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Isothermal binodal curves near a critical endpoint
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Thermodynamics in the vicinity of a critical endpoint with nonclassical exponeng v, 4, ... , is
analyzed in terms of density variablémole fractions, magnetizations, gtcThe shapes of the
isothermal binodals or two-phase coexistence curves are found at and near the endpoint for
symmetric and nonsymmetric situations. The spectdtrnoncritical) phase binodal af =T, is
characterized by an exponenf{1)/6 (=1.21) with leading corrections of relative orders1/
(=0.21), 6,/B86 (=0.34) and +(B8) ! (=0.36); in contrast to classic@ran der Waals, mean
field, etc) theory, the critical endpoint binodal is singular with a leading exponent )/ 8
(=2.73) and corrections which are elucidated; the remainkiline binodals also display the
“renormalized exponent,” (+ «)/B but with more singular correction§The numerical values
quoted here pertain todE 3)-dimensional-fluid or Ising-type systems.© 2001 American
Institute of Physics.[DOI: 10.1063/1.1373665

I. INTRODUCTION AND OVERVIEW normally so, the lambda line is characterized by nonclassical
exponentsy, for the specific heafB, for the order parameter,

At a critical point in a fluid (or other Ising-type or ¢, for the critical isotherm, etc., the spectator-phase boundary
n=1) system two distinct phases, s@andy, become iden- exponents can all be expres&dd terms of a, 3, and 4.
tical: belowT=T, these two phases may coexist for appro-Beyond that it was shown that various dimensionless ratios
priate values of the conjugate ordering figlor chemical constructed from the amplitudes of the phase-boundary sin-
potential, et! h; aboveT, they merge into a single phase, gularities should beniversalwith values also determined by
say, By. If there is some other field variablesay,g, which  the nature of the bulk criticality on the lambda lifié.
may be varied without destroying coexistence, the critical These conclusions were based on a phenomenological
point is drawn out into a lambda lin&,=T.(g). A typical  description of the thermodynamic potenti&s Gibbs’ free
situation, which lacks any special symmetry, is shown scheenergies G%(g,T,h) and G#”(g,T,h), for the spectator
matically in Fig. 1. The lambda liney, delimits the phase phase and for the coexisting and critical phases, respectively.
boundary surfacé=h,(g,T), labeledp, on whichgandy  The former was assumed to have a power series expansion in
may coexist. the vicinity of E; the latter embodied a full scaling represen-

Now in many instances whemis varied, say, decreased, tation of the critical line and its neighborhodd.
another quite distinct phase, will be encountered. In this This formulation neglects the essential singularities ex-
case the lambda line terminates atrtical endpoint? which ~ pected on ther and p boundaries: these can, however, be
is labeledE in Fig. 1. AtE the phaseg andy may undergo discussetibut play only a negligible quantitative role. Our
criticality in the presence of the coexisting noncritical phasegeneral phenomenological treatment has been checked by an
« which may be appropriately termed thpectator phasé®  extensive study of a family of spherical models which ex-
The surface bounding the spectator phase in th&,f) or  hibit lambda lines and critical endpoints with a range of non-
field space is labeled; on it @ may coexist with phase8y,  classical exponent&lthoughB=3 in all cases®’

B, or y; on the triple line,7, where the surface meets the Many experimental examples of critical endpoints are
surfaceo, all three phaseg, 8 andy may coexist. found in multicomponent fluid systems. In the simplest ex-

In a previous stud?y(to be denoted), we discussed the ample, which we will particularly bear in mind, two chemi-
shape of the spectator-phase boundary surfage, cal species, B and C, mix as fluids in all proportions at high
=g,(T,h), in the vicinity of the endpoint af=T, and, by  temperatures forming the phage. At lower temperatures,
choice of origin,h=h.,=0. It was found that the surface is however, they undergo liquid—liquid phase separation, or de-
singular atE with functions such ag(T), specifying the mixing, producing phaseg and y rich in B and C, respec-
triple line, andg,(T.;h), displaying nonanalytic behavior tively. Up to a constant shift, the fiel may then be taken as
described by a variety of critical exponeAtsWhen, as is the chemical potential differenges— uc . As the pressure,

p, or the total chemical potentiglg+ wc, either of which
dCurrent address: Center for Polymer Studies, Center for Computationa\{ve may identify Wlth,the fieldy, is reduced, a dilute vapor .
Science, and Department of Physics, Boston University, BostonPNa@se.a, appears. Figure 1 then represents a characteristic
MA 02215. overall phase diagram. Now in a typical experiment the tem-
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Nonsymmetric Case A

critical line

gt k=0 &t k=0 g1 h=o0
/ T
s
o~
o
0 h 0 h
(@ T<T, ® T=T, © T>T,

FIG. 2. Isothermal sections of &hA endpoint phase diagram in field space
for (a) T<T,, (b) T=T,, and(c) T>T, corresponding schematically to the
full (g,T,h) diagram shown in Fig. 1. FOF<T, the phase boundarny in
Fig. 1 breaks into two piecesr, separating phases and 8, and o_

separatingr andy. The dotted curve represents the lotifg, T,h) =0 (see
FIG. 1. The thermodynamic field spacg, T,h) exhibiting anorsymmetric  sec. 1) which coincides with the surface (see Fig. 1 and defines its
(N) critical endpoint, at the meet of a line, marking the edge of a phase extensiorip and, hence, the extended triple lifie
boundary surface on which phases3 and y can coexist, and a phase
boundary surfacer limiting the spectator phase. The triple line 7, on
which phasesg, B8, andy may coexist, extends aboWe= T, into the dotted-
dashed lin& which is the intersection of with the extended phase bound- =3(pg—pc) and p,=3(pg+pc).] In the density plane

ary p (not shown. Note, as discussed bglow, that thdine sh_own here (P11P2) the phase boundariqs and o are represented by
slopes downward towards tkephase ag rises, thus representing what we two-phase regions bounded by smooth curves, the so-called
denote as casa. !

binodalsor coexistence curvesee Fig. 3. The aim of this

article is to analyze in detail and generality thleapesof
peratureT is controlled and may be held fixed: correspond-these isothermal binodal curves in the vicinity of a critical
ing to Fig. 1, the appropriate isothermal phase diagrams iendpoint. Specifically, we will elucidate the nature of the
the (g,h) plane then have the character shown in Fig. 2 forleading and subdominant singularities that appear in the vari-
T<Te, T=T,, andT>T,. ous binodals labele82*, B, etc., in Fig. 3.

However, the chemical potentialgg and uc, or the It appears from Fig. 3, and detailed analysis bears it out,
fields h and g, are normallynot under direct experimental that the binodal curves for=T, meet with a common tan-
control or observation; rather, the conjugdemsitiespg and  gent at the endpointE* and E* and at the extended triple
pc (or concentrations of B and)®r, equivalently, the den- points7a and 7By [defined by the intersection §f, the

sities, extended phase boundapgy, with the surfaceos in the
9 J (g,T,h) space; seé]. Of principal concern, then, is the way
p1=——-G(9,T,h)[g1, po=—--G(g,T,h)|7, in which the binodals depart from linearitpbove T, one
ah 99 expects analytic binodals but the behavior of the curvatures

(1.3) at7a and7By asT—T.+ is then of interest. On the other
e
are the prime experimental variablg¢dlote that in the ex- hand,at T=T, one expects singular behavior&t andE*.
ample envisaged withg=ug+uc one simply hasp, Indeed, Borzf stimulated by Widon?, discussed theion-

Nonsymmetric Case A

FIG. 3. Isothermal density—densitpr composition diagrams for(a) T<T,, (b) T=T,, and(c) T>T, for an NA endpoint illustrating the single-phase
regionsa, B, v, and By, the two-phase regions ruled by tie-lines connecting coexisting phases, and the three-phasgdoéedi@repnin which phases
corresponding to the vertices, 76, andy coexist. The various analytically distinct binodals are labééd , B ,---, where the superscript indicates the
phase bounded by the binodal while the subscript seagreededto specify the temperatur@sT,. The same notations apply to a symme8is endpoint.

At T=T, the endpoint tielindE*E* defines théh or m=0 axis, shown dashed, whemeandm are fixed linear combinations of the densitigsandp, (see

Sec. lll); them andm axes on the plotéa) and(c) have been omitted for the sake of clarity but are useful to understand the motion of the various features
asT passes througfi,. Note that this figure corresponds qualitatively to Figs. 1 and 2 bobisjuantitatively accurate.
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findings? the critical binodal is, in generahlso singular
with a leading power (*+ a)/8=2.7; so that the binodal is
much flatter at the endpoi* than classical theory would
predict. Here, and below where appropriate, we suppose
a>0 as applies to real fluids. The exponent(&)/g is, in
fact, the same as that long known to characterize isothermal
binodals passing through a lambda pofatvay from any
endpoinj; see B** and B*~ in Fig. 3@). This behavior
which is, of course, reconfirmed by our analysis reflects, in
turn, the phenomenon of critical exponent renormalizatfon.
The correction terms in the critical endpoint binodal are
found to carry exponents (Aa+ 6,)/B with k=4,5, ....
When one substitutes the classical values0 and 6,
= 1(k—4) these leading and correction exponents become 2,
o _ _ o 3, 4, ..., which are consistent with Klinger’s results and in-
FIG. 4. Thermodynar_mc f|¢|d space_||Iustrat|ngsynmetr|c critical end- dicative of a fully analytic critical binodal.
point, SB, for caseB in which the \-line slopes upwarcaway from the .
spectator phaser as T increases Beyond these differences, the phases, The results sketched out here, and others for the remain-
phase boundaries, etc., correspond precisely with those in Fig. 1. ing binodals shown in Fig. 3, are presented in detail in Sec.
I1l. However, it is necessary to point out that Figs. 1-3 are
special in two respects. First, as mentioned, no symmetry
with respect to the ordering surfapdnas been supposed; this

using the simplest possible phenomenological postulate arlg guite fappgc:prlate for most fluid systems. _However, as qb-
geometrical argumentgequivalent to van der Waals and S€'Ved inl,”" there are many other physical systems in
other classical theorigsHe concluded that the degree of Which the thermodynamic potentials are unchanged under

tangency was controlled by a 4/3 power I place of a rﬁflection in thiplanep: one may then Lakh:ho _?Ep and
power 2 for a normal analytic tangency the symmetry becomes invariance unties —h. The con-

