 3)
ap
by the behavior of the energy and also by visual analysis of
the final structure, searching for cavitation.

At the phase boundary between the liquid and the amor-
phous phases we found stable states points at both phases. The
state with the lower energy was considered. In this particular

FIG. 2. Scheme to distinguish the distance between the scales and depths of
the first scale.
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TABLE IV. First critical point location for potentials A, B, and C.

Potential T} pl,  Potential T} pl,  Potential T} i

Aj 1.94 0.074 B 1.93 0.072 Ci 1.98 0.076
Ay 1.95 0.074 B 1.98 0.078 C 2.08 0.088
As 1.97 0.076 Bs 2.02 0.080 C3 2.20 0.099

region of the pressure-temperature phase diagram, the energy
was a good approximation for the Helmoltz free energy.

The error bars for temperatures and pressures away from
the critical region are smaller than the size of the gray lines.
The error bar near the critical point are AT = 0.0025 and
Ap = 0.05. Our error is controlled by making averages of un-
correlated measures.

IV. RESULTS
A. Pressure-temperature phase diagram

First, we explore the effects that the increase of the shoul-
der depth and the decrease of the distance between the two
scales have in the location in the pressure-temperature phase
diagram of the different phases. Figure 3 illustrates the pres-
sure versus temperature phase diagram of the three families
A, B, and C of potentials. At high temperatures there are a
fluid phase and a gas phase (not shown). These two phases
coexist at a first order line that ends at a critical point (see
Table IV for the pressure and the temperature values).

At low temperatures and high pressures, there are two lig-
uid phases coexisting at a first order line ending at a second
critical point (see Table V for the pressure and the temperature
values). The thermodynamic stability of the state points was
checked by analyzing the dependence of pressure on density
using Eq. (3). The critical point was identified in the graph by
the region where isochores cross. The coexistence line was
obtained as the medium line between the stability limit of
each phase.

Comparison between the cases A, By, and C; indicates
that as the distance between the two scales decreases, the criti-
cal pressure decreases but the critical temperature remains the
same as illustrated in Fig. 4. This observation is confirmed in
the cases A,, B,, and C, and in the cases A3, B3, and C3 (see
Table V for the critical pressures and the temperatures).

How can this result be understood? The two liquid phases
are formed due to the presence of the two competing scales.
The low density liquid is related to the attractive scale while
the high density liquid is related to the shoulder scale. In order
to reach the high density liquid phase, the system has to over-
come a large potential energy but also have to become very
compact in the case A;. The potential energy gap and the dis-

TABLE V. Second critical point location for potentials A, B, and C.

*

Potential T  pJ, Potential T} p¥ Potential T} Pl

Aq 0.34 4.21 B 0.35 3.44 Cy 0.34 2.59
A 0.48 3.16 B, 0.48 1.86 C 0.41 0.78
Az 0.59 1.70 B3 0.57 0.49 C3 0.53 —0.63

J. Chem. Phys. 135, 104507 (2011)

tance between the two length scales are higher in the case A
than in the case C; therefore, the pressure needed for forming
a high density liquid phase is higher in the case A than it is in
the case C.

At very low temperatures, the system becomes less dif-
fusive and crystallization might be expected. Here, we do not
explore all the possible crystal phases, but instead as the tem-
perature is decreased from the liquid phase an amorphous
phase is formed. The dotted line in Fig. 3 shows the separation
between the fluid phase and the amorphous region. The amor-
phous phase is identified by the region where the diffusion co-
efficient becomes zero and the radial distribution functions do
not exhibit the periodicity of a solid. Table VI have the char-
acteristic pressure and temperature values of the amorphous
phase boundary for the different models. It shows that the
region in the pressure-temperature phase diagram, where the
amorphous phase is present shrinks as the shoulder part of
the potential becomes deeper.

B. Density anomaly

Next, we test the effects that the decrease of the distance
between the two length scales and the increase of the depth
of the first scale have in the presence of the density anomaly.
Figure 3 shows the isochores 0.30 < p* < 0.65 represented
by thin solid lines for the nine models. Equation

av a aVv
) -GG,
P \%4 P/r

indicates that the temperature of minimum pressure at con-
stant density is the temperature of maximum density at
constant pressure, the TMD. The TMD is the boundary of
the region of thermodynamic anomaly, where a decrease in
the temperature at constant pressure implies an anomalous in-
crease in the density and, therefore, an anomalous behavior
of density (similar to what happens in water). Figure 3 show
the TMD as solid thick lines. For all potentials A, B, and the
potentials C; and C,, the TMD is present but for potential C3
the TMD is not observed.

