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We investigate a double-layer of penetrable ions near a charged wall. We find a new mechanism
for charge reversal that occurs in the weak-coupling regime and, accordingly, the system is suitable
for the mean-field analysis. The penetrability is achieved by smearing-out the ionic charge inside
a sphere, so there is no need to introduce non-electrostatic forces and the system in the low cou-
pling limit can be described by a modified version of the Poisson-Boltzmann equation. The predic-
tions of the theory are compared with the Monte Carlo simulations. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4802994]

I. INTRODUCTION

Overcharging is a surprising phenomenon in which coun-
terions adsorbed to a surface exceed the number of fixed
surface charges.1 As a consequence, coions are drawn from
the bulk toward the overcharged surface leading to a forma-
tion of a “triple-layer.” Because the underlying mechanism
of overcharging relies on electrostatic correlations,2 it has
become synonymous with the strong-coupling limit. Indeed,
a mean-field treatment which accurately captures the weak-
coupling limit, cannot describe overcharging. (However, the
mean-field in combination with the excluded volume interac-
tions can induce overcharging if the bulk volume fraction of
an electrolyte is sufficiently large to generate a depletion force
that pushes particles against a surface. This effect is seen in
uncharged systems and persists for weakly charged surface
charges.3–6)

In the strong-coupling limit, overcharging is the result
of increased structuring within the layer of counterions. The
electrostatic correlations between the condensed counterions
lead to formation of correlation “holes” within the layer of
condensed ions which can attract excess of counterions from
the bulk. The value of the coupling constant � = Z3λB/λGC,
which is the ratio between the Bjerrum and Gouy-Chapman
length (Z is the valency), estimates the extent of correlation
effects. In the limit � → ∞, the counterions are said to freeze
into a 2D Wigner crystal.8 At large, but finite �, the local
structure of an ionic fluid remains Wigner-like.7–10 The above
mechanism is specific to Coulomb interactions that diverge
as r → 0 and, therefore, exhibit the excluded volume
effects.9, 11 If, however, the divergence in the pair interaction
is removed (the pair potential is bounded as r → 0), par-
ticles can interpenetrate and the usual excluded volume in-
teractions underlying the crystal formation are eliminated (at
sufficiently high temperature and/or density). For some fam-
ily of bounded potentials, particles can form stacks where
two or more particles occupy the same position and act as
an effective single particle. This is possible only if a pair
potential is sufficiently flat around r = 0.12 One example is
the penetrable sphere model where the pair potential is the
step function.13–16 The stacking formations stabilize the liq-

uid phase,14 since doublets, triplets, etc., effectively decrease
the number of particles. The presence of stacked formations
is signaled as a positive peak in the pair correlation function
at r → 0.14 Extrapolating these ideas to ions, which in ad-
dition to penetrable cores have long-range Coulomb interac-
tions, we ask what influence penetrability has on the structure
of a double-layer. Can the restructuring invoked by the pene-
trability lead to overcharging in the weak-coupling limit?

In the present work, the divergence in the Coulomb po-
tential is removed by smearing-out the central charge of an ion
over a finite region. The penetrating core, then, depends on the
weight function used to smear out the charge. This procedure
does not require going beyond the framework of electrostatics
and the weak-coupling limit can be described by the modified
version of the Poisson-Boltzmann (PB) equation.

Bulk properties and phase diagram of penetrable ions
have been investigated in Refs. 17–19. The main feature is
the formation of the Bjerrum pairs of two opposite ions that
function as polarizable particles. The formation of these pairs
leads to an insulator-conductor transition,17 which does not
exist in systems of hard-core ions in three dimensions.20 Thus,
penetrability dramatically affects the phase transition and the
topology of the phase diagram.

