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We report a detailed numerical investigation of the relative abundance of periodic and chaotic
oscillations in phase diagrams for the Belousov–Zhabotinsky �BZ� reaction as described by a
nonpolynomial, autonomous, three-variable model suggested by Györgyi and Field �Nature
�London� 355, 808 �1992��. The model contains 14 parameters that may be tuned to produce rich
dynamical scenarios. By computing the Lyapunov spectra, we find the structuring of periodic and
chaotic phases of the BZ reaction to display unusual global patterns, very distinct from those
recently found for gas and semiconductor lasers, for electric circuits, and for a few other familiar
nonlinear oscillators. The unusual patterns found for the BZ reaction are surprisingly robust and
independent of the parameter explored. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3168400�

I. INTRODUCTION

It is well known that several chemical reactions are ca-
pable of displaying both periodic and chaotic oscillations in
the concentrations of reactive intermediate species. The
Belousov–Zhabotinsky reaction �BZR� is a paradigm of this
rich dynamical behavior, investigated in many papers and
featured in several books.1–4 However, the quantification of
the relative abundance and structural distribution of chaos
and periodicity in parameter space of this system has re-
mained poorly investigated. Rather than reflecting a lack of
interest, this spotty knowledge reflects the large computa-
tional effort required to construct phase diagrams for phe-
nomena represented by flows in phase space, i.e., by
continuous-time dynamical systems governed by sets of dif-
ferential equations. While it is easy to iterate discrete maps,
it is far harder and time consuming to integrate differential
equations. For this reason, most of the accumulated knowl-
edge about chaotic behavior in natural phenomena, phase
diagrams in particular, comes from investigations based on
discrete-time nonlinear maps.

Exploration of the parameter space of dynamical sys-
tems governed by differential equations has attracted some
attention recently, following a report5 that the phase diagram
of a loss-modulated CO2 laser, a flow, is surprisingly similar
to that of a textbook example of a discrete-time dynamical
system, the Hénon map. The immediate question is what
other sort of vector flows might produce isomorphically
similar phase diagrams and what new features they might
have. Surprising bifurcation phenomena have been reported
recently for systems across distinct disciplines and with vari-
ous motivations.5–15 For a survey, see Ref. 16.

Generically, the most obvious regularities observed so

far in phase diagrams of flows consist of sequences of self-
similar periodicity islands spread in chaotic phases,
“shrimps,”17,18 which based on studies of maps, are known to
underly period-doubling cascades. The rich bifurcation phe-
nomena found in flows so far contain novel features that
emerge organized in regular patterns not known in discrete-
time systems �maps�. This novelty is related to the distinct
manners that shrimps are “glued” together to form regular
patterns over extended regions in parameter space. However,
the basic organizational Leitmotiv is still based on shrimp
networks that accumulate systematically in one way or
another.6,12 Thus, is it possible to find macroscopic regulari-
ties of a different kind, i.e., other than glued shrimps?

A common feature of the models already investigated is
that they are mainly governed by polynomial equations of
motion. So, what can one expect from systems governed by
nonpolynomial equations of motion? We find novel and un-
expected features in a nonpolynomial system and describe
them in some detail.

Although nonpolynomial models of dynamical systems
exist abundantly in literature, their chaotic phases have been
explored mainly by plotting bifurcation diagrams along a
few specific one-parameter cuts. Moreover, phase diagrams
normally reported do not describe details of the chaotic
phases19 but, instead, focus mainly on bifurcation boundaries
between regions involving periodic oscillations of small pe-
riods. We investigate here the relative abundance and struc-
turing of the chaotic phases for a nonpolynomial model in-
volving three independent variables and 14 parameters and
describing BZR chaos.20 This model is complex in the sense
of Nazarea and Rice.21 Bifurcation diagrams for this model
display features resembling those recently found near certain
hubs in phase diagrams.12,16 Because not many hubs are
presently known, and there is no theoretical method to an-
ticipate the location of hubs, we perform a detailed numeri-a�Electronic mail: jason.gallas@gmail.com.
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cal investigation of the model. Although hubs were not
found, we do find a rather unusual structuring �described
below�: fountainlike global patterns consisting of alternate
eruptions of chaos and periodicities. Models of real chemical
reactions are particularly appealing in that they arise from
experiment and, therefore, dynamical behaviors predicted
from them should be amenable to experimental verification.

