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Three core-softened families of potentials are checked for the presence of density and diffusion
anomalies. These potentials exhibit a repulsive core with a softening region and at larger distances
an attractive well. We found that the region in the pressure-temperature phase diagram in which the
anomalies are present increases if the slope between the core-softened scale and the attractive part of
the potential decreases. The anomalous region also increases if the range of the core-softened or of
the attractive part of the potential decreases. We also show that the presence of the density anomaly is
consistent with the non-monotonic changes of the radial distribution function at each one of the two
scales when temperature and density are varied. Then, using this anomalous behavior of the structure
we show that the pressure and the temperature at which the radial distribution function of one of the
two length scales equals the radial distribution function of the other length scales identify the Widom
line. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802006]

I. INTRODUCTION

Core-softened (CS) potentials have been attracting atten-
tion due to their connections with the anomalous behavior of
liquid systems including water. These potentials, U(r), exhibit
a repulsive core with a softening region limited by r1 < r < r2,
where d(rf)/dr > 0 with f = −dU/dr.1 Despite their simplic-
ity, these models originate from the desire of constructing a
simple two-body isotropic potential capable of describing the
complicated features of systems interacting via anisotropic
potentials.2–27 This procedure generates models that are an-
alytically tractable and computationally less expensive than
the atomistic models. Moreover, they are lead to conclusions
that are more universal and are related to families of atomistic
systems.28–31

One of the features that has been successfully described
by many of these models is the density anomaly. For water the
specific volume at ambient pressure starts to increase when
cooled below T ≈ 4 ◦C. The anomalous behavior of water was
first suggested 300 yr ago32 and was confirmed by a number
of experiments.28, 29 Besides, between 0.1 MPa and 190 MPa
water also exhibits an anomalous increase of
compressibility33, 34 and, at atmospheric pressure, an in-
crease of isobaric heat capacity upon cooling.35, 36 For
the case of water the density anomaly is attributed to the
presence of hydrogen bonds between neighbor molecules. As
the temperature increases the bonds break and the density
increases. However, other systems such as Te,37 Ga, Bi,38

S,39, 40 Ge15Te85,30 silica,31, 41–43 silicon,44 and BeF2
31 show

the same density anomaly without presenting hydrogen
bonds which suggests that the mechanism for the presence of
density anomaly might be more universal.

In compass with the presence of the density anomaly in
water a few years ago it was suggested that there are two

liquid phases, a low density liquid (LDL) and a high den-
sity liquid (HDL).45 The critical point ending this transition,
found only in computer simulations, is located at the super-
cooled region beyond the line of homogeneous nucleation
and thus cannot be experimentally measured. Even with this
limitation, this hypothesis has been supported by indirect ex-
perimental results.18, 33, 46 The presence of two liquid phases
and of a second critical point is also observed in certain CS
potentials.5–18, 22–27

Which are the conditions for a CS potential to exhibit
density anomaly and two liquid phases? A definitive answer to
this question is still missing. There are, however, a few clues.
If a CS potential is discontinuous it presents two liquid phases
but no density anomaly47 is observed. However, once the CS
potential is modified to be continuous, the anomalies appear.23

Recently it has been proposed that a CS potential ex-
hibits density anomaly if the two length scales identified
with the softened region are accessible22, 24, 48 and what can
be understood is as follows. The radial distribution, g(r), of
a CS potential has peaks at g(r1) and g(r2), where r1 and
r2 > r1 are the two length scales of the CS potential.1, 20 If
∂g(r)/∂ρ|r=r1∂g(r)/∂ρ|r=r2 < 0 then the system would have
density anomaly.

In this paper we test if this link between the behavior of
the structure (radial distribution function) and the thermody-
namic anomalies holds for a number of two length scales po-
tentials. We study the pressure temperature phase diagram of
a two Fermi model.49 The advantage of this model is that by
changing few parameters it is possible to vary the distance and
the difference in energy between the two length scales with-
out introducing extra scales. Moreover the length scales are
well defined.

Hence, having identified a connection between the den-
sity anomaly and the behavior of the structure, we test if the
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TABLE I. Parameters for potentials S, A, and R in reduced units of ε and σ = ro1/0.950.