The model of penetrable particles is not only of theoret-
ical interest. Various macroparticles can exhibit interpenetra-
tion. Marquest and Witten13 suggested a penetrable sphere
model for micelles. Polymer coils and dendrimers in good
solvent can be represented by a Gaussian core model.21, 22 If
in addition these macroparticles are charged, as is often the
case for real systems,23 then the model of penetrable ions can
be of genuine physical relevance. Recently, ionic microgels
have been modeled as uniformly charged spheres,24 allowing
interpenetration at short- and Coulomb-interactions at long-
separations.

II. THE POISSON-BOLTZMANN EQUATION
FOR SMEARED-OUT CHARGES

The charge qi of an ion i is smeared out over the fi-
nite region according to the weight function ωi(r − ri) such
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that
∫

dr ωi(r − ri) = qi. The charge density operator for N
smeared-out ions is

ρ̂c(r) =
N∑

i=1

∫
dr′δ(r′ − ri)ωi(r′ − r). (1)

In this work we consider a symmetric electrolyte, q+ = −q−.
The averaged charge density for this system is

ρc(r) =
∫

dr′[ρ+(r′)ω+(r′ − r) + ρ−(r′)ω−(r′ − r)], (2)

where ρ+ and ρ− denote the number densities of anions and
cations, respectively. The Poisson equation is

ε∇2ψ = −
∫

dr′[ρ+(r′)ω+(r′ − r) + ρ−(r′)ω−(r′ − r)],

(3)
where ε is the background dielectric constant. To obtain a
closed equation, we need an expression for ρ− and ρ+ in
terms of the mean electrostatic potential ψ . For point charges,
this leads to

ρα(r) = cse
−βqαψ(r), (4)

where the subscript α is either + or −, and cs is the bulk
salt concentration. The number density depends locally on an
electrostatic potential. However, if charge is smeared around
the ion center at r, the entire distribution ω(r′ − r) interacts
with the mean electrostatic potential,

ψα(r) =
∫

dr′ψ(r′)ωα(r′ − r), (5)

and the number density becomes

ρα = cse
−β

∫
dr′ψ(r′)ωα(r′−r). (6)

We may now write down the mean-field equation for the elec-
trostatic potential produced by smeared-out ions,

−ε∇2ψ = cs

∫
dr′ω+(r′ − r)e−β

∫
dr′′ψ(r′′)ω+(r′′−r′)

+ cs

∫
dr′ω−(r′ − r)e−β

∫
dr′′ψ(r′′)ω−(r′′−r′). (7)

We refer to this modified Poisson-Boltzmann equation as
the Finite-Spread PB equation (FSPB). The FSPB equation
complements the already quite sizable set of modified PB
equations: the PB that incorporates the excluded volume
interactions,25 the dipolar interactions,26 the nonlinear solvent
contributions,27 and the polarizability of ions.28, 29 The idea
of finitely spread-out ions was considered in Ref. 30 to study
the self energy contributions beyond the mean-field. Mathe-
matically, the FSPB equation has the structure of a convo-
luted equation. Each ion is convoluted according to the weight
function, which determines the composition of a single ion.

Equation (7) can also be obtained by minimizing the
grand potential,

�[{ρα}] = 1

2

∫
dr

∫
dr′ ρc(r)ρc(r′)

4πε|r′ − r|

+ kBT
∑

α

∫
dr ρα(r)[log ρα3 − 1]

−
∑

α

μ

∫
dr ρα(r), (8)

where  is the thermal de Broglie wavelength and μ = μ+
= μ− is the chemical potential. The three contributions are
the electrostatic energy, entropy, and we allow the number
density to fluctuate through the contact with a reservoir. The
minimization δ�

δρα
= 0 recovers Eq. (6) and the application of

the Poisson equation yields the FSPB model.

