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It is known that, in the presence of short memory components, the estimation 

of the fractional parameter d in an Autoregressive Fractionally Integrated 

Moving Average, ARFIMA(p, d, q), process leads to some difficulties (Smith 

et al. (1997)). In this paper, we continue the efforts made by Smith et al. 

(1997) by conducting a simulation study to evaluate the convergence prop­

erties of the iterative estimation procedure suggested by Hosking (1981 ). In 

this conteJ...'t we consider some semiparametric approaches and a paramet-

ric method proposed by Whittle (1953). We also investigate the method 

proposed by Robinson (1995a) and a modification using the smoothed peri­

odogram function. 

AMS Subject Classifications: 62M10, 62M15, 60G18. 

Keywords: Fractional differencing, long memory, smoothed periodogram 

regression, periodogram regression, Whittle maximum likelihood procedure. 
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1. Introd uction 

The autoregressive fractionally integrated moving average, ARFIMA(p, d, q), 

process has widely been used in different fields such as astronomy, hydrol­

ogy, mathematics and computer science, to represent a time series with long 

memory property (see Beran (1994) ). Recently a wide range of estimators for 

the fractional parameter d have appeared in the time series literature (see 

for instance, Hassler (1993), Reisen (1994), Chen et al. (1994), Robinson 

(1995a,b), Taqqu et al. (1995), Taqqu and Teverovsky (1996), Bisaglia and 

Guégan (1998), Hurvich et al. (1998), Hurvich and Deo (1999), and Velasco 

(1999)). These estimators can be categori7.ed into two groups - parametric 

and semiparametric methods. Within the first group the methods proposed 

by Fox and Taqqu (1986) and Sowell (1992), which involve the likelihood 

function, are the most common. In the latter, the most popular, usually 

referred to as the GPH method, was proposed by Geweke and Porter-Hudak 

(1983); more recently, a modified form ofthis, was given by Robinson (1995a). 

When dealing with the ARFIMA (p, d, q) model, all the parameters, including 

the autoregressive and moving average ones in addition to the differencing 

parameter, have to be estimated. These parameters can be simultaneously 

estimated in the parametric approach. In the semiparametric methods, the 

parameters are estimated in two steps: only d is estimated in the first step 

and the autoregressive and moving average parameters are estimated in the 

second step. 

Since Gaussian parametric estimates for long memory range dependent time 

series models have rigorously been justified by Fox and Taqqu (1986), Giraiti.s 
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and Surgailis (1990), Sowell (1992), Dahlhaus (1989) and others, they pro­

vide an attractive alternative to the semiparametric methods. However, the 

Gaussian parametric methods require a great deal of computation and appro­

priate software is not yet widely available, while the least squares methods 

(semiparametric procedures) are easy to implement . 

The main goal of this paper is to compare the performance of estimating all 

the parameters of an ARFIMA process based on the algorithm by Hosking 

(1981) with that o f the parametric Whittle estimator (Fox and Taqqu (1986)). 

For this analysis we consider severa} estimators of d which are summarized 

in Section 2. Section 3 describes the algorithm to estimate the parameters. 

Section 4 presents the results of a simulation study and Section 5 gives a 

summary and some concluding remarks. 

2. The ARFIMA(p,d,q) model 

We summarize now some results for the ARFIMA(p, d, q) model with empha­

sis on the estimation of the differencing parameter d. Consider the simple 

ARFIMA(p, d, q) model of the form 

<P(B) (1 - B)d Xt = G(B)Et, for d E ( - 0.5, 0.5), (2.1) 

where { Et} is a white noise process with E( Et) = O and variance a; and B is 

the back-shift operator such that BXt = Xt- l· 

The polynomials <P(B) = l - <hB- · · ·- <PPBP and G(B) = l - B1B - · · ·- BqBq 

have orders p and q respectively with all their roots outside the unit circle. 

In this paper we assume that { Xt} is a linear process without a deterministic 
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term. We now define Ut = (1 - B)dXt, so that {Ut} is an ARMA(p, q) process. 

The process defined in (2.1) is stationary and invertible (see Hosking (1981)) 

and its spectral density function, fx(w), is given by 

fx(w) = fu(w)(2sin(w/2)) - 2
d, w E [- 11,7r], (2.2) 

w here fu ( w) is the spectral densi ty function o f the process { Ut}. 

2.1. Estimation of d 

Now we consider five alternative estimators of the parameter d. Four of them 

are semiparametric and are based on regression equations constructed from 

the logarithm of the expression in (2.2) The other one is a parametric method 

proposed by Fox and Taqqu (1986) . The methods are summarized as follows: 

Periodogram Estimator (dp) 

The first one denoted by dp, and was proposed by Geweke and Porter-Hudak 

(1983) who used the periodogram function I(w) as an estimate ofthe spectral 

density function in expression (2.2). The number of observations in the 

regression equation is a function g(n) of the sample size n where g(n) = 

na, O< a< 1. 