Parameter S1 S2 S3 A1 A2 A3 R1 R2 R3

ε∗
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ε∗
2 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

−ε∗
3 1.000 1.027 1.023 1.023 1.023 1.023 1.023 1.023 1.023

r∗
o1 0.950 0.950 0.950 0.950 0.950 0.950 0.950 1.050 1.150

r∗
o2 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400

r∗
o3 1.950 1.950 1.950 1.755 1.8525 1.950 1.950 1.950 1.950

σ ∗
1,2,3 0.025 0.040 0.055 0.025 0.025 0.025 0.055 0.055 0.055

α∗
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

α∗
2,3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

radial distribution function is also related to the presence of
two liquids predicted for these CS potentials. We show that
the pressures and temperatures in which the radial distribution
function associated with one scale equals the radial distribu-
tion function of the other scales are linked with peaks in the
constant pressure specific heat, namely the Widom line.

The remaining of this paper goes as follows. In Sec. II
the model is introduced and the simulation details are pre-
sented. In Sec. III the pressure-temperature phase diagram is
presented together with the behavior of the radial distribution
function with density and temperature. Conclusions are pre-
sented in Sec. IV.

"

II. THE MODEL

Our system consists of N identical particles interacting
through a continuous pair potential obtained by the addition
of three different Fermi-Dirac distributions,49

U =
3∑

i=1

εi

exp
(

r−roi

σi

)
+ αi

. (1)

The resulting expression describes a family of pair interac-
tion potentials discriminated by different choices of the pa-
rameters {εi, roi, σ i, αi}. Appropriate choices of the param-
eters allow us to obtain potentials that go from a smooth
two length scales potential to a sharp, almost discontinuous,
square potential.49, 50

In Table I nine different sets of parameters are shown,
organized in three families named S, A, and R. As shown in
Figure 1, for each family a specific characteristic of pair inter-

action potential is tuned. Then it is possible to test the effect
of changing the two length scales in the pressure temperature
phase diagram.

In the potentials S the slope between the two length scales
is varied. Then it is possible to check if the slope between
the two length scales controls the location in the pressure-
temperature phase diagram of the density anomalous region
as suggested by Yan et al.51

In the case of the potentials A, the attractive length be-
comes broader. Consequently using this potential we test if
increasing the range of the attraction leads to a decrease in
the critical pressure as proposed by Skibinsky et al.8

In the case of the potentials R, the repulsive length scale
becomes broader. Therefore this family of potentials is appro-
priated to observe if the enlargement of the repulsive length
scale leads to a decrease in the liquid-liquid critical pressure
and to an increase in the liquid-liquid critical temperature as
suggested by Skibinsky et al.8 In addition to verifying the as-
sumptions of Yan et al.51 and of Skibinsky et al.8 related to
criticality, these three families of potentials provide a perfect
scenario to check our hypothesis that the density anomaly re-
gion in the pressure-temperature phase diagram is delimited
by properties of the radial distribution function at the two
length scales.

The thermodynamic and dynamic behavior of the sys-
tems were obtained using NV T molecular dynamics using
Nose-Hoover heat-bath with coupling parameter Q = 2. The
system is characterized by 500 particles in a cubic box with
periodic boundary conditions, interacting with the intermolec-
ular potential described above.
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FIG. 1. Interaction potential.
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FIG. 2. Pressure-temperature phase space for the S, A, and R families of potentials. The gray lines are isochores, the solid lines are the temperature of maximum
density, the dashed lines are the extrema of diffusion, and the dotted-dashed line are the extrema of the translational order parameter. The filled circles are the
liquid-gas (at high temperatures) and the liquid-liquid (low temperatures) critical points.

Standard periodic boundary conditions together with
predictor-corrector algorithm were used to integrate the equa-
tions of motion with a time step �t∗ = 0.002 and poten-
tial cut off radius r∗

c = 2.5. The initial configuration is set
on solid or liquid state and, in both cases, the equilibrium
state was reached after t∗eq = 1000. From this time on the
physical quantities were stored in intervals of �t∗R = 1 during
t∗R = 1000. The system is uncorrelated after t∗d = 10, from the
velocity auto-correlation function, and 50 decorrelated sam-
ples were used to get the average of the physical quantities.
The thermodynamic stability of the system was checked ana-
lyzing the dependence of pressure on density, by the behavior
of the energy, and also by visual analysis of the final structure,
searching for cavitation.