II. THE BZ REACTION

The classic BZR2,22,23 is the cerium-ion �Ce�IV�/Ce�III��
catalyzed oxidation of malonic acid �CH2�COOH�2� by bro-
mate ion �BrO3

−� in aqueous sulfuric acid �H2SO4� media.24

In a well-stirred, closed reactor, damped temporal oscilla-
tions occur in the concentrations of various intermediate spe-
cies, e.g., Ce�IV�, Ce�III�, BrO2, HBrO2, HOBr, and Br−. The
concentration of bromalonic acid �BrMA� is an important
dynamic quantity that serves as a bifurcation parameter for
the onset and eventual disappearance of oscillation in a
closed reactor.

True chemical steady states may be achieved when the
BZR is run in a continuous flow, stirred tank reactor �CSTR�,
into which solutions containing the reactants are pumped
while reaction mixture overflows.2,3 This makes the critical
bifurcation species BrMA �vide infra� a dynamic, oscillatory
variable. Oscillatory or even chaotic4 stationary states often
appear.

Deterministic chaos was first observed in BZ-CSTR ex-
periments in 1977 by Schmitz et al.25 and better character-
ized by Hudson and Mankin.26 The appearance of periodic-
chaotic windows as the flow rate was monotonically
increased was soon observed by Turner et al.27 and by Vidal
et al.28 Several classic transitions from periodicity to chaos
were observed in 1983 by Roux.29 The observed chaotic
states generally run from mixed-mode systems at low flow
rates27,28 to more complex behaviors at higher flow rates.30

There is some uncertainty concerning the origin of BZ-
CSTR chaos. Low-flow-rate chaos can be well reproduced31

by a model based only on the homogeneous chemistry24 of
the BZR. However, there is considerable experimental evi-
dence that high-flow-rate BZ-CSTR chaos may be at least
strongly affected by imperfect mixing effects.32–35 The model
under consideration here is based only on BZR chemistry.

The basic chemistry of the BZR is referred to as the
Field, Körös, Noyes24 �FKN� mechanism. The FKN mecha-
nism may be reduced to a skeleton form referred to as the
Oregonator36,37 involving only the species HBrO2, Br−, and
Ce�IV�. However, while both the FKN mechanism and the
Oregonator at least qualitatively reproduce in simulations the
BZR oscillations, neither model has been found to generate
chaos. Györgyi and Field38 expanded the details of the reac-
tions of BrMA and the malonyl radical to produce a three-
variable model20 that reproduces well the periodic-chaotic
nature of the low-flow-rate chaos. This model is based upon
the nonstoichiometric chemical reactions �1�–�7� and leads to
a set of three nonpolynomial differential equations. The left
hand sides of Eqs. �1�–�7� are rate determining for the ap-
pearance of products on the right hand sides,

Br− + HBrO2 + H+→
k1

2BrCH�COOH�2, �1�

Br− + BrO3
− + 2H+→

k2

BrCH�COOH�2 + HBrO2, �2�

2HBrO2→
k3

BrCH�COOH�2, �3�

1
2HBrO2 + BrO3

− + H+→
k4

HBrO2 + Ce�IV� , �4�

HBrO2 + Ce�IV�→
k5

1
2HBrO2, �5�

BrCH�COOH�2 + Ce�IV�→
k6

Br−, �6�

Ce�IV� + CH2�COOH�2→
k7

inert products. �7�

The concentrations of the principal reactants �H+, BrO3
−,

CH2�COOH�2� in Eqs. �1�–�7� are held constant, leaving four
dynamic variables �Br−, HBrO2, Ce�IV�, and BrMA� de-
scribed by four differential equations. Thus this model ex-
plicitly takes into account the dynamics of �BrMA�. The dif-
ferential equation describing the behavior of �Br−� is
eliminated using the pseudo-steady-state approximation,39

leaving three dynamic equations in �HBrO2�, �Ce�IV��, and
�BrMA�, as well as an algebraic expression for �Br−� given
below, in Eq. �13�.