III. VARIOUS DISTRIBUTIONS ω(r)

The concept of charge smearing is not novel to this work,
but it has been evoked many times in the past both as a phys-
ical representation and a mathematical construct. The best
known example (and to our knowledge the earliest) of math-
ematical construct is the calculation of Ewald summation to
treat periodic charges,31 today the most practiced method to
account for contributions due to periodic boundary conditions
of a simulated system,32 where by spreading the charge one
achieves separation of interactions into the short- and long-
range counterpart. Another instance of mathematical conve-
nience is the Onsager smearing optimization to obtain the
variational free energy of the strongly correlated one compo-
nent plasma.33 The idea of charges which at short separations
exhibits soft repulsion and at long separations the Coulomb
interaction appeared in Ref. 34 to represent semi-classical hy-
drogen plasma at high temperature and density, yet no smear-
ing procedure was used to construct this potential. The actual
smearing procedure to represent physical particles was used
to model electrons set in cyclotron motion by a uniform mag-
netic field.35, 36 In soft matter, the smearing out procedure was
used to represent microgels in Ref. 37, and recently to repre-
sent charged polymers.17–19

We consider a few simple, spherically symmetric distri-
butions ω(r) and the interactions that result from these dis-
tributions. A spherically symmetric charge distribution gener-
ates the following electrostatic potential:

ψ(r) = 1

ε

[
1

r

∫ r

0
ds s2ω(s) +

∫ ∞

r

ds s ω(s)

]
. (9)

To derive the above formula we applied the Gauss law to the
Poisson equation, and afterwards we integrated the resulting
electrostatic field (the integration by parts was evoked). If the
distribution is uniform inside a spherical cavity,

ω(r′ − r) = 3Q

4πR3
θ (R − |r′ − r|), (10)

where θ is the Heaviside function and
∫

dr′ω(r′ − r) = Q,
then the potential inside a sphere is

ψ(r ≤ R) = Q

4πε

[
3R2 − r2

2R3

]
. (11)

Outside the sphere, the Coulomb potential is recovered. The
interaction between two ions with this charge distribution
is33, 37

U (r ≤ 2R) = Q2

4πε

[
192R5 − 80R3r2 + 30R2r3 − r5

160R6

]
.

(12)
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For non-overlapping separations, ions behave like point
charges. Next, we consider the distribution

ω(r′ − r) = Q

4πR2
δ(R − |r′ − r|), (13)

where a charge is smeared-out over a spherical shell. Inside a
sphere, the electrostatic potential is constant,

ψ(r ≤ R) = Q

4πε

1

R
. (14)

The interaction between two of these distributions for over-
lapping separations is

U (r ≤ 2R) = Q2

4πε

[
4R − r

4R2

]
. (15)

A sphere and a shell distribution interact via

U (r ≤ 2R) = Q2

4πε

[
16R3 − 4Rr2 + r3

16R4

]
. (16)

Finally, we consider a Gaussian distribution,17–19, 31

ω(r′ − r) = Q2

(2π )3/2R3
e−r2/2R2

, (17)

which leads to the following pair interaction:

U (r) = Q2

4πε

erf(r/2R)

r
. (18)

IV. NUMERICAL RESULTS FOR THE FSPB EQUATION

We primarily focus on the distribution

ω±(|r − ri |) = ±eθ (R − |r − ri |)/ν. (19)

where ν = 4πR3/3 is the ionic volume. The FSPB equation in
reduced units reads

∇2φ = κ2ν−1
∫

dr′θ (R − |r′ − r|) sinh(φ̄θ ),

where

φ̄θ (r) = 1

ν

∫
dr′φ(r′)θ (R − |r′ − r|), (20)

φ = βeψ , κ−1 = 1/
√

8πλBcs is the screening length, and λB

= βe2/4πε is the Bjerrum length. The number density of each
species is

ρ± = cse
∓φ̄θ . (21)

All the ions occupy the half-space x > 0. The charged hard
wall at x = −R determines boundary conditions,

∂φ

∂x
= −4πλBσc, (22)

where σ c is the surface charge. Note that the number den-
sity is limited to the region x > 0, but the charge den-
sity, because of the distribution ω(r), reaches all the way to

x = −R, the location of the charged wall. Consequently, we
assume the (hard-sphere)-(hard-wall) potential between an
ion and the wall. Subsequent figures show data points for
x > 0, the region available to ion centers.

