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Thermodynamics in the vicinity of a critical endpoint with nonclassical exponentsa, b, g, d, ... , is
analyzed in terms of density variables~mole fractions, magnetizations, etc.!. The shapes of the
isothermal binodals or two-phase coexistence curves are found at and near the endpoint for
symmetric and nonsymmetric situations. The spectator-~or noncritical-! phase binodal atT5Te is
characterized by an exponent (d11)/d (.1.21) with leading corrections of relative order 1/d
(.0.21), u4 /bd (.0.34) and 12(bd)21 (.0.36); in contrast to classical~van der Waals, mean
field, etc.! theory, the critical endpoint binodal is singular with a leading exponent (12a)/b
(.2.73) and corrections which are elucidated; the remaining,l-line binodals also display the
‘‘renormalized exponent,’’ (12a)/b but with more singular corrections.@The numerical values
quoted here pertain to (d53)-dimensional-fluid or Ising-type systems.# © 2001 American
Institute of Physics.@DOI: 10.1063/1.1373665#

I. INTRODUCTION AND OVERVIEW

At a critical point in a fluid ~or other Ising-type or
n51! system two distinct phases, say,b andg, become iden-
tical: belowT5Tc these two phases may coexist for appro-
priate values of the conjugate ordering field~or chemical
potential, etc.!1 h; aboveTc they merge into a single phase,
say,bg. If there is some other field variable,1 say,g, which
may be varied without destroying coexistence, the critical
point is drawn out into a lambda line,T5Tc(g). A typical
situation, which lacks any special symmetry, is shown sche-
matically in Fig. 1. The lambda line,l, delimits the phase
boundary surfaceh5hr(g,T), labeledr, on whichb andg
may coexist.

Now in many instances wheng is varied, say, decreased,
another quite distinct phase,a, will be encountered. In this
case the lambda line terminates at acritical endpoint,2 which
is labeledE in Fig. 1. At E the phasesb andg may undergo
criticality in the presence of the coexisting noncritical phase
a which may be appropriately termed thespectator phase.2,3

The surface bounding the spectator phase in the (g,T,h) or
field space is labeleds ; on it a may coexist with phasesbg,
b, or g ; on the triple line,t, where the surfacer meets the
surfaces, all three phasesa, b andg may coexist.

In a previous study2 ~to be denotedI !, we discussed the
shape of the spectator-phase boundary surface,g
5gs(T,h), in the vicinity of the endpoint atT5Te and, by
choice of origin,h5he[0. It was found that the surface is
singular atE with functions such asgt(T), specifying the
triple line, andgs(Te ;h), displaying nonanalytic behavior
described by a variety of critical exponents.2,4 When, as is

normally so, the lambda line is characterized by nonclassical
exponentsa, for the specific heat,b, for the order parameter,
d, for the critical isotherm, etc., the spectator-phase boundary
exponents can all be expressed2 in terms of a, b, and d.
Beyond that it was shown that various dimensionless ratios
constructed from the amplitudes of the phase-boundary sin-
gularities should beuniversalwith values also determined by
the nature of the bulk criticality on the lambda line.2,4

These conclusions were based on a phenomenological
description of the thermodynamic potentials~or Gibbs’ free
energies! Ga(g,T,h) and Gbg(g,T,h), for the spectator
phase and for the coexisting and critical phases, respectively.
The former was assumed to have a power series expansion in
the vicinity of E; the latter embodied a full scaling represen-
tation of the critical line and its neighborhood.2,4

This formulation neglects the essential singularities ex-
pected on thes and r boundaries;5 these can, however, be
discussed4 but play only a negligible quantitative role. Our
general phenomenological treatment has been checked by an
extensive study of a family of spherical models which ex-
hibit lambda lines and critical endpoints with a range of non-
classical exponents~althoughb5 1

2 in all cases!.6,7

Many experimental examples of critical endpoints are
found in multicomponent fluid systems. In the simplest ex-
ample, which we will particularly bear in mind, two chemi-
cal species, B and C, mix as fluids in all proportions at high
temperatures forming the phasebg. At lower temperatures,
however, they undergo liquid–liquid phase separation, or de-
mixing, producing phasesb andg rich in B and C, respec-
tively. Up to a constant shift, the fieldh may then be taken as
the chemical potential differencemB2mC . As the pressure,
p, or the total chemical potential,mB1mC , either of which
we may identify with the fieldg, is reduced, a dilute vapor
phase,a, appears. Figure 1 then represents a characteristic
overall phase diagram. Now in a typical experiment the tem-

a!Current address: Center for Polymer Studies, Center for Computational
Science, and Department of Physics, Boston University, Boston,
MA 02215.
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peratureT is controlled and may be held fixed: correspond-
ing to Fig. 1, the appropriate isothermal phase diagrams in
the (g,h) plane then have the character shown in Fig. 2 for
T,Te , T5Te , andT.Te .

However, the chemical potentialsmB and mC , or the
fields h and g, are normallynot under direct experimental
control or observation; rather, the conjugatedensities, rB and
rC ~or concentrations of B and C! or, equivalently, the den-
sities,

r152
]

]h
G~g,T,h!ug,T, r252

]

]g
G~g,T,h!uT,h ,

~1.1!

are the prime experimental variables.@Note that in the ex-
ample envisaged withg5mB1mC one simply hasr1

51
2(rB2rC) and r25 1

2(rB1rC).# In the density plane
(r1 ,r2) the phase boundariesr and s are represented by
two-phase regions bounded by smooth curves, the so-called
binodalsor coexistence curves; see Fig. 3. The aim of this
article is to analyze in detail and generality theshapesof
these isothermal binodal curves in the vicinity of a critical
endpoint. Specifically, we will elucidate the nature of the
leading and subdominant singularities that appear in the vari-
ous binodals labeledB e

a1 , B ,
b , etc., in Fig. 3.

It appears from Fig. 3, and detailed analysis bears it out,
that the binodal curves forT>Te meet with a common tan-
gent at the endpointsEl and Ea and at the extended triple
points t̃a and t̃bg @defined by the intersection ofr̃, the
extended phase boundaryr, with the surfaces in the
(g,T,h) space; seeI #. Of principal concern, then, is the way
in which the binodals depart from linearity.Above Te one
expects analytic binodals but the behavior of the curvatures
at t̃a and t̃bg asT→Te1 is then of interest. On the other
hand,at T5Te one expects singular behavior atEl andEa.
Indeed, Borzi,8 stimulated by Widom,9 discussed thenon-

FIG. 2. Isothermal sections of anNA endpoint phase diagram in field space
for ~a! T,Te , ~b! T5Te , and~c! T.Te corresponding schematically to the
full ( g,T,h) diagram shown in Fig. 1. ForT<Te the phase boundarys in
Fig. 1 breaks into two pieces:s1 separating phasesa and b, and s2

separatinga andg. The dotted curve represents the locush̃(g,T,h)50 ~see
Sec. II! which coincides with the surfacer ~see Fig. 1! and defines its
extensionr̃ and, hence, the extended triple linet̃.

FIG. 3. Isothermal density–density~or composition! diagrams for~a! T,Te , ~b! T5Te , and ~c! T.Te for an NA endpoint illustrating the single-phase
regionsa, b, g, andbg, the two-phase regions ruled by tie-lines connecting coexisting phases, and the three-phase triangle~dotted area! in which phases
corresponding to the verticesta, tb, andtg coexist. The various analytically distinct binodals are labeledB ,

a2 , B e
g ,¯ , where the superscript indicates the

phase bounded by the binodal while the subscript serves~as needed! to specify the temperature,T"Te . The same notations apply to a symmetricSA endpoint.
At T5Te the endpoint tielineEaEl defines them̃ or m50 axis, shown dashed, wherem andm̃ are fixed linear combinations of the densitiesr1 andr2 ~see
Sec. III!; the m andm̃ axes on the plots~a! and~c! have been omitted for the sake of clarity but are useful to understand the motion of the various features
asT passes throughTe . Note that this figure corresponds qualitatively to Figs. 1 and 2 but isnot quantitatively accurate.

FIG. 1. The thermodynamic field space (g,T,h) exhibiting anonsymmetric
~N! critical endpoint,E, at the meet of al line, marking the edge of a phase
boundary surfacer on which phasesb and g can coexist, and a phase
boundary surfaces limiting the spectator phasea. The triple line t, on
which phasesa, b, andg may coexist, extends aboveT5Te into the dotted-
dashed linet̃ which is the intersection ofs with the extended phase bound-
ary r̃ ~not shown!. Note, as discussed below, that thel line shown here
slopes downward towards thea phase asT rises, thus representing what we
denote as caseA.
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critical binodals at the endpoint, namely,B e
a6 in Fig. 3~b!,

using the simplest possible phenomenological postulate and
geometrical arguments~equivalent to van der Waals and
other classical theories!. He concluded that the degree of
tangency was controlled by a 4/3 power law~in place of a
power 2 for a normal analytic tangency!.

Later Klinger,9 using a more general phenomenological
classical theory, discussed thecritical endpoint binodals,B e

b

and B e
g analytically; see Fig. 3~b!. However, he found no

evidence of singular behavior. Beyond that, Klinger con-
firmed the leading 4/3 power in thenoncritical or spectator
binodal and found that the first correction term carries a 5/3
power.

On general grounds, however, it seems certain that the
powers 4/3 and 5/3 must result from the reliance on classical
theory which entails the critical exponent valuesa50, b
5 1

2, andd53 in place of the appropriate nonclassical values
a.0.109 , b.0.326 , and d5(22a)/b21.4.80 which
characterize the specific heat, coexistence curve, and critical
isotherm of real bulk (d53)-dimensional fluids~or other
systems in the Ising universality class!. Indeed, Widom has
conjectured9 that in general the 4/3 power should become
(d11)/d. This reduces to Borzi’s result whend53 but
yields an exponent value of 1.208 for real fluid systems.

Here we confirm Widom’s surmise using the full scaling
approach developed inI . Furthermore we show that
Klinger’s correction exponent of 5/3 is replaced, more gen-
erally, by three exponents, namely (22a1b)/bd, (22a
1u4)/bd, and (322a2b)/bd. Here u4 is the leading
correction-to-scaling exponent which has the valueu4

.0.54 for (d53)-dimensional Ising-type systems;10 thus
these three exponents have values of about 1.42, 1.55 and
1.57, respectively, for bulk fluids. In the classical limit at-
tained viad→42 one hasu4→0 and the second exponent
reduces11 to 4/3 while the first and third yield Klinger’s value
of 5/3. However, we also identify further singular exponents
that must appear in the expansion of the noncritical binodal
at the endpoint.

It transpires, in addition, that, contrary to Klinger’s

findings,9 the critical binodal is, in general,also singular
with a leading power (12a)/b.2.73 so that the binodal is
much flatter at the endpointEl than classical theory would
predict. Here, and below where appropriate, we suppose
a.0 as applies to real fluids. The exponent (12a)/b is, in
fact, the same as that long known to characterize isothermal
binodals passing through a lambda point~away from any
endpoint!; see B l1 and B l2 in Fig. 3~a!. This behavior
which is, of course, reconfirmed by our analysis reflects, in
turn, the phenomenon of critical exponent renormalization.12

The correction terms in the critical endpoint binodal are
found to carry exponents (12a1uk)/b with k54, 5, ... .
When one substitutes the classical valuesa50 and uk

5 1
2(k24) these leading and correction exponents become 2,

3, 4, ..., which are consistent with Klinger’s results and in-
dicative of a fully analytic critical binodal.

