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In this paper we investigate the solubility of a hard-sphere gas in a solvent modeled as an associating
lattice gas. The solution phase diagram for solute at 5% is compared with the phase diagram of the
original solute free model. Model properties are investigated both through Monte Carlo simulations
and a cluster approximation. The model solubility is computed via simulations and is shown to ex-
hibit a minimum as a function of temperature. The line of minimum solubility (TmS) coincides with
the line of maximum density (TMD) for different solvent chemical potentials, in accordance with the
literature on continuous realistic models and on the “cavity” picture. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4743635]

I. INTRODUCTION

Solubility is the capacity of a given solute to form a ho-
mogeneous solution in a given solvent. The solubility of one
substance in another is determined by the balance of inter-
molecular forces between the solvent and solute, as well as
by the entropy change that accompanies the solvation. Fac-
tors such as temperature and pressure will alter this balance,
thus changing the solubility.

In the process of dissolving a solute, heat is required to
break the intermolecular forces between the solute particles
and heat is given off by forming bonds between solute and
solvent particles. Consequently, increasing the temperature
can make it easier or harder to dissolve solute particles in a
solvent.

In the case of dissolving solids, the energy required to
break the intermolecular forces between the solute particles
is usually higher than the energy liberated by forming bonds
with the solvent, therefore the ability of the solvent to dissolve
the solid solute increases with the temperature.

In the dissolution of gases in liquid solvents the sce-
nario is more complex. For a low density gas phase, the
solubility is given by the equilibrium constant for the pro-
cess in which a solute particle dissolved in the liquid evap-
orates into the gas phase. This quantity can be expressed in
terms of the inverse of Henry’s constant. The equilibrium con-
stant can be computed from the balance between the solute-
solute, solvent-solvent, and solute-solvent energies, namely,
W = (wsolute−solute + wsolv−solv − 2wsolute−solv), and it is
proportional to eW/kBT . Therefore, if W > 0, the solubility
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d)Electronic mail: marcia.barbosa@ufrgs.br.

increases with temperature, otherwise it decreases. This ap-
proach, based on a simple “Bragg-Williams approximation,”
does not allow for entropic effects besides the combinatory
term that differentiates solute from solvent particles.1

This simple picture is valid for a number of solvents and
solutes but not for non-polar gases in water. The solubility
of noble gases in water decreases with temperature until a
certain threshold, and then it increases.2–4 This experimen-
tal result has also been observed in the solubility of hard
spheres simulated for effective5, 6 and atomistic models of
water.7–10

Besides the unusual behavior of solubility, water also ex-
hibits other thermodynamic and dynamic anomalies. Unlike
other liquids, water does not contract upon cooling and the
specific volume at ambient pressure starts to increase when
cooled below T ≈ 4 ◦C.11, 12 Experimental data show that the
diffusion constant D increases on compression at low temper-
atures T up to a maximum Dmax(T) at p = pDmax(T),11, 12 while
for normal liquids the diffusion coefficient decreases as the
system is compressed. These findings were also supported by
simulations both in atomistic13, 14 and in effective models.15–18

The addition of a solute might change the position or even the
existence of the anomalies in the pressure-temperature phase
diagram of these model systems.

In this paper we aim to shed some light on this problem
by computing the effects of the addition of non-interacting
particles upon the phase diagram of a lattice model for wa-
ter. The solubility will also be computed and the location of
its minimum in the chemical potential-temperature phase dia-
gram will be compared with the location of the temperature of
maximum density (TMD) line. Our results point to the coinci-
dence of the extrema of both solubility and density, in agree-
ment with theories based on the cavity model for simple hard
spheres.7–9
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Even though there are a number of two and three di-
mensional lattice models that would in principle exhibit the
anomalies present in water,6, 16, 19–21 here water is represented
by the associating lattice gas (ALG) (Refs. 22–28) that has al-
ready shown the density and diffusion anomalies described
above. The ALG does not have the full complexity of the
molecular liquid, however it leads to a network-forming fluid
in which directionality plays an important role. In this sense
it becomes an interesting test system to analyze the effects of
directionality and networking while keeping the simplicity of
a lattice system.