In the dilute limit (cs → 0), the solution of the PB equa-
tion for point ions in the weak-coupling limit yields an alge-
braic density profile,

ρ(x) = 2πλBσ 2
c(

1 + xλ−1
GC

)2 . (23)

In the strong-coupling limit the electrostatic correlations mod-
ify the functional form of the distribution,38

ρ(x) = 2πλBσ 2
c exp

( − xλ−1
GC

)
, (24)

where λGC = (2πλBσ c)−1 is the Gouy-Chapman length. The
barometric-like distribution in the transverse direction is a
consequence of high degree of ordering in the lateral direc-
tion reminiscent of the Wigner crystal.8, 10

Although the FSPB equation is purely mean-field, we
find similar modification of the density profile, but this time
the relevant parameter is R. The limit R → 0 corresponds
to the ionic distribution given by Eq. (23), and the limit
R → ∞ to the one given by Eq. (24), see Fig. 1. In the limit
R → ∞, see Eq. (12), we recover an ideal gas in a uniform
gravitational field.

Figure 2 shows the counterion profiles for an electrolyte
solution. This introduces a length scale κ−1. Counterions from
the bulk can now overcharge the surface. The counterion pro-
file beyond x = 0.5 nm dips below the bulk value, which in-
dicates an overcharged surface. Figure 3 shows how the coion
density rises above the bulk value, another signature of charge
reversal. Finally, Fig. 4 shows the non-monotonic electrostatic
potential which goes to negative values and has a minimum
around x = 0.6 nm, at which point the electrostatic field van-
ishes and, farther on, it changes sign.

Under what conditions penetrability of ions leads to
charge reversal? For penetration to take place, either the
thermal fluctuations must exceed the interaction energy of
the overlapped particles, βU(r = 0) � 1, or the counterion

0 2 4 6
x/λGC

0

0.5

1

ρ −
 / 

ρ w

R/λGC=4.5
R/λGC=13.5

Eq. (24)

Eq. (23)

FIG. 1. The counterion density profile in the dilute limit (no coions). The
dotted lines demarcate the limiting behaviors in Eqs. (23) and (24). The wall
charge is positive and the counterions have negative charge. As R increases,
the profile takes the exponential shape.
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0 0.5 1 1.5
x[nm]

0

10

20

ρ −
[n

m
-3

]
R=0
R=0.8nm

FIG. 2. The counterion density profile near a charged wall. R = 0 corre-
sponds to point ions. The relevant lengths are: κ−1 = 0.3 nm, λB = 0.72 nm,
and λGC = 0.09 nm.

concentration at the wall must be sufficiently large to in-
volve numerous overlaps, such that the effective 2D density
within the counterion layer is ρ2DR2 � 1. For the distribution
in Eq. (19), the first requirement translates into R/λB � 1.2,
and, assuming ρ2D ≈ σ c, the second one becomes σ cR2 � 1.
In Fig. 2, R/λB ≈ 1.1 and R2σ c ≈ 1.6, and so both criteria
are met.

As a parenthetical note, we point out that the PB and the
FSPB models satisfy the same contact value relation,

kBTρw = Pid + σ 2
c

2ε
, (25)

where Pid = kBTρb is the ideal gas pressure in the bulk, ρb

and ρw are the total densities in the bulk and at the contact
with a wall, respectively.

A. Tuning of the short-range interactions

The sole constraint that ω(r′ − r) needs to satisfy is that
its integral recovers the charge of an ion. This leaves suffi-
cient room to manipulate the short-range interactions. As an

0 1 2 3
x[nm]

0

0.2

0.4

0.6

0.8

ρ +
[n

m
-3

]

R=0
R=0.8nm

FIG. 3. The coion distribution at a charged wall corresponding to the system
in Fig. 2. The coions are in excess to neutralize the inverted charge. Note that
the density profile exhibits oscillations.