The results sketched out here, and others for the remain-
ing binodals shown in Fig. 3, are presented in detail in Sec.
III. However, it is necessary to point out that Figs. 1–3 are
special in two respects. First, as mentioned, no symmetry
with respect to the ordering surfacer has been supposed; this
is quite appropriate for most fluid systems. However, as ob-
served in I ,2,4 there are many other physical systems in
which the thermodynamic potentials are unchanged under
reflection in theplaner: one may then takeh50 on r and
the symmetry becomes invariance underh⇔2h. The con-
ceptually simplest example is an elemental ferromagnet, like
nickel or iron, whereh[H is the magnetic field andg[p is
the pressure. Other examples are ferroelectrics, antiferromag-
nets, order–disorder binary alloys, and liquid helium through
its transition to superfluidity;4 however, the binodal curves
are not readily accessible experimentally in some of these
cases. The corresponding (g,T,h) phase space, the isother-
mal sections, and the binodal curves for suchsymmetric criti-
cal endpointsare illustrated in Figs. 4–6. In fact, symmetric
critical endpoints are simpler in a number of respects and
will be analyzed first below. Fundamentally we find that the
leading singular behavior of the binodals is identical in the
symmetric and nonsymmetric cases but the correction terms
differ in character: see Sec. III.

A second special feature embodied in Figs. 1–3 is the
slopeof the l line which we characterize asnegativein the
sense that if, without loss of generality, we~i! take

g5h50, T5Te , at E, ~1.2!

and ~ii ! suppose that the negativeg axis lies in thea or
spectator phase~see Figs. 1 and 4! then we have2

A: Lg[TeS dTc

dg D
e

21

,0. ~1.3!

Conversely, as illustrated in Fig. 4, one must also consider
the case of a positively slopingl line with

B: Lg[TeS dTc

dg D
e

21

.0. ~1.4!

As seen in Figs. 5 and 6, this produces distinct isothermal
phase diagrams and new arrangements of binodal curves:
note the additional notation introduced in Fig. 6.

FIG. 4. Thermodynamic field space illustrating asymmetric critical end-
point, SB, for caseB in which the l-line slopes upwardaway from the
spectator phasea as T increases. Beyond these differences, the phases,
phase boundaries, etc., correspond precisely with those in Fig. 1.

935J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 Isothermal binodal curves



One might, of course, also wish to consider the border-
line casesLg50, `; we will not pursue these but, on the
basis of our postulates for the thermodynamic potentials as
set out below in Sec. II, the necessary analysis presents no
further problems of principle.

In summary therefore, we will analyze the binodals for
four types of critical endpoints which, usingN for nonsym-
metric andS for symmetric, may be labeledNA ~Figs. 1–3!
andNB, SA, andSB ~Figs. 4–6!.

In outline, the remainder of the article is as follows. Our
basic scaling postulates for the thermodynamic potential
Gbg(g,T,h) are set out in Sec. II. They are essentially the
same as those introduced and discussed critically inI but
they have been extended significantly as regards thesymme-
tries of the corrections to scaling and of the nonlinear scaling
fields; the notation also differs in a few details.2 The reader
prepared to take the postulates on trust7 may proceed directly
to Sec. III where the shapes of the binodals in the various
cases are discussed in detail without reference to Sec. II. The
analytic derivation of the results, which is straightforward in
principle but a little delicate in practice, is presented in Sec.
IV. Explicit formulas for the many amplitudes entering the
expressions for the various binodals in Sec. III are also given
in Sec. IV. In Sec. V we summarize our conclusions briefly.

II. THERMODYNAMIC POTENTIALS FOR ENDPOINTS

This section presents a complete specification of the
thermodynamic potentialG(g,T,h) in field variables as
needed for the general description of critical endpoints. It is
the basis for the results described in Sec. III but need not be
read to understand those results. For convenience we adopt
the critical endpoint as origin for the fieldsg andh as speci-
fied in ~1.2!, and also put

t5~T2Te!/Te . ~2.1!

Thusg, t, andh measure field deviations from the endpoint
E at (g,t,h)5(0,0,0). ~In I the variablesg and t were de-
noted Dg and t̂ .! For any propertyP(g,T,h) admitting a
power series expansion aboutE ~of indefinitely high order
but not necessarily convergent! we utilize, for brevity, the
semisystematic subscript notation,

P~g,T,h!5Pe1P1g1P2t1P3h1P4g212P5gh12P6gt

12P7ht1P8t21P9h21O3~g,t,h!, ~2.2!

where, here and below,Om(x,y,z) denotes a formal expan-
sion in powersxjykzl with j 1k1 l>m. If P is symmetric
underh⇔2h one has

P35P55P750 ~ to order 3!. ~2.3!

Functions satisfying~2.2! and ~2.3! will be said to benon-
critical ~as opposed tocritical!.

Following I we assume that the thermodynamic potential
Ga(g,T,h) for the spectator-phase,a, is noncritical. Thus
one has, e.g.,G7

a5 1
2@]2Ga(g,T,h)/]h]t#e and, by virtue of

~1.1!, the endpoint densities in the spectator-phase are simply

r1
ae52G3

a and r2
ae52G1

a . ~2.4!

To describe the critical phases,b, g and bg, we first
introduce, again followingI , the two relevantnonlinear

‘‘thermal’’ and ‘‘ordering’’ scaling fields, t̃ (g,T,h) and
h̃(g,T,h), which both vanish on the l line while h̃ also
vanishes on the phase boundaryr. For the nonlinear scaling
fields we accept the noncritical expansions,13

FIG. 5. Isothermal sections of anSB endpoint phase diagram~correspond-
ing schematically to Fig. 4! for ~a! T,Te , ~b! T5Te , and ~c! T.Te .
Compare with Fig. 2 and note that forT.Te the l point and its phase
boundaryr are disconnected from the boundarys.

FIG. 6. Isothermal density–density diagrams for~a! T,Te , ~b! T5Te , and~c! T.Te for an SB type of critical endpoint such as illustrated in Figs. 4 and
5. Compare the dispositions of the binodals with those shown in Fig. 3 and note the augmented labeling notation.

936 J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 Kim, Fisher, and Barbosa



t̃ 5t1q0h1q1g1q2g21q3gt1q4t21q5gh

1q6h21q7th1O3~g,t,h!, ~2.5!

h̃5h1r 21t1r 0g1r 1gh1r 2th1r 3h21r 4g2

1r 5gt1r 6t21O3~g,t,h!, ~2.6!

which slightly extend those inI ~4.7! and~4.8!. It should also
be mentioned at this point thatpressure-mixingterms, which
have been discovered recently in connection with the Yang–
Yang anomaly in fluid systems,14,15 are not considered
here.16

In the symmetric case one has, to order 3,

q05q55q750, r j50, for j 521, 0, 3 – 6. ~2.7!

Asymptotically, thel line may thus be described by

gl~T!5Lgt1Lg2t21O~ t3!,
~2.8!

hl~T!5Lht1Lh2t21O~ t3!,

where one finds

Lg52
12q0r 21

q12q0r 0
, Lh5

r 02q1r 21

q12q0r 0
, ~2.9!

with similar expressions forLg2 , etc. In accord with~1.3!
and ~1.4!, we assumeLg does not vanish or diverge. In the
symmetric case one hasLg521/q1 and Lh5Lh25...50,
so thatL0[q12q0r 0Þ0.

Then we need the onerelevantscaled variable,

y~g,t,h!5Uh̃/u t̃ uD, with D5bd5b1g.1, ~2.10!

where the exponent relations and inequality are standard. InI
we took U5U(g,t,h) as a noncritical function; however,
with no loss of generality we may takeU as apositive con-
stantsince any dependence ong, t, andh can be absorbed
into h̃. Beyondy we need the manyirrelevant scaled vari-
ables,

yk~g,t,h!5Uk~g,t,h!u t̃ uuk,

uk11>uk.0, k54, 5, ... . ~2.11!

We assume that the associated irrelevant amplitudesUk are
noncritical13 with

Uk~g,t,2h!5~2 !kUk~g,t,h! in case S. ~2.12!

Now we can write the thermodynamic potential for the
critical phase as

Gbg~g,T,h!5G0~g,T,h!2Qu t̃ u22aW6~y,y4 ,y5 ,¯ !,
~2.13!

where the backgroundG0(g,T,h) and thepositiveamplitude
Q(g,T,h) are noncritical while the subscript6 refers to t̃
:0. Physically, from the relation ofa to the specific heat we
have 22a.1 but we further suppose

~22a!/D5~d11!/d .1, ~2.14!

as is generally valid both classically and nonclassically. For
concreteness and simplicity we will, in addition, focus on
a.0 ~as appropriate for bulk fluids, etc.!.

We also assume, acknowledging the symmetry of the
standard universality classes, that the scaling function
W6(y,y4 ,y5 ,¯) is both universal and invariant under
change of sign of the odd argumentsy, y5 , y7 , ... . Beyond
that we have the expansion

W6~y,y4 ,y5 ,¯ !5W6
0 ~y!1y4W6

(4)~y!1y5W6
(5)~y!1¯

1y4
2W6

(4,4)~y!1y4y5W6
(4,5)~y!1¯ ,

5(
k

W6
k ~y!y[ k] , ~2.15!

in terms of the irrelevant scaled variablesy4 , y5 ,¯ , where
for brevity we have introduced the multi-index,

k 50,~4!, ~5!, ..., ~4,4!, ~4,5!, ..., ~4,4,4!, ..., ~2.16!

and the associated conventions

y0[1, y[( i , j ,...,n)][yiyj ...yn . ~2.17!

We also sayk5@( i , j ,...,n)# is odd or evenaccording to
whether the sumi 1 j 1¯1n is odd or even. Then with an
obvious extension of notation, the symmetry ofW6(y,¯)
requires

W6
k ~2y!5~2 !kW6

k ~y!. ~2.18!

For smally and t̃ .0 we can then write the further ex-
pansions,

W1
k ~y!5W10

k 1y2W12
k 1y4W14

k 1¯ , for k even,

5yW11
k 1y3W13

k 1y5W15
k 1¯ , for k odd.

~2.19!

These series may, in general, be normalized via

W12
0 5W10

k 51 ~k even! or W11
k 51 ~k odd!,

~2.20!

which serve to fix the nonuniversal metrical amplitudesQ,
U, Uk,e , etc.

Note, however, that in settingW10
0 5W12

0 511 an ap-
peal to thermodynamic convexity,5 together withQ.0 and
a.0, is entailed; see Ref. 17 where the consequences of the
necessary convexity of the basic thermodynamic potentials
are discussed both for the scaling functions and, more gen-
erally, for critical endpoints, thereby extending Schreinemak-
ers’ rules.18,19

For t̃ ,0 the existence of the first-order transition leads
to uyu factors in the expansions so that one has

W2
k ~y!5@W20

k 1uyuW21
k 1y2W22

k 1uyu3W23
k 1¯#sk ~y!,

~2.21!

where the special signum function is defined by

sk ~y!51 for k even,

5sgn~y! for k odd. ~2.22!

