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Particle motion of a Lennard-Jones supercooled liquid near the glass transition is studied by
molecular dynamics simulations. We analyze the wave vector dependence of relaxation times in the
incoherent self-scattering function and show that at least three different regimes can be identified
and its scaling properties determined. The transition from one regime to another happens at
characteristic length scales. The length scale associated with the onset of Fickian diffusion
corresponds to the maximum size of heterogeneities in the system, and the characteristic time scale
is several times larger than the alpha relaxation time. A second crossover length scale is observed,
which corresponds to the typical time and length of heterogeneities, in agreement with results from
four point functions. The different regimes can be traced back to the behavior of the van Hove
distribution of displacements, which shows a characteristic exponential regime in the heterogeneous
region before the crossover to Gaussian diffusion and should be observable in experiments. Our
results show that it is possible to obtain characteristic length scales of heterogeneities through the
computation of two point functions at different times. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2221309�

I. INTRODUCTION

The basic mechanisms of diffusion in supercooled liq-
uids and glasses are still poorly understood. Despite a con-
siderable amount of work in the last years, different ap-
proaches to the problem do not always agree and raise
doubts as to the ultimate relevance of the approaches them-
selves. In the landscape approach1–9 the basic hypothesis is
that, at low temperatures, the dynamics of a supercooled liq-
uid or a glass is ruled by the complex topography of the
potential energy surface, in particular by the multiplicity and
complexity of local minima and saddles. The glass transition
in this context can be viewed as the manifestation of a par-
ticular topological transition in the landscape, at which the
mechanism of diffusion by escape through unstable direc-
tions ceases to be efficient and hopping through barriers be-
comes the dominant mechanism to get out of a restricted
region in phase space. While this approach has been consid-
erably successful and offered deep insights into the nature of
the dynamics in the supercooled regime, its connection with
real space particle dynamics is not direct, and limited infor-
mation on the elementary dynamical processes at the particle
level has been obtained. At a more coarse grained level,
minimal models with kinetic constraints have been very suc-
cessful in order to get intuition and insight into elementary
dynamical processes.10–15 In this kind of model the real space

dynamics can be analyzed in great detail and relevant mecha-
nisms of the microscopic dynamics can be uncovered. There
is no underlying landscape and this has raised the question of
the relevance and necessity of a landscape based description
of the dynamics of supercooled liquids. Nevertheless, in
spite of their success in identifying many qualitative features
of supercooled liquids, the extreme simplification in their
own definition poses a limit in the description of many com-
plex phenomena, like aging or thermodynamic properties of
glasses.

Mode coupling theory MCT16–18 is perhaps the most
successful theoretical approach to the dynamics of the super-
cooled liquid state. It predicts the existence of relevant re-
gimes for relaxation, like the beta and alpha relaxations, and
makes quantitative predictions for temperatures above the
glass transition. Because of the complex interplay between
space and time scales in a supercooled liquid, most studies
based on MCT have focused on time scales at fixed length
scales, e.g., the analysis of the alpha relaxation time scale is
usually done focusing on the wave vector corresponding to
the peak of the structure factor. Even the emergence of
stretched exponential relaxation, a benchmark of glassy dy-
namics, is obtained from MCT only through fitting of nu-
merical solutions of the complex set of equations describing
time correlations. The origin of stretched exponential relax-
ation in supercooled liquids is still debated. A common sce-
nario opposes a possibly homogeneously stretched relax-
ation, which basically means that local regions in
supercooled liquids relax in the same time scale, with an
heterogeneous scenario in which different regions relax with
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different characteristic times, probably exponentially, giving
rise to a global stretching of the relaxation. Only recently the
local dynamics has begun to be accessible experimentally,
through the emergence of new sophisticated experimental
techniques19–21 and the concept of dynamical heterogeneities
has gained force.19,22 It has been realized that complex spa-
tiotemporal correlations characterize an heterogeneous sys-
tem, which can be described by four point functions, corre-
lations between two points in space at two different
times.23–26 These dynamical susceptibilities show a peak at a
time scale which corresponds to the typical heterogeneity in
the system and this time scale grows when temperature is
lowered toward the glass transition. An associated growing
length scale suggests a situation similar to a critical phenom-
enon. This length scale is difficult to measure. Experimental
results point to small or moderate values of the characteristic
length of heterogeneities near the glass transition19,22 and
computer simulation results are inconclusive due to the limi-
tations in the times scales reached by numerical experiments,
when compared to real experiments.25,27