Smoothed Periodogram Estimator (dsp) 

The second estimator, denoted by dsp in the sequel, was suggested by Reisen 

(1994). This regression estimator is obtained by replacing the spectral den-
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sity function in the expression (2.2) by the smoothed periodogram function 

with the Parzen lag window. In this method, g(n) is chosen as above and the 

truncation point in the Parzen lag window is m = nf3, O < (3 < 1. The ap­

propriate choice of a and (3 were investigated by Geweke and Porter-Hudak 

(1983) and Reisen (1994), respectively. 

Robinson Estimator (dpr) 

The third one is the periodogram estimator with mild modifications suggested 

by Robinson (1995a), denoted hereafter by dpr· This estimator is a modified 

form ofthe log-periodogram which regresses {lnJ(wi)} on ln(2sin(wd2)) 2
, 

for i = l, l + 1, · · ·, g(n), where l is the lovver truncation point which tends to 

infinity more slowly than g(n). Now g(n) takes a different form given by 

g(n) = ' T ' 

{ 

A(d r)n2:+1 O:::; d:::; 0.25 

A(d, r)nT+ 1-2d, 0.25 < d:::; 0.5 

where T and A(d, t) need to be chosen appropiately. Robinson (1995a) derived 

some asymptotic results for dpr, when d E ( - 0.5, 0.5), and shows that this 

estimator is asymptotically less efficient than a Gaussian maximum likelihood 

estimator of d. As mentioned by the author this estimator is not attractive 

for practical purposes since it depends on the unknown parameters. This 

problem could be turned around by replacing the unknown parameter d in 

the g( n) function by using a preliminary estima te, for instance, from the GPH 

method. The appropriate choice of the optimal g(n) have been the subject 

of rnany papers such as, Hurvich et al. (1998) and Hurvich and Deo (1999). 

The optimal g(n) in the sense of minimum mean squared errar is given by 
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g(n)(opt) = C nt, where C is a constant. They propose an estimator of C 

also based on a log-periodogram regression and derive its consistency and an 

asymptotical confidence interval for d when the number of frequencies used 

in the regression model is deterministic and proportional to n~. 

Robinson's estimator based on the smoothed periodogram ( dspr) 

We suggest, without any mathematical proof, the use of the smoothed peri­

odogram function, with the Parzen lag window, to replace the periodogram 

in the Robinson 's estima to r. The truncation point is the same as the one 

chosen for dsp and the number of observations in the regression equation is 

also the same as the one chosen for dpr. 

Whittle estimator (dw) 

The fifth estimator is a parametric procedure due to Whittle (1953) with 

modifications suggested by Fox and Taqqu (1986) and will be denoted here­

after by dw. The estimator dw is based on the periodogram and it involves 

the function 

11r I(w) 
Q(() = -1r fx(w, () d(, (2 .3) 

where fx ( w, () is the known spectral density function at frequency w and 

( denotes the vector of unknown parameters. The Whittle estimator is the 

value of ( which minimizes the function Q(·). For the ARFIMA (p, d, q) 

process the vector ( contains the parameter d and also ali the unknown 

autoregressive and moving average parameters. For more details see Fox 

and Taqqu (1986), Dahlhaus (1989) and Beran (1994). For computational 
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purposes the estimator dw is obtained by using the discret form of Q(·), as 

in Dahlhaus (1989, page 1753), that is, 

(2.4) 

Dahlhaus (1989) and Yajima (1985) have shown that the maximum likelihood 

estimator of d is strongly consistent, asymptotically normally distributed and 

asymptotically efficient in t he Fisher sense. 

3. Identification and Estimation of an ARFIMA (p,d,q) 

Model 

For the use of the regression techniques several steps are necessary to obtain 

an ARFIMA model for a set of time series data and these are given below 

(see Hosking (1981) and Brockwell and Davis (1991)). 

Let { Xt} be the process as defined in ( 2.1). Then Ut = (1 - B)d Xt is an 

ARMA(p, q) process and yt = :~~~Xt is an ARFIMA(O, d, O) process. 

Model Building Steps: 

1. Estimate d in the ARIMA(p, d, q) model; denote the estimate by d. 

2. Calculate Ut = (1 - B)d Xt . 

3. Using Box-Jenkins modelling procedure (see Box and Jenkins (1976)) 

(or the AIC criterion, Akaike (1973)) identify and estimate <P and () 

parameters in the ARMA(p, q) process 1J(B)Ut = ()(B)Et-

A - ~(R) 
4. Calculate yt - ê(R) Xt. 
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5. Estimate d in the ARFIMA(O, d, O) model (1 - B)dft = Et· The value 

of d obtained in this step is now the new estimate of d. 

6. Repeat steps 2 to 5, until the estimates of the parameters d, lj; and e 
converge. 

In this algorithm, to estimate d 'Ne use the regression methods described in 

Section 2. It should be noted that usually only one iteration with Steps 1-3 

is used to obtain a model (se e, for instance, Brockwell and Da vis (1991)). 

Related to Step 3, it has widely been discussed that the bias in the estimator 

of d can lead to the problem of identifying the short-memory parameters. 

This issue has been investigated by Schmidt and Tschernig (1993), Crato 

and Ray (1996) and, recently, by Smith et al. (1997) and Reisen and Lopes 

(1999). In this paper we assume that the true model is known and only the 

parameters need to be estimated. 