In what follows we take ε1 and σ = ro1/0.950 as fun-
damental units for energy and distance, respectively, and all

physical quantities are expressed in reduced units, namely,

T ∗ ≡ kBT

ε1
,

ρ∗ ≡ ρσ 3,
(2)

P ∗ ≡ Pσ 3

ε1
,

D∗ ≡ D(m/ε1)1/2

σ
,

where T, P, and D are, respectively, temperature, pressure,
and diffusion coefficient. The diffusion coefficient is obtained
from the expression:

D = lim
t→∞

〈[	rj (t0 + t) − 	rj (t0)]2〉t0
6t

, (3)
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TABLE II. Liquid-gas critical point location for potentials S, A, and R.

Potential T ∗
c1

p∗
c1

Potential T ∗
c1

p∗
c1

Potential T ∗
c1

p∗
c1

S1 0.05 1.00 A1 0.04 0.68 R1 0.02 0.90
S2 0.05 0.99 A2 0.03 0.82 R2 0.04 0.88
S3 0.04 0.88 A3 0.05 0.90 R3 0.04 0.88

where 	rj (t) are the coordinates of particle j at time t and 〈· · ·〉t0
denotes an average over all particles and over all t0.

The errors associated with pressure and temperature are
�p∗ ≈ 0.005 and �T∗ ≈ 0.01.

III. RESULTS

A. Pressure-temperature phase space

Figure 2 presents the pressure versus temperature phase
space obtained for the three families: S, A, and R. In all the
nine cases the system exhibits at high temperatures a fluid
phase, at intermediate temperatures and very low pressures a
gas phase, and at intermediate pressures a low density liquid
phase (LDL), while at very high pressures a high density liq-
uid phase (HDL). The coexistence line between the gas and
the low density liquid phases (not shown) ends in a gas-LDL
critical point illustrated as a filled circle in Fig. 2. The LDL-
HDL coexistence line (not shown) ends in a LDL-HDL criti-
cal point, also shown as a filled circle. The two critical points
are located in the pressure and temperature phase space by the
point in which the isochores meet. The critical pressures and
the critical temperatures values are confirmed by analyzing
the slope of the pressure versus density at constant tempera-
ture phase space. The inflection points of these curves identify
the critical points. For the other state points the slope of the
pressure versus density phase space is also used as a check of
stability.

Tables II and III and Fig. 3 summarize the values of the
first (liquid-gas) and second (liquid-liquid) critical points and
their changes in the p − T phase space for the three families
studied.

Figure 2 shows that in the family of potentials S the val-
ues of the pressure and temperature of the liquid-gas and the
liquid-liquid critical points are not sensitive to the change of
slope as predicted by Yan et al.51 The A family, also illus-

TABLE III. Liquid-liquid critical point location for potentials S, A, and R.

Potential T ∗
c2

p∗
c2

Potential T ∗
c2

p∗
c2

Potential T ∗
c2

p∗
c2

S1 1.31 0.54 A1 2.75 0.53 R1 1.34 0.44
S2 1.26 0.48 A2 1.98 0.50 R2 2.67 0.37
S3 1.34 0.44 A3 1.33 0.44 R3 6.01 0.26

trated in Fig. 2, indicates that the temperature of the liquid-
gas critical point increases with the increase of the range of
the attractive scale, while the temperature and the pressure of
the liquid-liquid critical point decrease. This result indicates
that if the attractive scale increases, the high density liquid
requires less pressure to be formed while the gas phases exist
for higher temperatures as predicted by Skibinstky et al.8, 52 In
the case R, shown in Fig. 2 as well, the liquid-liquid critical
pressure decreases with the increase of the range of the re-
pulsive scale. This result indicates that as the repulsive scale
becomes broader, it requires less pressure for the high den-
sity liquid to be formed while the repulsive scale has almost
no effect in the low density liquid-gas coexistence line, as also
predicted by Skibinstky et al.8, 52 A summary of the liquid-gas
and liquid-liquid critical pressures and temperatures is shown
in Fig. 3.