0 1 2 3
x[nm]

0

1

2

3

4

φ

R=0
R=0.8nm

FIG. 4. Electrostatic potential near a charged wall corresponding to the sys-
tem in Fig. 2. The minimum corresponds to a point of vanishing electrostatic
field.

example, we can take a mixed distribution,

ω±(|r − ri |) = ±e[(Z + 1)θ (R − |r − ri |)/ν
−Zδ(R − |r − ri |)/γ ], (26)

comprised of a charged shell and sphere. γ = 4πR2 is the
surface area of a sphere, Z is the additional parameter, and
Z = 0 corresponds to the distribution in Eq. (19). The number
density is

ρ± = cse
∓[(Z+1)φ̄θ −Zφ̄δ], (27)

where

φ̄δ(r) = 1

γ

∫
dr′φ(r′)δ(R − |r′ − r|). (28)

Figure 5 plots the pair potentials for different Z . The
parameter Z controls the strength of the repulsion and, by
the same token, the strength of the excluded volume inter-
actions. By way of example, Fig. 6 shows the density pro-
file for Z = 0 and Z = 4, for R = 0.8 nm. The excluded
volume contributions for Z = 4 expel counterions from the
first layer, which is the opposite of overcharging seen for
Z = 0.

0 1 2
r/R

0

2

4

(β
R

/λ
Β
) U

~1/r
Z=0
Z=1
Z=2

FIG. 5. Pair potential for two overlapping identical ions with charge distri-
bution in Eq. (26). Z = 0 corresponds to the distribution in Eq. (19).



174901-5 D. Frydel and Y. Levin J. Chem. Phys. 138, 174901 (2013)

0 0.5 1 1.5
x[nm]

0

10

20
ρ −

[n
m

-3
]

Z=0
Z=4

FIG. 6. The counterion density profile near a charged wall for the point ions
and for the ions with the distribution in Eq. (26) for R = 0.8 nm and different
Z . The system parameters are those in Fig. 2.

With this example, we try to demonstrate possible ex-
tensions of the model based on charge spreading. For exam-
ple, the repulsion controlled by the parameter Z could repre-
sent the interaction between polymers on account of the self-
avoiding walk of polymer chains.

V. COMPARISON WITH SIMULATION

To test the mean-field approximation implicit in the
FSPB equation, we carry out Monte Carlo (MC) simulations.
The size of the simulation box is Ly = Lz = 8 nm and Lx

= 6 nm. The periodic boundary conditions are in the lateral
(y, z)-directions. The bounding plates at x = 0 and x = Lx

have opposite charge. The box encloses N = 600 ions, N+
= N− = 300. To check for the finite size effects, we double
the simulation size for some parameters. The standard Ewald
summation is applied for contributions of periodic images.32

If particles overlap, we supplement the interaction energy
with the term: β�Utot(r < 2R) = βU (rij ) − λB

rij
. (A physical

picture is slightly modified when doing simulations. In sim-
ulations we tend to think of particles as point charges which
at separations r < 2R switch to the non-Coulomb interactions
U(r). Within the mean-field theory based on the Poisson equa-
tion, we tend to think of an ion as a charged ball. The two
conceptions are, however, identical.)

Figure 7 compares counterion profiles obtained from the
simulation and the FSPB equation. For R = 0.8 nm the agree-
ment is virtually exact. For the smaller radius R = 0.1 nm
we see the two results deviate: in the simulation, the correla-
tions generate a more concentrated layer of counterions (but
no overcharging). In Fig. 8, we plot the coion density profile
for R = 0.8 nm to further confirm the accuracy of the mean-
field in this regime.