The solute in this work is represented by pure hard sphere
in an attempt to model simple gases. Solubility versus temper-
ature is calculated and tested for the presence of a minimum.
We show that for a hard-sphere solute, the temperatures of the
maximum density and the temperatures of the minimum sol-
ubility coincide. This result is explained in the framework of
the two length scales potentials and the presence of thermo-
dynamic and dynamic anomalies in water-like models.

The paper is organized as follows. In Sec. II the model is
presented, in Sec. III the results obtained by employing Monte
Carlo simulations are shown, and in Sec. IV the problem is an-
alyzed by a cluster approximation. Our conclusions are sum-
marized in Sec. V.

II. THE PURE WATER MODEL: ALG

We consider the three dimensional ALG model intro-
duced by Girardi and co-workers.26 Dynamic and thermo-
dynamic properties of the system were previously obtained
by Monte Carlo simulations26, 28, 29 and analytical methods.30

The model consists of a body centered cubic lattice where
sites can be either occupied (σ i = 1) by a water molecule or
empty (σ i = 0). Besides the occupational variables there are
eight arm variables, τ i, that describe the molecule orientation.
Four arms are the usual ice bonding arms, with τ i = 1, while
the other four are inert arms, with τ i = 0. The bonding and
non-bonding arms are distributed in a tetrahedral arrangement
and there are two possible configurations for a water particle,
as shown in Fig. 1.

A

B

FIG. 1. The two possible configurations (A and B) of the water molecules in
a BCC lattice.

The Hamiltonian that describes the system is given by

H =
∑
〈i,j〉

σiσj

(
ε + γ τiτj

)
, (1)

where σ i = 0, 1 is the occupational variable, ε is a van der
Waals like energy, γ is the bond energy, and τ i = 0, 1 cor-
responds to the arm variable that represents the possibility of
a bond between two nearest-neighboring (NN) particles. A
bond is formed when two neighboring particles have bonding
arms (τ = 1) pointing to each other. The parameters are cho-
sen to be ε > 0 and γ < 0, which implies an energetic penalty
on neighbors that do not form a bond.

The ground state of the pure solvent system can be in-
ferred from inspection of Eq. (1), and taking into account an
external chemical potential μ. At zero temperature, the grand-
potential per volume is � = e − μρ, where ρ is water density
and e = H/V . At very low values of the chemical potential,
the lattice is empty and the system is in the gas phase. As
the chemical potential increases, coexistence between a gas
phase, with ρgas = 0, and a low density liquid (LDL), with
ρLDL = 1/2, is reached, at μgas − LDL = 2(ε + γ ). In the LDL
phase each molecule has only four neighboring molecules,
forming four hydrogen bonds (HBs), and the grand-potential
per volume is �LDL = ε + γ − μ/2. As the chemical potential
increases even further a competition between the chemical po-
tential that favors filling up the lattice and the HB penalty that
favors molecules with just four NN appears. At μLDL − HDL

= 6ε + 2γ , the LDL phase coexists with a high density liq-
uid (HDL), with ρHDL = 1. In the HDL phase, each molecule
has eight NN occupied sites, but forms only four HBs. The
other four non-bonded molecules contribute with positive en-
ergy, which can be viewed as an effective weakening of the
hydrogen bonds due to distortions of the electronic orbitals of
the bonded molecules. The grand-potential per volume is then
�HDL = 4ε + 2γ − μ. Both phases are illustrated in Figs. 2
and 3.

The non-zero temperature properties of the model were
obtained from Monte Carlo grand canonical simulations28 in
a previous publication, for γ /ε = −2. Reduced parameters
were defined as

T = kB T

ε
,

μ = μ

ε
. (2)

FIG. 2. In the ordered low density liquid phase half of the lattice is occupied
by particles. Water (filled circles) and empty sites (open circles).
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FIG. 3. In the ordered high density liquid phase the lattice is fully occupied
by particles.

The chemical potential versus temperature phase diagram
of this water model is illustrated in the inset of Fig. 4. Con-
tinuous transitions were investigated through analysis of the
specific heat, of energy cumulants and of the order parame-
ters. First-order transition points were located from hysteresis
of the system density as a function of the chemical potential.