Convexity with Q, U .0 then shows thatW21
0 and W22

0

must both bepositive; see Ref. 17.
For large arguments,uyu→`, the individual scaling

functionsW1
k (y) andW2

k (y) must satisfy stringent matching
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conditions to ensure the analyticity ofGbg(g,T,h) through
the surfacet̃ 50 for all hÞ0. These often overlooked condi-
tions may be written

W6
k ~y!'W`

k uyu(22a1u[ k])/DF11(
l 51

`

wl
k~6uyu!2 l /DGsk~y!,

~2.23!

where the multiexponentu@k# is defined by

u@0#[0, u@~ i , j ,¯ ,n!#5u i1u j1¯1un , ~2.24!

with i , j ,¯,n>4. By virtue of the normalizations~2.20! the
numerical amplitudesW2 j

k , W1 j
k , W`

k , andwl
k should all be

universal ~as should the exponents,a, b, d, u4 , u5 , ...!.
Beyond that, as shown in Ref. 17, convexity dictates thatW`

0

and w2
0 must bepositivewhile (w1

0)2/w2
0 must be bounded

above. Thesign of w1
0 is not determined by convexity alone

but must, in general, benegative: see Ref. 17. This plays an
important role in determining allowable density diagrams.

Finally, from ~2.13! we note that the critical endpoint
densities are

r1
le52G3

0, r2
le52G1

0 ; ~2.25!

see Fig. 3~b!.
To close this section we recall fromI that the phase

boundarys or g5gs(T,h) follows by equating the two ex-
pressions G5Ga(g,T,h) and G5Gbg(g,T,h). Conse-
quently, it is useful to define the thermodynamic potential
difference,

D~g,T,h!5Ga~g,T,h!2G0~g,T,h!, ~2.26!

which is noncritical by virtue of the definition ofG0 in
~2.13!. By our conventions the negativeg axis, i.e., t5h
50, g,0, lies in thea phase~see Figs. 1 and 4!; this implies
D1.0. The phase boundaryr and its extensionr̃ above
Tc(g) is given byh̃(g,T,h)50. As in I ~5.4!, we will assume
that thel line is not tangentto the triple linet at E. The
densitiesr1 and r2 on the boundariess and r then follow
from ~1.1! and, by eliminatingg andh at fixedT, the various
isothermal binodals can be computed as expansions aboutE
or aboutl; see Figs. 3 and 6. We postpone the details until
Sec. IV and turn next to describing the results.

III. ENDPOINT BINODALS AND THEIR
INTERRELATIONS

We now describe the results of our analysis of the pos-
sible shapes of the various binodal curves and their interre-
lations with one another as illustrated in Figs. 3 and 6. After
some preliminaries describing the ‘‘rectification’’ of the bin-
odals, we consider first the behavior near thel line: this
entails only the free energyGbg(g,T,h) and, inasfar as the
corrections to scaling are involved, extends previous knowl-
edge somewhat. Then the binodals at the critical endpoint
temperatureT5Te are described; these are, perhaps, of most
interest. The binodals associated with thes surface aboveTe

are discussed next. These are analytic but their slopes and
curvatures display critical singularities asT→Te1. Finally,
the binodals associated with the three-phase triangle below
Te are considered.

A. Rectification of the binodals

We approach the description of the binodal curves by
supposing that at fixedT one may observe the densities
(r1 ,r2) of various pairs of coexisting phases. Inbinary fluid
mixturesr1 andr2 might correspond directly to the number
densities of the two species, B and C. Internary mixtures,
however, observations would normally be conducted at fixed
temperature and pressure and varying composition. Thenr1

andr2 would each represent convenientlinear combinations
of the number densities of the three species, say, A, B, and C
as represented typically in a triangle diagram.@Our analysis
also applies to observations ofquaternarymixtures if sec-
tions of the thermodynamic space corresponding to constant
temperature, pressure,and a third field ~or combination of
chemical potentials! are constructed; however, experiments
are not normally conducted that way and some further analy-
sis would be needed to describe, say, a section at constantT,
p, andr3 .#

We suppose next that the critical endpoint temperature
Te itself can be determined with reasonable precision so that
the variablet5(T2Te)/Te of ~2.1! is well defined. Then the
densities (r1

ae,r2
ae)[Ea and (r1

le,r2
le)[El of the spectator

and critical phasesat the endpoint can be found; see Figs.
3~b! and 6~b!. These define an axis of slope,

Ls[Dr1 /Dr25~r1
le2r1

ae!/~r2
le2r2

ae!. ~3.1!

A natural second axis is found by noting that according to
classical theory9 the critical binodalsB e

b andB e
g have a well

defined common tangent atEl of slope (dr1 /dr2)B
e
b

e

[1/Lr , say. This is confirmed by our more general analyses
which, indeed, predict that the binodals are flatter atEl

which eases the practical determination ofLr . ~Note that it
proves convenient to defineLr reciprocally with respect to
Ls : see below.20!

To describe the various binodals near the endpoint it is
then natural to adopt new density variables,m andm̃, which
are linearly related tor1 andr2 but utilize El as the origin
and are oriented along the axes just specified: see Figs. 3~b!
and 6~b!. Henceforth, therefore, we will utilize therectified
density variables,

m5r12r1
le2Ls~r22r2

le!, ~3.2!

m̃5r22r2
le2Lr~r12r1

le!. ~3.3!

Furthermore, without loss of generality20 we assume thatthe
only pure phase located within the quadrant m.0, m̃.0, at
T5Te is theb phase. Then, as illustrated in Figs. 3~b! and
6~b!, thea phase atT5Te is restricted tom̃,0 and only the
g phase lies in the quadrantm,0, m̃.0.

The notationsm and m̃ are suggested by the magnetic
case in whichm, the magnetization, is the primary order
parameter discontinuous acrossr that couples to the ordering
field h, while m̃ is a secondary or subdominant order param-
eter conjugate tog. Note that forsymmetric endpointswe
have20 Ls5Lr50 so that if one shifts the definitions of the
densities in a natural way to yield an originr1

le5r2
le50 one

simply hasm5r1 andm̃5r2 : see Fig. 6.
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B. Lambda line and associated binodals

We note first~that within the postulates of Sec. II! the
densities on thel line arenoncritical functions ofT so that
we have

ml~T!5M1t1M2t21¯ , ~3.4!

m̃l~T!5M̃1t1M̃2t21¯ . ~3.5!

For a symmetric endpoint all theM j vanish identically. Be-
yond that, the coefficientsM j and M̃ j are not restricted in
magnitude or sign although, of course, thel line itself can-
not extend beyond the endpoint. Thus one must, here, have
t<0 in caseA and t>0 in caseB.

Next notice that the binodalsB ,
l6 for T,Te ~see Fig. 6!

B e
l6 for T5Te , andB .

l6 for T.Te can all be treated to-
gether since by our postulates all of these binodals depend
only on the free energy of the critical phase. Furthermore,
inasfar as they are not truncated by the spectator phase, they
must all share the same singularities and vary uniformly with
T. It is also convenient to describe the binodals with the aid
of a parameters>0 ~related tou t̃ ub! which vanishes on thel
line and increases into theb andg phases: coexisting phases
correspond to the same value ofs.

In the symmetric case, S, the binodals associated with
the l line or r boundary may then be specified by

m656Bs@11b4su4 /b1b1s1/b1b1,4s
(11u4)/b

1¯1b5sd1(u5 /b)1¯#, ~3.6!

m̃5m̃l~T!1Ãs(12a)/b@11ã4su4 /b1ã1s1/b1¯

1ãns
z̃(n)1¯#

1K̃s1/b@11k1s1/b1¯1kls
l /b1¯#. ~3.7!

In ~3.6! the general correction term has the formbn(t)s
z(n)

where n5@nk# is a multi-index withnk>0 and the expo-
nents here and in~3.7! have the form

bz̃~n!5n01(
j >2

n2 ju2 j , ~3.8!

bz~n!5n01(
j >2

@n2 ju2 j1n2 j 11~D1u2 j 11!#. ~3.9!

The appearance of the exponentD5bd is due to the sym-
metry which acts to suppress the odd irrelevant variables.

The correction amplitudesã4(t), ã1(t),..., b4(t),..., are
noncritical but, generally, of indeterminate sign. However,
the noncritical amplitudeB(t)5Be1B2t1¯ is positive
with our conventions and the signs6 correspond to theb
and g phases, respectively. The amplitudesÃ(t)5Ãe1Ã2t

1¯ and K̃(t)5K̃e1K̃2t1¯ are also noncritical. Fora
.0, as we may assume here, the amplitudeÃ must be nega-
tive in caseA while it is positive in caseB. For a,0 the
amplitudeK̃ would have to have matching signs but that is
not demanded fora.0. Explicit expressions forÃe , Be ,
etc. are given in~4.26! and ~4.27!.

It is clear by symmetry that the (m,m̃) tielinesconnect-
ing coexisting phase points are all ‘‘horizontal,’’ that is, par-

allel to them axis (m̃50); see Fig. 6. Similarly, thediam-
eter of the r binodals, defined as the locus of midpoints of
the tielines, is given simply bymdiam50, m̃diam>m̃l(T)
>0.

The symmetricl binodalsmay finally be expressed di-
rectly in terms ofm as a variable by solving~3.6! for s and
substituting in~3.7!. With x5um/Bu this yields

m̃5m̃l~T!1Ãx(12a)/b@11ā4xu4 /b1ā1x1/b1¯#

1K̃x1/b@11 k̄4xu4 /b1 k̄1x1/b1¯#, ~3.10!

whereā45ã42(12a)b4 /b and so on. The term inÃ pro-
vides the dominant behavior~when a.0! with (12a)/b
.2.73 for Isingd53 quoted in the Introduction. However,
the term in K̃ provides strongly competing corrections of
relative orderumua/b: note that 1/b.3.07. The higher order
correction terms run through all powers ofx with exponents
of the formz(n1)1z(n2)1¯1z(nl).

The nonsymmetric, N, binodals associated with thel
line or r surface@see Fig. 3~a!# may be described similarly.
In terms of the parameters we find

m65ml~T!6Bs@11b4su4 /b1b1s1/b1¯6b5su5 /b6¯#

1As(12a)/b@11a4su4 /b1a1s1/b1¯6a5su5 /b1¯#

1Ks1/b@11¯1kls
l /b1¯#, ~3.11!

m̃65m̃l~T!1Ãs(12a)/b@11ã4su4 /b1ã1s1/b1¯

6ã5su5 /b6¯#1K̃s1/b@11¯1 k̃ls
l /b1¯#

6B̃s(11b)/b@11b̃4su4 /b1¯6b̃5su5 /b6¯#

6B8ts@11b48s
u4 /b1¯6b58s

u5 /b6¯#, ~3.12!

where, again, all the coefficients are noncritical and the same
remarks as before apply to the signs ofÃ, K̃, and B. The
correction factors for theA, Ã, B, B̃, and B8 terms run
through all powers ofs with exponents of the form
(n01u@k#)/b @recalling the definitions~2.16!, ~2.24!, etc.#;
terms with oddk carry 6 signs; whenn050 we haveãk

5ak , and b̃k5bk . Expressions forA, Ã, etc., are given in
~4.28!–~4.31!.

Now note that the amplitudeB8 carries a factort which
vanishes atTe . Away from the endpoint this term induces a
linear variation ofm̃ with m which simply means that the
tangents to the binodals at thel point ~for TÞTe! are no
longer parallel to the tangent at the endpoint. Such a varia-
tion is, of course, to be expected and does not represent any
real change of shape asT deviates fromTe . To see this more
explicitly, note that we may redefine the coefficientLr ,
which enters the definition~3.3! of m̃, as a noncritical func-
tion, Lr(t), chosen so that the tangent at thel point is al-
ways parallel tom̃50 ~i.e., to them axis!; then one hasB8
[0 while the other terms in~3.12! do not change form. With
this understanding fortÞ0 we may conveniently define

Dm5m2ml~ t !, Dm̃5m̃2m̃l~ t !, ~3.13!

which reduce tom andm̃, respectively, at the endpoint.
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Thediametersof the nonsymmetricl binodals may now
be found parametrically by multiplying out in~3.11! and
~3.12! and dropping all terms which carry6 signs. If the
parameters is eliminated in favor ofx̃5Dm̃diam/Ã, the di-
ameters can be written

Dmdiam5Ax̃ @11K lx̃a/(12a)1¯1a4x̃u4 /(12a)1¯#

1U lx̃(b1u5)/(12a)@11¯#, ~3.14!

where we supposea.0 while

Kl5~ÃK2AK̃!/ÃA and Ul5Bb5 . ~3.15!

