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We study the density distribution of repulsive Yukawa particles confined by an external potential.
In the weak coupling limit, we show that the mean-field theory is able to accurately account for
the particle distribution. In the strong coupling limit, the correlations between the particles become
important and the mean-field theory fails. For strongly correlated systems, we construct a density
functional theory which provides an excellent description of the particle distribution, without any
adjustable parameters. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4885723]

I. INTRODUCTION

The Yukawa potential is used to model interparti-
cle interactions in plasmas,1, 2 dusty plasmas,3–5 colloidal
suspensions,6–8 and atomic physics.9, 10 In soft-matter sys-
tems, the exponential screening of the effective potential
arises from the positional correlations between the oppositely
charged particles.11, 12 Because of its great importance for
various models, the thermodynamics of Yukawa systems has
been a subject of extensive study.13–15 Most of the previ-
ous work, however, has been restricted to the homogeneous
fluid or solid states.16–22 In this paper, we will investigate a
gas of Yukawa particles confined by an external potential.
Such situation arises, for example, when a colloidal system
is acted on by the electromagnetic field produced by the laser
tweezers.23–30 Without a loss of generality, in this paper, we
will consider the external potential which has a one dimen-
sional parabolic form

W (z) = αz2

2
, (1)

where α is a measure of the trap strength. The theory devel-
oped below, however, can be applied to an arbitrary confining
potential W (x, y, z).

We will first show that in the weak-coupling limit (high
temperatures), the density distribution of Yukawa gas is well
described by the mean-field (MF) theory.31, 32 In the strong
coupling limit (low temperature), the positional correlations
between the particles become important and the MF theory
fails.33–35 In this case, we will construct a density functional
theory (DFT) based on the hypernetted-chain (HNC) equa-
tion and the local density approximation (LDA) and will show
that this theory accounts very accurately for the particle dis-
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tribution. All the theoretical results will be compared with the
Monte Carlo (MC) simulations.

II. MEAN-FIELD THEORY

We study a system of N particles interacting through a
repulsive Yukawa potential

V (r) = qG(r1, r2), (2)

where

G(r1, r2) = q
e−λr

r
, (3)

r = |r1 − r2|, λ is the typical inverse distance, and q is the
strength of the interaction potential. For colloidal systems,
q is

q = Ze√
εw

, (4)

where Ze is the charge of colloidal particles, e is the proton
charge, εw is the dielectric constant of the medium, and λ is
the inverse Debye length which depends on the ionic strength
inside the suspension.12

We first observe that G(r1, r2) satisfies the Helmholtz
equation

∇2G(r, r1) − λ2G(r, r1) = −4πqδ(r − r1). (5)

Consider a Yukawa gas confined to a hyperstripe with peri-
odic boundary conditions in the x and y directions and open
in the z direction. The solution of Eq. (5) for such system can
be expressed as

G(r, r1) = 2πq

LxLy

∑
mx,my

e

2πi

⎡
⎣mx

Lx

(x−x1)+
my

Ly

(y−y1)

⎤
⎦

e−γm|z−z1|

γm

,

(6)
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where

γm =
√

λ2 + 4π2

(
m2

x

L2
x

+ m2
y

L2
y

)
, (7)

and −∞ < mx < ∞ and −∞ < my < ∞ are integers. Lx and
Ly are the widths of the hyperstripe in the x and y directions,
respectively.

In equilibrium, the distribution of confined particles is
given by

ρ(z) = Ae−βω(z), (8)

where β = 1/kBT, ω(z) is the potential of mean force (PMF),
and A is the normalization constant.12 In the weak-coupling
limit, the correlations between the particles can be neglected
and the PMF can be approximated by ω(z) = qφ(z) + W (z),
where φ(z) is the Yukawa potential at position z. This consti-
tutes a MF approximation for the particle distribution,

ρ(z) = Ae−β[qφ(z)+W (z)], (9)

where

A = N

LxLy

∫ +∞
−∞ dz e−β[qφ(z)+W (z)]

. (10)

The potential φ(z) can be expressed in terms of the Green’s
function, Eq. (6),

φ(z) =
∫

dr′ρ(z′)G(r, r′). (11)

Integrating over x and y coordinates, Eq. (11) simplifies to

φ(z) = 2πqA

λ

∫ +∞

−∞
dz′e−β[qφ(z′)+W (z′)]−λ|z′−z|, (12)

which is an integral equation for the mean field potential. This
equation can be solved numerically using Picard iteration.