A clear signature of dynamical heterogeneity is the ob-
servation of two sets of particles with different degree of
mobility, which allows one to define “slow particles” and
“fast particles” over particular time intervals.20,21,28–30 These
two sets show up, for example, in a double peak structure of
the distributions of particle displacements, and several indi-
cators have been defined in order to locate the time at which
this separation is maximal. This time scale is another way of
defining the typical lifetime of heterogeneities. At very long
time scales the supercooled liquid recovers the characteris-
tics of homogeneous Brownian motion and the distribution
of displacements becomes Gaussian. Consequently indica-
tors of non-Gaussian behavior serve to characterize dynami-
cal heterogeneity.30,31

Recently,15,32 performing a detailed study of the inter-
play between time and length scales, it was realized that it is
possible to obtain characteristic length scales of the process
of diffusion in supercooled liquids by analyzing two point
functions, namely the self part of the van Hove distribution
function Gs�r , t� and its Fourier transform, the self incoherent
scattering function Fs�k , t�, the two most common functions
used to study dynamical behavior in liquids.33 Analyzing the
behavior of kinetically constrained lattice models, it was re-
alized that it is possible to define a length scale correspond-
ing to the onset of Fickian diffusion in a supercooled liquid.
Above this length the system behaves as a simple fluid and
below it persistence dominates and nearly frozen regions are
observed up to times corresponding to the alpha relaxation
time, precluding the glass transition. This interesting obser-
vation, that stretching is dominated by persistence events up
to a time in which Fickian diffusion sets in, can only be a
rough approximation to the true behavior of a strongly cor-
related supercooled liquid, as we will see in the following.

In this paper we show results of molecular dynamics
simulations of a Lennard-Jones binary mixture �LJBM�, fo-
cusing on the behavior of the van Hove and self scattering
functions through a wide spectrum of time and length
scales.34,35 Our main result is that characteristic length scales
can be unequivocally obtained through the analysis of the

wave vector dependence of relaxation times in two point
time dependent correlation functions. We have been able to
characterize at least three regimes: ballistic, heterogeneous,
and Fickian. In particular, the scale characteristic of the onset
of Fickian diffusion is shown to correspond to the maximum
size of heterogeneities. The other length scale corresponds to
the typical heterogeneous behavior and the corresponding
time is the typical relaxation time scale. The heterogeneous
regime is characterized by stretched behavior of the scatter-
ing function and we have observed a corresponding expo-
nential regime in the van Hove distribution function of dis-
placements.

Our results show that typical length scales of heteroge-
neities can be obtained through analysis of two point func-
tions, like the incoherent scattering function, which are eas-
ily obtained experimentally.

In Sec. II we introduce the model, the simulation details,
and show the appearance of the different regimes in the in-
herent structures version of the van Hove distribution func-
tion. In Sec. III we present our main results on the wave
vector dependence of relaxation times and determination of
characteristic time and length scales from analysis of the self
incoherent scattering function. In Sec. IV we make a com-
parison with known experimental results. In Sec. V we
present some conclusions.

II. THE LENNARD-JONES BINARY MIXTURE
AND BASIC OBSERVABLES

We performed molecular dynamics simulations on a
well-known LJBM with 80% particles of type A and 20%
particles of type B with �AA=1.0, �BB=0.5, �AB=1.5, �AA

=1.0, �BB=0.88, �AB=0.8 at a density 1.204. Most results
correspond to systems with N=1000 particles. Some results
with 130 and 10 000 particles will be shown for discussing
fine size effects. We used a cutoff radius Rc=1.8 for the
potential and obtained TMCT�0.46 from extrapolation of dif-
fusivity data. The simulations shown here were done at a
single working temperature T=0.525=1.14 TMCT, at which
the system was equilibrated. As our main aim is to analyze
the diffusion dynamics of particles we map the instantaneous
configurations to the nearby local minima, called inherent
structures.2,36 Periodically along a trajectory we take a con-
figuration and let it relax with a conjugate gradient algorithm
to the nearest local minimum. In this way we get a map of
the true trajectory to a trajectory between local minima. As
the temperature is lowered toward the glass transition, trap-
ping in the basins of these inherent structures becomes im-
portant and rule the dynamics.4,8,37 Nevertheless throughout
the exposition we make comparisons with the corresponding
results from the real �instantaneous� molecular dynamics tra-
jectories.