III. THE NONPOLYNOMIAL EQUATIONS

By introducing the following equivalences:

X � �HBrO2�, A � �BrO3
−� ,

Y � �Br−�, C � �Ce�III�� + �Ce�IV�� ,

Z � �Ce�IV��, H � �H+� ,

V � �BrMA�, M � �CH2�COOH�2� ,

as well as the rate constants k1−k7 specified in reactions
�1�–�7� one obtains the following set of three nonpolynomial
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differential equations:1,20

dx

d�
= T0�− k1HY0xỹ + k2AH2 Y0

X0
ỹ − 2k3X0x2

+ 0.5k4A0.5H1.5X0
−0.5�C − Z0z�x0.5

− 0.5k5Z0xz − kfx	 , �8�

dz

d�
= T0�k4A0.5H1.5X0

0.5
 C

Z0
− z�x0.5 − k5X0xz

− �k6V0zv − �k7Mz − kfz	 , �9�

dv
d�

= T0�2k1HX0
Y0

V0
xỹ + k2AH2 Y0

V0
ỹ + k3

X0
2

V0
x2

− �k6Z0zv − kfv	 , �10�

where

x �
X

X0
, y �

Y

Y0
, z �

Z

Z0
, v �

V

V0
, � �

t

T0
, �11�

with the definitions

X0 =
k2

k5
AH2, �12a�

Y0 = 4X0, �12b�

Z0 =
CA

40M
, �12c�

V0 = 4
AHC

M2 , �12d�

T0 =
1

10k2AHC
. �12e�

Apart from terms with noninteger exponents, Eqs. �8� and
�10� contain an additional nonpolynomial dependence, Eq.
�13�, arising from elimination of the �Br−� equation using the
pseudosteady state approximation to yield ỹ, the scaled,
pseudo-steady-state39 value of �Br−�:

ỹ =
�k6Z0V0zv

�k1HX0x + k2AH2 + kf�Y0
. �13�

The quantities � and � are historical artifacts originally de-
fined to separate the reactions of Ce�IV� with BrMA and M;
they have no chemical significance. The �C−Z0z� terms in
Eqs. �8� and �9� are inserted intuitively to account for the
depletion of Ce�III� as Ce�IV� is produced. All parameters
appearing in the equations above are collected in Table I,
along with the basic numerical values from Ref. 20.

The most important experimental parameter in the BZ-
CSTR system is the inverse residence time, kf, �flow rate�/
�reactor volume�, which may be very precisely controlled
and to which the system is dramatically sensitive. Experi-
ments are typically monitored by measuring �Ce�IV���Z in
the CSTR. Thus the independent parameter in nearly all of
our calculations is kf, and z is sometimes used to demonstrate
the dynamic behavior of the model as kf is varied. The other
readily controlled experimental parameters are the concentra-
tions of reactants �A, C, H, and M� in the feed streams. We
assume the constant reactant concentrations in the CSTR are
identical to their concentrations in the feed streams.

Figure 1 shows bifurcation diagrams obtained by plot-
ting the local maximal values of z�t� as a function of kf. In
both diagrams, the z axis was divided into a grid of 600 and
the kf axis into 1200 equally spaced values. We integrated
Eqs. �8�–�10� using a standard fourth-order Runge–Kutta al-
gorithm with fixed time step h=2�10−6. The first 7�104

steps were discarded as transient. During the next 140
�104 steps we searched for the local maxima of z, which
were then plotted in the bifurcation diagram. This procedure
was repeated for each of the 1200 values of kf. Computations

TABLE I. Numerical values of rate constants and parameters fixed in our
simulations, taken from Ref. 20, in the same units.

k1=4�106 k2=2.0
k3=3�103 k4=55.2
k5=7�103 k6=0.09
k7=0.23 kf =3.9�10−4

A=0.1 C=8.33�10−4

H=0.26 M =0.25
�=666.7 �=0.3478

0.0003 0.00046k
0.6

2.7

z

f

(a)

0.00033 0.00037k
0.7

2.5

z

f

(b)

FIG. 1. Bifurcation diagrams illustrating the qualitative similarity of the cascading when either increasing or decreasing the bifurcation parameter. �a� Period-1
solutions exist on both extremes of the diagram. The box marks the region magnified on the right. �b� Period-3 solutions exists on both ends of the diagram.
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were started at the minimum value of kf from the initial
conditions x0=z0=v0=0.5 and continued by following the at-
tractor, namely, by using the values of x, z, and v obtained at
the end of one calculation at a given kf to start a new calcu-
lation after incrementing kf. This is a standard way of gen-
erating bifurcation diagrams, and the rationale behind it is
that generically, basins of attraction do not change signifi-
cantly upon small changes in parameters, thereby ensuring a
smooth unfolding of the bifurcation curve.