4. Simulation Study 

Now we investigate, by simulation experiments, the convergence of the iter­

ative method of model estimation shown in Section 3. In this study, obser­

vations from the ARFIMA(p, d, q) process are generated using the method 

described in Hosking (1984) where the random variables Et are assumed to 

be identically and independently normally distributed as N(O, 1.0) obtained 

from the subroutine RNNOR in the IMSL - Library. For the estimators 

dP and dsp, we use g( n) = n°·5 and m = n°·9 ( the truncation point in the 

Parzen lag window), as suggested in Geweke and Porter-Hudak (1983) and 
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Reisen (1994), respectively. In the case of Robinson's estimator we use l = 2, 

T = 0.5 and A(d, r) = 1.0. The respective numbers of observations involved 

in the regression equations are given in the tables. Three models are consid­

ered: ARFIMA(O, d, 0), ARFIMA(1, d, O) and ARFIMA(O, d, 1) . ARFIMA 

(0, d, O) model is included here to verify the finite sample behaviour and also 

the performance of the smoothed periodogram function in the Robinson's 

method. 

A Monte Carlo study analy7.ing the behaviour o f the finite sample efficiency o f 

the maximum likelihood estimators using an approximate frequency-domain 

(Fox and Taqqu (1986)) and the exat time-domain (Sowell (1992)) approaches 

may be found in Cheung and Diebold (1994). 

In the Whittle method, the parameters of the process are estimated simul­

taneously by the use of the su broutine BCONF in the IMSL - Library. In 

the case of the semiparametric methods, the autoregressive and moving av­

erage parameters are estimated by using the subroutine NSLE in the IMSL 

- Library, after the time series has been differentiated by the estimate of d. 

As mentioned in the previous section , in our simulation, we assume that the 

true model is known and only the parameters need to be estimated. The 

results for all estimation procedures are based on the same 500 replications. 

ARFIMA(O, d, O) : 

INSERT TABLE 4.1 ABOUT HERE 

Table 4.1, gives the mean value E(d), the standard deviation (sd, in parenthe­

sis), the bias (d), the mean squared error (mse), and the values of g(n) (the 
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upper limit of the frequencies involved in the semiparametric approaches). 

As expected, the Whittle's method for estimating d is more accurate than the 

other methods. Nevertheless, the other methods give good results as well. 

The results get better when the sample size increases. For the Robinson 

methods, the choice of the number of frequencies is crucial for estimating d. 
~ ~ 

For d = 0.2, dpr and dspr have bigger mean squared errors compareci to the 

other methods. In this case, the regression is built from l = 2, · · · , g( n), that 
~ ~ 

is, less observations are used to obtain dpr and dspr· For d = 0.3 and 0.45, both 

estimators improve with smaller bias and mean squared errar. For d = 0.45 
~ ~ 

they are very competitive to the Whittle's estimator. dspr dominates dpr and 

dsp outperform dP in terms of mean squared errar. 

ARFIMA (p, d, q) MODELS: 

These models contain short memory components and the estimation of all pa­

rameters is the goal. Thus, the long memory parameter d is estimated taking 

into account the additional uncertainty due to the contemporary estimation 

of the autoregressive or moving average parameters. 

Following the procedure described in Section 3, for each d, </J and () we gen­

erate a time series of size n = 300, estimate the fractional parameter d and 

then obtain Ut = (1 - B)d Xt (see Step 2 in Section 3) from which the autore-

gressive or the moving average coefficient estimate is obtained as in Step 3. 

Then we obtain ft = (J(B)/Ô(B))Xt which is an ARFIMA(O,d,O) process 

and use it to estimate d. Steps 2-5 are repeated until the values of (d, J, ê) 

do not change much from one iteration to the next. In each iteration d is 
..... ~ ..... ..... 

estimated using dp, dsp, dpr and dspr· This procedure is repeated 500 times. 
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In each replication, the maximum number of iteration is fixed at 20. An 

extensive simulation study was performed considering different values of d, <P 

and () with p = q = O, 1. However, we only present some of them here since 

the pattern is the same for the other cases. 

The results are shown in Tables 4.2 to 4.15. The first part of the tables 

gives the results corresponding to the first iteration . These are the average 

o f d, (E ( d)), bias, sd, mean squared erro r ( mse), the average o f the coefficient 

estimate (E(J) or E(Ô)), bias in the coefficient estimate and the sd of the 

coefficient obtained from the first iteration over the 500 replications. The 

second part of the tables gives the value of li, the maximum iteration to 

obtain the convergence, and the corresponding estimation results as in part 

one. Note that, in the second part of the table, there are no results for the 

Whittle's method. 

From the results we can discuss the following issues: 

1. The number of iterations (li) needed to obtain convergence for the 

estimates. 

11. The impact of the values of d, </J, () for convergence. The convergence 

of the parameter estimates to the true values. 

m. The behaviour of the estimators ~' dsp, dpr, dspr and dw . 

1v. The comparison between parametric and semiparametric methods. 