Later Klinger? using a more general phenomenological c_eptually_simplest exampl_e is an eleme_nta_l ferromagngt, like
classical theory, discussed thetical endpoint binodals3? hickel or iron, whereh=H is the magnetic f'el.d angs-p IS
and BY analytically: see Fig. ®). However, he found no the pressure. Other examples are ferroelectrics, antiferromag-
evider?ce of singulér behavior. Beyond th,at Klinger con-Nets, order—disorder binary alloys, and liquid helium through
firmed the leading 4/3 power in theorcritical c;r spectator its transition to superfluidity; however, the binodal curves

binodal and found that the first correction term carries a 5/3'¢ not readily accessrble experimentally in some of these
power. cases. The correspondmg,(l’,h) phase space, thg |soj[her-
On general grounds, however, it seems certain that th@al sect|o_ns, and_ the med.aI curves for segmmetric criti- .
powers 4/3 and 5/3 must result from the reliance on c|assica9?'_e”dp°'”t5'°?fe |I|ustrat_ed n F_|gs. 4-6. In fact, symmetric
theory which entails the critical exponent values=0, 8 cr_|t|cal endpomts_are simpler in a number of r_espects and
=3, ands=3 in place of the appropriate nonclassical values! pe an_alyzed first bglow. Funda_mentall)_/ we f'n.d that the
@=0.10,, B=0.32, and 5=(2—a)/B—1=4.8 which leading smgular behavior of the binodals is |dent|c:_;1l in the
ymmetric and nonsymmetric cases but the correction terms

iffer in character: see Sec. Ill.

A second special feature embodied in Figs. 1-3 is the
slopeof the \ line which we characterize awgativein the
sense that if, without loss of generality, Wi¢ take

critical binodals at the endpoint, namelg2™ in Fig. 3(b),

characterize the specific heat, coexistence curve, and critica

isotherm of real bulk d=3)-dimensional fluids(or other

systems in the Ising universality claséndeed, Widom has

conjectured that in general the 4/3 power should become

(6+1)/6. This reduces to Borzi's result wheéi=3 but

yields an exponent value of 1.208 for real fluid systems. g=h=0, T=T,, atE, (1.2)
Here we confirm Widom’s surmise using the full scaling

approach deve|0ped |ri Furthermore we ShOW that and (||) Suppose that the negati\gE aXiS |ieS in thea or

Klinger's correction exponent of 5/3 is replaced, more gen-SPectator phasgsee Figs. 1 and)4hen we havé

erally, by three exponents, namely (2a+ B)/B65, (2—« dT

+6,)/ 868, and (3-2a—pB)/B6S. Here 6, is the leading A: Ange(d_c

correction-to-scaling exponent which has the valdg 9

=0.54 for (d=3)-dimensional Ising-type systerh;thus Conversely, as illustrated in Fig. 4, one must also consider

these three exponents have values of about 1.42, 1.55 ataqe case of a positively sloping line with

1.57, respectively, for bulk fluids. In the classical limit at-

tained viad—4— one hasf,—0 and the second exponent c

reduce$' to 4/3 while the first and third yield Klinger’s value B: AgETe(d_g

of 5/3. However, we also identify further singular exponents

that must appear in the expansion of the noncritical binodaAs seen in Figs. 5 and 6, this produces distinct isothermal

at the endpoint. phase diagrams and new arrangements of binodal curves:
It transpires, in addition, that, contrary to Klinger’s note the additional notation introduced in Fig. 6.

-1
<0. (1.3

e

—1
>0. (1.4

e
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Symmetric Case B II. THERMODYNAMIC POTENTIALS FOR ENDPOINTS

g g g This section presents a complete specification of the
thermodynamic potentialc(g,T,h) in field variables as
Y @ B ¥ @ B @ needed for the general description of critical endpoints. It is

4 E-, By % the basis for the results described in Sec. Il but need not be
read to understand those results. For convenience we adopt
©) o <) 6 o <) o the critical endpoint as origin for the fieldsandh as speci-

fied in (1.2), and also put

0 3 0 b 0 A
@ T<T, b T=T, © T>T, t=(T—To)/Te. (2.1

FIG. 5. Isothermal sections of &B endpoint phase diagrafeorrespond- Thusg, t, andh measure field deviations from the endpoint

ing schematically to Fig. ¥for (8 T<T,, (b) T=T,, and(c) T>T,. E at (g,t,h)=(0,0,0).(In | the variablegy andt were de-
Compare with Fig. 2 and note that far>T, the N point and its phase " Y

boundaryp are disconnected from the boundary notedAg andt.) For any propertyP(g,T,h) admitting a
power series expansion abadit(of indefinitely high order
but not necessarily convergénie utilize, for brevity, the
semisystematic subscript notation,

One might, of course, also wish to consider the border- 5
line casesA 4=0, =; we will not pursue these but, on the P(3.T,h)=Pe+P1g+Pyt+Psh+P,g°+2Psgh+2P4gt

basis of our pqstulates for the thermodynamic_ potentials as + 2P ht+ Pgt?+ Poh?+ O4(g, t, h), 2.2
set out below in Sec. Il, the necessary analysis presents no
further problems of principle. where, here and belov®,,(x,y,z) denotes a formal expan-

In summary therefore, we will analyze the binodals forsion in powersx'y*z' with j+k+I=m. If P is symmetric
four types of critical endpoints which, usiig for nonsym-  underh< —h one has
metric andS for symmetric, may be labeledA (Figs. 1-3
andNB, SA, andSB (Figs. 4—6. P3=Ps=P;=0 (to order 3. 2.3

In outline, the remainder of the article is as follows. Our g nctions satisfying2.2) and (2.3) will be said to benon-
basic scaling postulates for the thermodynamic potentiakitical (as opposed taritical).
G7(g,T,h) are set out in Sec. Il. They are essentially the  Fojiowing | we assume that the thermodynamic potential
same as those introduced and discussed critically lut G*(g,T,h) for the spectator-phasey, is noncritical. Thus
they have been extended significantly as regardsyheme- 50 has, e.gG%=4 #2G*(g,T,h)/ohat]. and, by virtue of

tries of the corrections to scaling and of the nonlinear scaling1 1), the endpoint densities in the spectator-phase are simply
fields; the notation also differs in a few detéilFhe reader

prepared to take the postulates on tfusay proceed directly p1°=—-G5 and p5°=-—-Gfy. (2.9
to Sec. lll where the shapes of the binodals in the various ] . i
cases are discussed in detail without reference to Sec. Il. The 10 describe the critical phaseg, y and By, we first
analytic derivation of the results, which is straightforward inntroduce, again followingl, the two relevantnonlinear
principle but a little delicate in practice, is presented in Sec.thermal” and “ordering” scaling fields, t(g,T,h) and
IV. Explicit formulas for the many amplitudes entering the h(g,T,h), which bothvanish on the \ line while h also
expressions for the various binodals in Sec. Il are also givewanishes on the phase boundaryFor the nonlinear scaling
in Sec. IV. In Sec. V we summarize our conclusions briefly.fields we accept the noncritical expansids,

Symmetric Case B

Pg m
A gezv*' que
/
Y
v [3'\ B
B v BP
B B
\d o ./
[’) p1=m
(@ T<T, b T=T, 0 T>T,

FIG. 6. Isothermal density—density diagrams farT<T,, (b) T=T,, and(c) T>T, for an SB type of critical endpoint such as illustrated in Figs. 4 and
5. Compare the dispositions of the binodals with those shown in Fig. 3 and note the augmented labeling notation.



J. Chem. Phys., Vol. 115, No. 2, 8 July 2001

T=t+qoh+0;9+0,9%+qsgt+qat>+gsgh

+qgh?+dqth+05(g,t,h), (2.5
h=h+r_jt+rog+r,gh+r,oth+rzh?+r,g2
+rsgt+rgt®+03(g,t,h), (2.6

which slightly extend those ih(4.7) and(4.8). It should also
be mentioned at this point thptessure-mixingerms, which

have been discovered recently in connection with the Yang—

Yang anomaly in fluid systemé;'® are not considered
herel®
In the symmetric case one has, to order 3,

JQo=0s=q;=0, r;=0, for j=—1,0,3-6. (2.7

Asymptotically, the\ line may thus be described by
O (T)=Agt+Agt?+0(t3),

hy(T)=Ant+ Apt2+O(t%), 2.8
where one finds
1—qor_ ro—qqf—
Ag=— Jdo 1, _To Q1 1, 2.9
d1—Jofo di1—0dofo

with similar expressions foA g, etc. In accord with(1.3)

and(1.4), we assume\ 4 does not vanish or diverge. In the

symmetric case one has,=—1/q; and A,=A,=...=0,
so thatAg=q;—qor o# 0.
Then we need the onelevantscaled variable,

y(g,t,h)=Uh/[t|*, with A=pBs=8+y>1, (2.10

where the exponent relations and inequality are standaid. In

we took U=U(g,t,h) as a noncritical function; however
with no loss of generality we may takeé as apositive con-

stantsince any dependence gnt, andh can be absorbed

into h. Beyondy we need the manirrelevant scaled vari-
ables,

yk(git!h): Uk(g!tlh)ﬁlek!
s 1=0>0, k=4,5, ... (2.11

We assume that the associated irrelevant amplitlbleare
noncritical® with

Uk(g,t,—h)=(—)XUy(g,t,h) in case S

(2.12

Now we can write the thermodynamic potential for the

critical phase as

GP7(g,T,h)=G%g,T,h) —Q[T|* *W..(y.ys.ys, "),
(2.13
where the backgroun@®(g, T,h) and thepositiveamplitude
Q(g,T,h) are noncritical while the subscriptt refers tot

=0. Physically, from the relation af to the specific heat we
have 2- «>1 but we further suppose

(2—a)lA=(5+1)/6>1, (2.14

Isothermal binodal curves 937

We also assume, acknowledging the symmetry of the
standard universality classes, that the scaling function
W_(Y,Y4,Ys5,--*) is both universal and invariant under
change of sign of the odd argumentsys, y;, ... . Beyond
that we have the expansion

W (Y,Ya,Ys, ) =W2(Y) + Y, WO (y) +ysW(y) +- -
+yAWEA(y) +y,ys Wy )+

=2, WE(yy!, (215
in terms of the irrelevant scaled variablgs, ys, -+, where
for brevity we have introduced the multi-index,

k=0,(4),(5),...,(4,4),(4,5),...,(44,9, ..., (2.1
and the associated conventions
yo=1, yl@i-Ml=yy y,. (2.17

We also sayx=|[(i,j,...,n)] is odd or evenaccording to
whether the sumi+j+---+n is odd or even. Then with an
obvious extension of notation, the symmetry Wf. (y,---)
requires

WE(=y)=(=)"WE(y). (2.18

For smally andt>0 we can then write the further ex-
pansions,

WX (y) = WX o+ y2 WS, +y* WS, +---, for  x even,

=YW +y3WH o+ y W+ for « odd.
(2.19

' These series may, in general, be normalized via

Wo,=W*,=1 (k even or W*,=1 (x odd),
(2.20

which serve to fix the nonuniversal metrical amplitudgs
U, Uye, etc.

