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Abstract

In this work, a computational model for the simulation of the behavior of structures
of composite materials is presented. The formulation includes elastic anisotropic relations,
viscoelastic anisotropic constitutive equations in terms of state variables, failure and plastic
criteria, all in a setting of large displacements with small strains. The equations are set in
a form adequate for numerical analysis through the finite element method, using degener-
ate three-dimensional shell elements and an incremental-iterative procedure accounting for
post-critical effects. Some examples of application are shown. The main examples ana-
lyze reinforced concrete beams strengthened for flexure by composite plates and present a
comparison with experimental results.
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1 Introduction

Nowadays there is a great interest in the reinforcement and recovery of structures through the
use of composite materials. Reinforcement is necessary when the structure will be submitted to
a loading condition different of that for which it was projected. Recovery is related to situations
where, due the deterioration of the structure, its original load capacity must be restituted (see
for example [6, 7, 11,16]).

The use of composites has advantages in situations of reinforcement and recovery because of
their high stiffness/weight ratio and strength/weight ratio (composites strengthened for carbon
fiber, for example, possess stiffness ratios 10-15 times higher than steel), excellent resistance to
corrosion, low thermal expansion, good performance in fatigue and tolerance to damage, easiness
of transport and conservation, possibility of inclusion of ”strain gages” inside the structure for
a continuous control, low consumption of energy in the manufacture process of the material and
the structure [2]. Thus, the use of the composites provides strength and stiffness without an
expressive increase of self weight.
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In this work, a computational procedure primarily developed for composite materials struc-
ture analysis is presented. It is shown that, with some additions and modifications, the procedure
can be extended to concrete structures reinforced with composite material.

In section 2 the finite elements model is presented. In section 3 the model for viscoelasticity
of the material is described. In section 4 the procedure for numerical solution of the incremental
equations is presented. In sections 5 and 6 the progressive failure and plasticity models are
described. In section 7 some examples are shown and compared with experimental results. In
section 8 conclusions and final remarks are presented.

2 Finite Element Model

The expression of the virtual displacement principle in a total Lagrangian formulation may be
written as [3] ∫

0V

k+1
0 Sijδ

k+1
0 εij

0dV = k+1R (1)

where k+1R is the virtual work of external forces in the (k+1)th incremental step, k+1
0 Sij , k+1

0 εij

are components of the second Piola-Kirchhoff stress tensor and Green-Lagrange strain tensor in
the (k+1)th step, respectively, both referred to the initial configuration, and 0V is the initial
configuration volume of the body.

We may write k+1
0 Sij = k

0Sij+0Sij , k+1
0 εij = k

0εij+0εij where 0Sij and 0εij are the increments
in stress and strain components, respectively, in the (k+1)th step. The strain increment may
still be decomposed into linear 0eij and nonlinear 0ηij parts as 0εij = 0eij + 0ηij .

Writing the strain increments decomposed into instantaneous, deferred, thermal and hygro-
scopic components we have

0εij = 0ε
e
ij + 0ε

y
ij + 0ε

T
ij + 0ε

H
ij (2)

The linearized relation between stress and strain increments may then be written as [3]

0Sij = 0Cijrs[0ers − 0e
r
rs − 0e

T
rs − 0e

H
rs] (3)

Using the previous equations, we obtain
∫

0V 0Cijrs0ersδ0eij
0dV +

∫
0V

k
0Sijδ0ηij

0dV =
= k+1R− ∫

0V
k
0Sijδ0eij

0dV +
∫

0V 0Cijrs0e
v
rsδ0eij

0dV +
+

∫
0V 0Cijrs(0eT

rs + 0e
H
rs)δ0eij

0dV

(4)

Working with the finite element method and using matrix notation, the above equation may be
written for each element
[∫

0V

[
k
0BL

]T [0C]
[
k
0BL

]
0dV +

∫
0V

[
k
0BNL

]T [
k
0S

] [
k
0BNL

]
0dV

]
{U} =

=
{

k+1R
}
− ∫

0V

[
k
0BL

]T {
k
0S

}
0dV +

∫
0V

[
k
0BL

]T [∂C]
({

0ev
}

+
{

0eT
}

+
{

0eH
})

0dV

(5)
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where {U} is the local displacement increment vector, [k0BL] and [k0BNL] are the linear and non-
linear strains-displacement transformation matrices, respectively and [ ]T indicates the transpose
of a matrix. (For more details on these last matrices, see [3, 15,18]).