Comparing the bifurcation diagrams in Fig. 1 above with
Fig. 1�a� of Györgyi and Field20 one finds that the diagrams
are virtually identical, meaning that using Poincaré sections,
as done in Ref. 20, or using the maxima of the variable
produces identical sequences of bifurcations.

The procedure described above is used to compute all
phase diagrams presented in Sec. IV, except that instead of
considering local maxima of z, all points after the transient
were used to calculate the Lyapunov spectrum, i.e.,
Lyapunov exponents for the three variables of the model.
The construction of Lyapunov phase diagrams is a demand-
ing computational task. For instance, to classify a mesh of
N�N parameter points demands the computation of N2 ba-
sins of attraction, needed to sort out all possible solutions for
each parameter set. The computation of each individual basin
of attraction requires investigating sets of initial conditions
over a M �M mesh in phase space. The quality of the final
diagrams depends sensibly on both N and M being as large
as possible. Typically, we used 400�400 grids, although
600�600 grids were also used.

IV. PHASE DIAGRAMS

In this section we present several two-parameter phase
diagrams discriminating the dynamic behavior �chaotic or
periodic� as kf and one of the reactant concentrations is var-
ied. All parameters are varied over experimentally accessible
ranges. Rate constant values are not readily variable experi-
mentally. However, we do present phase diagrams in which

the values of k2 and k4 are varied because these important
quantities control important properties of the oscillations and
chaos.

Figure 2�a� shows a bifurcation diagram similar to those
in Figs. 1�a� and 1�b�, but now considering the total cerium-
ion concentration, C, as the bifurcation parameter while
keeping A=0.1 constant. However what would happen for
other values of A close to this one? Figure 2�b� shows how
chaos and periodicity are distributed in the C�A parameter
section. It shows that for relatively large variations of A
around 0.1 the bifurcation diagram remains essentially the
same, apart from an overall stretching.

Figure 2�b� illustrates a typical Lyapunov phase diagram
obtained by computing the three Lyapunov exponents for
Eqs. �8�–�10�, ordering them such that �3��2��1, and plot-
ting the largest nonzero exponent. We plotted �2 whenever
��1��10. As is well known,40 Lyapunov exponents provide a
handy quantity allowing one to discriminate between chaos
�positive exponents� and periodic oscillation �negative expo-
nents�. Figure 2�b� contains a scale of colors that, after suit-
able renormalization to reflect the extrema of exponents, was
used to construct similar figures below where scales are
omitted. Noteworthy is the great spread of the magnitude of
the exponents, an indication of the stiffness41 of the model.

Figure 3 displays phase diagrams for representative pa-
rameter sections: kf �A, kf �H, and kf �M. The top row
displays large views of the parameter space, discriminating
chaos from periodicity. Two of the diagrams contain the let-
ter � to mark, as is done in Fig. 2�b�, domains where one
finds chaos overwhelmingly, not periodic oscillations as the
shadings seem to indicate. To characterize chaos properly,
one would need to integrate for much longer times. The
middle row shows magnifications of the boxes in the upper
row. The thin white spines represent the location of “super-
stable loci,”12 i.e., loci of local minima of negative Lyapunov
exponents. Noteworthy in the middle row are the two right-
most panels displaying fountainlike “eruptions of chaos,”
a sort of chaos geyser in specific parameter regions in the

0.0007 0.0017C
0.5

3.4

z

(a)

0.0007 0.0017C
0.05

0.125

A

-905.7 66.90

0.0007 0.0017C
0.05

0.125

A

χ

(b)

FIG. 2. �a� Bifurcation diagram along A=0.1, indicated by the horizontal line in the right panel. �b� Lyapunov phase diagram discriminating periodicity and
chaos in the C�A control space. Colors denote chaos �i.e., positive exponents� while the darker shadings mark periodicity. Chaos prevails in the accumulation
region around the letter � despite the coloration. The color scale is linear on both sides of zero but not uniform. Note the high spread of exponents, indicating
stiffness. The bifurcation diagram has a resolution of 1200�600 pixels, while the phase diagram displays 600�600 Lyapunov exponents.
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kf �M and kf �H planes. Eruptions are also present in other
parameter sections visible in Fig. 2�b�, in the figures below,
and in several additional cuts of the parameter space, e.g.,
M �A, M �H, M �C, and C�H �not shown here�.