Note, however, that in setting/® ,=W%,=+1 an ap-
peal to thermodynamic convexitytogether withQ>0 and
a>0, is entailed; see Ref. 17 where the consequences of the
necessary convexity of the basic thermodynamic potentials
are discussed both for the scaling functions and, more gen-
erally, for critical endpoints, thereby extending Schreinemak-

ers’ rulest®®

Fort<0 the existence of the first-order transition leads
to |y| factors in the expansions so that one has

WX (y) =[W* o |y WS+ y2WS S+ [y PWE g+ o, (),

(2.21
where the special signum function is defined by
o.(y)=1 for Kk even,

=sgny) for x odd. (2.22

Convexity with Q, U >0 then shows thatv® ; and W°,

as is generally valid both classically and nonclassically. Fomust both beositive see Ref. 17.

concreteness and simplicity we will, in addition, focus on

a>0 (as appropriate for bulk fluids, ejc.

For large arguments|y|—o, the individual scaling
functionsW? (y) andW* (y) must satisfy stringent matching
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conditions to ensure the analyticity G#7(g,T,h) through  A. Rectification of the binodals

the surface =0 for all h#0. These often overlooked condi- We approach the description of the binodal curves by

tions may be written supposing that at fixed one may observe the densities
o (p1,po) Of various pairs of coexisting phases.dimary fluid

WX (y) ~ WKy |@atola)/Al g 4 > wi(+ |y|)"A}aK(y), mixturesp; andp, might correspond directly to the number
=1 densities of the two species, B and C.tarnary mixtures

(2.23 however, observations would normally be conducted at fixed
where the multiexponend] «] is defined by temperature and pressure and varying composition. phen
_ . . andp, would each represent convenidinear combinations
0L01=0, OLGj, - m]=0it 6+ b, .29 of the number densities of the three species, say, A, B, and C
with i,j,---,n=4. By virtue of the normalization&.20 the  as represented typically in a triangle diagrd@ur analysis
numerical amplitude®V™; , W, W, andw; should all be  also applies to observations gfiaternarymixturesif sec-
universal (as should the exponents, B, 6, 64, 6s, ...).  tionsof the thermodynamic space corresponding to constant
Beyond that, as shown in Ref. 17, convexity dictates Wit  temperature, pressurand a third field (or combination of
andwj must bepositivewhile (w9)?/w3 must be bounded chemical potentialsare constructed; however, experiments
above. Thesign of w} is not determined by convexity alone are not normally conducted that way and some further analy-
but must, in general, beegative see Ref. 17. This plays an sis would be needed to describe, say, a section at corktant
important role in determining allowable density diagrams. p, andp;.]

Finally, from (2.13 we note that the critical endpoint We suppose next that the critical endpoint temperature
densities are T, itself can be determined with reasonable precision so that
phe=— G2 phe=— GO (2.2 the variable= (T—T,)/T, of (2.1) is well defined. Then the

densities p®,p3%)=E* and (p}®,p5*)=E" of the spectator

see Fig. &). and critical phaseat the endpoint can be found; see Figs.
To close this section we recall from that the phase 3(b) and @b). These define an axis of slope,

boundarys or g=g,(T,h) follows by equating the two ex-

pressions G=G%(g,T,h) and G=G#7(g,T,h). Conse- L,=Ap1/Ap,=(p)e—pi®)/(p5e—ps°). (3.
quently, it is useful to define the thermodynamic potential
difference, A natural second axis is found by noting that according to

(T M= G (e T h)— Goa.T h - classical theorythe critical binodals34 and 3} have a well
(9,T.h)=G%(g,T.h)=G(g,T.h), (229 defined common tangent & of slope (dplldpz)z,g
which is noncritical by virtue of the definition o6° in N

. . o =1/ ,, say. This is confirmed by our more general analyses
(2.13. By our conventions the negativg axis, i.e.,t=h

which, indeed, predict that the binodals are flatterEat

=0,9<0, lies in thea phase(see Fig_s. 1 and)4t.hiiimp|ies which eases the practical determinationLgf. (Note that it
D,>0. The phase boundary and its extensiorp above proves convenient to define, reciprocally with respect to

T.(g) is given byh(g,T,h)=0. As inl(5.4), we will assume L,: see belovf9)

that the\ line is not tangentto the triple liner at E. The To describe the various binodals near the endpoint it is
densitiesp; and p, on the boundaries and p then follow  then natural to adopt new density variablesandm, which
from (1.1) and, by eliminatingg andh at fixedT, the various  gre linearly related t@, andp, but utilize E as the origin
isothermal binodals can be computed as expansions &outgnd are oriented along the axes just specified: see Filgs. 3
or about\; see Figs. 3 and 6. We postpone the details untibng gb). Henceforth, therefore, we will utilize thectified

Sec. IV and turn next to describing the results. density variables

m= _ _\e__ L ( _ )\E) (3 2)
Ill. ENDPOINT BINODALS AND THEIR pP1—P1 o\P27 P2 ) :
INTERRELATIONS 3 ‘e ‘o

M=pa—p3 —L,(p1—p1). (3.3

We now describe the results of our analysis of the pos-
sible shapes of the various binodal curves and their interreé=urthermore, without loss of generafitywe assume thahe
lations with one another as illustrated in Figs. 3 and 6. Afteronly pure phase located within the quadrantil, m>0, at
some preliminaries describing the “rectification” of the bin- T=T, is the 8 phase Then, as illustrated in Figs(l3 and
odals, we consider first the behavior near thdine: this  6(b), thea phase afl =T, is restricted tdh<<0 and only the
entails only the free energ$?”(g,T,h) and, inasfar as the vy phase lies in the quadram<0, Mm>0.
corrections to scaling are involved, extends previous knowl-  The notationam and i are suggested by the magnetic
edge somewhat. Then the binodals at the critical endpointase in whichm, the magnetization, is the primary order
temperaturd =T, are described; these are, perhaps, of mosparameter discontinuous acrgsthat couples to the ordering
interest. The binodals associated with theurface abovd@,  field h, while M is a secondary or subdominant order param-
are discussed next. These are analytic but their slopes amder conjugate t@. Note that forsymmetric endpointse
curvatures display critical singularities @s-To+. Finally, havé® L = L,=0 so that if one shifts the definitions of the
the binodals associated with the three-phase triangle belodensities in a natural way to yield an orig{b@e=p§e=0 one
T, are considered. simply hasm=p; andim=p,: see Fig. 6.
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B. Lambda line and associated binodals

We note first(that within the postulates of Sec.) lihe
densities on thé line arenoncritical functions of T so that
we have

my(T)=M t+Mt?+---, (3.9

(3.5
For a symmetric endpoint all thiel; vanish identically. Be-

yond that, the coefficient™; and Mj are not restricted in
magnitude or sign although, of course, thédine itself can-

Fn)\(T):mlt"‘mth‘i‘ .
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allel to them axis (M=0); see Fig. 6. Similarly, theliam-
eter of the p binodals, defined as the locus of midpoints of
the tielines, is given simply bymMgiam="0, Mgian=M,(T)
=0.

The symmetric\ binodalsmay finally be expressed di-
rectly in terms ofm as a variable by solvin¢3.6) for s and
substituting in(3.7). With x=|m/B| this yields

M=, (T)+Ax*~ VP 1+ax’/F+ax 1+ -]

+ KXY 1+ kyx O Bk x VB4 -], (3.10

not extend beyond the endpoint. Thus one must, here, havygherea,=3,— (1— a)b,/B8 and so on. The term iA pro-

t<0 in caseA andt=0 in caseB.
Next notice that the binodal8** for T<T, (see Fig. 6

vides the dominant behavidiwhen a>0) with (1—«)/B
=2.73 for Isingd=3 quoted in the Introduction. However,

AE _ ANE ~
B¢~ for T=Te, and B~ for T>T, can all be treated t0- he term inK provides strongly competing corrections of
gether since by our postulates all of these binodals depengative orderfm|/#: note that 18=3.07. The higher order

only on the free energy of the critical phase. Furthermorecqrection terms run through all powersofwith exponents
inasfar as they are not truncated by the spectator phase, thgy ine form Z(n) +Z(ny) +---+¢(ny).

must all share the same singularities and vary uniformly with e nonsymmetricN, binodals associated with the
T. Itis also convenient to describe the binodals with the aidjne or p surface[see Fig. 8)] may be described similarly.
of a parametes=0 (related to|T|ﬁ) which vanishes on the In terms of the parametarwe find
line and increases into th@and y phases: coexisting phases
correspond to the same value of

In the symmetric caseS, the binodals associated with
the \ line or p boundary may then be specified by

m.=m,(T)+Bg1+b,s%/P+b;sP+ - +pslb/F+...]