Similar to what happens with the location of amorphous
region, as the distance between the shoulder and the attractive
scales decreases, the region in the pressure-temperature phase
diagram delimited by the TMD line shrinks and disappears for
the case C3. For the potential B, the TMD line is located at
temperatures below the temperature of the liquid-liquid criti-
cal point. The thermodynamic parameters that limit the TMD
in phase diagram are shown in Table VII, where p; represents
the values of (p*, T*, p*) for the point of the lowest pressure
in the TMD line, p,, is the point with the highest temperature
and py, is the point with the highest pressure.

How can this result be understood? The density anoma-
lous behavior arises from the competition between the two
length scales: the shoulder and attractive scales. At high pres-
sures, the shoulder scale wins and at low pressures the attrac-
tive scale wins. The density anomalous region exists only in
the intermediate pressure range where clusters of both scales
are present. The value of the “high” pressure and of the “low”
pressure is determined by the difference in energy between
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A, case . B, case R C, case
1 1 1 1 1 1 1 1 1 1 1 =2 1 1 1 1
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0.2 04 0.6 *0.8 1.0 1.2 02 04 0.6 *0.8 1.0 1.2 0.2 04 0.6 *0.8 1.0 1.2
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FIG. 3. Pressure-temperature phase diagram for the family A in the left-hand side, for the family B in the middle, and for C in the right-hand side. The thin solid
lines are the isochores 0.30 < p* < 0.65. The liquid-liquid critical point is the dot, the temperature of maximum density is the solid thick line, the diffusion
extrema is the dashed line, and the structural extrema is the dashed-dotted line. The dotted line indicates the limit between the fluid and the amorphous regions.
For the diffusion coefficient and radial distribution functions, it is possible to determine the amorphous region. The full line on the left side of the second critical

point is an approximate line of the coexistence of fluids of high and low density.

T T T T T T T T T 2 T T T T
4k T .AI case | sk ] .A2 case | n .A3 case
! ¢ B, case : ¢ B, case ! ¢ B, case
? o C, case H @ C, case ! @ C; case
3F i T : 1+ 1 -
2F - |
* * " * I'
P 2t E ! ?
1
1
iy 4 o i R ®
1+ . ¢ !
I
®
oL @ o] o ©® ~ (©)
1 1 1 1 1 1 1 1 - 1 1 1 1
0.5 1.0 . 1.5 2.0 0.4 0.8 1.2* 1.6 2.0 1 0.5 1.0 *1.5 2.0
T T T

FIG. 4. Location of the critical points on pressure-temperature phase diagram for cases A, B, and C.
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TABLE VI. Values of pressure location in the amorphous region for cases A, B, and C.

Potentials Values Potentials Values Potentials Values

Ay —0.90 < p* <3.70 B —0.91 < p* <340 C —0.85 < p* <235
Aj —0.30 < p* < 2.80 B> —0.89 < p* < 1.80 Cy —0.76 < p* < 0.55
Az —1.05< p* < 1.53 B3 —1.00 < p* <048 C;

the two scales. If the difference is too small the low and high D. Structural anomaly

ressures are too close and no anomaly appears. .
p y app Now, we test the effects that the decrease of the dis-

tance between the two length scales have in the location in the

C. Diffusion anomaly pressure-temperature phase diagram of the structural anoma-
. lous region.
Then, we check the effects that the decrease of the dis- The translational order parameter is defined as?®:35-72

tance between the two scales have in the location in the

pressure-temperature phase diagram of the diffusion anomaly. &

The diffusion coefficient is obtained from the expression = / 1g(§) — 11 d§, (6)
0

D — lim ([Fj(to + 1) — F(t0)*)sy

t— 00 6[ ’