ARFIMA (1, d, 0) : 

TABLES 4.2 to 4.9 ABOUT HERE 
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Tables 4.2 to 4.9 present the results corresponding to d = 0.2, 0.45 and 

tjJ = - 0.6, - 0.2, 0.2, 0.6. We summarize the findings as follows: 

1. The number of iterations to stabilize the estimates increases with tjJ 

and d, and its value is larger when tjJ is positive. In most of the cases 

considered here, the estimates of d and tjJ obtained in the first itera­

tion (steps 1-3) are very good. The iterative method has not shown 

a substantial improvement in the estimation of the parameters. The 

computational effort involved in the procedure is not simple and the 

problem of arder identification ·when the time series is differenciated 

many times must be considered. In certain cases there were difficulties 

to achieve convergence of the parameters, especially for those closer 

to the non-stationary boundary in the Robinson's method. Thus, we 

feel that only one iteration ( steps 1-3) is needed in the model building 

algorithm described in Section 3. We also computed the averages of 

the standard deviations calculated from the estimates in the 20 iter­

ations in each replication (the results are not presented here) . These 

values are very small and they indicate that the changes in the values of 

the estimates from iteration to iteration are very small. This confirms 

our earlier assertion that estimates from the first iteration would be 

sufficient for practical purposes. 

11. The estimation of AR coefficients do impact the estimation of d and 

also the iterative procedure in section 3. When tjJ goes from -:0.2 to 

-0.6 the biases in d seem to decrease slightly. However, when tjJ > O 

biases of all the estimators of d increase with tjJ. When ltfJI = .6 the 
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biases in all estimators o f d are large ( except for dsp), so are the biases 

in the estimators of cjJ but in the opposite ciirection. This inciicates 

that the bias in d is being compensateci by the bias in J. When cjJ 

is negative the estimates of the parameters are typically better be­

haveci than in the positive case. Also, the number of iterations neecieci 

to attain the convergence is smaller (com pare, for instance, the cases 

ARFIMA(1, 0.45, O) when cjJ = - 0.6 anci cjJ = 0.6). 

m. dsp has smaller mean squareci errar anci, in general, also has smaller 

bias compareci to the other regression estimators. When cjJ is nega-
..... "' ,..... ..... 

tive, dsp uncierestimates d while dp, dpr anci dspr overestimates d most 
A A 

of the time except when, d = 0.45 where dpr anci dsp1· uncierestimate 

the true value. dsp, anci its corresponciing c/J, move more rapicily to 
A A 

true values compareci to dp, anci its corresponciing c/J. Also, as ex-

pecteci, s.ci .(dsp) < s.ci.(dp)· It shoulci also be noteci that the simulateci 

stanciarci cieviations are dose to the asymptotic values. For instance, 

when d = 0.45 anci cjJ = 0.2 the simulateci stanciarci cieviations for dsp 

anci dp are 0.0725 anci 0.1231, respectively, while the asymptotic val­

ues are 0.0876 anci 0.2018, respectively. It is clear that the biases of 

dpr anci dspr are more pronounceci than those of the usual dP anci dsp 

estimators. The first two methocis involve more frequencies in the re­

gression equation anci this yielcis estimates with large bias anci large 

mean squareci errar, specially when cjJ is positive anci d is large. This 

may be causeci by the fact that the AR component enlarges the value 

of the spectral ciensity function. The results are different from the ones 
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in the ARFIMA(O, d, O) model. dspr has a smaller mean squared error 

compared with dpr as expected since the spectral density function is 

estimated by the smoothed periodogram function . 

1v. For large and positive c/J, the semiparametric methods, especially the 

smoothed periodogram performs better than the Vvhittle's method 

which improves when cjJ is negative but not in all cases, only for the AR 

values not closer to the non-stationary boundary. We also note that, if 

the order of the process is not correct, this estimator gives inconsistent 

estimates for the parameters. 

ARFIMA(O, d, 1) : 

TABLES 4.10 to 4.15 HERE 

Simulation results for the ARFIMA(O, d, 1) processare given in Tables 4.10 to 

4.15. We considered several values of e. Howe·ver, we present the results only 

for d = 0.3 and e = - 0.3, 0.3 and for d = 0.45 and e = - 0.6, - 0.3, 0.3, 0.6 

since the pattern is similar for other cases. 

When e goes from -.6 to -.3 the biases in the estimator of d decrease and when 

e is positive the biases increase with e but in the opposite direction. These 

results are opposite to the ones obtained in the ARFIMA(1, d, O) model. 

The estimator dsp outperforms the other methods including the Whittle's 

estimator dw. 

As in the ARFIMA(1, d, O) model, dP and dsp need only small number of iter­

ations to achieve convergence with the latter requiring the smallest number 
A A 

of iterations. Results for the estimators dpr and dspr are not very good. If 
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( . we consider only one iteration then, in general, the two regression estimators 
~ ~ 

perform much better than dpr anddspr· 

We also encountered some convergence difficulties for the Robinson's estima­

tor dpr especially for positive and large values of e. In most of the cases, the 

least squares estimation of the parameters failed to converge. Both dpr and 

dspr estimators, have very large sample variances. Extensive computational 

efforts were necessary to obtain 500 successfull replications with a maximum 

of 20 iterations in each. 