+ A1 +a,s04F+a sVP+- . +agsfs Py

m. =+ B 1+b,s%/#+b s +b, S0+ 008 HRSHLE ], (310
+oe st 4, (3.6) M= (T)+As VP 1+78,8%/P+7,sP+.
m=m,(T) +Astt VA 1+3,s%/ F+7,s"F+- - +3sf /P KPP 14+ K8 P -]
+3,5M 4] + B AIB[1+D,s0% B+ ..+ Bgsls /B ]

+ RSB+ K SYB+ -+ ks Bt -] 3.7 +B'ts[1+bys%/F+. ..+ plslh/F+...] (3.12

In (3.6) the general correction term has the foly(t)s¢™
wheren=[n,] is a multi-index withn,=0 and the expo-
nents here and ifB.7) have the form

where, again, all the coefficients are noncritical and the same
remarks as before apply to the signs/f K, andB. The

correction factors for thed, A, B, B, and B’ terms run
through all powers ofs with exponents of the form

BZ(n)Zno+j;2 N2; 62, (3.8 (ny+ 6[x1)/ B [recalling the definitions2.16), (2.24), etc];
terms with odds carry £ signs; whennyg=0 we haved,
=a,, andb,=b,.. Expressions foA, A, etc., are given in

,Bf(n):no+j§2 [Ng) 025+ Ngj 4 1(A+ 65511)]. (3.9 (4.29—(4.31),

Now note that the amplitudB’ carries a factot which
vanishes afl .. Away from the endpoint this term induces a
linear variation offm with m which simply means that the
tangents to the binodals at thepoint (for T#T,) are no
'longer parallel to the tangent at the endpoint. Such a varia-
tion is, of course, to be expected and does not represent any
real change of shape @sdeviates fronil,. To see this more

The appearance of the exponént= 36 is due to the sym-
metry which acts to suppress the odd irrelevant variables.
The correction amplitudég,(t), a,(t),..., bu(t),..., are
noncritical but, generally, of indeterminate sign. However
the noncritical amplitudeB(t)=B.+B,t+--- is positive
with our conventions and the signs correspond to thes

and y phases, respectively. The amplitudeg) =A,+ At
+-+- and K(t) =K+ K,t+--- are also noncritical. For

>0, as we may assume here, the amplitAdeust be nega-
tive in caseA while it is positive in caseB. For <0 the

explicitly, note that we may redefine the coefficienf,
which enters the definitiofB8.3) of M, as a noncritical func-
tion, L ,(t), chosen so that the tangent at thepoint is al-
ways parallel toh=0 (i.e., to them axis); then one ha8’

amplitudeK would have to have matching signs but that is =0 While the other terms if8.12 do not change form. With

not demanded fow>0. Explicit expressions foA,, B,
etc. are given in4.26 and(4.27).

It is clear by symmetry that thex(,im) tielinesconnect-
ing coexisting phase points are all “horizontal,” that is, par-

this understanding for# 0 we may conveniently define

(3.13

which reduce tan and, respectively, at the endpoint.

Am=m—-m,(t), Am=m—m,(t),
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The diametersof the nonsymmetria binodals may now
be found parametrically by multiplying out if3.11) and

(3.12 and dropping all terms which carry signs. If the
parameters is eliminated in favor o= AMgam/A, the di-

ameters can be written

Amd|am_AX|:1‘|‘IC a/(l a)+ +a X04/(1 a)+ ]

+UX BT ] . (3.19
where we suppose>0 while
Ky=(AK—AK)/AA and U, =Bbs. (3.1

We see that the slop@ifn/ om) of the diameter remains finite

at the endpoint but, in general, the curvatdieergesat the
endpoint.

The slopest, = AM/Am of the tielines follow similarly
from the terms in(3.11) and (3.12 carrying the=* signs.

Using, againX=AMg.m/A as the variable one finds, for

a>0,

U(A-a)| 1

2)\ *)‘(a/(lfa)_k('B4_b4)3‘(94/(17a)

(1-a)A

UJIWI

AX(.95+A 2)/(1-a) 1 ..
B

+eeet (3.19

As was anticipated, the tielines do not, in general, remain
parallel to thex-point binodal tangent; however, the variation

in slope is evidentlyslowerthan linear inAfn.

Finally, one may eliminate between(3.11) and(3.12
directly and write the generahonsymmetric\ binodalsin
terms ofx=|Am/B| as
Af=Ax1- VB[ 1+ agBx(@TA/E g, x04 P+ g, Ax(A~D/E

+ aKKX(l—B)/ﬁ+ e t55x95’ﬁ+ ]
+RKXYB[ 1+ b x4/ P+ p AXA DB+ b Kx(1-PVE
+--4], (3.17
where thex signs refer tcAm=0 (for B>0) while
ag= 1/’/&,

ap=ax=—(1-a)/BB,

— 3.1
(1_Cl’)b4/ﬂ, b4:_b4/ﬁ, ( 8)

a,=a,—
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For d=3 the Ising numerical values are

Y} B=0.89, 1,1.32, 1.43,1.46,1.54,1.57,1.67,,1.9,...,
(3.21)

where, here and below, we use tloeigh approxmatlona5
=1.0; whend—4— onegets 1,13, 1,3 1,3 2 ---, 3 ---,.
Finally, note that the presence of the variotis signs in
(3.17 reflects the nontrivial behavior of the diameter and
consequent lack of binodal symmetry outside the innermost
asymptotic region.

C. Spectator phase boundary at the endpoint

The spectator phase, is bounded in the space of ther-
modynamic fields by the surfaee(see Figs. 1 and)4vhich
may be specified by the functiay,(t,h) which, as explained
in I, is found by equating the and By free energies, i.e., by
solving G*(g, ,t,h)=G*”(g,,t,h). In leading order this
was carried out in but, for the present purposes, it is useful
to have the results correct to higher order. Here we present
expressions foT =T, (or t=0), i.e., on the endpoint iso-
therm.

A detailed analysis is presented in Sec. IV C where one
sees that it is advantageous to retaias a principal variable.
The results for thesymmetric casare the simplest in form:
we find

9,(t=0;h)=—J[h| (T D9z |h|)— I,h%—J,[h|2+ (@)

T (3.22
where the singular correction factor is
Z4(2)= 1iClz(lfa)/A_i_szz(lfa)/A_,_CSZZf(l/A)
+ C4204/Ai Céllz(l—a-%— 194)/A+ C521+(05/A)+ .

(3.23
The upper (plug signs inZg correspond to casB or g4
<0; recall(1.4) and Fig. 4; thdower (minus signs describe
caseA whenq;>0; see(1.3 and Fig. 1.
The leading amplitude i1t3.22 is given, using(2.26),
by
J=QUCTVWY/(D,—r D), (3.29

whereQ, andU are defined vig2.13 and(2.10 while, for
the symmetric case, one hggD;=0 andJ>0. In addition
we state

We see that the leading behavior of the binodals, with 0 02211 19
exponent (+ «)/B (for a>0), is the same as in the sym- C1=w;|qyJ/ C2= W5 J7/U%, (3.29
metric case(3.10. The surprising new feature, however, is while the other coefficients are recorded in Sec. IV C. The
the large number of numerically similar low-order correction result(3.22 can be expressed in terms lofoy using
terms. If we write the expansion for a general binodal in the

U 1/A

form h=h[1-rJ|h|@- /A%y c J|h|G-20/A 4.1 (3.2
5 . . which, however, is valicnly for t=0 andg=g,. We note
Am:Ei A |m[¥ (319  that (5+1)/6=(2—a)/A=1.21 is in agreement with see

also Fig. 5 for a portrayal aj(0,h). We defer discussion of
the correction exponents until the noncritical/spectator bin-
odals are presented; see E(&36) and(3.44).

In the nonsymmetric casdhe leading variation of
g,(t=0) is, in generallinear in h (andh): see Fig. 2. Spe-
cifically, subject to

(with = for m=0), the nonsymmetria-line binodals gen-

erate the exponent sequence

Y B=1—a, 1, 1+ B, 1— a+6,, 2—2a— B, 1+ 6,,
Z_Q/_B! 2_18! el

1—a+6s, - (3.20
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J;=D3/(D1—roD3)#0, o, (3.27
we find
g, (t=0;h)=—J7h—J[|C** Dz ([h[) - I;h?
_Jg’ﬁ|’ﬁ|(§+1)/5_ J4|’ﬁ|2(5+1)/6+_,, , (3.28)

where thenorsymmetric singular factor has the expansion
ZN(Z)=1+'6-tdlzl—(1/A)_diz(l—a)/A_i_dZZZ—(Z/A)
— (5td1d1+5hdé)2(A_a)/A+(d,2,+d12)22(1_a)/A
+0d3z3 ) — (d+ G ydy) 22~ (AF /A 4 gy 2= (18)
+d,z% 5+ G2t A= DS (g7 4 dld,)

X Z(B4+ 1-a)lA _’_'a_hd5205 /A +"6_t'5_hdéz(95+Afl)/A

—Th(di+didg)z(fs Tl aA—. .. (3.29
The two signum factors are given by
Gi=sgr(t)=sgr(@h), @,=sgn(h)=sgn(j;h),
(3.30
in which we suppose the coefficients
G=00—d1(D3/D1), j1=1-r¢(D3/Dy), (3.3)

are nonvanishing; this will be true in the general nonsymmet-
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G“(g,t,h) is noncritical. Consequently, on the endpoint iso-
therm, t=0, the singular shape of the binodals directly
reflects the singular shape of the phase boundg(®, h).

To state the results for theymmetric cas&ve introduce
the endpoint susceptibilities,

Xe=—2Gg>0, Yo=-2G4>0, (3.39
and the endpoint density
M= —G¢+GY<0. (3.35

The noncritical binodal is then given by

M= O 02~ Card o
3.3

where

Xo=mlixs, C=Jxg,

E_%)JZ‘“& (3.37
D; Q. e
while Zg(z) is given in (3.23. The leading exponent is
(6+1)/6=(2— a)/A as stated in the Introduction. If we use
the general binodal expansi@d.19 the sequence of expo-
nents arising now is

YA=2—a, 2—a+b,, 3—-2a, 4—2a—2p,

C2=D9A)23/D1, C3=(

ric case.(We do not analyze the exceptions although no

problems of principle arisg.