To test the accuracy of the MF theory, we perform MC
simulations. N = 100 Yukawa particles are confined in a box
of sides Lx, Ly, and Lz, with periodic boundary conditions in
x and y directions. In the z direction, the particles are con-
strained by an external potential W (z). We set Lz = 200λ−1.
The periodic lengths are taken to be Lx = Ly = 35λ−1, while
the cutoff for the particle-particle interaction is set at 10λ−1.
In the Metropolis algorithm, a new configuration n is con-
structed from an old configuration o by a small displacement
of a random particle. The new state is accepted with a proba-
bility P = min{1, e−β(En−Eo)}, where En and Eo are the ener-
gies of the new and the old configurations, respectively. If the
movement is not accepted, the configuration o is preserved
and counted as a new state. The length of the displacement is
adjusted during the simulation in order to obtain the accep-
tance rate of 50%. The energy of the system used in the MC
simulations is given by

E =
N−1∑
i=1

N∑
j=i+1

qG(ri , rj ) +
N∑

i=1

W (zi). (13)

The averages are calculated using 105 uncorrelated states,
obtained after 106 MC steps for equilibration. To quantify
the strength of the particle-particle interaction and the trap-
particle interaction, it is convenient to define the following
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FIG. 1. Density profile of Yukawa gas with ε = 40 and χ = 0.004 (circles);
ε = 20 and χ = 0.002 (squares); and ε = 10 and χ = 0.001 (triangles). The
symbols represent MC simulation data, while the curves are the predictions
of MF theory.

dimensionless parameters

ε = q2λ

kBT
and χ = α

kBT λ2
. (14)

We can now compare the solutions of the MF equations
(9) and (12) with the results of MC simulations, see Fig. 1. For
high temperatures—low values of ε—the MF theory accounts
very well for the particle distribution observed in the MC sim-
ulations. On the other hand, in the strong coupling limit (low
temperatures), the correlations between the particles become
important and the MF theory starts to fail. Positional correla-
tions between the particles lead to greater occupation of the
low energy states than is predicted by the MF theory.12 This
is similar to the process of overcharging observed in colloidal
suspensions with multivalent ions.36–38

III. DENSITY FUNCTIONAL THEORY

The failure of the MF theory to properly account for
the density distribution of a confined Yukawa gas is a con-
sequence of strong positional correlations between the parti-
cles at low temperatures. To account for these correlations,
we appeal to the DFT. The equilibrium particle distribution
corresponds to the minimum of the Helmholtz free energy

F [ρ(z)] = Fent + F int + Fcor (15)

subject to constraint ∫
drρ(r) = N. (16)

In Eq. (15), Fent is the entropic contribution to the free energy,
Fint is the interaction part (which includes both the MF in-
teraction and the interaction with the external potential), and
Fcor is the correlational free energy. In general, the correla-
tional free energy is a non-local function of density ρ(z). For
systems with hard-core interactions, this requires develop-
ment of sophisticated weighted density approximations.39–43

For repulsive Yukawa particles, however, the density varia-
tion should be much smoother and we expect that a LDA for
Fcor[ρ(z)] will be sufficiently accurate. LDA assumes that the
system achieves a local thermodynamic equilibrium within
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a range smaller than the typical length scale of the system
inhomogeneity.44, 45 This condition is fulfilled provided that
the density distribution does not vary dramatically. Since the
density profiles resulting from the soft potential, Eq. (1), are
smooth (see Fig. 1), we expect that the LDA will be suffi-
ciently accurate in the present situation as long as ε and χ are
not too large. Performing the minimization of the total free en-
ergy, we obtain the equilibrium particle density distribution,12

ρ(z) = N
e−β[qφ(z)+W (z)+μcor [ρ(z)]]

LxLy

∫ +∞
−∞ dz e−β[qφ(z)+W (z)+μcor [ρ(z)]]

, (17)

where the correlational chemical potential is

μcor [ρ(z)] = δF cor

δρ(z)
. (18)

Within the LDA, μcor[ρ(z)] is calculated using the free energy
of a homogeneous system

μcor [ρ(z)] = ∂f cor (ρ̄)

∂ρ̄

∣∣∣∣
ρ̄=ρ(z)

, (19)

where f cor is the correlational free energy density of a ho-
mogeneous Yukawa gas. When the correlations are negligible
(high temperatures), μcor vanishes and the MF theory, Eq. (9),
becomes exact.

To calculate the correlational chemical potential, we use
the HNC equation. This equation is known to account well for
the structural and thermodynamic properties of Yukawa-like
systems.46, 47 The HNC approximation is based on a closure
relation

h(r) = ln [−βv(r) + h(r) − c(r)] − 1, (20)

for the Ornstein-Zernike equation, where h(r) is the pair cor-
relation function, c(r) is the direct correlation function, and
v(r) is the particle-particle interaction potential. In the Fourier
space, the Ornstein-Zernike equation, for an isotropic system,
takes a particularly simple form,

h(k) = c(k)

1 − ρc(k)
. (21)