At low chemical potentials and low temperatures there
is a first-order transition (circles) between the gas and LDL
phases. As the temperature is increased this transition be-
comes continuous at a bicritical point. At intermediate chem-
ical potentials and high temperatures there is a continuous
transition (dashed line) between the gas and the disordered
phase. At high chemical potential and low temperatures there
is a first-order phase transition (squares) between the LDL
and the HDL phases. This transition becomes critical at a tri-
critical point (higher temperatures). This system also presents
the density anomalous behavior observed in liquid water. At
fixed pressure, the density increases as the temperature is de-
creased, reaches a maximum, and decreases at lower temper-
atures. The line of the temperatures of maximum density (tri-
angles) is illustrated in the inset of Fig. 4. The TMD line at
high chemical potentials coincides with the λ-line while is in-
side the LDL phase at lower chemical potentials.
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FIG. 4. Chemical potential vs. temperature phase diagram for the original
ALG model (inset) and ALG with 5% solute concentration.

III. NON-POLAR SOLUTE IN ALG
SOLVENT: SIMULATIONS

We investigate the solution phase diagram for inert solute
particles. Non-polar solutes are modeled as non-interacting
hard spheres. Thus, each lattice site can be empty or occu-
pied either by a water particle or by a non-polar solute. Sim-
ulations were run as follows: solvent molecules are inserted
or removed via a grand-canonical Monte Carlo algorithm,
while a fixed number of solute particles are allowed to diffuse
throughout the lattice, following the Metropolis prescription.

Figure 4 illustrates the effect on the water chemical po-
tential versus temperature phase diagram upon the introduc-
tion of 5% solute (ρsolute = 0.05 in volume fraction). At
T = 0, the solute will be randomly distributed in the lattice. In
the gas phase, because solute is inert, the semi grand-potential
free energy per volume is the same as the grand potential of
the solute free case, �gas = 0. In the LDL phase, the solute
particles occupy the empty sites which correspond to half the
lattice: for 5% of solute particles, 10% of the empty sites are
occupied, as illustrated in Fig. 5. Consequently, the density
and the semi grand-potential free energy per volume are the
same as that of pure water, ρLDL = 1/2 and �LDL = ε + γ

−1/2, respectively. The same occurs in the phase boundary
between the gas and the LDL phases at zero temperature,
where μgas − LDL = 2. This semi grand-potential free energy
per volume is only correct if the solute occupies up to 50% of
the lattice.

In the HDL phase the addition of the solute changes the
density and the grand-potential per volume when compared
with the free solute case. At zero temperature, in the solute
free case, the lattice is full. As solute is added the particles
replace solvent particles, changing the energy, as can be seen
in Fig. 6. The solute can occupy a number of different config-
urations but it will choose the structure with the lowest grand-
potential free energy. In order to identify which is this config-
uration we compare two cases: all the solute forming a large
cluster and the solute distributed randomly but not occupying
adjacent sites. In both cases ρHDL = 1 − ρsolute but the grand-
potential free energy is given, respectively, by �cluster

HDL = 2(3ε

+ 2γ ) − (4ε + 2γ )ρsolute − μ(1 − ρsolute) and by �random
HDL

= 4ε + 2γ − (6ε + 2γ )ρsolute − μ(1 − ρsolute). The last case
is the scenario with lower grand-potential free energy, there-
fore even though the density and the grand-potential per
volume are different from the free solute case, the phase
boundary between the LDL and the HDL phases is given

FIG. 5. In the ordered low density liquid phase half of the lattice is occupied
by particles and the other half may contain solute.
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FIG. 6. In the ordered high density liquid phase the lattice is completely
occupied either by solute or water particles. Solutes are the bigger circles.

by the same value as that of pure water, namely, μLDL − HDL

= 6ε + 2γ .
At low temperature, and T �= 0, the phase boundary be-

tween the LDL and the gas phase depends on the entropy re-
lated to the addition of the solute. In the gas phase the solute
can be located at any site, while in the LDL phase the so-
lute goes only to the empty half-lattice (see Fig. 5), which
makes the entropy of the gas phase larger than the entropy
of the LDL phase. This stabilizes the gas phase, moving up
the chemical potential of the gas-LDL phase boundary with
respect to the free solute case.