Evaluating the volume integrals on each of the N layers of volume Vq we may write
([

k
0KL

]
+

[
k
0KNL

])
{U} =

{
k+1P

}
−

{
k
0F

}
+ {0F

v}+
{

0F
T
}

+
{

0F
H

}
(6)

being
[
k
0KL

]
=

N∑

q=1

∫
0Vq

[
k
0BL

]T
[0C]

[
k
0BL

]
0dVq (7)

[
k
0KNL

]
=

N∑

q+1

∫
0Vq

[
k
0BNL

]T [
k
0S

] [
k
0BNL

]
0dVq (8)

{
k
0F

}
=

N∑

q=1

∫
0Vq

[
k
0BL

]T {
k
0S

}
0dVq (9)

{0F
v} =

N∑

q=1

∫
0Vq

[
k
0BL

]T
[0C] {0e

v} 0dVq (10)

{
0F

T
}

=
N∑

q=1

∫
0Vq

[
k
0BL

]T
[0C]

{
0e

T
}

0dVq (11)

{
0F

H
}

=
N∑

q=1

∫
0Vq

[
k
0BL

]T
[0C]

{
0e

H
}

0dVq (12)

In the expressions above,
[
k
0KL

]
and

[
k
0KNL

]
are the linear and nonlinear tangent stiffness

matrices, respectively, corresponding to step k,
{

k+1P
}

is the vector of the external nodal forces
at step (k + 1),

{
k
0F

}
is the vector of nodal point forces equivalent to the element stresses at

the step k and, finally, {0F
v},{0F

T
}

and
{

0F
H

}
are the vectors of viscoelastic, thermal and

hygroscopic loads, respectively.
In the present formulation isoparametric tridimensional element degenerated into a shell

element is used [10]. The element has five degrees of freedom per node, three translations
(ux, uy, uz)and two in-surface rotations (φx, φy). Four, eight and nine node elements have been
implemented with the possibility to use normal or reduced integration rules. Gauss points are
distributed in the layers of the elements. Accuracy tests for this code are shown in [18].
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Figure 1: Coordinate systems of an anisotropic layer

3 Viscoelastic Material Modeling

Figure 1 shows an orthotropic linear viscoelastic layer for which the principal material directions
are coincident with the axes 1, 2 and 3. For mechanical and hygrothermal loads, the constitutive
relations of the layer, referred to the principal material directions, may be written as

εi(t) =
∫ t

0
Dij(T, H, t− τ)

∂σj(τ)
∂τ

dτ +
∫ T

T ∗
αi(T, H) dT +

∫ H

H∗
βi(T, H) dH i, j = 1, ...5

(13)
where εi (t) and σj (t) are the components of the strain vector {ε} = {ε11, ε22, 2ε12, 2ε13, 2ε23}
and stress vector {σ} = {σ11, σ22, σ12, σ13, σ23}, at time t. The components ε33 and σ33

are not considered here. T and H indicate the temperature and moisture content.. In (13),
Dij(T, H, t− τ) are the creep functions corresponding to components εi and σj , αi(T, H) are
the thermal expansion coefficients, βi(T, H) are the hygroscopic expansion coefficients, that
in general depend on moisture content and temperature. T ∗ and H∗ are the temperature and
moisture values corresponding to the strain-free state. εi, σj , T and H are field variables and
thus change in general from point to point, even when this dependence is not explicitly stated.

At this point we assume the material to be hygrothermal-rheologically simple, and therefore
we write Dij(T, H, T ) = Dij(T0, H0, ξij) where T0 and H0 are reference values, and ξijare the
reduced times. Then,

εi =
∫ t

0
Dij(T0, H0, ξij − ξ′ij)

∂σj(τ)
∂τ

dτ +
∫ T

T ∗
αi(T, H) dT+

∫ H

H∗
βi(T, H) dH (14)

where ξij =
∫ t

0 ϕij [T (τ) ,H (τ) dτ ] , ξ′ij =
∫ τ

0 ϕij [T (s) , H (s) ds], and ϕij are temperature-
moisture shift factors to be determined experimentally.