What causes charge reversal for smeared-out ions? Do
counterions merely penetrate or the pair potential is suffi-
ciently flat in the overlap region and counterions collapse into
stacked formations, so that the pair correlation function ex-
hibits positive peak as r → 0? In Fig. 9, we show the con-
figuration snapshots for counterions adsorbed on a charged
surface for different values of R. The difference in structure is

0.001 0.01 0.1 1
x[nm]

1

10

ρ −
[n

m
-3

]

R=0.1 nm
R=0.8 nm

FIG. 7. Counterion density profiles. The system parameters are:
λGC = 0.09 nm and λB = 0.72 nm. The symbols designate the simu-
lation data points and the lines are the numerical results for the FSPB
equation.

perceptible. Ionic penetration favors smaller separations be-
tween counterions. This gives the impression of string-like
formations. As mentioned in the introduction, not all pen-
etrable potentials can lead to stacked configurations, where
two or more particles occupy “the same” space. For example,
the Gaussian core model precludes,39, 40 while the penetrable
sphere model favors the stacked configurations.14, 15 Stable
stacked aggregates require that a pair potential be sufficiently
flat. A more rigorous test involves the Fourier transform of
the pair interaction. If U(k) oscillates, and, therefore, involves
negative values, then the stacking takes place under certain
conditions.12 On the other hand, if U(k) is non-negative, stack-
ing does not occur under any conditions. This criterion is ar-
rived at by considering the Ornstein-Zernike relation which,
in the Fourier space, is

h(k) = c(k)

1 − ρc(k)
, (29)

where c(r) and h(r) are the direct and pair correlation func-
tions, respectively. In the mean-field approximation cMF(r)
≈−βU(r) [the exact definition is c(r) = − δ2βFex

δρ(r)δρ(r′) , and in the

0 1 2
x[nm]

0

0.2

0.4

ρ +
[n

m
-3

]

FIG. 8. The coion density profile for R = 0.8 nm obtained from the simula-
tion (symbols) and the FSPB equation (solid line). The remaining parameters
are as in Fig. 7.
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FIG. 9. Configuration snapshot of counterions adsorbed on the charged wall
at x < 0.35 nm. The diameter of particles is σ = 0.5 nm and is selected ar-
bitrarily for visualization. The configuration on left is for R/λB = 0.14 and
the one on the right is for R/λB = 1.1. The 2D densities are ρ2d = 2.34 nm−2

and ρ2d = 2.68 nm−2, respectively. For comparison, the surface charge den-
sity is σ c = 2.50 nm−2. The system parameters are as in Fig. 7.

mean-field Fex is the first term in Eq. (8)], so that

hMF = − βU (k)

1 + ρβU (k)
. (30)

If we take h(r = 0) > 0 to be the signature of stacking, and

hMF(0) = − 1

2π2

∫ ∞

0
dk

βU (k)k2

1 + ρβU (k)
, (31)

then it becomes immediately clear that a non-negative U(k)
always yields hMF(0) < 0, and no stacking occurs. Only an
oscillating U(k) can yield hMF > 0. In the present model par-
ticles are smeared-out charges,

βU (k) = 4πλBω2(k)

k2
, (32)

hMF(0) = − 1

2π2

∫ ∞

0
dk

4πλBω2(k)k2

k2 + 4πλBρω2(k)
. (33)

We see that h(r = 0) < 0 regardless of the distribution
ω(r). We conclude that soft interactions generated by charge
spreading cannot lead to stacked configurations.

In Fig. 10, we show the lateral correlation function for the
adsorbed counterions, h‖(r). Penetration reduces the degree

0 0.5
r[nm]

-1

-0.5

0

h |
|(r

)

R=0.1nm (sphere)
R=0.8nm (sphere)
R=0.8nm (shell)

FIG. 10. Correlation function for counterions in the lateral plane adjacent to
the wall. The layer thickness is 0.35 nm. The remaining parameters are the
same as in Fig. 7. The dashed lines guide the eye.