As to the LDL-HDL phase boundary at low T �= 0, dis-
tortion of bonds in either phase is small, so that at very low
temperatures no entropic difference between the two phases
due to the presence of the solute is observed. However, as the
temperature is increased and the bond network becomes more
disordered, the entropy increment caused by solute is larger
in the LDL phase, thus shifting the phase boundary to higher
chemical potentials.

The critical lines illustrated in Fig. 4 were obtained from
the peak in the specific heat and through Binder cumulant
methods.31, 32 The critical line between the disordered phase
and the HDL phase, at high temperatures (τ line), and the crit-
ical line between the HDL phase and the LDL phase (λ line)
are similar to the lines obtained in the solute free case.28 The
shift in these lines to lower temperatures is due to the higher
entropy of the solute in the disordered phase.

Besides the presence of the λ’s and of the τ critical lines
even if no solute is present, the system exhibits a new critical
line, which we call η, at high chemical potentials. In order to
inspect the new phase, we investigate the solute radial distri-
bution through its radial distribution function, g(r), given by

g(r̄) =
〈 ∑N

i=1

∑N
j>i σiσj δ[r̄ , (r̄i − r̄j )]

〉
T̄〈 ∑N

i=1

∑N
j>i σiσj δ[r̄ , (r̄i − r̄j )]

〉
∞

, (3)

where the mean values denoted by 〈...〉T are obtained at con-
stant temperature for T = T and T → ∞, and δ is the Kro-
necker’s delta.

Figure 7 illustrates the radial distribution function for
5% of solute for two different temperatures, T̄ = 0.40 and
T̄ = 0.70. At high temperatures the radial distribution is char-
acteristic of a disordered, fluid-like system, while at low tem-
peratures solute presents an ordered (solid-like).
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FIG. 7. Solute–solute radial distribution function, g(r), for solute concen-
tration 5%. From top to bottom T̄ = 0.40 and T̄ = 0.70, chemical potential
μ̄ = 3.00. At low temperature g(r) exhibits some structural order while at
high temperature g(r) is liquid like.

To further analyze the structure of the new phase, we have
measured sub-lattice solute and water densities. The lattice is
divided into eight sub-lattices, as shown in Fig. 8. The result
is shown in Fig. 9 for chemical potential fixed at μ̄ = 3.00. At
high temperatures, both solvent and solute are randomly dis-
tributed, with no preferentially occupied sub-lattice. As tem-
perature decreases and the vertical critical line is crossed, the
solute particles become organized in four sub-lattices, while
the solvent fills the remaining space in the eight sub-lattices.
Therefore, the η-line separates the higher temperature homo-
geneous fluid phase from a dense phase in which the solute
organizes itself, named SLDL/HDL phase. It is not clear,
however, if inside each sub-lattice the solute particles are ran-
domly distributed or if they cluster, forming a high density
solute and a low density solute region. The behavior of the
radial distribution function suggests that the later is the case.
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FIG. 8. The eight sub-lattices division.
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FIG. 9. Density of sub-lattice as a function of temperature for chemical
potential μ̄ = 3.00 and solute concentration 5%. Left graph shows solvent
molecules and the right one, the solute.

This issue is checked through the cluster approximation in the
next section.

Besides the critical lines and the coexistence lines, this
system with and without solute exhibits an anomalous behav-
ior in the density. As the temperature is decreased at constant
pressure the density increases, and at very low temperatures,
it decreases, thus presenting a maximum. The line of maxi-
mum density temperatures at different chemical potentials is
illustrated as the line with triangles in Fig. 4. Due to the en-
tropic effects the TMD line is located at higher temperatures
when compared with the solute free case.