We see that the slope (]m/]m̃) of the diameter remains finite
at the endpoint but, in general, the curvaturedivergesat the
endpoint.

The slopesSl5Dm̃/Dm of the tielines follow similarly
from the terms in~3.11! and ~3.12! carrying the6 signs.
Using, again,x̃5Dm̃diam/Ã as the variable one finds, for
a.0,

Sl5
B̃

B
x̃1/(12a)F 12

K̃

~12a!Ã
x̃a/(12a)1~ b̃42b4!x̃u4 /(12a)

1¯1
Ã

B̃
x̃(u51D22)/(12a)1¯G . ~3.16!

As was anticipated, the tielines do not, in general, remain
parallel to thel-point binodal tangent; however, the variation
in slope is evidentlyslower than linear inDm̃.

Finally, one may eliminates between~3.11! and ~3.12!
directly and write the general,nonsymmetricl binodals in
terms ofx5uDm/Bu as

Dm̃5Ãx(12a)/b@16aBB̃x(a1b)/b1ā4xu4 /b6aAAx(D21)/b

6aKKx(12b)/b1¯6ā5xu5 /b1¯#

1K̃x1/b@11b̄4xu4 /b6b̄AAx(D21)/b6b̄KKx(12b)/b

1¯#, ~3.17!

where the6 signs refer toDm:0 ~for B.0! while

aA5aK52~12a!/bB, aB51/Ã,
~3.18!

ā45ã42~12a!b4 /b, b̄452b4 /b, ... .

We see that the leading behavior of the binodals, with
exponent (12a)/b ~for a.0!, is the same as in the sym-
metric case~3.10!. The surprising new feature, however, is
the large number of numerically similar low-order correction
terms. If we write the expansion for a general binodal in the
form

Dm̃5(
i

A i
6umuc i ~3.19!

~with 6 for m:0!, the nonsymmetricl-line binodals gen-
erate the exponent sequence

c i
lb512a, 1, 11b, 12a1u4 , 222a2b, 11u4 ,

22a2b, 22b, ¯, 12a1u5 , ¯ . ~3.20!

For d53 the Ising numerical values are

c i
lb.0.891 , 1, 1.326, 1.43, 1.46, 1.54, 1.57, 1.67,..., 1.9,...,

~3.21!

where, here and below, we use therough approximationu5

.1.0; whend→42 one gets 1, 1,32, 1, 3
2, 1, 3

2,
3
2, ¯, 3

2, ¯ , .
Finally, note that the presence of the various6 signs in
~3.17! reflects the nontrivial behavior of the diameter and
consequent lack of binodal symmetry outside the innermost
asymptotic region.

C. Spectator phase boundary at the endpoint

The spectator phase,a, is bounded in the space of ther-
modynamic fields by the surfaces ~see Figs. 1 and 4! which
may be specified by the functiongs(t,h) which, as explained
in I , is found by equating thea andbg free energies, i.e., by
solving Ga(gs ,t,h)5Gbg(gs ,t,h). In leading order this
was carried out inI but, for the present purposes, it is useful
to have the results correct to higher order. Here we present
expressions forT5Te ~or t50!, i.e., on the endpoint iso-
therm.

A detailed analysis is presented in Sec. IV C where one
sees that it is advantageous to retainh̃ as a principal variable.
The results for thesymmetric caseare the simplest in form:
we find

gs~ t50;h̃!52Juh̃u(d11)/dZS~ uh̃u!2J2h̃22J4uh̃u21(2/d)

1¯ , ~3.22!

where the singular correction factor is

ZS~z!516c1z(12a)/D1c2z2(12a)/D1c3z22(1/D)

1c4zu4 /D6c48z
(12a1u4)/D1c5z11(u5 /D)1¯ .

~3.23!

The upper ~plus! signs in ZS correspond to caseB or q1

,0; recall~1.4! and Fig. 4; thelower ~minus! signs describe
caseA whenq1.0; see~1.3! and Fig. 1.

The leading amplitude in~3.22! is given, using~2.26!,
by

J5QeU
(d11)/dW`

0 /~D12r 0D3!, ~3.24!

whereQe andU are defined via~2.13! and~2.10! while, for
the symmetric case, one hasr 0D350 andJ.0. In addition
we state

c15w1
0uq1uJ/U1/D, c25w2

0q1
2J2/U2/D, ~3.25!

while the other coefficients are recorded in Sec. IV C. The
result ~3.22! can be expressed in terms ofh by using

h̃5h@12r 1Juhu(22a)/D7r 1c1Juhu(322a)/D1¯#, ~3.26!

which, however, is validonly for t50 andg5gs . We note
that (d11)/d5(22a)/D.1.21 is in agreement withI ; see
also Fig. 5 for a portrayal ofgs(0,h). We defer discussion of
the correction exponents until the noncritical/spectator bin-
odals are presented; see Eqs.~3.36! and ~3.44!.

In the nonsymmetric casethe leading variation of
gs(t50) is, in general,linear in h̃ ~andh!: see Fig. 2. Spe-
cifically, subject to
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J1[D3 /~D12r 0D3!Þ0, `, ~3.27!

we find

gs~ t50;h̃!52J1h̃2Juh̃u(d11)/dZN~ uh̃u!2J2h̃2

2J3h̃uh̃u(d11)/d2J4uh̃u2(d11)/d1¯ , ~3.28!

where thenonsymmetric singular factor has the expansion

ZN~z!511s̃ td1z12(1/D)2d18z
(12a)/D1d2z22(2/D)

2~ s̃ td1d181s̃hd28!z(D2a)/D1~d291d18
2!z2(12a)/D

1s̃ td3z32(3/D)2~d381s̃ td39!z22(11a)/D1d3-z22(1/D)

1d4zu4 /D1s̃ td48z
(u41D21)/D2~d491d18d4!

3z(u4112a)/D1s̃hd5zu5 /D1s̃ ts̃hd58z
(u51D21)/D

2s̃h~d591d18d5!z(u5112a)/D2¯ . ~3.29!

The two signum factors are given by

s̃ t5sgn~ t̃ !5sgn~ q̃h!, s̃h5sgn~ h̃!5sgn~ j 1h!,
~3.30!

in which we suppose the coefficients

q̃5q02q1~D3 /D1!, j 1512r 0~D3 /D1!, ~3.31!

are nonvanishing; this will be true in the general nonsymmet-
ric case.~We do not analyze the exceptions although no
problems of principle arise.!

We see from~3.28!–~3.30! that terms which change sign
are not now determined simply by the slope of thel line
~caseA or caseB!, as in the symmetric situation, but rather
by more complicated considerations. This arises simply be-
cause the manifoldt̃ 50 in the (g,t,h) space~see Fig. 1! can
cut the planet50 in various ways. For small asymmetry,j 1

remains positive givings̃h5sgn(h) but q̃ may be of either
sign. As expected fromI , the leading singularity ings is the
same as in the symmetric situation; however, the corrections
now contain further, new powers.

The leading correction amplitudes inZN are

d15w1
0uq̃u/u j 1uU1/D,

~3.32!
d185w1

0~q12q0r 0!J/U1/D.

The remaining leading coefficients are listed in Sec. IV C. As
before the result~3.28! can be expressed in terms ofh by
making the substitution,

h̃5 j 1h2 j uhu(d11)/d1 j 8huhu2/d2s̃ t j 9uhu(322a2b)/D2 j 2h2

1¯ , ~3.33!

where j 5r 0J j1u j 1u(d11)/d while j 8, etc. are given below in
~4.48!.

D. Noncritical endpoint binodals

We are now in a position to answer Widom’s question
regarding the shape of the noncritical or spectator-phase bin-
odals,B e

a6 , at the endpoint. The essential point is that the
densitiesr1 and r2 and, hence,m and m̃, are noncritical
functions of g, t, and h in the spectator-phasea since

Ga(g,t,h) is noncritical. Consequently, on the endpoint iso-
therm, t50, the singular shape of thea binodals directly
reflects the singular shape of the phase boundarygs(0, h).

To state the results for thesymmetric casewe introduce
the endpoint susceptibilities,

xe
a522G9

a.0, x̃e
a522G4

a.0, ~3.34!

and the endpoint density

m̃e
a52G1

a1G1
0,0. ~3.35!

The noncritical binodal is then given by

m̃5m̃e
a2Cuxau(d11)/dZS~ uxau!2C2xa

22C3xa
2(d11)/d1¯ ,

~3.36!

where

xa5m/xe
a , C5Jx̃e

a ,
~3.37!

C25D9x̃e
a/D1 , C35S D4

D1
2

Q1

Qe
D J2x̃e

a ,

while ZS(z) is given in ~3.23!. The leading exponent is
(d11)/d5(22a)/D as stated in the Introduction. If we use
the general binodal expansion~3.19! the sequence of expo-
nents arising now is

c i
aD522a, 22a1u4 , 322a, 422a22b,

322a1u4 , 423a, 523a22b,...,

422a2b1u5 ,..., ~S!, ~3.38!

with Ising d53 values

c i
a.1.208, 1.55, 1.78, 2, 2.12, 2.35, 2.57,..., 2.9,..., ~S!

~3.39!

~using, again,u5.1.0!.
In the limit d→42 the sequence forc i

a is 4
3,

4
3, 2, 2, 2,8

3,
8
3, ..., 8

3, ... . Note that the leading correction exponent found
by Klinger9 was 5

3. His classical phenomenological treatment
should correspond tod→42 but 5

3 doesnot appear here: the
reason is that he did not~expressly! consider the symmetric
situation. We also find the exponent5

3 ~and others! when
symmetry is lacking.

In the nonsymmetriccase, the endpoint susceptibilities
become more complicated; we find they are given by

xe
a522~G9

a22LsG5
a1Ls

2G4
a!.0, ~3.40!

x̃e
a522~G4

a22r 0G5
a1r 0

2G9
a!.0, ~3.41!

where the significance of the axis slope,Ls , was explained
in Sec. III A above. From~3.1!, ~2.4! and ~2.25! we obtain

Ls5~G3
a2G3

0!/~G1
a2G1

0!, ~3.42!

while the endpoint density is

m̃e
a5r 0~G3

a2G3
0!2G1

a1G1
0,0. ~3.43!

Using, again,xa5ma/xe
a as a variable, the noncritical

endpoint binodal in thenonsymmetriccase is expressed by

m̃a5m̃e
a1m̃1

axa1m̃2
auxau(d11)/d6m̃3

auxau(d12)/d1¯ ,
~3.44!

941J. Chem. Phys., Vol. 115, No. 2, 8 July 2001 Isothermal binodal curves



where 6 corresponds toh:0 while the amplitudesm̃1
a ,

m̃2
a ,..., arepresented below. The linear variation ofm̃a with

xa shows that the tangent to the noncritical endpoint binodal
at the endpointEa is, in general,not parallel to the tangent at
El ~them axis!: see Fig. 3~b!. The corresponding amplitude,
m̃1

a , is

m̃1
a52~2G5

a1r 0G9
a!12Ls~G4

a2r 0G5
a!. ~3.45!