0 0.5
r[nm]

0

1

2

3

pr
ob

ab
il

it
y

sphere
shell
Gaussian

FIG. 11. The nearest neighbor separation distribution for different ω(r) func-
tions. R = 0.8 nm and the same parameters as in Fig. 7.

of electrostatic correlations between the ions, however, h‖(r)
always remains negative and decreases monotonically all the
way to r = 0. The small difference between the shell and the
sphere distributions indicates that the exact shape of the pair
potential is unimportant.

In Fig. 11 we show the probability distribution of the
nearest neighbor separation for various ω(r) functions. Dif-
ferences are rather small and only quantitative. The Gaussian
ω(r) shows preference for smaller interionic separation.

Finally, we explore the validity of the mean-field for mul-
tivalent symmetric ions, Z > 1. We suppose that the mean-
field should deteriorate quickly for Z > 1 since the coupling
constant � ∼ Z3. Figure 12 shows the counterion density pro-
files for Z = 2, 3. For Z = 2 the mean-field is virtually ex-
act and for Z = 3 there are small deviations. This surpris-
ing agreement can be explained with the following. Increas-
ing Z naturally reduces the number of counterions required
to neutralize the wall. On the other hand, a larger Z gener-
ates stronger overcharging, so the density drop is partially
compensated. The number of overlapping configurations is
still large and the mean-field retains its validity. To confirm
this conjecture, we check the 2D density of the counterions
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x[nm]
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1
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ρ −
[n

m
-3

]

R/λB=1.1

Z=2

Z=3

FIG. 12. Counterion distribution function for symmetric solution with ion
charge ±eZ. The remaining parameters are the same as in Fig. 7. The circles
are the simulation data points and the lines are obtained from the FSPB.



174901-7 D. Frydel and Y. Levin J. Chem. Phys. 138, 174901 (2013)

adsorbed on the charged wall. For Z = 3, we find R2ρ2D ≈
1.2 > 1. The overlapping configurations are, therefore, still
significant.

VI. DISCUSSION

For overcharging to occur, there must exist a mechanism
that either reduces the free energy of counterions condensed
on a charged surface (it becomes favorable for a counterion to
leave its bulk environment) or increases the free energy of a
bulk (it becomes less favorable for ions to stay in the bulk). It
is the exchange between the two environments, the bulk and
the double-layer, that leads to overcharging. We consider the
environment of a charged surface with its adsorbed counte-
rions and consider the conditions that lead to lowering of its
energy. The surface charge of a plate is σ c. We do not violate
the condition of neutrality, thus the 2D density of adsorbed
counterions is σ c/Z. We focus on the energy of a single coun-
terion. For sake of simplicity, we assume counterions and the
charged wall occupy the same plane. An attraction to the wall
yields a negative energy contribution,

βEwall = lim
rc→∞

[
− 2π

∫ rc

0
dr r

ZλBσc

r

]

= lim
rc→∞[−2πZλBσcrc], (34)

which is countered by the repulsive interactions with other
counterions,

βEint = lim
rc→∞

[
2π

∫ rc

0
dr rg(r)

ZλBσc

r

]
, (35)

where g(r) is the pair distribution function. For absence of
correlations g(r) = 1, and the attractive contribution is com-
pletely canceled out,

βEint = lim
rc→∞[2πZλBσcrc]. (36)

But the cancellation will not be exact if correlations are
present. Separating correlations from the pair distribution
function, g(r) = 1 + h(r), the uncanceled correlation energy
is

βEcorr = 2πλBσc

∫ ∞

0
dr h(r). (37)

The relation between the correlation energy and the correla-
tion function is quite clear. An ion will generate a negative
correlation hole in its neighborhood, which will lead to neg-
ative energy contributions. We assume the following simple
correlation hole, h(r > ζ ) = 0 and h(r < ζ ) = −1, that is, by
fixing a position of an ion, we introduce a circular hole in the
density profile with the correlation length ζ . The conservation
of mass condition requires that an area of the hole is related
to the density via σ c/Z = 1/(πζ 2), therefore, the correlation
length is ζ = √