We see from(3.28—(3.30 that terms which change sign

are not now determined simply by the slope of thdine

3—-2a+6,, 4—3a, 5—3a—28,...,

(caseA or caseB), as in the symmetric situation, but rather with Ising d=3 values

by more complicated considerations. This arises simply be-

cause the manifolti=0 in the (g,t,h) space(see Fig. 1can
cut the planag =0 in various ways. For small asymmetjy,
remains positive givingr,=sgnh) but g may be of either
sign. As expected frorh, the leading singularity ig,, is the

. . . . . 8
same as in the symmetric situation; however, the corrections -, 3

now contain further, new powers.
The leading correction amplitudes &y, are
dy=wy[ql/|j, U,

/ 3.3
di =wi(d1—qor ) /UM, (3:32

4—2a—B+0s,..., (S), (3.39
Y=1.2Q,, 1.55, 1.78, 2, 2.12, 2.35, 2.57,, 2.9,..., (S
(3.39

(using, againfgs=1.0).
In the limit d—4— the sequence fap* is 3, 3, 2, 2, 2,5,

g ... Note that the leading correction exponent found
by Klinger® was2. His classical phenomenological treatment
should correspond td—4— but 2 doesnot appear here: the
reason is that he did ngexpressly consider the symmetric
situation. We also find the exponeBt(and others when
symmetry is lacking.

In the nonsymmetriccase, the endpoint susceptibilities

The remaining leading coefficients are listed in Sec. IV C. Ashecome more complicated; we find they are given by

before the resul{3.28 can be expressed in terms lofby
making the substitution,

F]:jlh_j|h|(§+l)/6+j rh|h|2/§_'a_tj H|h|(372a7,8)/A_j2h2
(3.33

wherej=rqJj,|j,|** Y% while j’, etc. are given below in

(4.48.

+...,

D. Noncritical endpoint binodals

We are now in a position to answer Widom'’s question
regarding the shape of the noncritical or spectator-phase bi%-nd
odals, B2, at the endpoint. The essential point is that the

densitiesp; and p, and, hencem and m, are noncritical
functions of g, t, and h in the spectator-phase since

x&=—-2(G§—2L,GE+L2G5)>0, (3.40
(3.41)

where the significance of the axis slope,, was explained
in Sec. Ill A above. From(3.1), (2.4 and(2.25 we obtain

Xe=—2(G§—2r,GE+r3Gg) >0,

L,=(G§—Gy/(G{—GY), (3.42
while the endpoint density is
me=ro(G5—GJ) — G+ Gi<0. (3.43

Using, againx,=m“ xe as a variable, the noncritical
point binodal in th@onsymmetricase is expressed by

oo = - S+1) 64 5+2)15
M= M2+ WX, + M5|X,|CT 0 G| x, | 0T D04

(3.49
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where = corresponds th=0 while the amplitudesny, The symmetriccritical endpoint binodals may finally be
ms,..., arepresented below. The linear variationfaf with expressed in terms af as a variable by solvin@3.50 for s
X, shows that the tangent to the noncritical endpoint binodaind substituting i(3.51). With x=|m/E| this yields

at the endpoinE“ is, in generalnot parallel to the tangent at
E* (them axis): see Fig. &). The corresponding amplitude,

m7, is where

ﬁﬁz:Z(—Gg-l-roGg)+2LU(G§—I’OGS). (345) Ulzﬁl—(l—a)ullﬁ, U4="L]4—(1—a)u4/,8. (353

m=Ext VP 1+uxlaPruxt-aVbt...] (352

The leading singular exponent, namelys (1/8), is evi-  The term inE provides the dominant behavior with the same

dently the same as in the symmetric case, while the ampliexponent as the-line binodals given in Sec. IlIB. One

tude,m3, is should note that the amplitude is negative in cas@ while

~a . " o« o N o a it is positive in caseB due to the negative sign of} dis-
mZZZ(IJl_J)[_G4+rOG5_m1(_G5+L"G4)/§(z]' cussed following2.23.1" Hence it has the same sign as the

(3.49 amplitudeﬁ of the lambda-line binodals; s€8.10. This

Recall that the coefficients J;, andJ are defined above in also holds in the nonsymmetric case.

Sec. IlIC. Indeed, thenonsymmetricN, critical endpoint binodals
The leading correction exponent is now just that foundmay be described similarly. In terms of the parameteve

by Klinger® in his classical treatment; it doe®t appear in  find

the symmetric case. The expression for its amplitiag, is . A1 1w

complicated but, for the record, we quote the resﬂ%namely',n_ FES 12U DUyt B

. . +uss’s /At ]+ Vs B[ 1y, sA DB

(641

2| M=% —2(j1— (=G5 +r,Gg)

X +U23(lia)/'8+‘"+U4Sﬁ4/ﬁ+"'i05365/’3+'“]
e e

o +V,sMA[1+vgs -]+ Vs VA 14+ -], (3.59
+2 Sgr“l)QZ{(_G5+LUGA) X_g_(_64+ r065)}, = Bl /B[ 1 = Ti, s DI gy, g )y ...

(3.47 +U4SH4/B+'"iU5SH5/ﬁ+"-]

where the new coefficients are ivlsA/ﬁ[lfﬁoer.,_]

X1:2(_GS+ L(,G4)(]J1—J), (348) +'\“/25(2—a)/ﬁ[1+, _,], (3_53
_p2)j @2y (6+1) INGE (3.49 where the leading coefficients are presente@if0—(4.62.
92=loll1 ! 5 Ml ' Solving for s in (3.54 and substituting intd3.55), one fi-

" o nally obtains
E. Critical endpoint binodals

. . L m=Ex(l-a)/B Uax04! B+ x(A=1)B 1 y(I=a)IB ...
Now we conclude our discussion of the endpoint itself ™= EX [1+ux™ P u;x FUxX +ee],

by presenting, finally, the shape of the critical phase bin- (3.56
odals,B% andB?. These can be obtained by using the ther-where the leading coefficients are

i i iti By
modynamlf: potential for the CI’ItIEa| phas@, (g,t,h)-, ant;l o=y~ (1— a)(E/V,+uy)/ B,
the endpoint phase boundawy,(h). Details are given in
Sec. IVD. As discussed before, it is convenient to describe T, =V, /E, U,=T,—(1—a)u,/B,

the binodals with the aid of a paramet(in this case, re- hile th on f have ) |
lated to|h|#/*) which vanishes at the endpoint and increased!"!'e the correction factor exponents 3 Ising values

in the 8 and y phases. 0,/8~1.66, (A\—1)/8=1.73, and (1 @)/ B=2.73.

In the symmetriccase,S, the critical endpoint binodals
may then be specified by

(3.57

0./ Y F. Binodals above the endpoint temperature
m=*Eg 1+u,s%/F+u st dhy...]
Let us consider first thespectator-phase binodaB ¢

VS L4V B 4 ] Vs et B 4] aboveT, [see Figs. &) and Gc)] which is the simplest to
+ Vst B[ 4. (3.50 Enalyze. Siqc_@“(g,t,h) is noncritical, thg densitiesr and
fm are noncritical functions ofg, t, andh in the spectator-
f:'n:"és(lfa)/,b’[1+1~]4S(94/B+Uls(lfa)/ﬁ+_,_] pha;ea. At fixed p>0, the phase boundagy,(t;h) is_also a
nonsingular function oh with t-dependent expansion coef-
+Vs@-alBr1 .., (3.51 ficients, which are discussed explicitly below in Sec. IVE.

5 Consequently, on the isotherms abdvg the « binodal be-
where=* corresponds th=0, and the coefficients are given comes noncritical. However, singularities of the binodal are
in (4.58 and (4.59. to be expected a§—T.+.
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In the symmetric caseby using the previous definitions
(3.34 and(3.395 and the phase boundagy,(t;h) given be-

low in (4.67), we obtain

M= Mg(t) +1,t* " “h+T,t= Y *h2+---

(3.66

where the constant coefficients are presented beldd. ).
Note that the term linear inh for M has a leading
t-dependent coefficient that vanishes wiien T.+. As be-
fore, the critical phase binodal can be written in terms of
=Am/l; with Am=m-—mg(t) as

M=mMg—X&(gy ot +951t2 ) —Xe0sat X+,

(3.58
wherex,=m/ x5, as for the symmetric noncritical endpoint
binodals in(3.36), while the coefficientsy,, ,, etc. are given
below in (4.68. Note that the curvature of the binodal di-
verges as~ ¥ whenT—Tg+.

In the nonsymmetric caseaising(4.70, we obtain

(3.59

wheref, andm7 are given above iri3.43 and(3.45), re-
spectively, while the coefficient of second order xn
(=mixg) is

m3(t)=2(G§—L,G&)gy 5 jit Y +---,

M= Mg(t) +1,t1 27 ax+T,t 7 I+, (3.67)
Evidently, both the coefficients of andx? are singular but

e n, a a2 vanish whenT—Tg+ and y>1.
m=mg + MiX,+ My (t)x5,+---,

G. Binodals below the endpoint temperature

Below the endpoint temperature three phases3, and
v, may coexist on the triple line. The binodals near a triple
point then spring from the corners of a three-phase triangle.
The corresponding phase diagrams in the density plane are
shown in Figs. 8&) and Ga) for the two caseNA andSB,
respectively. Thermodynamic stability then requires that
these diagrams must satisfy Schreinemakers’ rutés'°de-
tails are given in Ref. 17.