The leading singular exponent, namely, 11(1/d), is evi-
dently the same as in the symmetric case, while the ampli-
tude,m̃2

a , is

m̃2
a52~ jJ12J!@2G4

a1r 0G5
a2m̃1

a~2G5
a1LsG4

a!/xe
a#.

~3.46!

Recall that the coefficientsj , J1 , andJ are defined above in
Sec. III C.

The leading correction exponent is now just that found
by Klinger9 in his classical treatment; it doesnot appear in
the symmetric case. The expression for its amplitude,m̃3

a , is
complicated but, for the record, we quote the result, namely,

m̃3
a5

~d11!

d S x1
a

xe
aD F m̃1

a
x1

a

xe
a 22~ jJ12J!~2G4

a1r 0G5
a!G

12 sgn~ j 1!g2F ~2G5
a1LsG4

a!
m̃1

a

xe
a 2~2G4

a1r 0G5
a!G ,
~3.47!

where the new coefficients are

x1
a52~2G5

a1LsG4
a!~ jJ12J!, ~3.48!

g25r 0
2u j 1u31(2/d)J2J12

~d11!

d
u j 1u1/d jJ. ~3.49!

E. Critical endpoint binodals

Now we conclude our discussion of the endpoint itself
by presenting, finally, the shape of the critical phase bin-
odals,B e

b andB e
g . These can be obtained by using the ther-

modynamic potential for the critical phase,Gbg(g,t,h), and
the endpoint phase boundary,gs(h̃). Details are given in
Sec. IV D. As discussed before, it is convenient to describe
the binodals with the aid of a parameters ~in this case, re-
lated touh̃ub/D) which vanishes at the endpoint and increases
in the b andg phases.

In the symmetriccase,S, the critical endpoint binodals
may then be specified by

m56Es@11u4su4 /b1u1s(12a)/b1¯#

6V1sD/b@11v1sD/b1¯#6V2s(12a1D)/b@11¯#

6V3s(22a1D)/b@11¯#, ~3.50!

m̃5Ẽs(12a)/b@11ũ4su4 /b1ũ1s(12a)/b1¯#

1Ṽs(22a)/b@11¯#, ~3.51!

where6 corresponds toh̃:0, and the coefficients are given
in ~4.58! and ~4.59!.

The symmetriccritical endpoint binodals may finally be
expressed in terms ofm as a variable by solving~3.50! for s
and substituting in~3.51!. With x5um/Eu this yields

m̃5Ẽx(12a)/b@11ū4xu4 /b1ū1x(12a)/b1¯#, ~3.52!

where

ū15ũ12~12a!u1 /b, ū45ũ42~12a!u4 /b. ~3.53!

The term inẼ provides the dominant behavior with the same
exponent as thel-line binodals given in Sec. III B. One
should note that the amplitudeẼ is negative in caseA while
it is positive in caseB due to the negative sign ofw1

0 dis-
cussed following~2.23!.17 Hence it has the same sign as the
amplitude Ã of the lambda-line binodals; see~3.10!. This
also holds in the nonsymmetric case.

Indeed, thenonsymmetric, N, critical endpoint binodals
may be described similarly. In terms of the parameters we
find

m56Es@16u1s(D21)/b1u2s(12a)/b1¯1u4su4 /b1¯

6u5su5 /b1¯#1V1s(12a)/b@16v1s(D21)/b

1v2s(12a)/b1¯1v4su4 /b1¯6v5su5 /b1¯#

6V2sD/b@16v0s¯#1V3s(22a)/b@11¯#, ~3.54!

m̃5Ẽs(12a)/b@16ũ1s(D21)/b1ũ2s(12a)/b1¯

1ũ4su4 /b1¯6ũ5su5 /b1¯]

6Ṽ1sD/b@16 ṽ0s1¯#

1Ṽ2s(22a)/b@11¯#, ~3.55!

where the leading coefficients are presented in~4.60!–~4.62!.
Solving for s in ~3.54! and substituting into~3.55!, one fi-
nally obtains

m̃5Ẽx(12a)/b@11ū4xu4 /b6ū1x(D21)/b6ū2x(12a)/b1¯#,
~3.56!

where the leading coefficients are

ū15ũ12~12a!~E/V11u1!/b,
~3.57!

ū25Ṽ1 /Ẽ, ū45ũ42~12a!u4 /b,

while the correction factor exponents haved53 Ising values
u4 /b.1.66, (D21)/b.1.73, and (12a)/b.2.73.

F. Binodals above the endpoint temperature

Let us consider first thespectator-phase binodalB a

aboveTe @see Figs. 3~c! and 6~c!# which is the simplest to
analyze. SinceGa(g,t,h) is noncritical, the densitiesm and
m̃ are noncritical functions ofg, t, andh in the spectator-
phasea. At fixed t.0, the phase boundarygs(t;h) is also a
nonsingular function ofh with t-dependent expansion coef-
ficients, which are discussed explicitly below in Sec. IV E.
Consequently, on the isotherms aboveTe , thea binodal be-
comes noncritical. However, singularities of the binodal are
to be expected asT→Te1.
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In the symmetric case, by using the previous definitions
~3.34! and ~3.35! and the phase boundarygs(t;h) given be-
low in ~4.67!, we obtain

m̃5m̃e
a2x̃e

a~gs,0
1 t1gs,1

1 t22a!2x̃e
ags,3

1 t2gxa
21¯ ,

~3.58!

wherexa5m/xe
a , as for the symmetric noncritical endpoint

binodals in~3.36!, while the coefficients,gs,0
1 , etc. are given

below in ~4.68!. Note that the curvature of the binodal di-
verges ast2g whenT→Te1.

In the nonsymmetric case, using~4.70!, we obtain

m̃5m̃e
a1m̃1

axa1m̃2
a~ t !xa

21¯ , ~3.59!

wherem̃e and m̃1
a are given above in~3.43! and ~3.45!, re-

spectively, while the coefficient of second order inxa

(5m/xe
a) is

m̃2
a~ t !52~G4

a2LrG5
a!gs,3

1 j 1
2t2g1¯ , ~3.60!

wheregs,3
1 is given below in~4.71!. Here we have neglected

higher order corrections int. Just as in the symmetric case,
the curvature of the binodal diverges whenT→Te1.

Consider next thecritical phase binodalB bg aboveTe ;
see Figs. 3~c! and 6~c!. This may be determined using~4.15!
below and its twin form̃ with the aid of the spectator-phase
boundary,gs(t;h̃), which is derived in Sec. IV E. For fixed
t.0, the small y expansion for the scaling function
W1(y,y4 ,...) yields only integer powers ofh̃ in ~4.15! and
its twin so that the densitiesm and m̃ are noncritical func-
tions of h̃. Consequently, the critical phase binodal is again
noncritical aboveTe .

In the symmetric case, the densitiesm and m̃ can be
written in terms ofh̃ by using~4.15! and its twin as

m5 l 1t2gh̃1¯ , ~3.61!

m̃5m̃0~ t !1 l̃ 2t2g21h̃21¯ , ~3.62!

wherem̃0(t) is a function oft only while the coefficients are

l 152QeU
2W12

0 u12q1~D2 /D1!u2g,
~3.63!

l̃ 252gq1QeU
2W12

0 u12q1~D1 /D2!u2g21.

Notice that l̃ 2 is negative in caseA while it is positive in
caseB, as for Ã, the leading amplitude of the lambda line
binodals; see the paragraph below~3.9!. We may eliminateh̃
between~3.61! and ~3.62! and write the binodal in terms of
x5m/ l 1 , noticing l 1.0, as

m̃5m̃0~ t !1 l̃ 2tg21x21¯ . ~3.64!

Sinceg.1 in thed,4 Ising universality classes, the coef-
ficient of the quadratic term inx vanishes asT→Te1. This
result could be anticipated, since the critical endpoint bin-
odals have the leading exponent (12a)/b (.2.73) in the
symmetric case. Thus the curvature ofB bg is singular but
nondivergent whenT→Te .

In the generalnonsymmetric case, the situation is more
complicated. The densities can now be expressed as

m5m0~ t !1 l 1t2gh̃1 l 2t2g21h̃21¯ , ~3.65!

m̃5m̃0~ t !1 l̃ 1t12ah̃1 l̃ 2t2g21h̃21¯ , ~3.66!

where the constant coefficients are presented below in~4.74!.
Note that the term linear inh̃ for m̃ has a leading
t-dependent coefficient that vanishes whenT→Te1. As be-
fore, the critical phase binodal can be written in terms ofx
5Dm/ l 1 with Dm[m2m0(t) as

m̃5m̃0~ t !1 l̃ 1t112g2ax1 l̃ 2tg21x21¯ . ~3.67!

Evidently, both the coefficients ofx andx2 are singular but
vanish whenT→Te1 andg.1.

G. Binodals below the endpoint temperature

Below the endpoint temperature three phases,a, b, and
g, may coexist on the triple linet. The binodals near a triple
point then spring from the corners of a three-phase triangle.
The corresponding phase diagrams in the density plane are
shown in Figs. 3~a! and 6~a! for the two casesNA andSB,
respectively. Thermodynamic stability then requires that
these diagrams must satisfy Schreinemakers’ rules;5,17–19de-
tails are given in Ref. 17.

The explicit forms of thespectator-phase binodals,
B ,

a6 , can be obtained without difficulty by using the phase
boundarygs(t,h) belowTe as presented in~4.76! and~4.79!
for the symmetric and nonsymmetric cases, respectively. In
the symmetric case, the binodal may be expressed as

m̃5m̃e
a 2 x̃e

ags,0
2 t 7 x̃e

ags,2
2 utubxa 2 x̃e

ags,3
2 utu2gxa

2 1 ¯ ,
~3.68!

wherexa5m/xe
a and the upper~lower! sign corresponds to

m.0 (,0), while the coefficients,gs,0
2 , etc., are given be-

low in ~4.77!. Note that the slope vanishes asT→Te2 while
the curvature diverges asutu2g. In the nonsymmetric case,
the binodal is given by

m̃5m̃e
a1m̃1

a~ t !xa1m̃2
a~ t !xa

21¯ , ~3.69!

where the coefficients are

m̃1
a~ t !5m̃1

a72gs,2
2 j 1~2G4

a1LrG5
a!utub1¯ ,

~3.70!
m̃2

a~ t !522gs,3
2 j 1

2~2G4
a1LrG5

a!utu2g1¯ ,

while the 7 signs again correspond tom:0. The coeffi-
cients,gs,0

2 , etc., are given below in~4.80!. Notice that the
linear terms do not vanish, but approach the same value
whenT→Te2.

The critical phase binodals, B ,
b and B ,

g , can be ob-
tained, in principle, by using~4.15! and its twin with the aid
of the phase boundarygs(t,h) given below in ~4.76! and
~4.79!. However, the analysis becomes more complicated,
since these binodals are associated with the lambda-line bin-
odals near the vertices of the three-phase triangle; see Figs.
3~a! and 6~a!. Hence, we do not present their explicit forms
here. One can anticipate, however, that the binodals have
linear slopes and quadratic terms which both vanish when
T→Te2 in the d,4 Ising universality classes.
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IV. DERIVATION OF THE BINODAL EXPRESSIONS

Here we sketch, for completeness, some of the details
that enter into the derivation of the results for the binodals
presented in Sec. III from the postulates of Sec. II. In addi-
tion, we give explicit expressions for the leading amplitudes
entering the formulas of Sec. III in terms of the original
parameters of the postulated free energies of Sec. II.