As we are concerned with small strains, we can decompose the total strain components εi

into viscoelastic ε̄i thermal εT
i and hygroscopic εH

i parts

εi(t) = ε̄i(t) + εT
i (T, H) + εH

i (T, H) (15)
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Upon integration by parts, the first integral in (14) may be written

ε̄i(t) = Dij(T0, H0, 0) σj(t) −
∫ t

o
Dij(T0, H0, ξij − ξ′ij) αj(τ) dτ (16)

Approximating the creep functions by a Dirichlet-Prony series we have

Dij(T0, H0, ξij − ξ′ij) = D0
ij +

M∑

p=1

Dp
ij

[
1− exp

(
−ξij − ξ′ij

θp
ij

)]
(17)

where D0
ij , Dp

ij and θp
ij are parameters to be determined from experimental results. M is the

number of significant terms in the series and depends on the accuracy desired. The parameters
θp
ij are called retardation times.

Substituting (17) into (16) we have

ε̄i(t) = Dij(T0, H0, 0)σj(t) +
M∑

p=1

∫ t

0
dp

ij(T0, H0, ξij − ξ′ij)σj(τ) dτ (18)

where

dp
ij =

Dp
ij

θp
ij

ϕij exp

(
−ξij − ξ′ij

θp
ij

)
(19)

with no summation taking place on i, j. We may still write

ε̄i(t) = Dij(T0, H0, 0)σj(t) +
M∑

p=1

5∑

s=1

qp
is(t) (20)

It can be shown [18] that the qp
is (t) state variables are given by

∂qp
is

∂t
+

qp
is

θp
is

=
Dp

is

θp
is

σi (t) (21)

This is a system of linear first-order uncoupled differential equations that together with the
initial condition qp

ij = 0 at t = 0 allow the determination of the state variables knowing the
stress history. This system may be solved incrementally by finite differences, as is indicated in
the next section.

4 Numerical Solution

The numerical solution of the problem formulated in Sec. 2 and 3 is implemented through an
incremental-iterative procedure. Thus, the nonlinear equilibrium equations (6) are written as
([

k+1
0 KL

]i−1
+

[
k+1
0 KNL

]i−1
)
{U}i =

{
k+1P

}
−

{
K+1
0 F

}i−1
+ {0F

v}i +
{

0F
T
}i

+
{

0F
H

}i

(22)
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where the index i indicates the number of the iteration step. The viscoelastic, thermal and
hygroscopic load vectors are taken as zero for i ≥ 2. For i = 1, these vectors are determined by
means of (10), (11) and (12), respectively.

For the solution of the nonlinear equilibrium equations (22), both Newton–Raphson and Gen-
eralized Displacement Control methods [23] have been implemented. In the Newton–Raphson
method, a prescribed load increment is used. One limitation of this method is the numerical
instability that occurs near the limit load when the stiffness matrix becomes singular. This
inconvenient is avoided by the Generalized Displacement Control method (GDCM).

As for the time integration of state variables and considering a small time-interval ∆t, we
can write from (19) and (21)

qp
ij(t + ∆t) =

∫ t+∆t

0

Dp
ij

θp
ij

ϕij exp

(
−ξij + ∆ξij − ξ′ij

θp
ij

)
σj(τ) dτ (23)

Taking σ(τ) as constant along the interval ∆t and equal to σ(t), we can integrate to obtain

qp
ij(t + ∆t) = qp

ij(t) exp

(
−∆ξij

θp
ij

)
+ Dp

ij

{
1− exp

(
−∆ξij

θp
ij

)}
σj(t) (24)

Using (24), it is possible to evaluate the variables qp
ij , at time t+∆t as functions of their values

at time t.

5 Failure Analysis

5.1 Progressive Failure Analysis

For the progressive failure analysis several criteria (Hashin [9], Lee [12,13], Maximum Strain [8])
have been implemented. To take into account material degradation, material stiffness reduction
are introduced after the detection of the ply failures. In this work a simplified degradation
model, which reduces particular terms in the material stiffness matrix, according to the failure
mode, is used (see [5, 13,18,20]).