5. Summary and Concluding Remarks 

In this paper we considered a simulation study to evaluate the procedures for 

estimating the parameters of an ARFIMA process. We considered both para­

metric and semiparametric methods and also use the smoothed periodogram 

function in the modified regression estimator. The results indicate that the 

regression methods outperforms the parametric Whittle's method when AR 

or MA components are involved. Performance of the Robinson estimator 

usually is not as good as the other semiparametric methods; it has large 

bias, standard deviation, and mean squared errar. The use of the smoothed 

periodogram in Robinson's method improves the estimates, however, the re­

sults are still not as good as the usual regression methods. The results also 

indicate that the estimates from the first iteration (steps 1-3) are sufficient 

for practical purposes. 
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Table 4.1: Estimation of d: ARFIMA (O,d,O) 
Whittle Smoothed Periodogram Robinson Robinson 

dw Periodogram dp Sm. Perio. Periodogram 

dsp dspr dpr 

0.1983 0.1396 0.2110 0.2153 0.2252 
(0.0749) (0.1915) (0.2470) (0.2862) (0.4289) 
0.0017 0.0604 -0.0110 -0.0153 -0.0252 
0.0056 0.0402 0.0610 0.0819 0.1841 

12 12 

0.3073 0.2361 0.3248 0.3245 0.3263 
(0.0719) (0.1957) (0.2612) (0.2299) (0.0321) 
-0.0073 0.0639 -0.0248 -0.0299 -0.0263 
0.0025 0.0423 0.0687 0.0533 0.1035 

16 16 

0.4768 0.3724 0.4500 0.4653 0.4615 
(0.0379) (0.1879) (0.2275) (0.0828) (0.1108) 
-0.0268 0.0776 0.0 -0.0153 -0.0115 
0.0021 0.0412 0.0516 0.0071 0.0124 

65 65 

0.2033 0.1562 0.2018 0.2175 0.2075 
(0.0494) (0.1501) (0.1970) (0.2160) (0.3088) 
-0.0033 0.0438 -0.0018 -0.0160 -0.0075 
0.0024 0.0244 0.0387 0.0468 0.0952 

17 17 

0.3006 0.2491 0.3010 0.3113 0.3036 
(0.0478) (0 .1499) (0.1871) (0.1734) (0.2481) 
-0.0006 0.0509 -0.0010 -0.0113 -0.0036 
0.0022 0.0250 0.0349 0.0301 0.0614 

23 23 

0.4721 0.4020 0.4594 0.4593 0.4556 
(0.0351) (0.1631) (0.2040) (0.0646) (0.0835) 
-0.0221 0.0480 -0.0094 0.0093 -0.0056 
0.0017 0.0218 0.0416 0.0043 0.007 
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Table 4.2: Estimation for d = 0.2: ARFIMA(l,d,O), 4J = -0.6 

d = 0.2 4J = -0.6 

~ Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 17 

E(di) 0.2440 0.1886 0.2413 0.2340 0.1883 

bias( di) -0.0440 0.0114 -0.0413 -0.0340 0.0117 

sd(di) 0.1274 0.0723 0.2172 0.1092 0.0586 

mse(di) 0.0181 0.0054 0.0488 0.0131 0.0036 

E( </Ji) -0.6020 -0.5818 -0.5656 -0.5995 -0.5958 

bias( cPi) 0.0020 -0.0182 -0.0344 -0.0005 -0.0042 

sd( cPi) 0.0804 0.0666 0.1973 0.0772 0.0640 

li 3 3 6 3 -

E(di) 0.2485 0.1934 0.2450 0.2407 -

bias( di) -0.0485 0.0066 -0.0450 -0.0407 -

sd(d;) 0.1262 0.0726 0.2269 0.1098 -

E(<f;i) -0.6044 -0.5843 -0.5688 -0.6027 -

bias( <Pi) 0.0044 -0.0157 -0.0312 0.0027 -

sd( <Pi) 0.0804 0.0660 0.2028 0.0764 -
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Table 4.3: Estimation for d = 0.2: ARFIMA(l,d,O), cf; = -0.2 