®) where & = rp!/3 is the distance r in units of the mean interpar-
. ticle separation p~!/3, &, is the cutoff distance set to half of the
where 7;(7) are the coordinates of particle j at time 7, and  gimylation box times> p~1/3, g(£) is the radial distribution
(-} denotes an average over all particles and over all 7. function which is proportional to the probability of finding a
Figure 5 shows the behavior of the dimensionless transla- 4 p(icle at a distance & from a referent particle. The transla-
tional diffusion coefficient, D*, as function of the dimension- tional order parameter measures how structured is the system.
less density, p*, at constant temperature for the cases: A3, B3, For an ideal gas it is g = 1 and ¢ = 0, while for the crystal
and Cj. The solid lines are a polynomial fits to the data ob-
tained by simulation (the dots in Fig. 5). For normal liquids,
the diffusion at constant temperature increases with the de-
crease of the density. For the cases A1, Az, B1, By, B3, C1, (2 Figure 6 shows the translational order parameter as a
(not shown) and for the cases A3 and Bs the diffusionhasare-  fynction of the density for fixed temperatures for potentials
gion in the pressure-temperature phase diagram in which the As, B, and Cs. The dots represent the simulation data and
diffusion increases with density. This is the diffusion anoma- the solid line, the polynomial fit to the data. For the potentials
lous region illustrated in Fig. 3 as a dashed line. Aj and Bs, there are a region of densities in which the transla-
Similar to what happens with the location of the TMD,  (jonal parameter decreases as the density increases. A dotted-
as the two length scales become closer, the region in the  gaghed line illustrates the region of local maximum and min-
pressure-temperature phase diagram delimited by the extrema  jum of #* limiting the anomalous region. For the potential
of the diffusion goes to lower pressures, shrinks, and disap- Cs, t* increases with the density. No anomalous behavior is
pears for the case C3. observed. The potentials Aj, A,, By, B,, Cy, and C; that do
Figure 3 illustrates that the region in the pressure-  ghow anomalous behavior are not shown here for simplicity.
temperature phase diagram where the dynamic anomaly oc- Figure 3 shows the structural anomaly for the families A,
curs englobes the region where the thermodynamic anomaly  p and C, as dotted-dashed lines. It is observed that the region
is present. This hierarchy between the anomalies is observed of structural anomaly embraces both dynamic and thermody-
in simulations™**" and in experiments'” for bulk water. namic anomalies. As the distance between the shoulder and

phase it is g # 1 over long distances resulting in a large 7.
Therefore for normal fluids ¢ increases with the increase of
the density.

TABLE VII. Limiting values for density (p*), temperature (7*), and pressure (p*) of the thermodynamics anomalies on pressure-temperature diagram. Here,
the point p; represents the density, temperature, and pressure of the point of the lowest pressure in the TMD line, p,, represents the point of the highest
temperature and pj, represents the point of the highest pressure of the TMD line.

Cases i Pm Ph Cases i Pm Ph Cases i Pm Ph
p* 0.47 0.54 0.61 p* 0.47 0.52 0.57 p* 0.45 0.51 0.55

Aj T* 0.71 1.00 0.72 B T* 0.71 0.85 0.69 Ci T* 0.56 0.69 0.40
p* 1.74 3.22 4.50 p* 1.50 2.50 3.30 p* 0.79 1.96 2.60
p* 0.46 0.51 0.59 p* 0.46 0.50 0.54 p* 0.46 0.48 0.50

Ay T* 0.70 1.00 0.54 B T* 0.67 0.76 0.63 Cy T* 0.49 0.53 0.48
p* 1.36 2.20 3.17 p* 0.90 1.40 1.80 p* 0.23 0.45 0.64
p* 0.45 0.48 0.54 p* 0.40 0.42 0.43 p*

Az T* 0.66 0.89 0.69 B3 T* 0.44 0.54 0.52 C3 T*

P 0.91 1.27 1.72 p* 0.15 0.29 0.36 p*
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FIG. 5. Diffusion coefficient versus reduced density for 7* = 0.6, 0.7, 0.8, 0.9 from the bottom to the top for the case Az, T* = 0.4, 0.5, 0.6, 0.7 from the
bottom to the top for the case Bz, and T* = 0.5, 0.6, 0.7, 0.8, 0.9 from the bottom to the top for the case C3. The dots are the simulational data and the solid
lines are polynomial fits. The dashed lines connect the densities of minima and maxima diffusivity that limit the diffusion anomalous region.

attractive scales is decreased, the structural anomalous region
in the pressure-temperature phase diagram shrinks.

Another measure of the anomalous behavior is the ori-
entational order parameter,73 Qg. This parameter is used to
get information about tetrahedral order of the molecules. For
two length scales,’® spherical symmetric continuous (con-
tinuous force) potentials, Q¢>>’* exhibit a region of tem-
peratures in which it decreases with increasing density. The
maximum of Qg is located in the same region in the pressure
temperature phase diagram of the maximum of the transla-
tional order parameter.”® A similar behavior is expected for
our potential.

In resume, for all the density, diffusion and structural
anomalous regions in the pressure-temperature phase dia-
gram, as the two length scales become closer the region of the
pressure-temperature phase diagram occupied by the anoma-
lous region shrinks. The same effect is observed when the
shoulder scale becomes deeper.'3

E. Radial distribution function

What is the origin of the disappearance of the thermody-
namic, dynamic, and structural anomalous behavior with the
decrease of the distance between the scales? In order to an-
swer this question the behavior of the radial distribution func-
tion for the nine different potentials is studied. The radial dis-
tribution function is a measure of the probability of finding a

pair of atoms separated by r. This function is defined as

1%

e 7

N
gr) = —{ Y 8[F — Gilto + 1) — 7))

i, j=1 o

where 7;(t) are the coordinates of particle i and j at time 7,
V is volume of system, N is number of particles and (- - -),
denotes an average over all particles.