The bottom row in Fig. 3 illustrates an inherent difficulty
of computing Lyapunov exponents: the accurate determina-
tion of zero exponents. Away from zero, approximation er-
rors intrinsic to the integration algorithm as well as compu-
tational errors occurring in the calculation of exponents
remain confined to less significant digits. However, the tran-
sition between periodic and chaotic behaviors is marked by
zero exponents, where error in the less significant digits is
precisely what survives. The bottom row in Fig. 3 is a replot
of the panels in the middle row, but using a sharp cut at zero,
not the tolerant cut that allows accommodation of numerical
uncertainties. In the middle row we plotted �2, the second
largest exponent, whenever �1, the largest exponent, could
not be plotted after being “declared” zero, i.e., when it
obeyed ��1��10 �the “tolerance limit”�. In the bottom row,
we plotted �2 whenever �1�0 �strict limit�. The granularity
exposes regions of nearly zero exponents and higher numeri-
cal inaccuracies. Even under these very strict plotting re-
quirements, the overall structure of the phase diagrams re-
mains discernible. Recall that Eqs. �8�–�10� are stiff, thus
exacerbating numerical difficulties near the line of zero ex-
ponents.

Figure 4 shows the relative abundance and organization
of chaos and periodicity in the parameter section kf �C, the

total cerium-ion concentration. As is clear from the panels in
the bottom row, macroscopically, the parameter cuts present
two main regimes: a region where chaos and periodicity al-
ternate regularly while experiencing a relatively moderate
compression toward each other �exemplified in the right
panel�, and regions where one finds domains to bend over
and strongly accumulate toward well defined limit curves, as
seen in the left panel. This structure is surprisingly indepen-
dent of the parameter explored and markedly distinct from
structures recently found for gas and semiconductor lasers,
for electric circuits, and for a few other familiar nonlinear
oscillators.10,11,15,16 In particular, the alternation of chaos and
periodicity here is rather different from that found around
focal hubs of periodicity.12,16

Figure 5 presents progressively more highly resolved
phase diagrams obtained when varying simultaneously the
rate constants k2 and k4. The overall organization is similar to
that seen above. However in this parameter plane the com-
pression is not as strong as in previous parameter sections,
allowing finer details to be recognized even at moderate
resolutions. These phase diagrams allow one to understand
how the regimes described in Fig. 4 interconnect with each
other: by conspicuous “necks,” clearly seen in the panels in
the upper row, that get less and less pronounced when com-
ing closer and closer to the limit curve, the thick accumula-
tion line dominated by chaos. In the center panel of the
middle row one sees period-adding cascades and accumula-
tions similar to those observed in lasers, electric circuits, and