Having explored the effect of introducing inert solute
upon the solvent chemical potential versus temperature phase
diagram, we investigate the solubility of these non-interacting
particles. The solubility is derived from the solute excess
chemical potential which is computed through Widom’s in-
sertion method, namely,

μex = −T̄ ln〈e−βesolute 〉0, (4)

where esolute represents the energy increment due to the added
solute. Note that the solutes interact only via excluded vol-
ume. In the limit of low solute concentration, the solubility is
then given by

 = exp

(−μex

T̄

)
. (5)

Figure 10 illustrates the solubility parameter  as a func-
tion of temperature for solute concentrations 5% for various
chemical potentials. It can be seen that the solubility exhibits
a minimum for a certain range of chemical potentials. The
temperatures of minimum solubility (TmS) are indicated with
star symbols and coincide with the temperatures of maximum
density. The coincidence can be understood in terms of the
“cavity” concept,7–9 and the argument goes as follows.

The solubility is related with the amount of energy re-
quired to include a solute particle in the system. In the gas
phase, as the temperature is increased, the solubility decreases
because the density of the gas phase increases with tempera-
ture making it more difficult to include an extra solute parti-
cle. In the HDL phase the density of solvent decreases with
the increase of temperature, therefore the solubility decreases
with the decrease of temperature. In the LDL phase a very
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FIG. 10. Solubility vs. temperature for different values of the water chemical
potential.

interesting behavior is observed. The density, which at zero
temperature is 1/2, increases with the temperature. In this low
temperature region the increase of the solvent density leaves
less space for including a new solute particle and the solubil-
ity decreases. However, as the temperature is increased even
further, the density of the LDL phase reaches a maximum and
decreases due to entropic effects. Consequently, the solubil-
ity reaches a minimum at the maximum of solvent density,
and increases with T as the system becomes less dense. The
decrease of the solubility with the increase of the tempera-
ture is also observed in a minimal lattice models proposed by
Widom and Kolomeisky.33 The focus of these different stud-
ies on the model properties have been on the relation between
strength and range of the solvent mediated attraction, thus
density effects, which would promote increasing solubility at
larger temperatures, were left aside.34, 35

Obviously, the solubility governed solely by density ef-
fects is only possible because the solute particles, in our study,
are non-interacting.

IV. NON-POLAR SOLUTE IN ALG SOLVENT:
CLUSTER VARIATIONAL APPROXIMATION

In this section, we present results obtained from the clus-
ter variational approximation, introduced for the pure solvent
version of this model by Buzano et al.30 The approximation is
based on the assumption that an elementary tetrahedron clus-
ter of sites, connecting the four sub-lattices (Fig. 8) is thermo-
dynamically representative.

The energy per site is written as

w =
∑
i,j,k,l

pijklHijkl ,

where pijkl is the joint probability for the configurations of
the cluster in the four sub-lattices 1, 2, 3 and 4, and Hijkl

represents the Hamiltonian for the cluster.
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For interactions restricted to nearest neighbors the Hamil-
tonian Hijkl can be decomposed in the form

Hijkl = Hij + Hjk + Hkl + Hli ,

where the pair Hamiltonian can be written as

Hij = εσiσj − γ σiσjhij − μσi

4
− νbi

4
.

Here, σ i = 1 if site i is occupied by a water molecule and
σ i = 0, otherwise. The new state variable b stands for solute
occupation, with bi = 1 if site i is occupied by a solute particle
and bi = 0 otherwise. hij represents bond states and is equal to
1 if there is a bond between the two waters at sites i and j, and
equal to zero for non-bonding waters. To the parameters of the
previous section, hydrogen bond interaction γ , non-bonding
penalty ε > 0, and solvent chemical potential μ, we add the
solute chemical potential ν.

By minimizing the grand-canonical free energy

ω

T
=

∑
i,j,k,l

pijkl

[Hijkl

T
+ ln pijkl − 3

4
ln(p1

i p
2
jp

3
kp

4
l )

]
,

where p1
i = ∑

jkl pijkl , p2
j = ∑

ikl pijkl , p3
k = ∑

ij l pijkl , and
p4

l = ∑
ijk pijkl . According to the natural iteration method,36

for fixed values of T, ε, γ , μ, and ν, one might obtain differ-
ent quantities of interest, such as solvent and solute concen-
trations, hydrogen bond fraction, or sub-lattice densities.