The explicit forms of thespectator-phase binodals
B%*, can be obtained without difficulty by using the phase
boundaryg,(t,h) belowT, as presented it¥.76 and(4.79

(3.60

wheregj’3 is given below in(4.71). Here we have neglected
higher order corrections it Just as in the symmetric case,
the curvature of the binodal diverges whéa> T+ .
Consider next theritical phase binodal3#” aboveT,;
see Figs. &) and 6c). This may be determined usirig.15
below and its twin forfh with the aid of the spectator-phase
boundary,g,(t;h), which is derived in Sec. IVE. For fixed
t>0, the smally expansion for the scaling function

W, (Y,Y4,...) yields only integer powers di in (4.15 and  for the symmetric and nonsymmetric cases, respectively. In

its twin so that the densities and are noncritical func-  the symmetric casethe binodal may be expressed as

tions ofh. Consequently, the critical phase binodal is again

noncritical aboveT,. M=Mg — Xe0, ot * Xa0, At xq —
In the symmetric casethe densitiean and M can be

written in terms off by using(4.15 and its twin as

Xeg At G+,

(3.68

wherex,=m/xq and the uppeflower) sign corresponds to

m=1l.t-"ht-.- (3.61) m>0 (<0), while the coefficientsy,, ,, etc., are given be-
! ' low in (4.77). Note that the slope vanishes®s> T,— while
M=g(t)+ 1ot~ Th2+--- (3.62  the curvature diverges g8~ . In the nonsymmetric case

. . ) . the binodal is given by
wherefmg(t) is a function oft only while the coefficients are

11=2Q U?W2,|1-q;(D,/Dy)| 7, =T+ MEOX,HMEOX 4 (369
~ (3.63 here the coefficients are
2=~ 78,QeUW0 5| 1-0,(D /D) 7% " -
~ (1) =T 20" i (—G® @ [¢|B . ..
Notice thatl, is negative in casé while it is positive in ML =M F20,2)2(= G4+ L,Go)[Y "+, (3.70

caseB, as forA, the leading amplitude of the lambda line

m3(t)=—29, 3j3(—G5+L,GO|t| 7+---,

binodals; see the paragraph bel®0). We may eliminaté
between(3.61) and(3.62 and write the binodal in terms of while the + signs again correspond tm=0. The coeffi-
x=m/l, noticingl,>0, as cients,g, o, etc., are given below i4.80. Notice that the
linear terms do not vanish, but approach the same value
whenT—T.—.

Since y>1 in thed<4 Ising universality classes, the coef-  The critical phase bir_wodalsBﬁ and 5L, can be ob-
ficient of the quadratic term i vanishes aJ —To+. This  tained, in principle, by using4.19 and its twin with the aid
result could be anticipated, since the critical endpoint binOf the phase boundarg,(t,h) given below in(4.76 and

odals have the leading exponent<{#&)/8 (=2.73) in the (4.79. However, the analysis becomes more complicated,
symmetric case. Thus the curvature ®f is singular but  Since these binodals are associated with the lambda-line bin-

nordivergent wherTl — T, odals near the vertices of the three-phase 'Frianglg;_ see Figs.
In the generahonsymmetric casghe situation is more 3(a) and Ga). Hence, we do not present their expllcn forms
complicated. The densities can now be expressed as here. One can anticipate, however, that the binodals have
linear slopes and quadratic terms which both vanish when
(3.65 T—T.— inthed<4 Ising universality classes.

fh=Mg(t) +1,t7 X2+ . (3.64

m=mg(t)+ 1t h+1,t "7 Th2+---,
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IV. DERIVATION OF THE BINODAL EXPRESSIONS where Ay, An, Agy, etc. are defined in2.8) and (2.9),

Here we sketch, for completeness, some of the detail\é\/h”e the remaining noncritical coefficients take the form

that enter into the derivation of the results for the binodals pj(t): |£>J_e+ ple bj2t2+... ,

presented in Sec. Ill from the postulates of Sec. Il. In addi-

tion, we give explicit expressions for the leading amplitudes : 4.9
entering the formulas of Sec. Il in terms of the original Pje= P18+ Psfj,

parameters of the postulated free energies of Sec. Il. }
Pi1=2(PsAqei+PsAyfi+PsApe + Pge + Pof;
A. Principles for obtaining isothermal sections i1=2(Pallg® T PsAgl; + PsAng; + Pee; + Pot,

Our aim is to describe isothermal sections of the full +PoAyf)), (4.10

(g,t,h) phase space in terms of the density variables, for j=1 or 2, and

p1=—G, p=—9,G with d,=dloh, d,=dldg. )
' ’ ’ ’ (41) P3e: P]_e3+ P3f3+ P4e§+ 2P561f1+ ngz, (411)

Accordingly, we treat as a fixed parameter and regiard only and so on.

9 andh as varying. The basic nonlinear scaling fietdand Of course, we eventually wish to eliminateand in
h are then to be viewed as functions onlyggndh. Once  fayor of p, andp, or, in view of the discussion in Sec. Il A,
the appropriate derivatives with respecgtandh have been i, terms of

performed, however, it is more convenient, in light of the _ _

scaling postulate(2.13, to employ the nonlinear scaling m=—9JG+(dG)e, M=—3dG+(IG)e, (4.12
fieldst andh as the primary field variables. Note, in particu- ywhere the compound differential operators are

lar, that both the\ line and the triple lineg, lie in the plane _

h=0. Beyond that, tha-line or p-surface binodals also cor- d=0dn=Lodg,  I=dg= L. (4.13
respond tdh=0 while the spectator-phase amdinodals are However, once we have expressionsfoand in terms of

of interest only for smalh. Consequently we expregsand t andh we can regard these fields merely as auxilipay

h in terms oft andh via the noncritical expansions, rametersrelatingm andm. Note in particular that coexisting

phases must have the same valuet afidh. Thus for thep

binodals we can pu=(—1t)#, fort<0, and seh=0. This

h=h, (t)+f, T+ fh+fst 2+ f,ih+fsh?+---, (4.3  Indicates the origin of the parametric descriptions of the bin-
odals presented in Sec. IlI B. Similarly, for the binodals as-

where theh-line values g, andh, , were introduced iM2.8)  gqciated with ther phase boundary, equating the free ener-

and are seen to be noncritical functions. Likewise, all thegiesG/” andG* gives a relation fof in terms off (andt):

thenh is an appropriate parameter.

The axis slopes., andL, in (4.13 were explained in
S ey=ey=f;=13=15=0, Sec. lllA and the slop&, was given in(3.42. Below we
will establish thet-dependent result,

g=0g,(t)+et+eh+est 2+eth+eh?+---, (4.2

coefficientsg;(t) andf;(t), are noncritical with, in the sym-
metric case,

elqul+o(t)! f2:1i e3:_q_?! Lp(t)zr0+[2l’4Ag+r5+l’lAh—ro(I’1Ag+r2+2I‘3Ah)]t
+0(t?%), (4.14
Js s . .
es=——, f;=——. (4.4 where L, (t) was introduced just befor¢3.13 and L
d1 a1 iy (O)—pr P
. —=p —'0-
More generally, withAy=q;—rq0o (#0), we have Now using(4.12 and(2.13 we obtain the primary den-
N: ey, €, f1, f,=(1,— 0o, —To, A)/Ag+O(t), (4.5  Sityin the form
while es, ..., f5 are also readily found in terms of tlg and m=(4G°)— G’
r. ~ ~
Any noncritical propertyP(g,t,h) with expansion(2.2) +[T1279 (aQ)W. + > (9U,) QW.M[t %
can then be rewritten as k=4
P(g,t,h) =P, (t)+ P,()T+ Po()h+ Pa(t)T 24+ -+, +(AD)[T)1*QW. 7 (J0)R[T|F TAQUW.
(4.6 o
+(dh)[t|PFQUW. (4.19

where the value on the line is given by
P, (t)=Po+ Py t+ Py pt2+- -, (4.7) for F—fo, with a precisely similar expression fén with 9
replacingd, while
P)\]_: PlAg+ P2+ P3Ah y

A o 1(K) (516
P)\2:P1Agz+-..+ pgAz,..., (4.9 W.(Y,Yq,...)=(2 Q)Wt+g4 O U W |t| K, (4.16
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)=(aW. 1ay), W.M(y,...)=(aW. /ay).

(4.17

Note thatdG° and the coefficientsQ, dU,, dt, andsh are
all noncritical and so can be written as (#.6). This form

Wf:(y!y4v"

Isothermal binodal curves 945
term inh[t|#~*, which diverges a$t|—0, vanishes identi-
cally. Lastly, the term ift|# contributes both tan and .

Introducing the parametes=t|# then yields the previ-
ously quoted expansior(8.6) and (3.7) for m and in the

thus enables one to identify all the singular terms appearm@ym'”nemc case. The linear term &is absent in thism

in m andm.
Now on the\ line we havet =h=0. Thus(4.15 and its

twin for M yield the expansion$3.4) and (3.5 for m, and
m, with

M= 2[L (A G+ ArGE+ G — A G2 —GI—AnGYl,
(4.18

My=2[L,(A G+ G+ A,GY) — A G — A,G2— G,
(4.19

so thatM;=0 and M;=2(G%/q;—GQ) in the symmetric
case. Definind(g,t,h) = (4G°— dG° andR likewise, and
expanding as iri4.6) yields, forj=1, 2,

R;=2[L,(GJe;+G2f)— Gle;— G3f;]+O(t), (4.20

R =2[ro(Gle + G3f,) — Gle, — G ]+O(1),  (4.21)

where(4.14) was used fol,. For reference below we also
record

(Jf)x:%_LUQ1+[QSA9+2CI6Ah+Q7
Lo(202A 4+ 03+ 0sAp) Jt+--, (4.22

(M) =1L, ro+[r1Ag+ro+2rsA,

—Lo(riAp+2rAg+rs)t+---, (4.23
(:ﬂ)xz(h_roQo+[ZQ2Ag+Q3+Q5Ah

—L,(asAg+206A7+0q7) Jt+- -, (4.24
(h)\=ro—L,+[r1Apn+2r Ag+rs

=L, (riAg+ro+2rgAp)Jt+---. (4.25

Clearly, any desired higher order terms in theh expan-

sions can be obtained straightforwardly. Finally, we remark

that we will shortly see that the condition determining(t)

is that (5h), vanishes term by term; substitution @f.14) in
(4.25 checks this.

B. Derivation of the A-line binodals

The binodals associated with thdine may, essentially,
be obtained directly from{4.15 and its twin by lettingh

— 0=+ withT<0. In doing this the smalf expansiong2.21)
must be used with attention to the,(y) factors defined in
(2.22). When this is done th&° terms in(4.15 generate

only integral powers oft|; the terms int|2~ act merely to
modify the correction factor of thi|*~“ term. Note that the
t andh expansions o€ and of theU, yield correction terms
varying as|t|"" 14 for all integersn=0 and allx>0. The

expansion because the coefﬁmeﬁgh{) vanishes identically
by symmetry wherh=h—0 andL,=0 is dictated. Simi-
larly, terms varying as? and s(*~ “w)IB are absent in the
expression fom sinceL,=0 and thenc&/G®, 4Q, anddt

all vanish. Foreven kthe derivativesd,U,=dU, (for L,
=h=0) also vanish by symmetry. However, in the fully
symmetric situation each odd scaling fieldy;.,(g,t,h),
must itself be odd irh: see(2.12. Hence after operating
with ¢y, contributions withodd kin the terms proportional
to [t|2~**%(gU}) in (4.15 appear in the expansion forin
the symmetric case. Since-2x= B+ A these terms are re-
sponsible for the appearance of the correction fac’fflll%
=s’in (3.6); see alsd3.9). For completeness we record the
leading amplitude values,

Ae=—(2=)q1QW°,, B=UQMW’;, K.=2GYq;,
(4.26
) W(4) W(4)
o U o 4.2
W 4 W): 4 (4.27)

Clearly all other amplitudes are readily generated although
their complexity increases rapidly with order.