A. Principles for obtaining isothermal sections

Our aim is to describe isothermal sections of the full
(g,t,h) phase space in terms of the density variables,

r152]hG, r252]gG with ]h[]/]h, ]g[]/]g.
~4.1!

Accordingly, we treatt as a fixed parameter and regard only
g andh as varying. The basic nonlinear scaling fieldst̃ and
h̃ are then to be viewed as functions only ofg andh. Once
the appropriate derivatives with respect tog andh have been
performed, however, it is more convenient, in light of the
scaling postulate~2.13!, to employ the nonlinear scaling
fields t̃ andh̃ as the primary field variables. Note, in particu-
lar, that both thel line and the triple line,t, lie in the plane
h̃50. Beyond that, thel-line or r-surface binodals also cor-
respond toh̃50 while the spectator-phase ands binodals are
of interest only for smallh̃. Consequently we expressg and
h in terms of t̃ and h̃ via the noncritical expansions,

g5gl~ t !1e1 t̃ 1e2h̃1e3 t̃ 21e4 t̃ h̃1e5h̃21¯ , ~4.2!

h5hl~ t !1 f 1 t̃ 1 f 2h̃1 f 3 t̃ 21 f 4 t̃ h̃1 f 5h̃21¯ , ~4.3!

where thel-line values,gl andhl , were introduced in~2.8!
and are seen to be noncritical functions. Likewise, all the
coefficients,ej (t) and f j (t), are noncritical with, in the sym-
metric case,

S: e25e45 f 15 f 35 f 550,

e15q1
211O~ t !, f 251, e352

q2

q1
3

,

e552
q6

q1
, f 452

r 1

q1
. ~4.4!

More generally, withL0[q12r 0q0 (Þ0), we have

N: e1 , e2 , f 1 , f 25~1,2q0 , 2r 0 , q1!/L01O~ t !, ~4.5!

while e3 ,..., f 5 are also readily found in terms of theqj and
r j .

Any noncritical propertyP(g,t,h) with expansion~2.2!
can then be rewritten as

P~g,t,h!5Pl~ t !1
•

P1~ t ! t̃ 1
•

P2~ t !h̃1
•

P3~ t ! t̃ 21¯ ,

~4.6!

where the value on thel line is given by

Pl~ t !5Pe1Pl1t1Pl2t21¯ , ~4.7!

Pl15P1Lg1P21P3Lh ,
~4.8!

Pl25P1Lg21¯1P9Lh
2 , ¯ ,

where Lg , Lh , Lg2 , etc. are defined in~2.8! and ~2.9!,
while the remaining noncritical coefficients take the form

•

Pj~ t !5
•

Pje1
•

Pj 1t1
•

Pj 2t21¯ ,

~4.9!•

Pje5P1ej1P3f j ,

•

Pj 152~P4Lgej1P5Lgf j1P5Lhej1P6ej1P7f j

1P9Lhf j !, ~4.10!

for j 51 or 2, and
•

P3e5P1e31P3f 31P4e1
212P5e1f 11P9f 1

2 , ~4.11!

and so on.
Of course, we eventually wish to eliminatet̃ and h̃ in

favor of r1 andr2 or, in view of the discussion in Sec. III A,
in terms of

m52]G1~]G!e, m̃52 ]̃G1~ ]̃G!e , ~4.12!

where the compound differential operators are

]5]h2Ls]g, ]̃5]g2Lr]h . ~4.13!

However, once we have expressions form andm̃ in terms of
t̃ and h̃ we can regard these fields merely as auxiliarypa-
rametersrelatingm andm̃. Note in particular that coexisting
phases must have the same values oft̃ andh̃. Thus for ther

binodals we can puts5(2 t̃ )b, for t̃ ,0, and seth̃50. This
indicates the origin of the parametric descriptions of the bin-
odals presented in Sec. III B. Similarly, for the binodals as-
sociated with thes phase boundary, equating the free ener-
giesGbg andGa gives a relation fort̃ in terms ofh̃ ~andt!:
then h̃ is an appropriate parameter.

The axis slopesLs and Lr in ~4.13! were explained in
Sec. III A and the slopeLs was given in~3.42!. Below we
will establish thet-dependent result,

Lr~ t !5r 01@2r 4Lg1r 51r 1Lh2r 0~r 1Lg1r 212r 3Lh!#t

1O~ t2!, ~4.14!

where Lr(t) was introduced just before~3.13! and Lr

[Lr(0)5r 0 .
Now using~4.12! and~2.13! we obtain the primary den-

sity in the form

m5~]G0!e2]G0

1u t̃ u22aF ~]Q!W61 (
k>4

~]Uk!QW68
(k)u t̃ uukG

6~] t̃ !u t̃ u12aQ
•

W67~] t̃ !h̃u t̃ ub21DQUW68

1~]h̃!u t̃ ubQUW68 , ~4.15!

for h̃→0, with a precisely similar expression form̃ with ]̃
replacing], while

•

W6~y,y4 ,...!5~22a!W61 (
k>4

ukUkW68
(k)u t̃ uuk, ~4.16!
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W68 ~y,y4 ,...!5~]W6 /]y!, W68
(k)~y,...!5~]W6 /]yk!.

~4.17!

Note that]G0 and the coefficients]Q, ]Uk , ] t̃ , and]h̃ are
all noncritical and so can be written as in~4.6!. This form
thus enables one to identify all the singular terms appearing
in m andm̃.

Now on thel line we havet̃ 5h̃50. Thus~4.15! and its
twin for m̃ yield the expansions~3.4! and ~3.5! for ml and
m̃l with

M152@Ls~LgG4
01LhG5

01G6
0!2LgG5

02G7
02LhG9

0#,
~4.18!

M̃152@Lr~LgG5
01G7

01LhG9
0!2LgG4

02LhG5
02G6

0#,
~4.19!

so that M150 and M̃152(G4
0/q12G6

0) in the symmetric
case. DefiningR(g,t,h)5(]G0)e2]G0 andR̃ likewise, and
expanding as in~4.6! yields, for j 51, 2,

•

Rj52@Ls~G4
0ej1G5

0f j !2G5
0ej2G9

0f j #1O~ t !, ~4.20!

•

R̃j52@r 0~G5
0ej1G9

0f j !2G4
0ej2G5

0f j #1O~ t !, ~4.21!

where~4.14! was used forLr . For reference below we also
record

~] t̃ !l5q02Lsq11@q5Lg12q6Lh1q7

2Ls~2q2Lg1q31q5Lh!#t1¯ , ~4.22!

~]h̃!l512Lsr 01@r 1Lg1r 212r 3Lh

2Ls~r 1Lh12r 4Lg1r 5!#t1¯ , ~4.23!

~ ]̃ t̃ !l5q12r 0q01@2q2Lg1q31q5Lh

2Lr~q5Lg12q6L71q7!#t1¯ , ~4.24!

~ ]̃h̃!l5r 02Lr1@r 1Lh12r 4Lg1r 5

2Lr~r 1Lg1r 212r 3Lh!#t1¯ . ~4.25!

Clearly, any desired higher order terms in thet̃ , h̃ expan-
sions can be obtained straightforwardly. Finally, we remark
that we will shortly see that the condition determiningLr(t)
is that (]̃h̃)l vanishes term by term; substitution of~4.14! in
~4.25! checks this.

B. Derivation of the l-line binodals

The binodals associated with thel line may, essentially,
be obtained directly from~4.15! and its twin by lettingh̃

→06 with t̃ ,0. In doing this the smally expansions~2.21!
must be used with attention to thesk (y) factors defined in
~2.22!. When this is done theG0 terms in ~4.15! generate
only integral powers ofu t̃ u; the terms inu t̃ u22a act merely to
modify the correction factor of theu t̃ u12a term. Note that the
t̃ andh̃ expansions ofQ and of theUk yield correction terms
varying asu t̃ un1u[ k] for all integersn>0 and allk .0. The

term in h̃u t̃ ub21, which diverges asu t̃ u→0, vanishes identi-
cally. Lastly, the term inu t̃ ub contributes both tom andm̃.

Introducing the parameters5u t̃ ub then yields the previ-
ously quoted expansions~3.6! and ~3.7! for m andm̃ in the
symmetric case. The linear term ins is absent in thism̃
expansion because the coefficient (]gh̃) vanishes identically
by symmetry whenh[h̃→0 and Lr50 is dictated. Simi-
larly, terms varying ass1/b and s(12a)/b are absent in the
expression form sinceLs50 and thence]G0, ]Q, and] t̃
all vanish. Foreven k the derivatives]hUk5]Uk ~for Ls

5h50! also vanish by symmetry. However, in the fully
symmetric situation each odd scaling field,U2 j 11(g,t,h),
must itself be odd inh: see ~2.12!. Hence after operating
with ]h , contributions withodd k in the terms proportional
to u t̃ u22a1uk(]Uk) in ~4.15! appear in the expansion form in
the symmetric case. Since 22a5b1D these terms are re-
sponsible for the appearance of the correction factorsu t̃ uD

5sd in ~3.6!; see also~3.9!. For completeness we record the
leading amplitude values,

Ãe52~22a!q1QeW20
0 , Be5UQeW21

0 , K̃e52G4
0/q1 ,
~4.26!

ã4e5S 11
u4

22a D W20
(4)

W20
0 U4e , b4e5

W21
(4)

W21
0 U4e . ~4.27!

Clearly all other amplitudes are readily generated although
their complexity increases rapidly with order.

In the generalnonsymmetric casetheUk for oddk need
not vanish when h̃→0 but the scaling function,
W2(y,y4 ,y5 ,...), still has special behavior for smallyk

whenk is odd: see~2.18!. This is the reason why the6 signs
~corresponding toh̃→06) appear in the expansion~3.11!
for m. The expansion for the secondary densitym̃, when
initially generated, has a similar structure. In particular, the
leading term is proportional tou t̃ ub[s. However, at this
point we should, as explained in Sec. III A, complete the
specification of the densitym̃ by appropriately choosing
Lr(t). This should be done by examining the common tan-
gent to the critical binodals, namely,B e

b and B e
g , at the

endpoint; see Figs. 3~b! and 6~b!. But these binodals involve
the s phase boundary which we have not yet studied. In-
stead, we will selectLr so that the common tangent of the
l-line binodalsB e

l1 and B e
l2 or B .

l1 and B .
l2 coincides

with them̃50 axis when extrapolated to the endpoint. It will
be confirmed below that this criterion gives the same value
for Lr . The coefficient of the offendingu t̃ ub term is (]̃h̃)e :
see ~4.25!. This vanishes whenLr5r 0 thereby confirming
~4.14! for t50.

The residualt andu t̃ u dependence of (]̃h̃) then yield the
B8ts andB̃s(11b)/b terms in the expansion~3.12! for m̃. The
latter term is unavoidable in general and further complicates
the singular corrections to ther binodals in the nonsymmet-
ric case. Nevertheless, as explained in Sec. III B, the former
term, linear in s, can be eliminated by adopting a
temperature-dependent definition form̃ by allowing Lr to
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vary noncritically with T. The criterion now is to make
( ]̃h̃)l(t) vanish. Reference to~4.25! then confirms the lead-
ing term inLr(t) presented in~4.14!.

The leading amplitudes in~3.11! and~3.12! for the non-
symmetric case are, recalling~4.20!–~4.25! and ~4.27!,

A~ t !, Ã~ t !52~22a!QlW20
0 @~] t̃ !l ,~ ]̃ t̃ !l#, ~4.28!