5.2 Maximum Strain Criteria

This criteria establishes that the failure occurs when one of the strain components, acting in the
principal material directions, attains its limit value, which has to be determined by experimental
tests. In the Maximum Strain Criteria failure happens when one of the conditions below are
satisfied.

Extension (
ε11

Xεt

)2

= 1;
(

ε22

Yεt

)2

= 1 (25)
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Shortening (
ε11

Xεc

)2

= 1;
(

ε22

Yεc

)2

= 1 (26)

Distortion (
ε12

SεA

)2

= 1;
(

ε13

SεA

)2

= 1;
(

ε23

SεT

)2

= 1 (27)

where
Xεt– extension limit strain in the direction 1
Xεc– shortening limit strain in the direction 1
Yεt– extension limit strain in the direction 2
Yεc– shortening limit strain in the direction 2
SεA– distortion limit strain in the plans 1-2 e 1-3
SεT – distortion limit strain in the plan 2-3

6 Plasticity Model for Steel

To simulate de behavior of reinforced beams and plates, the reinforcement is approximated by
a layer of elasto-plastic material. For the plasticity analysis the criterion of von Mises is used.
For Plane Stress, the yield condition is

Y = σ2
11 + σ2

22 − σ11σ22 + 3σ2
12 − σ2

e = 0 (28)

The elastoplastic matrix is given by [19],

Eep = E− E ∂Y
∂σ

(
∂Y
∂σ

)T
E

H ′ +
(

∂Y
∂σ

)T
E

(
∂Y
∂σ

) (29)

where
E - elastic constitutive matrix
σ - stress tensor
H ′ − strain hardening (in this work assumed to be zero)
Writing (29) in matrix form we get, for the case of plane stress:

Eep =




E
1−ν2 − S2

1
S5

E
1−ν2 ν − S1 S2

S5
−S1 S3

S5

E
1−ν2 ν − S1 S2

S5

E
1−ν2 − S2

2
S5

−S2 S3
S5

−S1 S3
S5

−S2 S3
S5

E
2(1+ν) −

S2
3

S5


 (30)

where
S1 =

E

1− ν2
(s11 + ν s22) (31)
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S2 =
E

1− ν2
(ν s11 + s22) (32)

S3 =
E

1 + ν
s12 (33)

S4 = S1 s11 + S2 s22 + 2 S3 s12 (34)

S5 =
4
9
H ′σ2

e + S4 (35)

sij = σij − 1
3

(tr σij) δij (36)

7 Examples

7.1 Analysis of an elastoplastic laminated plate in tension

The analyzed laminated plate is shown in Fig. 2(a) and 2(b). Layers 1 and 4 are constituted
by a material with yield stress of 600MPa and layers 2 and 3 by a material with yield stress of
300 MPa. For both materials E = 200 GPa and ν = 0,3. The numerical result is shown in Fig.
2(c).

 

 
 

 
 
 
 

 

 (a)

 

(b)

 
 
 (c)

Figure 2: a) Geometry and loads; b) Lamination layout; c) Numerical result.

Latin American Journal of Solids and Structures 2 (2005)



FE analysis of reinforced concrete beams strengthened by composite plates 261

The yielding of layers (2,3) e (1,4) takes place at the expected stresses.

7.2 Analysis of a steel-concrete laminated plate in bending

This example deals with the analysis of a cantilever plate submitted to a constant bending
moment as shown in Fig. 3(a). The plate is square with sides of 10 cm. For the material in the
upper part (concrete) E = 20 GPa and for the material in the lower layer (steel) E=200GPa.
To compare with a simple analytical solution, ν = 0 was adopted.

 

 
 

 
 
 
 

 (a)

 
  

(b)
 
 

 

(c)

Figure 3: a) Cantilever plate submitted to bending; b) Concrete plate with a steel lower layer;
c) Load-deflection plot at the free end.

For concrete, a tensile strength of 3 MPa and a compressive strength of 30 MPa, are used.
The yield stress of steel is taken as 300 MPa. For the analysis of progressive failure the Hashin
Criterion was used [9]. The concrete part is divided into ten layers. The results are presented
in Fig. 3(c). In the graph, the stiffness reduction due to failure of the tensile layers of concrete
can be observed; when the steel layer yields, the limit load is reached.