Recently, it was shown that a necessary condition for the
presence of density anomaly is to have particles moving from
one scale to the other as the temperature is increased,?-37-63
for a fixed density. Here, we test if this assumption is con-
firmed in the potentials we are analyzing. Figure 7 illustrates
the radial distribution function versus distance for a fixed den-
sity and various temperatures for the potentials A3, Bz, and
Cs. For the potentials Az and B3, the percentage of particles
in the first length scale increases while the percentage of parti-
cles in the second length scale decreases as the temperature is
increased. This means that as the system is heated at constant
density particles move from one scale to the other. This behav-
ior is also observed for the potentials A, A,, By, B,, Cy, and
C, (not shown here for simplicity) and confirms our assump-
tion that the presence of anomalies is related with particles
moving from one length scale to the other length scale.>>’
This is not the case for the potential C3. For the case Cj3,
as the temperature is increased the particles move from the
second to the other further away coordination shells and the
percentage of particles at the first scale is not affected by

FIG. 6. The translational order parameter as a function of density for fixed temperatures: 7* = 1.50, 1.40, 1.30, 1.20, 1.10, 1.00, 0.90, 0.80, 0.70, and
0.60 (from top to bottom) for the setting potentials A and C; and 7* = 1.00, 0.90, 0.80, 0.70, and 0.60 for the setting potential B. The dotted-dashed lines

locate the density of maxima and minima ¢*.



J. Chem. Phys. 135, 104507 (2011)

104507-8 Barraz, Salcedo, and Barbosa
T T /\I T
2.5+ 1\ R
Ajcase [
1 \
2.0F / \ E
Il \
- i o~ \
x L.5F I.'/ l \ 1
S
w |1 \
LoF r AN b
N /i “\\
W\ /B v\ -
0.5F I\ /i T =040 A N\ 5
\«. /7 T T=070 \
'\, = r=100 N~
0.0 =2 | L L
0.9 1.2 1.5 1.8
r*

FIG. 7. Radial distribution function versus reduced distance for three cases, Az, B3, C3 for reduced density p* = 0.480, 0.420, and 0.390, respectively. In cases
A3 and Bj the first peak of g(r*) increases with increasing temperature, while the second peak decreases. In C3 case for the first peak potential keeps constant

while the second peak decreases.

the increase in temperature and, therefore, no anomaly is
observed.>>’

How can we understand this result? The density anomaly
appears if particles move from the second length scale to the
first length scale. In the case of the potentials A3 and Bj, the
difference in energy between the two scales is high and heat
is required for having particles reaching the shoulder length
scale. Consequently, as the temperature is increased at con-
stant density, more particles will be at the first scale and pres-
sure decreases (see Fig. 7). In the potential Cs, the difference
in energy between the two length scales is small. Almost no
heat is required to have particles in the first length scales that
saturate. So particles actually do not move from one scale to
the other.

This picture in terms of the presence of particles in the
different shells can also be checked in the framework of the
excess entropy.>>>’

F. Excess entropy and anomalies

The excess entropy is defined as the difference between
the entropy of the real fluid and that of an ideal gas at the same
temperature and density. It also can be given by its two-body
contribution of sy,

Ssex A2 8y = —27rp/ [g(r)Ing(r) — g(r) + 11ridr,
0
(®)

gives a good approximation of Sgex.

What can we learn from the excess entropy about the
mechanism responsible for the density, the diffusion, and the
structural anomalies? In Sec. IV E we have shown, using
the radial distribution function, that for potentials that exhibit
density, diffusion, and structural anomalous behavior as the
temperature is increased particles move from the second coor-
dination shell to the first coordination shell. In the case of sys-
tems in which no anomalies are present, as the temperature is
increased particles will move from the first and second shells
to further shells. Therefore, in principle the information about
the behavior of particles up to the second coordination shell
would be enough to predict if a system would have anomalous
behavior.

In order to test this assumption, we compute the integrals
in the expression for séz) (see Eq. (8)) up to the second coor-
dination shell, namely,

sy = —2mp /0 e Ing(r) — g(r) + 11%dr, ©)

where r, is the distance of the second shell.

Figure 8 shows the density dependence of s, along a se-
ries of isotherms spanning from 7* = 0.60 to 7* = 1.50 for
the cases A3, B3, and Cs.