d = 0.2 q; = -0.2 

'/, Periodogram Smoothed Robinson Robinson Whittle 
Peridogram Smoothed 

g(n) = 17 g(n) = 17 

E(di) 0.2507 0.1950 0.2511 0.2450 0.1902 

bias( di) -0 .0507 0.0050 -0.0511 -0.0450 0.0098 

sd(di) 0.1269 0.0734 0.2094 0.1103 0.0734 

mse(di) 0.0186 0.0054 0.0464 0.0142 0.0055 

E( cj;i) -0.2245 -0.1875 -0.1935 -0.2232 -0.1913 

bias( cPi) 0.0245 -0.0125 -0.0065 0.0232 -0.0087 

sd( cPi) 0.1233 0.0917 0.2342 0.1156 0.0911 

li 2 2 7 2 -

E(d';) 0.2534 0.1977 0.2386 0.2490 -

bias(di) - 0.0534 0.0023 -0.0386 -0.0490 -

sd(di) 0.1290 0.0743 0.2695 0.1119 -

E( cf;i) -0.2262 -0.1898 -0.1856 -0.2261 -

bias( cj;i) 0.0262 -0.0102 -0.0144 0.0261 -

sd( cj;i) 0.1252 0.0924 0.2692 0.1170 -

2 



( 

( 

( 

( 

I 

II 

Table 4.4: Estimation for d = 0.2: ARFIMA(l,d,O), <P = 0.2 

d = 0.2 <P = 0.2 

~ Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 17 

E(di) 0.2568 0.1942 0.2610 0.2428 0.1762 

bias( di) -0.0568 0.0058 -0.0610 -0.0428 0.0238 

sd(di) 0.1268 0.0683 0.1984 0.1034 0.1295 

mse(di) 0.0193 0.0047 0.0430 0.0125 0.0173 

E( <Pi) 0.1530 0.2093 0.1633 0.1623 0.2177 

bias( <Pi) 0.0470 -0.0093 0.0367 0.0377 -0.0177 

sd( <Pi) 0.1384 0.0941 0.2126 0.1206 0.1394 

li 6 3 6 6 -

E(d';) 0.2496 0.1854 0.2103 0.2329 -

bias( di) -0.0496 0.0146 -0.0103 -0.0329 -

sd(d;) 0.1340 0.0729 0.3221 0.1131 -

E(<f;i) 0.1615 0.2194 0.1965 0.1739 -

bias( <Pi) 0.0385 -0.0194 0.0035 0.0261 -

sd( <Pi) 0.1484 0.1017 0.2759 0.1354 -
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Table 4.5: Estimation for d = 0.2: ARFIMA(I,d,O), 4; = 0.6 

d = 0.2 q; = 0.6 

2 Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 17 

E(di) 0.3374 0.2650 0.3888 0.3476 0.5159 

bias( di) -0.1374 -0.0650 -0.1888 -0.1476 -0.3159 

sd(di) 0.0945 0.0517 0.1718 0.0887 0.3609 

mse(di) 0.0278 0.0069 0.0651 0.0296 0.2298 

E( c/Ji) 0.4468 0.5167 0.3986 0.4357 0.3080 

bias( c/Ji) 0.1532 0.0833 0.2014 0.1643 0.2920 

sd( c/Ji) 0.0996 0.0595 0.1646 0.0897 0.1838 

li 15 15 16 16 -

E(di) 0.2914 0.1981 0.2214 0.2696 -

bias(di) -0.0914 0.0019 -0.0214 -0.0696 -

sd(d;) 0.1234 0.0742 0.4381 0.1957 -

E(c/Ji) 0.4907 0.5811 0.4858 0.4986 -

bias( c/Ji) 0.1093 0.0189 0.1142 0.1014 -

sd( c/Ji) 0.1271 0.0850 0.2676 0.1414 -
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Table 4.6: Estimation for d = 0.45: ARFIMA(1,d,O), cfy = -0.6 

d = 0.45 cP = -0.6 

z Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 115 

E(di) 0.5184 0.4457 0.2357 0.2411 0.5273 

bias( di) -0.0684 0.0043 0.2144 0.2089 -0.0773 
I sd(di) 0.1254 0.0759 0.0765 0.0560 0.0734 

mse( di) 0.0204 0.0058 0.0518 0.0469 0.1134 

E( cPi) -0.6124 -0.5833 -0.3717 -0.3908 -0.7098 

bias( cPi) 0.0124 -0.0167 -0.2283 -0.2092 0.1098 

sd( cPi) 0.0905 0.0698 0.1515 0.1147 0.1695 

li 3 3 10 10 -

E(di) 0.5241 0.4505 0.4282 0.4308 -

bias(di) -0.0741 -0.0005 0.0219 -0.0031 -

II sd(di) 0.1241 0.0764 0.2109 0.1346 -

E(cjyi) -0.6154 -0.5861 -0.5457 -0.5809 -

bias( cjyi) 0.0154 -0.0139 -0.0543 -0.0191 -

sd( cjyi) 0.0882 0.0690 0.2903 0.1871 -
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Table 4.7: Estimation for d = 0.45: ARFIMA(l,d,O), cjy = -0.2 

d = 0.45 cP = -0.2 

z Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 115 

E(di) 0.5123 0.4449 0.3616 0.3679 0.5230 

bias( di) -0.0623 0.0051 0.0884 0.0821 -0.0730 

I sd(di) 0.1296 0.0739 0.0747 0.0563 0.0800 

mse( di) 0.0206 0.0055 0.0134 0.0099 0.0117 

E( cPi) -0.2234 -0 .1773 -0.0848 -0.0981 -0.2568 

bias( cPi) 0.0234 -0.0227 -0.1152 -0.1019 0.0568 

sd( cPi) 0.1389 0.0981 0.0993 0.0711 0.0815 

li 5 3 9 4 -

E(di) 0.5154 0.4475 0.3308 0.4459 -

bias(di) -0.0654 0.0025 0.1192 0.0041 -

II sd(di) 0.1310 0.0750 0.3850 0.1333 -

E( c/Y;) -0.2254 -0.1796 -0.0446 -0.1695 -

bias( cjyi) 0.0254 -0.0204 -0.1554 -0.0305 -

sd( cjyi) 0.1410 0.0997 0.4273 0.1960 -
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Table 4.8: Estimation for d = 0.45: ARFIMA(1,d,O), <P = 0.2 

d = 0.45 <P = 0.2 

z Periodogram Smoothed Robinson Robinson \iVhittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 115 