This equation can be solved iteratively. First, we make an ini-
tial guess for the direct correlation function, c0(r). The Fourier
transform of c0(r) is then inserted into Eq. (21), yielding a
zero order approximation of h0(k). The inverse Fourier trans-
formation provides h0(r). The closure relation, Eq. (20), al-
lows us to calculate the next order direct correlation func-
tion, c1(r), etc. The process is repeated until convergence is
achieved.45 To speed up the convergence, a method of Ng with
six parameters is used for updating the c(r) at each iteration
step.48

Within the HNC approximation, the excess (over the
ideal gas) chemical potential45 is

βμex = 1

2
ρ

∫
h(r)[h(r) − c(r)]dr − ρ

∫
c(r)dr. (22)

In Fig. 2, we show that the Eq. (22) agrees perfectly with the
chemical potential calculated using the MC simulations and
Widom particle insertion algorithm.49

0 0.002 0.004 0.006 0.008 0.01

ρ [λ3]

0

1

2

3

4

5

βμ
ex

ε = 100
ε = 50

FIG. 2. The excess (over the ideal gas) chemical potential as a function of
the particle concentration for ε = 100 and ε = 50. The symbols represent
the simulation data, and the lines are calculated using the HNC equation and
Eq. (22).

The excess chemical potential contains both the MF and
the correlational contributions. The correlational chemical po-
tential, μcor, is calculated by subtracting from μex the MF part

μmf = ∂Fmf

∂N
, (23)

where the MF free energy of a homogeneous Yukawa gas is

Fmf = q2

2
ρ2

∫
d3r

∫
d3r′ e

−λ|r−r′ |

|r − r′| . (24)
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FIG. 3. Concentration profiles for ε = 100. The symbols represent MC simu-
lation data, the solid curves represent the DFT, and the dashed curves the MF
theory. The χ parameters are 0.01 and 0.005, for (a) and (b), respectively.
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FIG. 4. Concentration profiles for ε = 50. The symbols represent MC simu-
lation data, the solid curves represent the DFT, and the dashed curves the MF
theory. The χ parameters are 0.02 and 0.01, for (a) and (b), respectively.

Integrating Eq. (24) and then differentiating with respect to N,
we obtain

βμmf = 4πρq2β

λ2
. (25)

To calculate the density profile of an inhomogeneous
Yukawa gas confined by an external potential, the system
of equations (12) and (17), and the HNC equation must be
solved simultaneously. In practice, to speed up the calcula-
tions, we first calculate the chemical potential of a homo-
geneous Yukawa system. The solution of the HNC equation
shows that to a very high degree of accuracy the correlational
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0.005
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ρ[
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FIG. 5. Density profile of Yukawa gas with ε = 20 and χ = 0.2 (circles);
χ = 0.15 (squares); and χ = 0.1 (triangles). The symbols represent MC
simulation data, while the curves are the predictions of the theory.
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FIG. 6. The shadowed area shows the parameters χ and ε for which the
self-consistent equations based on the LDA present converged solutions. The
values of N, Lx, and Ly are the same as previously.

chemical potential has a simple parabolic form βμcor = aρ

+ bρ2. The HNC equation allows us to calculate the parame-
ters a and b for various values of ε. To speed up the numerical
integration, we can then use the approximate form of the LDA
approximation, βμcor[ρ(z)] = aρ(z) + bρ2(z), in Eq. (17). In
Figs. 3 and 4, we compare the theoretically calculated den-
sity profiles obtained using HNC-LDA with the results of MC
simulations. We see that, while the MF theory fails to account
for the simulation results, the DFT based on the HNC equa-
tion and the LDA is able to provide an extremely accurate
description of the particle distribution, without any adjustable
parameters. Perhaps surprisingly, the theory remain very ac-
curate even in the very strong coupling limit of ε = 100.

In Fig. 5, we show the evolution of the particle distribu-
tion as the strength of the confining potential χ increases. The
agreement between the theory and the simulations remains ex-
cellent until the moment when the self-consistent equations
fail to converge, indicating a breakdown of the LDA. The
shaded region of Fig. 6 shows the parameter space in which
the self-consistent equations of the LDA present a convergent
solution. For ε and χ outside the shaded region, the correla-
tions between the particles become sufficiently strong to result
in a breakdown of the LDA.

IV. CONCLUSIONS

We have studied a gas of Yukawa particles confined by
an external potential. In the weak coupling limit, we have
constructed a MF theory which allows us to accurately cal-
culate the equilibrium particle density distribution inside a
confining potential. In the strong coupling limit, the corre-
lations between the particles become important and the MF
theory fails. We show, however, that a DFT theory based on
the HNC equation and a LDA approximation accounts per-
fectly for the observed particle distributions even in the limit
of very strong interactions between the particles. The LDA,
however, is shown to fail when the correlations between the
particles become sufficiently strong to lead to a local ordering
of the fluid. If the temperature is sufficiently low and the num-
ber of particles is sufficiently high, we expect that the Yukawa
fluid will crystallize at the bottom of the potential. This
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crystallization transition, however, lies outside the range of
validity of the present theory.
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