Figure 9 shows the density dependence of séz) along a
series of isotherms spanning from 7" = 0.60 to 7* = 1.50
for the cases A3, B3, and C3. The dots are the simulational
data and the solid lines are polynomial fits.

~ A3 case 301
4 ) )

L L L
0.36 0.45 0.54 0.63 0.33

FIG. 8. Excess entropy, s3, versus reduced density for fixed temperatures 7* = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 from the bottom to the top for the case A3z, T*
=0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 from the bottom to the top for the case B3, and temperatures 7* = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 from the bottom to
the top for the case C3. The temperature 7* = 0.5 contains densities that are metastable points regarding the high density liquid phase. The dotted-dashed lines

locate the density of maxima s, and the dashed, the minima.



104507-9 Anomalies for core-softened potentials

J. Chem. Phys. 135, 104507 (2011)

@

3 -3.01

'
—
T
1

s 2

0.3

L
0.4

FIG. 9. Excess entropy computed up to the second coordination shell, x%, versus reduced density for fixed temperatures 7 = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1

from the bottom to the top for the case Az, T =0.6, 0.7, 0.8, 0.9, 1.0, 1.1,

1,2 from the bottom to the top for the Bz and temperatures, 7 =

0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 from the bottom to the top for the case C3. The temperature 7* = 0.5 contains densities that are metastable points
regarding the high density liquid phase. The dotted-dashed lines locate the density of maxima s, and the dashed, the minima.

Notice that both sf) and s, has a maximum and a min-
imum for the cases A3z and B3z but not for the case C3 what
indicates an anomalous behavior in the excess entropy. Com-
parison between Figs. 8 and 9 shows that the excess entropy
computed up to the second shell not only gives the same trend
but also the same density for the maximum and minimum of
the excess entropy.

Errington et al. have shown that the density anomaly is
given by the condition Ty = (35ex/0 In p); > 1.9 They have
also suggested that the diffusion anomaly can be predicted
by using the empirical Rosenfeld’s parametrization.”> Based
on Rosenfeld’s scaling parameters and approximating the ex-
cess entropy and its derivative by the two-body contribution,
namely, sex & 53 and Xex = X the anomalous behavior of the
thermodynamic and dynamic quantities are observed if

excess entropy — Zz >0,
diffusivity — ZZ > 0.42,
viscosity — Zz > (.83,

density — Zz > 1.00 . (10)

This sequence of anomalies is consistent with the stud-
ies of Yan et al.,'5-37-61-63.74 where structural anomalies are
found to precede diffusivity anomalies, which in turn precede

density anomalies.

In order to check these criteria in our family of potentials,
we compute »_, given by

8S2

ag(r)
22= (E)lnp)T =s2—277,02/1ng( —= 5 r2dr .

(11
And also to test if the criteria given by Eq. (10) can also

be applied for computations of the excess entropy derivative
computed up to the second shell we also calculate

Z@_ s,
2 \dlnp

Figures 10 and 11 show the behavior of ) , and of
(@)
2

(2)

_s2 g()zd

—2np? / Ing(r)
' (12)

with the density, respectively, for a fixed temperature
for the potentials As, B3, and C3. The horizontal lines at
>, =0, 0.42, and 1.00 indicate the threshold beyond which
there are structural, diffusion, and density anomalies, respec-
tively. The graphs confirm that the density, the diffusion,
and the structural anomalous behavior is observed for the po-
tentials A3 and B3 but not for the potential Csz, confirming
Errington’s criteria.

The comparison between Figs. 10 and 11 shows that the
derivative of the excess entropy computed up to the second
shell is a good approximation for ) _, for all the cases.

This result together with the good agreement between s,
and séz) supports our surmise that focusing in the first and

8 T -
— l‘a=0.60
AN T =0.70
- Ta=0.80
6 == T =090 ]
- = T =100
5r == 1 =110
[

Z, A3 case
3_ -
2t B

1 . o~ a0 ___r]
R ccaess ?:_\;t‘\ N
0 ._____1' ______ I PR sz
0.42 0.48 0.54 060
%
p

FIG. 10. 2(22) versus reduced density for temperatures.
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FIG. 11. 2(22> versus reduced density computed up to the second coordination shell.

second shell behavior we can understand the mechanism that
leads to the anomalous behavior.

V. CONCLUSIONS

In this paper, we analyzed three families of potentials
characterized by two length scales: a shoulder scale and an at-
tractive scale. We found that when approaching the two scales
and keeping the slope between them fixed, the liquid-liquid
critical point goes to lower pressures while keeping the crit-
ical temperature fixed. This result seems to indicate that the
slope of the curve might be related to the critical temperature
while the distance between the scales control the critical pres-
sure. This assumption is also supported by another continuous
spherical symmetric potential in which the slope was varied.®!