B~ t !5QlUW21
0 ~]h̃!l , ~4.29!

B̃e52QeUW21
0 @~2r 42r 0r 1!e11~r 122r 0r 3! f 1#,

~4.30!

Ke52
•

R1e , K̃e52
•

R̃1e , ã45a4 , b̃45b4 . ~4.31!

One further hasã55a5 , b̃55b5 , etc., although correction
terms carrying ‘‘noncritical factors’’s1/b[u t̃ u do not, in gen-
eral, satisfy corresponding equalities.

C. Spectator phase boundary: Endpoint isotherm

As indicated in Sec. III C, the first step in studying the
binodals not associated with thel line is to obtain the phase
boundarys as specified bygs(t,h). On recalling~2.26! and
~2.13!, one sees this is to be found by solving

D~g,t,h!52Qu t̃ u22aW6~y,y4 ,...!, ~4.32!

whereD(g,t,h) is noncritical withDe50 andD1.0. Here
we focus only on the endpoint isotherm,T5Te or t50. Now
consider the argumenty in leading order, using~2.5! and
~2.6!:

y5Uh̃/u t̃ uD'U~h1r 0g!/uq0h1q1guD. ~4.33!

If r 0 , q0 , andq1 do not vanish~as in the genericnonsym-
metric case!, it is evident that wheng, h→0 on s one, in
general, hasy;@max(ugu,uhu)#12D which diverges tò since
D.1. Thus to study~4.32! on the endpoint isotherm we must
utilize the largey expansions~2.23! for the scaling functions
entering~2.15!. In the symmetric case one actually hasr 0

5q050; but it then transpires, as shown below, thatgs

;uhu(22a)/D so thaty;uhua21. Sincea,1 we see thaty
again diverges. Thus in~4.32! we must always use the ex-
pansion

W65W`
0 uyu(22a)/D~16w1

0uyu21/D1w2
0uyu22/D6¯ !

1W`
(4)y4uyu(22a1u4)/D~16w1

(4)uyu21/D1¯ !

1W`
(5)y5 sgn~y!uyu(22a1u5)/D~16w1

(5)uyu21/D1¯ !

1¯ , ~4.34!

where the6 signs correspond tot̃:0.
The analysis is considerably simpler if one usesh̃ as a

variable in place ofh. To this end we rearrange~2.5! and
~2.6! with t50 to obtain

h5h̃2r 0g2~r 122r 0r 3!gh̃2r 3h̃22 r̄ 4g21¯ , ~4.35!

where r̄ 45r 42r 0r 11r 3r 0
2, and

t̃ 5q0h̃1p1g1p2h̃21p3gh̃1p4g21¯ , ~4.36!

where the leading coefficients are

p15q12q0r 0 , p25q62q0r 3 ,

p35q52q0r 112q0r 0r 322q6r 0 , ~4.37!

p45q22q5r 01q6r 0
22q0r̄ 4 .

Note that in the symmetric case one hasq05q55q750, r 0

5r 35r 450 and sop350; we may supposep1Þ0.
Now, combining these results for thesymmetric case

yields the asymptotic equation,

D1g52D4g22D9h̃22~Qe1Q1g1¯ !uUh̃u(d11)/dZ

2¯ , ~4.38!

with the scaling factor, from~4.34!,

Z5W`
0 @16w1

0uyu21/D1w2
0uyu22/D6¯#

1W`
(4)U4~g,0,h!uUh̃uu4 /D@16w1

(4)uyu21/D1¯#

1sgn~y!W`
(5)U5~g,0,h!uUh̃uu5 /D@16¯#1¯ .

~4.39!

These equations are to be solved together with

uyu21/D5
u t̃ u

uUh̃u1/D
5

uq1gu

uUh̃u1/D F11
q2

q1
g1

q6

q1

h̃2

g
1¯G ,

~4.40!

to yield g5gs(h̃). This can be accomplished iteratively by
noting that in leading ordergs'2Juh̃u(d11)/d, whereJ was
defined in~3.24!; however, care is called for!

One obtains the result quoted in~3.22!–~3.25! which
may be supplemented by

J25D9 /D1 , J45@~D4 /D1!2~Q1 /Qe!#J
2, ~4.41!

c35w1
0~q62q1J2!/U1/D, c45W`

(4)U4eU
u4 /D/W`

0 ,
~4.42!

c485c4w1
(4)uq1uJ/U1/D, c55W`

(5)U5,3U
u5 /D/W`

0 ,
~4.43!

where U5,3 is the first nonzero expansion coefficient of
U5(g,0,h)'U5,3h in the symmetric case. The expression
~3.26! for h̃(h) on s follows from ~2.6! and~3.22! by rever-
sion.

The phase boundary in thenonsymmetric casefollows in
an analogous way but greater care is needed because of the
increased number of nonvanishing and competing terms.
Thus on the right side of~4.38! the new terms2D3h̃ and
22D̄5gh̃ appear, whereD̄55D52 1

2D3(r 122r 0r 3)2D9r 0 .
The former term dominates and so in leading order one now
finds

gs'2J1h̃2Juh̃u(d11)/d, ~4.44!

whereJ1 was defined in~3.27!. This, in turn, yields the new
behavior,
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uyu21/D5
uq̄u

U1/D uh̃u12(1/D)F12s̃h

p1

q̄
Juh̃u1/d

7s̃h

p1d1

q̄
Juh̃u(12a)/D1¯G ,

~4.45!

whereq̄5q02p1J15q̃/ j 1 while q̃, j 1 , ands̃h were defined
in ~3.30! and ~3.31!.

In this way one obtains the result~3.28!–~3.32! which
must be supplemented by new expressions forJ2 and J3

while

d25w2
0q̄ 2/U2/D, d2852w2

0p1q̄J/U2/D,
~4.46!

d295w2
0p1

2J2/U2/D.

The expressions ford38 andd39 , are long and uninformative
but we quote

d35w3
0uq̄u3/U3/D, d45c4 , d485w1

(4)d4uq̄u/U1/D,

d495w1
(4)d4p1J/U1/D, d55W`

(5)U5eU
u5 /D/W`

0 , ~4.47!

d585w1
(5)d5uq̄u/U1/D, d595w1

(5)d5p1J/U1/D.

Finally the remaining coefficients in~3.33! are

j 85r 0 jJu j 1u(d11)/d,

j 95r 0 j 1d1Ju j 1u(322a2b)/D, ~4.48!

j 25 j 1
3@r 0J21~r 122r 0r 3!J12r 32 r̄ 4J1

2#.

D. Derivation of the critical endpoint binodals

The critical phase binodals at the endpoint may be ob-
tained from~4.15! and its twin using the endpoint isotherm,
gs(h̃), obtained in the previous subsection. In order to do so,
it is more convenient to rewrite~4.15! as

m5~]G0!e2~]G0!

1u t̃ u22aF ~]Q!W61 (
k>4

~]Uk!QW68
(k)u t̃ uukG

6~] t̃ !Qu t̃ u12aW̃61~]h̃!UQu t̃ ubW68 , ~4.49!

and similarly form̃ with ]̃ replacing], while

W̃65
•

W62DyW68 , ~4.50!

whereD522a2b has been used. At the critical endpoint,
t50, we useh̃ as an auxiliary parameter relatingm andm̃.
Using ~4.35! and ~4.36!, the noncritical functions, (]G0),
(]Q), etc., can be expressed in terms ofh̃. Recalling the
general expansion~2.2! for a noncritical functionP(g,t,h),
we find, for t50,

P~g, t50, h!5Pe1P3h̃1~P12r 0P3!gs1¯ , ~4.51!

and similarly for the derivatives,

]P5P32LsP112~P92LsP5!h̃

12~P52LsP42r 0P91r 0LsP5!gs1¯ , ~4.52!

]̃P5P12LrP312~P52LrP9!h̃

12~P42LrP52r 0P51r 0LrP9!gs1¯ . ~4.53!

Likewise, in terms ofgs(t50, h̃) we obtain

] t̃ 5q02Lsq11~2q62Lsq5!h̃

1~q522Lsq222r 0q61Lsr 0q5!gs1¯ , ~4.54!

]h̃512Lsr 01~2r 32Lsr 1!h̃

1~r 122Lsr 422r 0r 31Lsr 0r 1!gs1¯ , ~4.55!

]̃ t̃ 5q12Lrq01~q522Lrq6!h̃

1~2q22Lrq52r 0q512r 0Lrq6!gs1¯ , ~4.56!

]̃h̃5r 02Lr1~r 122Lrr 3!h̃

1~2r 42Lrr 12r 0r 112r 0Lrr 3!gs1¯ . ~4.57!

As discussed before, the argumenty of the scaling func-
tionsW6 diverges tò when the endpoint is approached on
the s surface. Thus in~4.49! and its twin the largey expan-
sions~2.23! for the scaling functions must be used with at-
tention to thesk (y) factors defined in~2.22! and the multi-
exponentsu@k# in ~2.24!. When this is done, we finally
obtain the critical endpoint binodals from~4.49!.

Introducing the parameters5uh̃ub/D then yields the pre-
viously quoted expansions~3.50! and~3.51! for m andm̃ in
the symmetriccase. The linear term ins is absent in the
expression form̃ when we chooseLr(0)5r 0 which rein-
forces previous results. In the expression form the G0 term
in ~4.49! provides a linear term inh̃ that yields thesD/b term
in ~3.50!; the terms inu t̃ u22a provide thes(22a1D)/b term
and higher order corrections, since (]Q) generatesh̃ in lead-
ing order; the term inu t̃ u12a provides thes(12a1D)/b term
for (] t̃ ) for the same reason; then, finally, the term inu t̃ ub

provides the leadings behavior. In the expression form̃, all
the terms, except for one inu t̃ u12a, provide correction terms,
s(22a)/b, in ~3.51!; the leading behavior,s(12a)/b, is gener-
ated by the term inu t̃ u12a.

The leading amplitudes are

E5@~22a!/D#QeW`
0 U (22a)/D,

~4.58!
Ẽ5q1QeW`

0 w1
0U (12a)/D.

For the record, we also quote

V1522G9
0 , V252q6QeW`

0 w1
0U (12a)/D,

V352Q9W`
0 U (22a)/D,

u45
~22a1u4!

~22a!

W`
(4)

W`
0 U4eU

u4 /D,

~4.59!
u152

~12a!

~22a!
w1

0q1J/U1/D,

ũ45
W`

(4)w1
(4)

W`
0 w1

0 U4eU
u4 /D, ũ1522

w2
0q1J

w1
0U1/D ,

Ṽ52G4
0J1@Q11~22a!r 1Qe /D#W`

0 U (22a)/D.
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In the generalnonsymmetriccase, the linear term ins is
still absent in the expression form̃: see~3.55!. The expres-
sion for m in terms ofs is given in ~3.54!; the G0 terms in
~4.49! yield the sD/b term, as in the symmetric case, while
the terms inu t̃ u22a provide thes(22a)/b term and that in
u t̃ u12a gives s(12a)/b; the leading term,s, is still provided
by the term in u t̃ ub. In the expression form̃ the leading
behavior iss(12a)/b, as in the symmetric case, again pro-
vided by theu t̃ u12a term; theG0 term yields corrections of
leading ordersD/b, while the terms inu t̃ u22a and u t̃ ub give
thes(22a)/b term in ~3.54!. The required amplitudes are now

E5@~22a!/D#~12Lsr 0!QeW`
0 U (22a)/D,

~4.60!
Ẽ5~q12r 0q0!QeW`

0 w1
0U (12a)/D.