In Fig. 1 we compare the behavior of the self incoherent
scattering function:

Fs�k,t� =
1

N
�
i=1

N

exp�ik · �ri�t� − ri�0��� �1�

calculated from the real instantaneous configurations, with
the same function calculated from the corresponding inherent
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structures. From its definition this function is wave vector
dependent. In this figure the wave vector corresponds to the
maximum of the structure factor �k � =7.25. The main differ-
ence between the two curves is the suppression of the relax-
ation to the plateau in the IS dynamics. This basically means
that vibrations of the particles and rattling inside cages is
strongly suppressed in the IS dynamics and we are left only
with structural displacements. This is good for our purposes
of looking at diffusion dynamics at low temperatures. From
the instantaneous curve we extract as usual the �-relaxation
time scale which is approximately ��120 for our system.

The same behavior is observed in the mean squared dis-
placement �MSD� of the particles R2�t�= �1/N��i=1

N �ri�t�
−ri�0��2 shown in Fig. 2. Note that the MSD from IS pro-
ceeds without the arrest at intermediate times. The two

curves merge approximately around the �-relaxation time,
from where the system gradually enters a normal diffusive
dynamics.

The basic quantity to characterize the displacements of
particles with time is the van Hove distribution function.33,34

This function has been extensively analyzed in the context of
dynamical heterogeneities in supercooled liquids and colloi-
dal systems.20,21,28–30 We consider the self part of the func-
tion and sum the contributions to the displacements in the
three coordinate directions obtaining an effective one-
dimensional quantity defined by

Gs
IS�x,t� =

1

N	�
i=1

N

��x − �xi
IS�t� − xi

IS�0���
 �2�

→
t,x→� 1

�4�Dt�1/2 exp�−
x2

4Dt
� , �3�

where the superscript IS means that we are considering in-
herent structure coordinates. The long time, large displace-
ment limit corresponds to homogeneous Fickian diffusion.
We were able to distinguish at least two regimes. In Fig. 3 it
is shown that an exponential decay fits correctly the data for
intermediate time scales and distances 0.5�x�2. We will
see later when analyzing the wave vector dependence of re-
laxation times that this regime of times and distances corre-
sponds to the heterogeneous or stretched dynamical regime.
An exponential decay in the distribution of displacements
was also observed by Vogel et al.38 and Schroeder et al.39

when analyzing the displacements of particles between two
consecutive inherent structures. In Fig. 4 we show the
asymptotic Gaussian regime of the van Hove function. Note
that it is necessary to wait for times several orders longer
than the alpha scale in order that almost all particles enter a
Fickian regime. This fact was recently observed and ana-
lyzed in Ref. 31. The crossover length and time scales be-

FIG. 1. Self incoherent scattering function for the LJBM at T	0.525 for a
wave vector corresponding to the peak of the structure factor k=7.25, from
instantaneous and inherent structures coordinates.

FIG. 2. Mean squared displacement at T=0.525 for instantaneous and in-
herent structure coordinates.

FIG. 3. The van Hove distribution in the exponential regime. Continuous
lines are exponential fits.
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tween the Fickian and exponential regimes will be analyzed
in greater detail in Sec. III.

Recently a frozen regime was also observed in spin
models of glasses with kinetic constraints.15 In this regime a
fraction of the system remains frozen up to times which in-
crease rapidly with decreasing temperature, as described by a
persistence function. In the van Hove distribution the frozen
component is reflected by a delta peak at the origin. In mo-
lecular systems a strictly frozen component cannot be seen
due to vibrations. But from the inherent structures dynamics
we obtained a delta peak for our smallest sample of N
=130 particles. In this case we see that the whole system
remains frozen for some samples up to times of the order of
the typical relaxation time. But once a particle moves, all the
others also move, although the displacements can be very
small. As the size of the system grows, completely frozen
samples became rare. For the 10 000 particle system we have
not seen the occurrence of a frozen sample or of a frozen
region within the samples, i.e., it is not possible to observe
strictly frozen groups of particles. As the system size grows,
the minimum possible displacement of the particles shifts
continuously toward smaller distances. At most we must ex-
pect to see groups of particles with distinctive mobility, i.e.,
slower and faster particles.