We also found anomalous behavior in the density, in the
diffusion coefficient, in the structural order parameter, and in
the excess entropy for all the cases in which the distance be-
tween the scales were not too short.

From the behavior of the radial distribution function we
did infer that the anomalies are related to particles moving
from one scale to the other.

In order to check our assumption the excess entropy and
its derivative were computed in two ways: the total value and
the value computed by integrating up to the second coordina-
tion shell. We found that the behavior obtained by computing
these quantities up to the second coordination shell is accu-
rate both for system with and without anomalies. Since the
Rosenfeld’s parametrization” is just a lower bound, we can
say that it is enough to compute s, and ), up to the second
shell to know if the anomalies are present or not.

ACKNOWLEDGMENTS

We thank for financial support the Brazilian science
agencies CNPq and Capes. This work is partially supported
by CNPq, INCT-FCx.

1P C. Hemmer and G. Stell, Phys. Rev. Lett. 24, 1284 (1970).

2G. Stell and P. C. Hemmer, J. Chem. Phys. 56, 4274 (1972).

3M. Silbert and W. H. Young, Phys. Lett. A 58, 469 (1976).

“E. A. Jagla, J. Chem. Phys. 110, 451 (1999).

SE. A. Jagla, J. Chem. Phys. 111, 8980 (1999).

ON. B. Wilding and J. E. Magee, Phys. Rev. E 66, 031509 (2002).
7P. Camp, Phys. Rev. E 68, 061506 (2003).

8P. Vilaseca and G. Franzese, J. Non-Cryst. Solids 357, 419 (2011).
9G. S. Kell, I. Chem. Eng. Data 20, 97 (1975).

10C, A. Angell, E. D. Finch, and P. Bach, J. Chem. Phys. 65, 3063 (1976).

1T, Tsuchiya, J. Phys. Soc. Jpn. 60, 227 (1991).

2¢ AL Angell, R. D. Bressel, M. Hemmatti, E. J. Sare, and J. C. Tucker,
Phys. Chem. Chem. Phys. 2, 1559 (2000).

137.Y. Yan, S. V. Buldyrev, P. Kumar, N. Giovambattista, and H. E. Stanley,
Phys. Rev. E 77, 042201 (2008).

14p. Kumar, G. Franzese, and H. E. Stanley, J. Phys.: Condens. Matter 20,
244114 (2008).

I5A. B. de Oliveira, G. Franzese, P. A. Netz, and M. C. Barbosa, J. Chem.
Phys. 128, 064901 (2008).

16A. B. de Oliveira, P. A. Netz, and M. C. Barbosa, Europhys. Lett. 85, 36001
(2009).

17S. A. Egorov, J. Chem. Phys. 128, 174503 (2008).

I8N, M. Barraz, Jr., E. Salcedo, and M. C. Barbosa, J. Chem. Phys. 131,
094504 (2009).

19R. Waler, Essays of Natural Experiments (Johnson Reprint, New York,
1964).

20R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976).

21y, Kanno and C. A. Angell, J. Chem. Phys. 70(9), 4008 (1979).

22C. A. Angell, M. Oguni, and W. J. Sichina, J. Phys. Chem. 86, 998
(1982).

23E. Tombari, C. Ferrari, and G. Salvetti, Chem. Phys. Lett. 300(5-6), 749
(1999).

24H. Thurn and J. Ruska, J. Non-Cryst. Solids 22, 331 (1976).

25 Handbook of Chemistry and Physics, edited by R. C. Weast (CRC Press,
Boca Raton, FL, 1984-1985), 65th ed.

26G. E. Sauer and L. B. Borst, Science 158, 1567 (1967).

278, J. Kennedy and J. C. Wheeler, J. Chem. Phys. 78, 1523 (1983).

28R. Sharma, S. N. Chakraborty, and C. Chakravarty, J. Chem. Phys. 125,
204501 (2006).

29M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, Phys. Rev. E 66,
011202 (2002).

30p H. Poole, M. Hemmati, and C. A. Angell, Phys. Rev. Lett. 79, 2281
(1997).

315, Sastry and C. A. Angell, Nature Mater. 2, 739 (2003).

32E X. Prielmeier, E. W. Lang, R. J. Speedy, and H.-D. Liidemann, Phys.
Rev. Lett. 59, 1128 (1987).

33H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91,
6269 (1987).

3p A, Netz, F. W. Starr, H. E. Stanley, and M. C. Barbosa, J. Chem. Phys.
115, 344 (2001).

3], R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001).