B. Density, diffusion, and translational anomalies

Figure 2 shows the temperature of maximum density
(TMD) for all the nine studied cases as solid thick lines. For
all the potentials S, A, and R the TMD lines are observed. The
limits of the TMD in the pressure-temperature phase space
are shown in Table IV, where pl represents the values of
(ρ∗, T∗, p∗) for the point of the lowest pressure in the TMD
line, pm is the point with the highest temperature, and ph is the
point with the highest pressure.

The top three graphs in Fig. 2 show that the effect of de-
creasing the slope between the two length scales in the pair
interaction potential is to move the TMD to higher tempera-
tures. This result explains why the TMD is not observed in
the discontinuous square well (DSW) model.8 As the slope
increases the TMD pressure and temperature approach the
amorphous region and the system becomes unstable. For
slopes higher than S1 case no anomalous behavior is observed.
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FIG. 3. Location of the critical points on pressure-temperature phase space for cases S, A, and R.
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TABLE IV. Limit values for density (ρ∗), temperature (T∗), and pressure (p∗) of the thermodynamics anomalies
on pressure-temperature space. Here the point pl represents the density, temperature, and pressure of the point
of the lowest pressure in the TMD line, pm represents the point of the highest temperature, and ph represents the
point of the highest pressure of the TMD line.

Case pl pm ph Case pl pm ph Case pl pm ph

ρ∗ 0.34 0.35 0.38 ρ∗ 0.32 0.34 0.39 ρ∗ 0.31 0.34 0.39
S1 T∗ 0.70 0.73 0.60 S2 T∗ 0.68 0.80 0.60 S3 T∗ 0.60 0.82 0.61

p∗ 0.70 0.73 1.14 p∗ 0.65 0.96 1.27 p∗ 0.61 0.92 1.29

ρ∗ 0.42 0.43 0.45 ρ∗ 0.37 0.39 0.42 ρ∗ 0.31 0.34 0.39
A1 T∗ 0.61 0.71 0.59 A2 T∗ 0.51 0.79 0.69 A3 T∗ 0.60 0.82 0.61

p∗ 2.15 2.29 2.51 p∗ 1.33 1.56 1.82 p∗ 0.61 0.92 1.29

ρ∗ 0.31 0.34 0.39 ρ∗ 0.33 0.37 0.42 ρ∗ 0.34 0.39 0.47
R1 T∗ 0.60 0.82 0.61 R2 T∗ 0.77 0.92 0.50 R3 T∗ 0.70 0.92 0.32

p∗ 0.61 0.92 1.29 p∗ 1.28 1.81 2.67 p∗ 2.04 3.65 5.76
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FIG. 4. Diffusion coefficient as a function of density. The dots are the simulation data and the solid lines are polynomial fits. The dashed lines connect the
densities of minimal and maximal diffusivity that limit the diffusion anomalous region.
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FIG. 5. The translational order parameter, a function of density for fixed temperatures T∗ = 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 (from top to bottom) for
the families S (on top), A (on middle), and R (on bottom). The dotted-dashed lines locate the maximal and minimal in t∗.

The middle graphs in Fig. 2 show that as the attractive
scale increases, the TMD moves to higher temperatures and
lower pressures as observed in potentials in which the attrac-
tive scale becomes dominant.53

The bottom graphs in Fig. 2 show that as the repulsive
scale becomes broader, the density anomaly region in the
pressure temperature phase space goes to lower pressures and
shrinks as observed in potentials in which the repulsive scale
becomes dominant.54

In addition, in all the phase spaces it is possible to ob-
serve that the TMD maximum pressure never exceeds the
critical pressure.55 Our results indicate that the location in
the pressure temperature phase space of the density anoma-
lous region depends on the distance between the two length
scales.52–54

Figure 4 shows the graphs of the dimensionless transla-
tional diffusion coefficient as a function of density for all fam-
ilies, S, A, and R. The solid gray lines are a polynomial fit to
the data obtained by the simulations (the dots in Fig. 4). The
diffusion coefficient follows the same trend of the TMD line.
This result is not surprising since the hierarchy of the anoma-
lies suggests that the mechanism for the presence of a TMD
line is related to the mechanism for the existence of a maxi-
mum and minimum diffusion coefficient.

We also test the effects that changes in the two length
scales have in the location in the pressure-temperature phase
space of the structural anomalous region.