In the generahonsymmetric casthe U, for odd k need
not vanish when h—0 but the scaling function,
W_(Y,Y4,Ys,-..), still has special behavior for smaif,
whenk is odd: se€2.18. This is the reason why the signs
(corresponding tch—0=) appear in the expansiof8.11)
for m. The expansion for the secondary density when
initially generated, has a similar structure. In particular, the
leading term is proportional tdt|’=s. However, at this
point we should, as explained in Sec. IllA, complete the
specification of the densityn by appropriately choosing
L ,(t). This should be done by examining the common tan-
gent to the critical binodals, namelﬁﬁ and B!, at the
endpoint; see Figs.(B) and Gb). But these binodals involve
the o phase boundary which we have not yet studied. In-
stead, we will select , so that the common tangent of the
\-line binodalsB)* and BY~ or BX' and BY™ coincides
with the=0 axis when extrapolated to the endpoint. It will
be confirmed below that this criterion gives the same value
for L,. The coefficient of the offendinff|# term is #h),:
see(4.25. This vanishes whem ,=r thereby confirming
(4.14 for t=0.

The residuat and[t| dependence ofif) then yield the
B'ts andBs(* *A)A terms in the expansiof8.12) for M. The
latter term is unavoidable in general and further complicates
the singular corrections to thebinodals in the nonsymmet-
ric case. Nevertheless, as explained in Sec. Il B, the former
term, linear in's, can be eliminated by adopting a
temperature-dependent definition for by allowing L, to
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vary noncritically with T. The criterion now is to make
(dh), (1) vanish. Reference t6.25 then confirms the lead-
ing term inL (t) presented in4.14).

The leading amplitudes i8.11) and(3.12 for the non-
symmetric case are, recalling.20—(4.25 and(4.27),

A, At)==(2=a) QW2 [(d1),,(aD),], (4.28

B(t)=Q,UW? y(dh),, (4.29

Be=— QoUW j[(2r,—rory)e;+(r;—2rors)fy],
(4.30
Ke=~ Rye, Re:_’ﬁlev as=ay, l~34:b4- (4.3

One further hagis=as, bs=bsg, etc., although correction

terms carrying “noncritical factorsél/BE|T| donot, in gen-
eral, satisfy corresponding equalities.

C. Spectator phase boundary: Endpoint isotherm

As indicated in Sec. Il C, the first step in studying the

binodals not associated with théine is to obtain the phase
boundaryo as specified by, (t,h). On recalling(2.26) and
(2.13, one sees this is to be found by solving

D(g,t,h)=—Q[t|> *W.(y,y4,...), (4.32

whereD(g,t,h) is noncritical withD,=0 andD,>0. Here
we focus only on the endpoint isotheriis= T, or t=0. Now
consider the argument in leading order, usind2.5 and
(2.6):

y=UN/[t|*~U(h+rq9)/|doh+a,9]*. (4.33

If ro, 9o, andq; do not vanish(as in the genericorsym-
metric casg it is evident that wherg, h—0 on o one, in
general, hay~[max(g|,|n))T*~ which diverges to= since
A>1. Thus to study4.32 on the endpoint isotherm we must
utilize the largey expansiong2.23 for the scaling functions
entering(2.195. In the symmetric case one actually has
=(Qo=0; but it then transpires, as shown below, tlygt
~|h|(2= )4 5o thaty~|h|*"1. Sincea<1 we see thay
again diverges. Thus if4.32 we must always use the ex-
pansion

Wi =\N§’o|y|(2‘“)’A(1iW2|y|‘1’A+Wg|y| —Z/Ai_ )
+W£o4)y4|y|(2_“+ 04)/A(1iw(14)|y| “UA 4L
+Wlyg sgriy)|y| @t /812wy~ VA )
(4.39

+...1

where thex signs correspond 0=0.

The analysis is considerably simpler if one ueas a
variable in place oh. To this end we rearrang®.5 and
(2.6) with t=0 to obtain

h=Rh—rog—(r,—2rors)gh—rzh?—r,g+---, (4.395
wherer,=r,—rori+ryr3, and
t=qoh+p1g+p.h?+psgh+pag?+--, (4.39
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where the leading coefficients are
P1=01~0olo, P2=0e— Yol3;

P3=0s— 0ol 11 200l oF 3~ 206l 0, (4.37

Pa=0,— s o+ el §— Clol 4-

Note that in the symmetric case one ltps=q5=09,=0, rq
=r3=r,=0 and sop3=0; we may supposp; # 0.

Now, combining these results for theymmetric case
yields the asymptotic equation,

—D49%~Dgh’—(Qe+ Qug+--)|UR| Dz
. (4.38
with the scaling factor, front4.34),

D.g=

Z=Wo1+wily| MR+ woly| 2R+ ]
+WEUL(g,0)|UR| /A 12 wiP]y| "2+ ]

+sgrly)WUs(g,0h) [UR| /A 1% -]+

(4.39
These equations are to be solved together with
[ 2
y el e SR
|[Uh|YA  JURYA 1° a1 9
(4.40

to yield g=g,(h). This can be accomplished iteratively by
noting that in leading ordeg,~ — J|h|(°" 1'% whereJ was
defined in(3.24); however, care is called for!

One obtains the result quoted {8.22—(3.25 which
may be supplemented by

J2=Dg/D1, 3;=[(D4/D1)—(Q1/Qe)1J% (44D
03=W2(q6—q132)/U1/A, C4_ZW§Q4)U4_EU()4/A/W30c ’
(4.42

cy=cwi|a, [I/UMA, cs=WIUS U %AW
(4.43

where Ug 3 is the first nonzero expansion coefficient of
Us(g,0h)=~Uszh in the symmetric case. The expression

(3.26 for h(h) on o follows from (2.6) and(3.22 by rever-
sion.

The phase boundary in tinsymmetric cas®llows in
an analogous way but greater care is needed because of the
increased number of nonvanishing and competing terms.
Thus on the right side 0f4.38 the new terms—D3F1 and
- 255ng appear, Wher§5= Ds—3D3(r;—2ror3) —Dgrg.
The former term dominates and so in leading order one now
finds

g,~—J;h—J[h|(F+ 1/, (4.44

whereJ; was defined in3.27). This, in turn, yields the new
behavior,
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|y|—1/A: |alI |’ﬁ|1—(1/A) 1—5hp—_1J|T1|1/§
U q
d; ~
Iﬁ'h%‘ﬂh“l_“)m—#--- ,

(4.495
whereq=qy—p1J:=0/j, whileq, j,, andoy, were defined
in (3.30 and (3.31.

In this way one obtains the resul8.28—(3.32 which
must be supplemented by new expressions Jorand Jg
while

O—Z/UZ/A

d=wq dy=2w5p,qI/U%",

4.4
dy=wopiJ?/u-, (449
The expressions fal; anddy, are long and uninformative
but we quote

da=wg[q¥ /U, dy=c,, dy=wiVd,[ql/u,

dy=w{"dp; /UM, ds=WPUgU%A WS, (4.47)
dg=wPds[ql/UYs,  dg=w{dsp;J/UYA.
Finally the remaining coefficients i8.33 are
J"=roidlja| Y,
J"=10j1d1d]j,| G727 A8, (4.48

2= i3[roda+ (r1—2rora)dy—rz—r,J7l.

D. Derivation of the critical endpoint binodals
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9P=P;—L,P3+2(Ps—L,Pg)h

+2(P4—L,Ps—roPs+roL,Pg)g,+---. (453

Likewise, in terms ofgg(tzo,ﬁ) we obtain

t=0o=Ly01+ (206~ L,0s)h

+(ds—2L 02— 2ro0s+ Lol 0Us5)Gs -7, (4.59
dh=1—L ro+(2rz3—L,r,)h

+(rq—2L, ry—2rogr3+L,ror1)g,+---, (4.595
Jt=01—L, 0o+ (ds—2L,qe)h

+(202—L,0s—FoQs+2rol ,0e)go "+, (4.56
Gh=ro—L,+(r;—2L,r3)h

F(2ry—L,ry—rori+2rolr3)g,+---. (4.57

As discussed before, the argumgmf the scaling func-
tions W.. diverges toe when the endpoint is approached on
the o surface. Thus in4.49 and its twin the largg expan-
sions(2.23 for the scaling functions must be used with at-
tention to theo . (y) factors defined in2.22 and the multi-
exponentsd[ k] in (2.24. When this is done, we finally
obtain the critical endpoint binodals frof4.49.

Introducing the parametes=|h|#/* then yields the pre-
viously quoted expansion8.50 and(3.51) for m andm in
the symmetriccase. The linear term is is absent in the
expression form when we choosé ,(0)=rq which rein-
forces previous results. In the expression fothe G° term

in (4.49 provides a linear term ih that yields thes®/# term

The critical phase binodals at the endpoint may be obin (3.50; the terms in[t|>~* provide thes®«* 4% term

tained from(4.15 and its twin using the endpoint isotherm,

and higher order corrections, sinc&Q) generate$ in lead-

9,(h), obtained in the previous subsection. In order to do soing order; the term ift|*~« provides thes~«*4)# term

it is more convenient to rewrité4.15 as

m=(9G%)—(4G°)

+[T)27 2| (0Q)W= + k; (U, ) QW.MIt| %

+(D)Q[T**W.. + (dh)UQ[T AW, (4.49
and similarly forf with 9 replacings, while
W. = W. —AyW. (4.50

whereA=2—a— 3 has been used. At the critical endpoint,
t=0, we useh as an auxiliary parameter relatimg and .
Using (4.35 and (4.36), the noncritical functions, 4G°),
(dQ), etc., can be expressed in termstof Recalling the
general expansiof®.2) for a noncritical functionP(g,t,h),
we find, fort=0,

P(g, t=0, h)=P+Pgh+(P;—roP3)g,+ -, (4.5)
and similarly for the derivatives,
dP=P3—L,P,+2(Pg—L,Ps)h
+2(Ps—L,Ps—roPg+roL,Ps)g,+--+, (4.52

for (dt) for the same reason; then, finally, the term[itf
provides the leading behavior. In the expression fan, all

the terms, except for one [io|*~¢, provide correction terms,
s(2=a)VB in (3.51); the leading behavios*~ /4 is gener-
ated by the term ifit|*~ .