36 A. Mudi, C. Chakravarty, and R. Ramaswamy, J. Chem. Phys. 122, 104507
(2005).

373, Mittal, J. R. Errington, and T. M. Truskett, J. Phys. Chem. B 110, 18147
(2006).

3P, A. Netz, F. W. Starr, M. C. Barbosa, and H. E. Stanley, Physica A 314,
470 (2002).

3P, A. Netz, F. W. Starr, M. C. Barbosa, and H. E. Stanley, J. Mol. Liq. 101,
159 (2002).

40T, Morishita, Phys. Rev. E 72, 021201 (2005).

41A. Scala, M. R. Sadr-Lahijany, N. Giovambattista, S. V. Buldyrev, and
H. E. Stanley, J. Stat. Phys. 100, 97 (2000).

425, V. Buldyrev, G. Franzese, N. Giovambattista, G. Malescio, M. R. Sadr-
Lahijany, A. Scala, A. Skibinsky, and H. E. Stanley, Physica A 304, 23
(2002).


http://dx.doi.org/10.1103/PhysRevLett.24.1284
http://dx.doi.org/10.1063/1.1677857
http://dx.doi.org/10.1016/0375-9601(76)90487-4
http://dx.doi.org/10.1063/1.478105
http://dx.doi.org/10.1063/1.480241
http://dx.doi.org/10.1103/PhysRevE.66.031509
http://dx.doi.org/10.1103/PhysRevE.68.061506
http://dx.doi.org/10.1016/j.jnoncrysol.2010.07.053
http://dx.doi.org/10.1021/je60064a005
http://dx.doi.org/10.1063/1.433518
http://dx.doi.org/10.1143/JPSJ.60.227
http://dx.doi.org/10.1039/b000206m
http://dx.doi.org/10.1103/PhysRevE.77.042201
http://dx.doi.org/10.1088/0953-8984/20/24/244114
http://dx.doi.org/10.1063/1.2830706
http://dx.doi.org/10.1063/1.2830706
http://dx.doi.org/10.1209/0295-5075/85/36001
http://dx.doi.org/10.1063/1.2917359
http://dx.doi.org/10.1063/1.3213615
http://dx.doi.org/10.1063/1.433153
http://dx.doi.org/10.1063/1.438021
http://dx.doi.org/10.1021/j100395a032
http://dx.doi.org/10.1016/S0009-2614(98)01392-X
http://dx.doi.org/10.1016/0022-3093(76)90063-6
http://dx.doi.org/10.1126/science.158.3808.1567
http://dx.doi.org/10.1063/1.444842
http://dx.doi.org/10.1063/1.2390710
http://dx.doi.org/10.1103/PhysRevE.66.011202
http://dx.doi.org/10.1103/PhysRevLett.79.2281
http://dx.doi.org/10.1038/nmat994
http://dx.doi.org/10.1103/PhysRevLett.59.1128
http://dx.doi.org/10.1103/PhysRevLett.59.1128
http://dx.doi.org/10.1021/j100308a038
http://dx.doi.org/10.1063/1.1376424
http://dx.doi.org/10.1038/35053024
http://dx.doi.org/10.1063/1.1860555
http://dx.doi.org/10.1021/jp064816j
http://dx.doi.org/10.1016/S0378-4371(02)01083-X
http://dx.doi.org/10.1016/S0167-7322(02)00090-9
http://dx.doi.org/10.1103/PhysRevE.72.021201
http://dx.doi.org/10.1023/A:1018631426614
http://dx.doi.org/10.1016/S0378-4371(01)00566-0

104507-11  Anomalies for core-softened potentials

43S. V. Buldyrev and H. E. Stanley, Physica A 330, 124 (2003).

MAL Skibinsky, S. V. Buldyrev, G. Franzese, G. Malescio, and H. E. Stanley,
Phys. Rev. E 69, 061206 (2005).

45G. Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley,
Phys. Rev. E 66, 051206 (2002).

46 A. Balladares and M. C. Barbosa, J. Phys.: Condens. Matter 16, 8811
(2004).

47TA. B. de Oliveira and M. C. Barbosa, J. Phys.: Condens. Matter 17, 399
(2005).

48y, B. Henriques and M. C. Barbosa, Phys. Rev. E 71, 031504
(2005).

49V, B. Henriques, N. Guissoni, M. A. Barbosa, M. Thielo, and M. C. Bar-
bosa, Mol. Phys. 103, 3001 (2005).

0E. A. Jagla, Phys. Rev. E 58, 1478 (1998).

31S. Maruyama, K. Wakabayashi, and M. A. Oguni, Aip Conf. Proc. 708, 675
(2004).

52R. Kurita and H. Tanaka, Science 206, 845 (2004).

S3L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. Poole, F. Sciortino, and
H. E. Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 16558 (2005).