The translational order parameter is defined as42, 56, 57

t =
∫ ξc

0
|g(ξ ) − 1|dξ, (4)

where ξ = rρ
1
3 is the distance r in units of the mean interpar-

ticle separation ρ− 1
3 , ξ c is the cutoff distance set to half of the

simulation box times20 ρ− 1
3 , and g(ξ ) is the radial distribution

function which is proportional to the probability of finding a
particle at a distance ξ from a referent particle. The transla-
tional order parameter measures how structured the system is.
For an ideal gas it is g = 1 and t = 0, while for the crystal
phase it is g �= 1 over long distances resulting in a large t.
Therefore, for normal fluids t increases with the increase of
the density.

The graphs in Fig. 5 illustrate the translational order pa-
rameter versus density of the potentials studied. The dotted-
dashed lines show the maximum and minimum in the val-
ues of t that limit the region of anomalous behavior. These
extrema are also shown as dotted-dashed lines in Fig. 2.
The values at the pressure-temperature phase space for the
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FIG. 6. Radial distribution as a function of the reduced distance for selected cases in the three families of potentials for T∗ = 0.8. For all the families, for
ρ∗ < 0.40 the first and second peaks of g(r) increase with the increase of density. For ρ∗ ≥ 0.40 the first peak increases while second peak decreases with the
increase of density.

different potentials follow the same trend as the TMD and
diffusion anomalous regions.

C. Radial distribution function

The density anomaly can be related to the structure by
analyzing the behavior of the radial distribution function. For
a two length scales potential the g(r) has two peaks: one at the
closest scale, r1, and another at the furthest scale, r2.20

Recently it has been suggested that a signature of the
presence of TMD line would be given by the radial distri-
bution function as follows. At fixed temperature, as the den-
sity is increased the radial distribution function of the closest
scale, g(r1), would increase its value while the radial distribu-
tion function of the furthest scale, g(r2), would decrease. This
can be represented by the rule22, 48

	1,2 = ∂g(r)

∂ρ

∣∣∣∣
r1

× ∂g(r)

∂ρ

∣∣∣∣
r2

< 0. (5)

The physical picture behind this condition22 is that for
a fixed temperature as density increases particles that are lo-
cated at the attractive scale, r2, move to the repulsive scale,
r1. Figure 6 illustrates typical radial distribution functions for
fixed T∗ as ρ∗ is varied. These graphs show that the picture
of particles changing length scales due to pressure increase is
valid for densities beyond a threshold density ρ∗

min.

The regions identified by the radial distribution function
as fulfilling the condition (5) are illustrated as opened circles
in Fig. 7. The solid curve shows the TMD line. All the stable
state points with density equal or higher than the minimum
density at the TMD line verify the relation 	1, 2(ρ, T) < 0.
This result gives support to our assumption that the presence
of anomalies is related to particles moving from the furthest
scale, r2, to closest length scale, r1.

Figure 8 shows the value of the radial distribution func-
tion at the closest, g(r1) (dashed lines), and at the furthest
scale, g(r2) (solid lines), as a function of the reduced den-
sity, ρ∗. For the closest scale g(r1) is monotonic with density
while the value for g(r2) for a fixed temperature increases with
the density for densities below ρ∗ < ρ∗

min and decreases for
densities above this threshold. This behavior, also shown in
Fig. 6, corroborates the condition stated in Eq. (5) and sup-
ports the idea that particles move from one scale to the other
by compression at ρ > ρmin.22

Besides the move of particles from the attractive scale to
the repulsive scale for ρ∗ > ρ∗

min as the pressure (density) is
increased, particles also move from one scale to the other due
to the increase of temperature54 for ρ∗ < ρ∗

min. At constant
density, ρ∗ < ρ∗

min, the radial distribution function of the at-
tractive scale, g(r2), decreases with the increase of the temper-
ature while g(r1) increases with the increase of temperature,
indicating that particles move from one scale to the other due
to thermal effects. At the density ρ∗

min, the value of g(r1) is
independent of the temperature.
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FIG. 7. Pressure-temperature phase space for the S, A, and R families of potentials, illustrating as opened circles the regions where condition (5) is obeyed.