In order to compare the cluster approximation results to
previous simulation results, we search for the desired solute
concentration (ρsolute) by varying the corresponding solute
chemical potential ν. In certain ranges of the thermodynamic
parameters, hysteresis loops were found.

The phase diagram for 5% solute concentration (ρsolute

= 0.05) is displayed in Fig. 11. It is qualitatively similar to
that of simulations, and the new phase SLDL/HDL in which
solute is ordered is present. In that phase, a solute droplet
occupying a sub-lattice forces the neighboring solvent to or-
der as a LDL. All other non-solvent molecules are in the
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FIG. 11. Solvent reduced chemical potential μ versus reduced temperature
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ν for some values of temperature and water chemical potential μ near the
fluid—SLDL/HDL transition line. Dashed lines give the coexistence lines.

HDL phase. In other words, as the temperature is lowered
and one crosses the fluid-SLDL/HDL line for a given value
of μ, a second-order phase transition takes place, and the so-
lute, which was dispersed in the fluid phase, begins the for-
mation of sub-lattice clusters, intercalated with LDL water.
Thus, the SLDL/HDL phase is a region of coexistence be-
tween clustered and dispersed solute, or between LDL + so-
lute and HDL-no solute.

The picture we propose for the SLDL/HDL phase is sup-
ported by behavior shown in Fig. 12, for solute density as a
function of solute chemical potential ν, at fixed T and solvent
chemical potential μ, in the vicinity of the HDL-SLDL/HDL
line. As ν increases, the solute density goes through a discon-
tinuity. The diagrams show coexistence between a low den-
sity, with solute dispersed in HDL solvent, and a high density,
with solute grouped in LDL solvent. Maxwell construction
for the curves of Fig. 12 yields the densities of the two coex-
isting phases shown in Table I. It can be seen that for T = 0.4,
for both values of the solvent chemical potential, as well as
for T = 0.7 and μ = 2.4, the case of 5% solute density (ρsolute

= 0.05) is between the low and high density limits (ρ l and
ρh). The three cases correspond to points on the left of the
fluid-SLDL/HDL η-line, although very near to the line in the
case of T = 0.7. On the other hand, for μ = 3.0 and T = 0.7
(clearly on the right of the HDL-SLDL/HDL η-line), the low
density at coexistence is ρlow = 0.078, larger than 0.05 im-
plying that solute must be homogeneously distributed in the
solution.

TABLE I. Solute chemical potential at the coexistence νcoex and the respec-
tive concentrations of solute in both phases.

T μ νcoex Cl Ch

0.4 2.4 0.469 0.008 0.372
0.4 3.0 0.960 0.009 0.451
0.7 2.4 −0.132 0.046 0.193
0.7 3.0 0.825 0.078 0.324
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V. CONCLUSIONS

In this paper we have analyzed the effect of adding non-
interacting solute particles to the associating lattice gas model
for water. We have shown that the solute particles change the
chemical potential versus temperature phase diagram substan-
tially. In the first place, by enhancing entropic effects of the
disordered and gas phases, addition of solute displaces the
coexistence and critical lines accordingly. Moreover, a new
phase appears, with coexistence between HDL and LDL wa-
ter induced by the presence of solute. Thus, in addition to the
λ and τ critical lines present in the solute free case, a third
order-disorder continuous η transition at which the solute or-
ders itself is present.

The solubility of this non-interacting system was also
computed and we have found that, as the temperature is de-
creased for fixed solvent chemical potential, the model solu-
tion exhibits a minimum in the solubility. The role of cav-
ity formation in the explanation of hydrophobic interactions
has been recognized for quite some time, since the seminal
paper by Pratt and Chandler.7 This and the following papers
demonstrated the difference between cavity formation in as-
sociating and simple liquids, the predominating role of the
hard sphere in relation to attractive interactions upon structure
as well as the structuring effect of the presence of solute.8, 9 In
those studies, detailed calculations were performed on con-
tinuous models for realistic water. In our paper, we approach
the problem of the hydrophobic interactions from the point
of view of minimal models. Many of the properties of the re-
alistic aqueous solution are reproduced, which implies that
essential features were included in the minimal model.

Our results suggest a very simple mechanism for under-
standing the minimum of solubility in simple gases.
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