54 A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, J. Chem. Phys.
124, 084505 (2006).

3 A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, J. Chem. Phys.
125, 124503 (2006).

56A. B. de Oliveira, M. C. Barbosa, and P. A. Netz, Physica A 386, 744
(2007).

S7A. B. de Oliveira, P. A. Netz, and M. C. Barbosa, Euro. Phys. J. B 64, 481
(2008).

38N. V. Gribova, Y. D. Fomin, D. Frenkel, and V. N. Ryzhov, Phys. Rev. E
79, 051202 (2009).

J. Chem. Phys. 135, 104507 (2011)

S9E, Lomba, N. G. Almarza, C. Martin, and C. McBride, J. Chem. Phys. 126,
244510 (2007).

00G, Franzese, G. Malescio, A. Skibinsky, S. V. Buldyrev, and H. E. Stanley,
Nature (London) 409, 692 (2001).

617, da Silva, E. Salcedo, A. B. Oliveira, and M. C. Barbosa, J. Phys. Chem.
133, 244506 (2010).

627 Yan, S. V. Buldyrev, N. Giovambattista, P. G. Debenedetti, and
H. E. Stanley, Phys. Rev. E 73, 051204 (2006).

63P. Vilaseca and G. Franzese, J. Chem. Phys. 133, 084507 (2010).

%4 A. Baranyai and D. J. Evans, Phys. Rev. A 40, 3817 (1989).

5. R. Errington, T. M. Truskett, and J. Mittal, J. Chem. Phys. 125, 244502
(2006).

66S. N. Chakraborty and C. Chakravarty, J. Chem. Phys. 124, 014507 (2006).

67T. Head-Gordon and F. H. Stillinger, J. Chem. Phys. 98, 3313 (1993).

08F H. Stillinger and T. Head-Gordon, Phys. Rev. E 47, 2484 (1993).

%P, G. Debenedetti V. S. Raghavan, and Steven S. Borick, J. Phys. Chem. 95,
4540 (1991).

7. Yan, S. V. Buldyrev, P. Kumar, N. Giovambattista, P. G. Debenedetti,
and H. E. Stanley, Phys. Rev. E 76, 051201 (2007).

7IM. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, 1st ed.
(Claredon, Oxford, 1987).

21, E. Errington, P. G. Debenedetti, and S. Torquato, J. Chem. Phys. 118,
2256 (2003).

3p. J, Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784
(1983).

747. Yan, S. V. Buldyrev, N. Giovambattista, and H. E. Stanley, Phys. Rev.
Lett. 95, 130604 (2005).

75Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999).

76H. E. Stanley, Pramana 53, 53 (1999).


http://dx.doi.org/10.1016/j.physa.2003.08.003
http://dx.doi.org/10.1103/PhysRevE.69.061206
http://dx.doi.org/10.1103/PhysRevE.66.051206
http://dx.doi.org/10.1088/0953-8984/16/49/001
http://dx.doi.org/10.1088/0953-8984/17/3/001
http://dx.doi.org/10.1103/PhysRevE.71.031504
http://dx.doi.org/10.1080/00268970500208807
http://dx.doi.org/10.1103/PhysRevE.58.1478
http://dx.doi.org/10.1063/1.1764256
http://dx.doi.org/10.1126/science.1103073
http://dx.doi.org/10.1073/pnas.0507870102
http://dx.doi.org/10.1063/1.2168458
http://dx.doi.org/10.1063/1.2357119
http://dx.doi.org/10.1016/j.physa.2007.07.015
http://dx.doi.org/10.1140/epjb/e2008-00101-6
http://dx.doi.org/10.1103/PhysRevE.79.051202
http://dx.doi.org/10.1063/1.2748043
http://dx.doi.org/10.1038/35055514
http://dx.doi.org/10.1063/1.3511704
http://dx.doi.org/10.1103/PhysRevE.73.051204
http://dx.doi.org/10.1063/1.3463424
http://dx.doi.org/10.1103/PhysRevA.40.3817
http://dx.doi.org/10.1063/1.2409932
http://dx.doi.org/10.1063/1.2140282
http://dx.doi.org/10.1063/1.464103
http://dx.doi.org/10.1103/PhysRevE.47.2484
http://dx.doi.org/10.1021/j100164a066
http://dx.doi.org/10.1103/PhysRevE.76.051201
http://dx.doi.org/10.1063/1.1532344
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1103/PhysRevLett.95.130604
http://dx.doi.org/10.1103/PhysRevLett.95.130604
http://dx.doi.org/10.1088/0953-8984/11/28/303
http://dx.doi.org/10.1007/s12043-999-0140-6