III. THE SELF SCATTERING FUNCTION
AND CHARACTERISTIC TIME-LENGTH
SCALES OF HETEROGENEITIES

Assuming isotropy of space we computed the following
one-dimensional self incoherent scattering function:

Fs
IS�k,t� =

1

N
�
i=1

N

exp�ik�xi
IS�t� − xi

IS�0��� . �4�

in which the superscript IS means that the function is calcu-
lated from inherent structures configurations.

In Fig. 5 we show four selected curves corresponding to

different wave vectors in order to illustrate the different re-
gimes of relaxation. For small k the relaxation is exponential
corresponding to Fickian diffusion of these modes. For wave
vectors around the peak of the structure factor �k=7 is shown
in the figure� or larger, the long time decay can be well fitted
by a stretched exponential with a k dependent exponent
which will be analyzed in the following. The regime of large
k’s correponds to the system being around the basin of a
single inherent structure, and the decay can be fitted with two
stretched exponentials, one for the short time and another for
the long time regimes of the relaxation. This analysis was
performed and discussed in detail in Refs. 40 and 41. In Fig.
6 we show the main result of this work, the dependence of
the relaxation time ��k� on wave vector. Relaxation times for

FIG. 4. The van Hove distribution in the Fickian regime. Continuous lines
are Gaussian fits.

FIG. 5. The self incoherent scattering function for four different wave vec-
tors characteristic of different scaling regimes. In the legend are the corre-
sponding fitting functions �continuous lines�.

FIG. 6. Wave vector dependence of relaxation times for three different sizes,
inherent and instantaneous dynamics. Different scaling regimes are indi-
cated with full lines. Inset: zoom of the Fickian crossover region.
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each k were obtained as usual, as the time at which the self
scattering function decays to 1/e of its initial value. In this
plot we compare the results from inherent structures �IS� and
real coordinates for three system sizes: N=130, N=1000,
and N=10 000. We see that the data for the two larger sys-
tems almost coincide, so one can be confident that already
for N=1000 there are no finite size effects in the scaling
regimes. This figure is very interesting,44 showing different
scaling regimes between time and length scales. For each
system size and for the smallest wave vectors, the results
from IS and real coordinates coincide, while they differ
strongly at large wave vectors, as expected.

For wave vectors k�2 and times �
1000, a Gaussian
scaling ��1/k2 is observed: this is the Fickian diffusion
regime �see the inset in Fig. 6�. At k�2 a crossover to an-
other scaling form is observed: the system enters an anoma-
lous diffusion regime with scaling ��1/k1.6. This regime
extends between 2�k�10 and times between 50��
�1000. This is the regime in which the dynamics is hetero-
geneous and the relaxation of correlation functions is
stretched. Comparing the length and time windows in this
regime we realize that they correspond to the exponential
decay of the van Hove distribution �see Fig. 8�.

For k
10 the relaxation times decay rapidly in a narrow
interval of wave vectors. Note that this effect of rapid decay
is much more pronounced in the data corresponding to the
real coordinates than in the inherent structures data. This is
due to the cage effect, in which the diffusion is temporarily
halted, seen in the figure as a narrow interval in k values. For
scales larger than k
20 �data not shown�, a linear scaling
works well: the diffusion is ballistic. While the ballistic re-
gime is nicely observed in the real dynamics, the correspond-
ing curves for the inherent structures dynamics show instead
a slow decay of relaxation times with k, because the fast
motion of the particles is filtered out. The second crossover,
between the subdiffusion and the faster decay, happens at a
time of the order of the alpha relaxation time. This time

corresponds to the peak in the four point susceptibility and
the corresponding length scale to the typical size of hetero-
geneities.

The crossover between Fickian and anomalous diffusion
at nearly kF�2 allows one to define a characteristic length
scale lF�3 as the scale for the onset of Fickian diffusion at
the temperature considered. Below this scale cooperativity
rules the motion of individual particles and the dynamics is
heterogeneous. This length scale corresponds to the maxi-
mum size of heterogeneities in the system. The departure
from anomalous diffusion at nearly kH�10 allows one to
define a second length scale lH�0.6, as the minimum size of
heterogeneous regions. Note that this size is very small at
this temperature. It would be extremely interesting to repeat
this analysis for different temperatures approaching and
crossing the mode coupling transition temperature.

In Fig. 7 we show the dependence of the stretching ex-
ponent �IS�k� on wave vector. It decreases monotonously
from exponential ��=1, Fickian� behavior at small k to an
apparent saturation around ��0.3 at large k. Due to the
complex t and k dependence of the stretching exponent, we
were not able to collapse the data of the self scattering func-
tion for different wave vectors onto a single master curve.