E(di) 0.5097 0.4491 0.5928 0.5958 0.6362 

bias( di) -0.0597 0.0009 -0.1428 -0.1458 -0.1862 
sd(di) 0.1231 0.0725 0.0741 0.0579 0.1471 

mse(di) 0.0187 0.0052 0.0259 0.0246 0.0562 

E( </Yi) 0.1552 0.2139 0.0642 0.0601 0.0376 

bias( <Pi) 0.0448 -0.0139 0.1358 0.1399 0.1624 

sd( <Pi) 0.1426 0.1005 0.0654 0.0503 0.1322 

li 8 6 10 10 -

E(di) 0.5009 0.4393 0.3581 0.4118 -

bias(di) -0.0510 0.0107 0.0919 0.0382 - · 

sd(di) 0.1318 0.0781 0.3690 0.2923 -

E(<Pi) 0.1664 0.2266 0.3026 0.2500 -

bias( <Pi) 0.0336 -0.0266 -0.1026 -0.0500 -

sd( <Pi) 0.1573 0.1123 0.3627 0.3062 -

7 



( 

( 

( 

( . 

I 

II 

Table 4.9: Estimation for d = 0.45: ARFIMA(1,d,O), <P = 0.6 

d = 0.45 <P = 0.6 

~ Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 115 

E(di) 0.5968 0.5201 0.9257 0.9280 0.8140 

bias( di) -0.1468 -0 .0701 -0.4757 -0.4780 -0.3640 

sd(di) 0.0942 0.0520 0.0716 0.0520 0.1020 

mse(di) 0.0304 0.0076 0.2314 0.2312 0.1427 

E( cPi) 0.4417 0.5178 0.1383 0.1353 0.2520 

bias( cPi) 0.1583 0.0822 0.4617 0.4647 0.3480 

sd ( cPi) 0.0930 0.0553 0.0631 0.4800 0.1195 

li 18 18 18 18 -

E(d;) 0.5561 0.4520 0.5228 0.6013 -

bias(d;) -0.1061 -0.0020 -0.0728 -0.1513 -

sd(d;) 0.1217 0.0729 0.3789 0.2700 -

E( <Pi) 0.4817 0.5869 0.4857 0.4233 -

bias( <Pi) 0.1183 0.0131 0.1143 0.1767 -

sd( <Pi) 0.1201 0.0804 0.3249 0.2489 -
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'l"'able 4.10: Estimation for d = 0.3: ARFIMA(O,d,I), e = -0.3 

d = 0.3 e= -0.3 

z Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n)=17 g(n) = 23 

E(di) 0.3458 0.2962 0.3528 0.3501 0.3153 

bias( di) -0.0458 0.0038 -0.0528 -0.0501 -0.0153 
I sd(di) 0.1315 0.0761 0.1967 0.1234 0.0059 

mse(di) 0.0193 0.0058 0.0413 0.0177 0.0037 
E(ei) -0.2624 -0.3046 -0.2519 -0.2571 -0.2897 

bias(ei) -0.0376 0.0046 -0.0481 -0.0429 -0.0103 

sd( ei) 0.1270 0.0903 0.1844 0.1262 0.0763 

li 3 3 15 3 -

E(di) 0.3423 0.2922 0.3466 0.3427 -

bias( di) -0.0423 0.0078 -0.0466 -0.0427 -

li sd(di) 0.1324 0.0767 0.2044 0.1258 -

E(ei) -0.2652 -0.3078 -0.2559 -0.2632 -

bias(e;) -0.0348 0.0078 -0.0441 -0.0368 -

sd(ei) 0.1277 0.0907 0.1957 0.1282 -

1 



~ 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

( 

I 

II 

Table 4.11: Estimation for d = 0.3: ARFIMA(O,d,1), e = 0.3 

d = 0.3 e= o.3 

"1. Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 23 

E(di) 0.3409 0.2788 0.2581 0.2804 0.3385 

bias( di) -0.0408 0.0212 0.0419 0.0196 -0.0385 

sd(di) 0.0999 0.0686 0.1544 0.1005 0.1018 

mse(di) 0.0116 0.0051 0.0255 0.0104 0.0118 
E(Bi) 0.3365 0.2703 0.2422 0.2704 0.3288 

bias(Bi) -0.0365 0.0297 0.0578 0.0296 -0.0288 

sd(Bi) 0.1242 0.0898 0.1801 0.1168 0.1154 

li 10 6 15 15 -

E(di) 0.3638 0.2924 0.2989 0.3186 -

bias(d;) -0.0638 0.0076 0.0010 -0.0186 -

sd(d;) 0.1149 0.0755 0.1981 0.1337 -

E(Bi) 0.3607 0.2851 0.2826 0.3097 -

bias(e;) -0.0607 0.0149 0.0174 -0.0097 -

sd(Bi) 0.1410 0.0987 0.2171 0.1485 -
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Table 4.12: Estimation for d = 0.45: ARFIMA(O,d,1), e = -0.6 