Z/(πσc). This correlation function is the low
temperature limit of the correlation hole obtained by construc-
tion from the linear mean-field treatment.41 Inserting this h(r)
into Eq. (37), we can approximate the correlation energy in
the strong-coupling limit,

βEcorr ≈ −2π1/2Z3/2λBσ 1/2
c . (38)

Recalling the definition of the coupling constant, �

= 2πZ3λ2
Bσc, we get

βEcorr ≈ −
√

2�. (39)

But for penetrable ions correlations are not required for
reducing the electrostatic energy of counterions—the fact
demonstrated by the validity of the mean-field theory. Conse-
quently, we set h(r) = 0. The reduction in electrostatic energy
comes from a different source, from the fact that at overlap-
ping separations, r < 2R, the electrostatic interactions are re-
duced on account of smearing procedure, which leads to the
energy gain,

βEoverlap ≈ 2π

∫ 2R

0
dr σcr

[
βU (r) − ZλB

r

]

= −CπZλBσcR, (40)

where the constant C depends on the pair potential U(r),
which, in turn, is determined by the distribution function ω(r).
For the distributions considered in this work: Csphere = 36/35,
Cshell = 4/3, and Cgauss = 2.06. Comparing Eq. (38) with
Eq. (40), we see the different dependence of each mechanism
on different parameters. The stabilization based on penetra-
tion has stronger dependence on the surface charge and the
Bjerrum constant, on the other hand, its dependence on va-
lency is weaker. In the strong-coupling limit, penetrable ions
will exhibit correlated motions. If the correlation length is
larger than the diameter of an ion,

√
Z/(πσc) > 2R, pene-

tration may be neglected and the former mechanism comes to
the fore. On the other hand, if

√
Z/(πσc) < 2R, we expect

the two contributions to mix.
To recap, both mechanisms depend on eliminating the

energy contributions coming from short separations between
ions. For point ions in the strong-coupling limit, configura-
tions with short separations are eliminated through correlated
motion. The price is sacrifice in entropy, despite this, the to-
tal free energy is lowered. For penetrable ions the problem of
high energy contributions at short separations does not exist
to begin with. Due to smearing out procedure of an ion charge
and the removal of the divergence from pair interactions, these
contributions are taken out of the picture. Consequently, there
is no entropy price to be paid, as all separations are explored
“equally” and the mechanism is valid in the weak-coupling
limit.

VII. CONCLUSION

The present work studies the structure of a double-layer
composed of ions whose central charge is smeared over a fi-
nite region in accordance with a weight function ω(r). The
smearing-out procedure removes the divergence as r → 0
from the pair interaction, allowing for interpenetration be-
tween the ions. The conditions under which penetration is
favored are large temperature and high density. This regime
is suitable for the mean-field treatment. Accordingly, we de-
rive a modified Poisson-Boltzmann equation for spread-out
charges (the FSPB equation). The FSPB equation predicts that
for sufficiently large spreading radius R, overcharging takes
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place—the MC simulations verify this prediction. This sug-
gests an alternative mechanism for charge reversal that is not
related to correlations and the strong-coupling limit.

Using simulations and the mean-field approximation, we
can exclude the ionic stacking as the underlying mechanism
of overcharging. In fact, any soft potential obtained by charge
spreading cannot lead to stacked configurations.

As a final consideration, we address the physical rele-
vance of the smeared-out ion model. The spreading-out of
the charge may capture the interactions between charges dis-
tributed along the polymer chains, but a more realistic rep-
resentation would involve a non-electrostatic component pro-
duced by the self-avoidance of the polymer chains. Within the
electrostatics framework, we have suggested a plausible dis-
tribution ω(r) composed of a charged shell and sphere, which
generates an additional repulsion inside a penetrable core. In
the end, however, a physically accurate pair potential requires
corroboration with experimental analysis.
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