What is the meaning of the density ρmin in which g(r1)
is independent of temperature? As it was pointed in the
previous paragraph, ρ∗ < ρ∗

min particles move from the fur-
thest scale, r2, to the closest scale, r1, using thermal energy
as the temperature is increased. In this case g(r1) increases
with temperature. ρ∗ > ρ∗

min particles move from r2 to r1,
using the increase in pressure (or density) as illustrated by
Eq. (5). From a statistical point of view, the two mechanisms
governing the behavior of ρ∗ > ρ∗

min and ρ∗ < ρ∗
min are quite

different. While increasing the temperature affects particles
individually, increasing the density or the pressure affects the
particles as clusters or networks. Then, as the potential be-
comes more soft, the threshold density ρ∗

min beyond which
the particles move from one scale to the other by compression
should decrease as observed in Fig. 8. Therefore ρ∗

min is the
threshold between these two mechanisms present in systems
that have density anomaly.

In addition to these low density limit, the density anoma-
lous systems also have a high density threshold, ρ∗

max(T ).
Figure 8 illustrates as a solid thick line the temperatures
and densities, ρ∗

max(T ), in which g(r1) = g(r2). Since g(r)
is related with the number of particles at distance r, for
ρ∗ < ρ∗

max(T ) more particles are in the attractive scale, r2,
while for ρ∗ > ρ∗

max(T ) more particles are at the repulsive
scale, r1. Therefore, the thick solid line is a boundary region
in which the liquid starts to change from low density state to
high density state or vice versa.

In order to understand what happens in the region of
the pressure-temperature phase space of the ρ∗

max(T ), the
behavior of the specific heat in this region was analyzed.
Figure 9 shows the curves of isobaric specific heat for differ-
ent pressures as a function of the temperature for the potential
S1. The peak of cp for each one of the potentials analyzed
in this manuscript coincides with the region ρ∗

max(T ), where
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FIG. 8. g(r1) and g(r2) for the S, A, and R families of potentials as a function of the reduced density. The temperatures are T∗ = 0.4 → 1.5 (from top to bottom
ρ∗ > 0.6). The solid line connects the points for different temperatures, where g(r1) = g(r2).

g(r1) = g(r2). This result indicates that the structure in the
TMD region already builds the liquid arrangements required
for the liquid-liquid phase separation.
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FIG. 9. Isobaric specific heat for the S1 potential for different temperatures
for different pressures.

IV. CONCLUSIONS

In this paper we have studied three families of core-
softened potentials that exhibit two length scales, one repul-
sive, r1, and another attractive, r2.

We had observed that the region in the pressure-
temperature phase space occupied by the TMD is quite sensi-
tive to the slope between the two length scales, as the slope in-
creases, the region decreases. We also found that the region in
the pressure-temperature phase space, where the density, dif-
fusion, and structural anomalous behavior is observed, shifts
to lower pressures and shrinks as the attractive scales or the
repulsive scales become wider. Our results suggest that the
competition between two length scales are a relevant mecha-
nism for the existence of the TMD.

In an attempt to confirm this assertion we showed in this
family of potentials that the condition 	1, 2 < 0 seems to
be associated with the presence of anomalous behavior. In
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addition we also observed that the peaks of the radial distribu-
tion function at each one of the two length scales exhibit very
distinct behavior with density and temperature suggesting two
complementary mechanisms for the competition between the
two scales.

At low densities, ρ∗ < ρ∗
min particles move from the scale

at r2 to the scale at r1 with the increase of the temperature, us-
ing thermal energy. For densities above this threshold density,
ρ∗ > ρ∗

min, the increase of radial distribution function at the
length scale r1, g(r1), is associated with the increase in the
pressure (density). For our model the pressure and temper-
ature in which the radial distribution function at one length
scale equals the radial distribution at the other length scale,
g(r1) = g(r2), coincides with the location of the Widom line.

The relation between the radial distribution function and
the Widom line in our model, believed to be the onset of the
liquid-liquid phase transition, gives support to the idea that the
Widom line separates two structurally distinct regions that are
also separated by a fragile-strong transition.18

We expect that this result will not only shed some light
in the definition of the shape an effective core-softened would
have in order to hold anomalies but also would serve to rein-
force the idea of linking dynamic transitions and thermody-
namic properties.
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