d = 0.45 e= -0.6 

'l Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n)=17 g(n) = 115 

E(di) 0.5205 0.4519 0.6780 0.6838 0.7539 

bias( di) -0.0705 -0.0019 -0.2281 -0.2338 -0.3039 

I sd(di) 0.1325 0.0724 0.0739 0.0559 0.3625 

mse(di) 0.0225 0.0052 0.0575 0.0578 0.2234 
E(ei) -0.5653 -0.6047 -0.4750 -0.4716 -0.2529 

bias( e i) -0.0347 0.0047 -0.1250 -0.1284 -0.3461 

sd( ei) 0.0981 0.0625 0.0746 0.0703 0.4793 

li 3 3 7 8 -

E(di) 0.5149 0.4456 0.4491 0.4555 -

bias(di) -0.0649 0.0044 0.0009 -0.0055 -

II sd(d;) 0.1323 0.0730 0.0826 0.0627 -

E(Bi) -0.5681 -0.6082 -0.6067 -0.6028 -

bias(ei) -0.0319 0.0082 0.0067 0.0028 -

sd(B;) 0.0980 0.0626 0.0674 0.0608 -
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Table 4.13: Estimation for d = 0.45: ARFIMA(O,d,l), e = -0.3 

í d = 0.45 e= -0.3 

't Periodogram Smoothed Robinson Robinson Whittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 115 

E(di) 0.5081 0.4506 0.5996 0.6032 0.8608 

bias(dd -0.0581 -0.0006 -0.1496 -0.1532 -0.4108 

I sd(di) 0.1294 0.0761 0.0777 0.0561 0.3916 

mse(di) 0.0201 0.0058 0.0284 0.0266 0.3218 

E(()i) -0.2518 -0.3032 -0.1757 -0.1728 -0.1699 
bias(()i) -0.0482 0.0032 -0.1243 -0.1272 -0.1301 
sd(()i) 0.1302 0.0868 0.0754 0.0641 0.4559 

li 4 3 9 8 -

E(dt) 0.5039 0.4465 0.4621 0.4668 -

bias(dt) -0.0539 0.0035 -0.0121 -0.0168 -

II sd(d:) 0.1318 0.0764 0.1079 0.0763 -

E(Bi) -0.2555 -0.3068 -0.2954 0.2911 -

bias(B;) -0.0445 0.0068 -0.0046 -0.0089 -

sd(()i) 0.1330 0.0876 0.1101 0.0915 -
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Table 4.14: Estimation for d = 0.45: ARFIMA(O,d,1), e = 0.3 

d = 0.45 e= o.3 

2 Periodogram Smoothed Robinson Robinson vVhittle 
Periodogram Smoothed 

g(n) = 17 g(n) = 115 

E(di) 0.4903 0.4360 0.2537 0.2595 0.9078 

bias( di) -0.0403 0.0140 0.1963 0.1405 -0.4578 

I sd(di) 0.1221 0.0683 0.0759 0.0559 0.1846 

mse(di) 0.0165 0.0049 0.0443 0.0394 0.2436 

E(ei) 0.3312 0.2724 0.0377 0.0474 0.7145 

bias(Bi) -0.0312 0.0276 0.2623 0.2526 -0.4145 

sd( ei) 0.1421 0.0905 0.1124 0.0851 0.1759 

li 7 5 15 15 -

E(di) 0.5126 0.4490 0.5030 0.4805 -

bias(d;) -0.0626 0.0010 -0.0530 -0.0305 -

II sd(di) 0.1346 0.0742 0.4124 0.3114 -

E(Bi) 0.3554 0.2872 0.2569 0.2565 -

bias(Bi) -0.0554 0.0128 0.0431 0.0435 -

sd(Bi) 0.1564 0.0984 0.4817 0.3959 -
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Table 4.15: Estimation for d = 0.45: ARFIMA(O,d,1), e = 0.6 

d = 0.45 e= o.6 
'l Periodogram Smoothed Robinson Robinson Whittle 

Periodogram Smoothed 
g(n) = 17 g(n) = 115 

E(di) 0.4101 0.3761 -0.0144 -0.0094 0.6893 

bias( di) 0.0399 0.0739 0.4644 0.4594 -0.2393 
I sd(di) 0.1016 0.0529 0.0742 0.0556 0.0977 

mse(di) 0.0119 0 .0082 0.2211 0.2141 0.0676 

E(ei) 0.5193 0.4889 -0.0976 -0.0883 0.7699 

bias(ei) 0.0807 0.1111 0.6976 0.6883 0.0656 

sd(ei) 0.1304 0.0771 0.1825 0.1610 0.0332 

l 15 15 15 15 -
t 

E(di) 0.4959 0.4337 0.0201 -0.0038 -

bias(di) -0.0459 0.0163 0.4299 0.4538 -

II sd(di) 0.1480 0.0753 0.4077 0.3382 -

E(ei) 0.5991 0.5497 -0.1609 -0.1747 -

bias(e;) 0.0009 0.0503 0.7609 O. 7747 -

sd(fJi) 0.1620 0.1014 0.5857 0.5356 -
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