For the record, we also quote the correction amplitudes,

V15~q02Lsq1!QeW`
0 w1

0U (12a)/D,

V2522~G9
02LsG5

0!12J1~G5
02LsG4

02r 0G9
01r 0LsG5

0!,

V35~Q32LsQ1!W`
0 U (22a)/D, ~4.61!

Ṽ1522~G5
02r 0G9

0!12J1~G4
022r 0G5

01r 0
2G9

0!,

Ṽ25@Q11~22a!~r 122r 0r 3!Qe /D#W`
0 U (22a)/D,

and the leading further coefficients

u15
~12a!

~22a!
q̄w1

0/U1/D, v15ũ152
w2

0q̄

w1
0U1/D . ~4.62!

E. Spectator phase boundary: Isotherms above Te

In Sec. IV C, we studied the endpoint isothermal phase
boundary,gs(h), in order to discuss the endpoint binodals.
By the same token we study the phase boundarygs(t,h)
aboveTe as the first step in determining the supercritical
binodals. This boundary is found by equating the free ener-
gies,Ga(g,t,h) andGbg(g,t,h), of the spectator and critical
phases, respectively, which yields~4.32! with t̃ .0. The ex-
tended triple linet̃ @see Figs. 1 and 4# is defined byh̃50 for
t̃ .0, implying y50. Since we consider only the vicinity of
the extended triple linet̃, we must utilize the smally expan-
sion ~2.19! for the scaling functionW1(y,y4 ,y5 ,...) in
~4.32!. Using h̃ as the principle variable, which is advanta-
geous in discussing the critical phase binodal,B bg, the scal-
ing function W1(y,y4 ,y5 ,...) can beexpanded in integral
powers of h̃ with t-dependent coefficients. The noncritical
function D(g,t,h) can be expanded similarly. Then, solving
~4.32! for gs(t;h̃) yields the desired nonsingular expansion.
Here we consider only the leadingt-dependent behavior of
the resulting coefficients.

Accordingly, we rearrange~2.5! and~2.6! for t.0 using
just the linear terms to obtain

h5h̃2r 21t2r 0g1¯ , ~4.63!

t̃ 5~12q0r 21!t1q0h̃1~q12q0r 0!g1¯ . ~4.64!

The higher order terms in~2.5! and ~2.6! enter only as cor-
rection terms in thet-dependent coefficients. The noncritical
function D(g,t,h) is then expanded, by recalling~2.2! and
De50, as

D~g,t,h!5~D12r 0D3!g1~D22r 21D3!t1D3h̃1¯ .
~4.65!

Now we are in a position to find the isothermal boundary
gs(t;h̃) aboveTe .

In the symmetric case, we obtain

D1g1D2t1¯52QW10
0 u t̃ u22a2QW12

0 U2u t̃ u2gh̃2

1O~ h̃4!. ~4.66!

By symmetry only even powers ofh̃ appear. Solving forg
with the aid of~4.64! then yields

gs~ t;h̃!52gs,0
1 t2gs,1

1 t22a2gs,3
1 t2gh̃21¯ , ~4.67!

where the coefficients are

gs,0
1 5D2 /D1 , gs,1

1 5QD1
231aW10

0 uD12q1D2u22a,
~4.68!

gs,3
1 5QD1

g21W12
0 U2uD12q1D2u2g.

Notice that the coefficient of the quadratic term inh̃ diverges
asT→Te1. In terms ofh, which is advantageous in deriv-
ing the spectator-phase binodal,B a, we obtain the same
leadingt-dependent coefficients forgs(t;h).

In thenonsymmetric case, terms linear inh̃ appear in the
expansion of the scaling functionW1(y,y4 ,y5 ,...) arising
from the oddk exponents in~2.19!. However, these terms
only provide correction terms to the leadingt-dependent be-
havior. Combining all the previous results yields the equation

~D12r 0D3!g1~D22r 21D3!t1D3h̃1¯

52QW10
0 u t̃ u22a2QW12

0 U2u t̃ u2gh̃21¯ . ~4.69!

Solving for g yields

gs~ t;h̃!52gs,0
1 t2gs,1

1 t22a2J1h̃2gs,3
1 t2gh̃21¯ ,

~4.70!

whereJ1 is given above in~3.27! while the other coefficients
are

gs,0
1 5~D22r 21D3!/~D12r 0D3!,

gs,1
1 5

QW10
0

~D12r 0D3!
u t̃ su22a, ~4.71!

gs,3
1 5

QW12
0 U2

~D12r 0D3!
u t̃ su2g,

in which the numerical factor is

t̃ s5~12q0r 21!2~q12q0r 0!@~D22r 21D3!/~D12r 0D3!#.
~4.72!

Notice, again, that the coefficient of the quadratic term inh̃
diverges whenT→Te1. The result~4.70! can be expanded
in terms ofh by making the substitution

h̃5 j 1h2r 21t1¯ , ~4.73!
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where j 1 is given in ~3.31!. By utilizing ~4.70!, the coeffi-
cientsl 1 ,..., l̃ 2 in ~3.65! and ~3.66! are found to be

l 152~12Lsr 0!QeU
2W12

0 u t̃ su2g,

l 252g~q02Lsq1!QeU
2W12

0 u t̃ su2g21,
~4.74!

l̃ 15~22a!W10
0 u t̃ su12a$@~q522r 0q6!

22J1~q22r 0q51r 0
2q6!#Qe

1~q12r 0q0!@Q32J1~Q12r 0Q3!#%,

l̃ 252g~q12r 0q0!QeU
2W12

0 u t̃ su2g21,

where J1 and t̃ s are defined in~3.27! and ~4.72!, respec-
tively.

F. Spectator phase boundary: Isotherms below Te

The spectator-phase boundary,gs(t,h), below the end-
point temperature can be obtained as in the previous subsec-
tion by using the expansion~2.21! for the scaling function
W2(y,y4 ,...) in ~4.32!. The uyu factors in ~2.21! yield the
two branches of the phase boundary,gs(t,h): see Figs. 2~a!
and 5~a!.

In thesymmetric case, combining the results in Sec. IV E
with the expansion~2.21! yields

D1g1D2t1¯52QW20
0 u t̃ u22a2QW21

0 Uu t̃ ubuh̃u

2QW22
0 U2u t̃ u2gh̃21¯ . ~4.75!

Solving this forg with the aid of~4.64! provides the result,

gs~ t;h̃!52gs,0
2 2 gs,1

2 utu22a 7 gs,2
2 utubh̃ 2 gs,3

2 utu2gh̃2

1¯ , ~4.76!

where the upper~lower! sign corresponds toh̃.0 (,0)
while the coefficients are

gs,0
2 5D2 /D1 ,

gs,1
2 5QD1

231aW20
0 uD12q1D2u22a,

~4.77!
gs,2

2 5QD1
212bW21

0 UuD12q1D2ub,

gs,3
2 5QD1

g21W22
0 U2uD12q1D2u2g.

Notice that the linear term inh̃ vanishes asT→Te2, while
the coefficient of theh̃2 term diverges. In terms ofh we
obtain the same leadingt-dependent coefficients forgs(t;h).

Finally, in thenonsymmetric casewe obtain the equation

~D12r 0D3!g1~D22r 21D3!t1D3h̃1¯

52QW20
0 u t̃ u22a2QW21

0 Uu t̃ ubuh̃u2QW22
0 U2u t̃ u2gh̃2

1¯ . ~4.78!

By using ~4.64!, we can solve this forg to obtain

gs~ t;h̃!52gs,0
2 t2gs,1

2 utu22a2~J16gs,2
2 utub!h̃

2gs,3
2 utu2gh̃21¯ , ~4.79!

where, again, the upper~lower! sign corresponds toh̃.0
(,0), while the coefficients are

gs,0
2 5

~D22r 21D3!

~D12r 0D3!
, gs,1

2 5
QW20

0

~D12r 0D3!
u t̃ su22a,

~4.80!

gs,2
2 5

QW21
0 U

~D12r 0D3!
u t̃ sub, gs,3

2 5
QW22

0 U2

~D12r 0D3!
u t̃ su2g.

Notice that the linear term inh̃ does not vanish in thenon-
symmetric case, but the slopes of the two branches approach
the same value asT→Te2. The coefficient of the quadratic
term in h̃ diverges as the endpoint temperature is approached
from below. As before the result~4.79! can be expressed in
terms ofh by using~4.73!.

V. CONCLUSIONS

In summary, following earlier studies8,9 stimulated by
Widom,9 we have investigated the singular shapes of the
various isothermal binodals, or two-phase coexistence
curves, in the density plane near a critical endpoint. How-
ever, whereas the previous studies assumed classical or van
der Waals expressions for the critical thermodynamics, our
work is based onnonclassicalphenomenological scaling
postulates set out, in Sec. II, in a general form encompassing
a spectrum of correction-to-scaling variables. Four types of
critical endpoints were distinguished and examined in detail:
nonsymmetric, labeledNA or NB depending on whether the
lambda-line Tl(g), which terminates at the endpoint
(ge ,Te), lies, A, below T5Te ~as in Fig. 1! or, B, runs
above ~as in Fig. 4!; and symmetric, labeled, correspond-
ingly, SA andSB: see Fig. 4. At the endpoints, the lambda-
line binodalsB e

l1 and B e
l2 @see Fig. 6~b!# were found to

be singular with a leading ‘‘renormalized’’ exponent
(12a)/b and subdominant singular correction exponents.
The symmetricl binodals are displayed in~3.10! @with ex-
plicit amplitude expressions recorded in~4.26!–~4.27!#; the
nonsymmetricl binodals are presented in~3.17!.

Then, thenoncritical or spectator-phase endpoint bin-
odalsB e

a1 andB e
a2 @see Figs. 3~b! and 6~b!# were found to

be singular with a leading exponent (d11)/d ~as conjec-
tured by Widom9!; the symmetric binodals are given in
~3.36! with the closely spaced sequence of correction expo-
nents listed in~3.38!. The nonsymmetric binodals are similar
but more complicated: see~3.44!–~3.49!. The endpoint bin-
odalsB e

b and B e
g which limit the critical phases@see Figs.

3~c! and 6~c!#21 have also been studied and were found to
have the same leading exponent, (12a)/b, as the lambda-
line binodals; the symmetric forms are given in~3.52!, and
the nonsymmetric expressions are in~3.56!.

In addition,abovethe endpoint temperature the binodals
separating the spectator-phase from the near-critical phase
@seeB a andB bg in Figs. 3~c! and 6~c!#21 were studied. They
are analytic, but their slopes and curvatures develop singu-
larities asT→Te1. The spectator-phase binodal is given in
~3.58! and ~3.59!; its curvature diverges like (T2Te)

2g

when the critical endpoint is approached. The conjugate,
near-critical-phase binodal is described by~3.64! and~3.67!;
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but in this case both the slope and the curvaturevanish,
although in singular fashion, upon approaching the endpoint.

Finally, the binodals that approach the three-phase re-
gion below the endpoint temperature have been considered.
The spectator-phase binodalsB ,

a2 andB ,
a1 @see Figs. 3~a!

and 6~a!#21 are presented in~3.68! and ~3.69!; as above the
endpoint, their curvatures both diverge whenT→Te .

Our analysis has utilized certain essential convexity or
thermodynamic stability properties at and near a critical end-
point and, for Ising-type criticality, also invoked a specific
positivity of a scaling function expansion coefficient: see the
discussion after Eqs.~2.20! and ~2.24!. These features are
taken up in Ref. 17.
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