IV. EXPERIMENTAL EVIDENCE

There is a relatively large literature reporting results on
heterogeneous dynamics in glasses and the search for char-
acteristic time and length scales.19,22 Nevertheless there are,
to our knowledge, only a few papers reporting detailed mea-
surements of particle displacements in supercooled liquids
and glasses.20,21,42

In Fig. 8 we show that in the real dynamics, for a time
less than the alpha relaxation time, the van Hove function
can be fitted by a Gaussian contribution from vibrations at
small distances plus an exponential contribution at large
distances. This figure can be compared, e.g., with Fig. 3 of

FIG. 8. The van Hove distribution from instantaneous coordinates at t=32.
The data can be fitted by a Gaussian at small distances plus an exponential
decay at larger distances.

FIG. 7. Wave vector dependence of the stretching exponent �.
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Ref. 21, where experimental data from colloidal supercooled
fluids and glasses were fitted with a stretched exponential
with exponent �0.8, although an exponential fit can prob-
ably work also in that case.

In another, similar experiment, Kegel et al.,20 using
time-resolved fluorescence confocal scanning microscopy,
also measured the self part of the van Hove function. They
classified the particles in two subsets: one fast and one slow,
and fitted the data for both subsets with two Gaussians. The
fits are very good, as recently observed for the same time
scale in simulations of the LJBM.43 The difference in the
behavior of the distribution function between both experi-
mental results probably reflects the different time regimes in
which the measurements were done in each case. It would be
very interesting to have accurate measurements in the whole
time span between the beta relaxation scales up to several
times the alpha scale in order to get from that an estimation
of the characteristic length scales discussed in this work.

V. CONCLUSION AND PERSPECTIVES

The mechanisms of particle diffusion in deeply super-
cooled liquids are still poorly understood. In particular, the
region of intermediate time and length scales, in which dif-
fusion is anomalous, is still waiting for a complete theoreti-
cal description. In the meantime, new highly precise mea-
surements probing local dynamics and extensive computer
simulations are giving important insights into the basic
mechanisms that underlie particle motion. By means of mo-
lecular dynamics simulation on a Lennard-Jones supercooled
liquid we showed that the van Hove distribution and self
scattering functions still bring us new and rich information.
They show at least three well defined regimes on different
time and length scales. On very short times and lengths the
motion of particles is ballistic. Then heterogeneities develop
and at times of the order of the relaxation time a well defined
crossover length lH can be obtained from the k dependence
of the relaxation times. This length corresponds to the typical
size of spatial heterogeneities. In this region the diffusion is
anomalous and time correlations decay in a stretched expo-
nential way. Also in this space-time regime the van Hove
distribution shows a well-defined exponential decay. To our
knowledge this exponential decay has not been observed or
analyzed in other models, like the much studied kinetically
constrained lattice models, but is clearly present in experi-
mental results on colloidal systems. At very long time scales,
several orders larger than the alpha relaxation scale, Fickian
diffusion sets in, and the distribution of displacements slowly
converges to a Gaussian. The crossover from heterogeneous
to Fickian dynamics is also clearly observed in the k depen-
dence of the self scattering function, and a second typical
length lF can be obtained. Scaling forms typical of normal
and anomalous diffusion can be seen for distances larger and
smaller than lF, respectively. An interesting study on the tem-
perature dependence of the onset time for Fickian diffusion
was recently done by Szamel et al.31 In that work the onset
time for Fickian diffusion is defined as the time at which a
fixed deviation from Gaussianity was observed in the
distribution of the logarithm of particle displacements

P�log10�r , t�. Its temperature dependence was analyzed and
compared with the corresponding behavior of other charac-
teristic time scales. A particularly interesting result is the
observation that the ratio between the Fickian diffusion onset
time �F and the alpha relaxation time �� grows with decreas-
ing temperature, but tends to saturate near the mode coupling
transition temperature Tc. This may indicate that the mecha-
nisms behind both time scales are essentially the same as the
crossover temperature is approached.

Although the identification of characteristic dynamical
lengths can be naturally introduced through four point corre-
lation and response functions, we have shown that the rel-
evant information can already be obtained from two point
functions, like the van Hove distribution and self scattering
correlation functions. To understand the emergence of the
different regimes observed in the simulations from a single
microscopic model, or unified theoretical framework, is still
a big challenge.
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