7.3 Analysis of a reinforced concrete beam strengthened by composite material plates

In this example the analysis of T-section reinforced concrete beam strengthened by CFRP plates
is presented. For the progressive failure analysis the Maximum strain criterion was used and
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the results had been compared with those in [22]. Fig. 4 shows beam geometry and cross
section. Fig. 5 shows the form of loads application. The steel bars are represented by plates
with equivalent cross-section area. The laminated shell elements used here have been also tested
to model thin walled composite beams [17]. The used mesh has 60 eight node elements and 227
nodes.

The materials properties are as follows:

• Concrete: E = 21 GPa, ultimate strain = 0.3%.

• Upper steel: E= 197 GPa, yield stress = 316 MPa.

• Lower steel: E= 192 GPa, yield stress = 325 MPa .

• Carbon fiber reinforced polymeric material - CFRP [14]: E= 65 GPa, ultimate strain =
1%.

 
 

 
 

(a)

 
 

 

(b)

Figure 4: T-beam a) Geometry b) Cross Section
 
 

 

 

Figure 5: Experimental layout
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Figure 6: T-beam - Total load x deflection; comparison of experimental and numerical results.

Final failure load and progressive damage are reasonably well represented by numerical
model. The failure of de beam was due to delamination of the CFRP layer [21], effect that is
not represented by the model.

7.4 Analysis of rectangular reinforced concrete beams strengthened by composite material

a) Fig. 7 shows beam geometry, cross section and loading. The steel bars are represented by
plates with equivalent cross-section area. For the progressive failure analysis the Maximum
strain criterion was used and the results are compared with those in [4]. The used mesh has 30
eight node elements and 125 nodes.

 
 

 

 

Figure 7: Geometry, cross section e loading

The materials properties are as follows:

• Concrete: average compression strength: 32.8MPa, ultimate strain: 0.3%.

• Upper steel CA50: failure stress: 747.2MPa, yield stress: 587.0MPa.

• Lower steel CA50: failure stress: 800.2MPa, yield stress: 706.5MPa.

• Replark - Mitsubishi Chemical Corporation [4] - E= 230.0GPa, failure strain: 0.0144.
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Figure 8: Mid-span deflection; comparison of experimental and numerical results
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Figure 9: Steel strain at mid-span; comparison of experimental and numerical results

Fig. 8 and 9 show that progressive failure and steel strain are fairly well represented by the
numerical model.

b) Fig. 10 shows beam geometry, cross section and loading. The steel bars are represented
by plates with equivalent cross-section area. The used mesh has 30 eight node elements and 125
nodes.

The materials properties are as follows:

• Concrete: E= 38.3Gpa, ultimate strain: 0.3%

• Upper steel CA60B: Es=210GPa, yield stress: 738MPa

• Lower steel CA50A: Es=210GPa, yield stress: 565MPa

• Carbon fiber reinforced polymeric plates – CFRP [1]: E= 230GPa, ultimate strain: 0.0148.

The stiffness loss due to the failure of the tensioned concrete layers can be observed (Fig. 11
and 12). In the representation of the steel strain the yielding of the lower steel is perceived (565
MPa). In the experiment, the failure of the composite leads to steel yielding.
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Figure 10: Geometry, cross section e loading
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Figure 11: Mid-span deflection
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Figure 12: Lower steel strain at mid-span

8 Conclusions and final remarks

The first two examples establish the accuracy and robustness of the model.
The results for the T-beam strengthened with composite material plates show a good agree-
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ment for deflections and failure load implying that the adopted failure criterion (Maximum
Strain) is adequate to evaluate the initial and final failures of the structure.

From the results for the rectangular beams we have:

1. The load-deflection plot shows that the used degradation criteria represent adequately the
experimental behavior. Still, we are working to improve this results using a criterion based
on the theory of the Continuum Damage Mechanics.

2. A good estimate of failure loads was obtained.

Although the code has others criteria, we use the Maximum Strain criterion due to the experi-
mental data supplied in [22].

It should be noticed that the finite element code developed is general and allows the analysis
of more complex structural types as plates and shells, as well as the calculation of deferred
deformations.
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