8e-05 0.0006k
0.02

0.2

A

f 0.0003 0.0009k
0.2

0.6

H

f

χ

0.0003 0.0009k
0.1

0.3

M

f

χ

0.0003 0.00045k
0.07

0.14

A

f

-1081.8 60.10

0.0003 0.00045
0.07

0.14

f 0.0003 0.00045k
0.24

0.3

H

f

-1044.1 65.20

0.0003 0.00045
0.24

0.3

f 0.0003 0.00045k
0.2

0.27

M

f

-1015.1 68.50

0.0003 0.00045
0.2

0.27

f

0.0003 0.00045k
0.07

0.14

A

f

-1081.8 60.10

0.0003 0.00045
0.07

0.14

f 0.0003 0.00045k
0.24

0.3

H

f

-1044.1 65.20

0.0003 0.00045
0.24

0.3

f 0.0003 0.00045k
0.2

0.27

M

f

-1015.1 68.50

0.0003 0.00045
0.2

0.27

f

FIG. 3. Top row: phase diagrams illus-
trating structuring for three distinct pa-
rameter cuts over wide parameter
ranges. Chaos prevails around the let-
ter �. Middle row: magnifications of
the boxes in the corresponding panel
above. Note the great similarity of the
two rightmost diagrams with that in
Fig. 2�b�. Bottom row: replot of the
panels in the middle row, but using a
strict cut for zero exponents, as indi-
cated by the color scales. To enhance
contrast, the intensity of red was
slightly increased. The granularity ex-
poses intrinsic difficulties of calculat-
ing exponents that are close to zero
�see text�.
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other nonlinear models.15 The bottom row in Fig. 5 illustrates
that at higher resolutions, the chaotic domains of the non-
polynomial model display the same recurrent accumulations
of shrimps found abundantly in several other models, au-
tonomous or not.6,14–18 Shrimps are also found in several
additional cuts of the parameter space, e.g., kf �M, kf �H,
and kf �C �not shown here�. It would be interesting to study
how periodicity evolves along such accumulations and to
quantify their metric properties.

V. CONCLUSIONS AND OUTLOOK

This paper reports a detailed numerical investigation of
the relative abundance of periodic and chaotic oscillations
for a three-variable, 14-parameter, nonpolynomial, autono-
mous model of the BZR. Although chaotic solutions for BZR
models have been known for many years,1–4 they were con-
fined to isolated parameter points or to specific one-
dimensional bifurcation diagrams. No global classification of
chaotic phases was attempted. The present work reports
phase diagrams discriminating chaos and periodicity along
several sections of parameter space. We also describe details
of the intertwined structuring of chaos and periodicity over
extended experimentally accessible parameter domains.

Globally, on a macroscopic scale, we have shown the
structuring of the BZR phase diagrams to display a recurring
unusual fountainlike global pattern consisting of eruptions of
chaos and periodicities. Such a pattern is very distinct from
any structuring based on shrimps and hubs reported recently

in literature for prototypical nonlinear oscillators such as gas
lasers, semiconductor lasers, electric circuits, or a low-order
atmospheric circulation model. The unusual patterns found in
the BZR are surprisingly robust and independent of the pa-
rameter explored.

Locally, on a microscopic scale, the BZR phase dia-
grams contain very peculiar hierarchies of parameter net-
works ending in distinctive and rich accumulation bound-
aries and structuring similar to that found recently for
semiconductor lasers with optical injection, CO2 lasers with
feedback, autonomous electric circuits, the Rössler oscillator,
Lorenz-84 low-order atmospheric circulation model, and
other systems. Since these accumulations of microscopic de-
tails were found in all these rather distinct physical models, it
seems plausible to expect them to be generic features of
flows of codimension two and higher.

In sharp contrast with discrete dynamical systems where
periodicities vary always in discrete unitary steps,42 chemical
reactions provide a natural experimental framework to study
how periodicities defined by continuous real numbers evolve
and get organized in phase diagrams when several param-
eters are tuned. Additionally, another enticing open question
is whether or not it is possible to infer the presence in phase
space of unstable and complicated mathematical phenomena,
e.g., homoclinic orbits, based on observation of regularities
computed/measured solely in parameter space. Are there
clear parameter space signatures of homoclinic orbits? Is it
possible to recognize in Lyapunov phase diagrams the loca-
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FIG. 4. Successive magnifications il-
lustrating the alternation of periodic
and chaotic solutions in the kf �C
space. Note the structural resemblance
to parameter cuts shown in Figs. 2�b�
and 3. Chaos prevails around the letter
�. Both axis were multiplied by 104 to
avoid unnecessarily long sequences of
zeros. Thus, the minimum values of kf

and C in the upper leftmost panel are
3�10−4 and 7�10−4, respectively.
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tion of parameter loci characterizing simple and multiple
�degenerate� homoclinic and heteroclinic phenomena?

Our choice of parameters is motivated and centered
around the set originally chosen by Györgyi and Field.20 The
phase diagrams presented here extend considerably the re-
gimes originally investigated. However, even if using vari-
ables reduced by scaling, not the original physical quantities
as done here, the effective volume of the parameter space
that needs to be explored is huge. Consequently, despite the
work reported here, the parameter space still remains mostly
unchartered and wanting much more investigation. A sure
bet, however, is that journeys through this vast space are
bound to reveal interesting dynamics and rich operational
points for sustaining individual chemical oscillators and os-
cillator networks. In particular, they might reveal the mecha-
nism responsible for the novel fountains of chaos which we
observed here so frequently and in so many phase diagrams.
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