The leading amplitudes are

E=[(2—a)/AJQWOU®@ 4,
E-q,02wuct " e
For the record, we also quote
Vi=—2Gg, V,=20sQWowiut- 4,
Va=2QoWoU2-a)/A,

(2—at0y) w®
W=y wWo

W
. (1w

Y (2-a)
Wﬁf)w(f‘)

V=2GJ+[Q1+(2—a)r;Qe/ATWOU~ )4,

U4eU64/A,

(4.59

u wlq,J/utA,

w50

GU 1/A

U4eU 04/A,
w3

TJ]_:_Z
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In the generahonsymmetricase, the linear term i is
still absent in the expression fon: see(3.595. The expres-
sion form in terms ofs is given in(3.54; the G° terms in
(4.49 yield thes®’# term, as in the symmetric case, while

the terms in[t|2~“ provide thes?~®’# term and that in
[t|*~« gives s~ )/E: the leading terms, is still provided
by the term in[t|?. In the expression fof the leading
behavior iss! =2 as in the symmetric case, again pro-
vided by the|t|** term; theG® term yields corrections of
leading orders®?, while the terms int|?~« and[t|? give
thes?~ /8 term in(3.54). The required amplitudes are now

E=[(2- a’)/A](l_L(TI’O)QeWgUQ*a)/A,

_ (4.60
E= (01— ro0o) QeWow U~ @A,

For the record, we also quote the correction amplitudes,

V1= (o~ L 01) QeWowIU - a)/a

Vo=—2(G3-L,G2)+23,(G2-L G- roG+roL,GY),
V3=(Q3—L QWU /4, (4.61)
Vi == 2(G§—rG) +2J1(Gf— 2roG3+r5GY),
Vo=[Q1+ (2= a)(r1=2rorg) Qe/ A WS U~ 14,
and the leading further coefficients
0—

u1=E;:Z;@N%UlM, ulznlzza%%%g. (4.62

E. Spectator phase boundary: Isotherms above Te

In Sec. IV C, we studied the endpoint isothermal phase(Dl_

boundary,g.(h), in order to discuss the endpoint binodals.
By the same token we study the phase boundgyft,h)

Kim, Fisher, and Barbosa

The higher order terms if2.5) and(2.6) enter only as cor-
rection terms in thé-dependent coefficients. The noncritical
function D(g,t,h) is then expanded, by recallin@.2 and
D=0, as

D(g,t,h)=(D1~r¢D3)g+(D,—r_1Dg)t+Dgh+--.
(4.69
Now we are in a position to find the isothermal boundary
g,(t;h) aboveT,.
In the symmetric casewe obtain

D1g+Dyt+---=— QWi o[t|> *— QW2 ,u?[t| "h?
(4.69

By symmetry only even powers &f appear. Solving fog
with the aid of(4.64) then yields

+0(h%.

g, (t;h)=— Ugot—Ggat? *— 9;,3t77’F‘2+ e, (4.67)

where the coefficients are

Us0=D,/Dy, g;1=QD173+“\N30| D;—q;D,% 4,

B _ (4.68

g;3=QDZ 1W32U2|Dl_Q1D2| £
Notice that the coefficient of the quadratic termhimliverges
asT—Te+. In terms ofh, which is advantageous in deriv-
ing the spectator-phase binod#,*, we obtain the same
leadingt-dependent coefficients fay,(t;h).

In the nonsymmetric caséerms linear irh appear in the
expansion of the scaling functiow, (y,Ya4,Ys,...) arising
from the oddk exponents in(2.19. However, these terms

only provide correction terms to the leadithglependent be-
havior. Combining all the previous results yields the equation

roD3)g+(Dy—r_1Dg)t+Dgh+--

=— QW [t|> *— QWP U?[t| "h%+---. (4.69

above T, as the first step in determining the supercritical Solving for g yields

binodals. This boundary is found by equating the free ener-

gies,G%(g,t,h) andGP(g,t,h), of the spectator and critical
phases, respectively, which yiel¢.32) with t>0. The ex-
tended triple linér [see Figs. 1 and}4s defined byh=0 for
t>0, implying y=0. Since we consider only the vicinity of
the extended triple lin&, we must utilize the smaif expan-
sion (2.19 for the scaling functionW, (y,y4,Ys,...) in
(4.32. Usingh as the principle variable, which is advanta-
geous in discussing the critical phase binod#f?, the scal-
ing function W, (y,Y4,Ys,...) can beexpanded in integral

powers ofh with t-dependent coefficients. The noncritical
function D(g,t,h) can be expanded similarly. Then, solving

(4.32 for g,,(t;Fl) yields the desired nonsingular expansion.

Here we consider only the leadirgdependent behavior of
the resulting coefficients.

Accordingly, we rearrang€.5) and(2.6) for t>0 using
just the linear terms to obtain

h=h—r_jt—rog+---,

(4.63

T=(1—qor_1)t+goh+(qs—doro)g+---. (4.64

9ot ) =—g/ t—g; 2= h—g) R+,
(4.70

whereJ; is given above i(3.27) while the other coefficients
are

g;,o:(Dz_Lle)/(Dl_roDs):

. QW
g(r,l_(D

+0 |~t 2=
1= ToD3) " 7 ’

4.71

o = QWs,U? B
73 (Dy—roDg) " 7 7

in which the numerical factor is

t,=(1=qor 1) —(d1—qor)[(D2—r_1D3)/(D1—rD3)].
(4.72

Notice, again, that the coefficient of the quadratic ternf in
diverges whenT—T.+. The result(4.70) can be expanded
in terms ofh by making the substitution

F|=j1h—r_1t+~-', (473)
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wherej, is given in(3.3). By utilizing (4.70, the coeffi-  where, again, the uppdtower) sign corresponds ta>0

cientsly,..., T, in (3.65 and(3.66) are found to be (<0), while the coefficients are
11=2(1 L, o) QuUAW2,[T,| 77, NG o S QW i e,
~ 77 (Dy=roD3y) 7% (Dy—roD3)
2= = ¥(do= LA QeU Wi, [T, 77, oWl  qwe,u? . 480
Ti=(2= a)WSoft]**{[ (a5~ 2roge) e 927 (B, oDy 1 957D, 1Dy It
—2J31(92— oG5+ 1306) 1Qe Notice that the linear term ih does not vanish in thaon-

symmetric casebut the slopes of the two branches approach
+(A17T090)[Qs=J1(Q1=T0Q3)]},  the same value a6—T.—. The coefficient of the quadratic
T.=— —r U2WO [T, |71, term inh diverges as the endpoint temperature is approached
2=~ Y(017Too) QeU Wo [T, from below. As before the result.79 can be expressed in
whereJ; andt, are defined in(3.27) and (4.72, respec- terms ofh by using(4.73.
tively.
F. Spectator phase boundary: Isotherms below Te V. CONCLUSIONS
The spectator-phase boundagy,(t,h), below the end- ) . . )
point temperature can be obtained as in the previous subsec- N summary, following earlier studis stimulated by
tion by using the expansiof®.21) for the scaling function Widom,” we have investigated the singular shapes of the
W_(Y.Ya,...) in (4.32. The|y| factors in(2.2)) yield the ~ Various isothermal binodals, or two-phase coexistence
two branches of the phase boundayy(t,h): see Figs. @)  Curves, in the density plane near a critical endpoint. How-

and 5a). ever, whereas the previous studies assumed classical or van
In the symmetric casecombining the results in Sec. IVE der Waals expressions for the critical thermodynamics, our
with the expansioni2.21) yields work is based onnonclassicalphenomenological scaling
postulates set out, in Sec. Il, in a general form encompassing
Dyg+Dyt+-+-=—QW [t]>~*— QWP ,U[t|#[h| a spectrum of correction-to-scaling variables. Four types of
o critical endpoints were distinguished and examined in detail:
—QWOLU?[t| "R+ (4.79  nonsymmetriclabeledNA or NB depending on whether the

lambda-line T,(g), which terminates at the endpoint
(ge,To), lies, A, below T=T, (as in Fig. 2 or, B, runs
g, (th)=—g, o~ 9,4t|> “F g, Jt|’h — g, Jt| "h?  above (as in Fig. 4; and symmetric labeled, correspond-
’ ’ ’ ' ingly, SA and SB: see Fig. 4. At the endpoints, the lambda-
e (4769 line binodalsBL" and B}~ [see Fig. @)] were found to
be singular with a leading “renormalized” exponent
(1—«a)/B and subdominant singular correction exponents.
The symmetrick binodals are displayed i(8.10 [with ex-

Solving this forg with the aid of(4.64) provides the result,

where the uppeKlower sign corresponds thi>0 (<0)
while the coefficients are

g,0=D,/Dy, plicit amplitude expressions recorded (#.26—(4.27)]; the
’ nonsymmetric\ binodals are presented {8.17).
g;yl=QD1_3+“W30|Dl—qlDzlz‘“, Then, thenoncritical or spectator-phase endpoint bin-
B 1 5 (4.77 odalsBg" andB¢~ [see Figs. @) and Gb)] were found to
9,2=QD: ' PW2,U[D;—q;D,%, be singular with a leading exponens{1)/8 (as conjec-

_ 1 _ tured by Widond); the symmetric binodals are given in
9,3= QD] "W2,U%D1~a;D,| 7. (3.36 with the closely spaced sequence of correction expo-
Notice that the linear term if vanishes ag —T.—, while nents listed ir(3._38). The nonsymmetric binodals are similar
but more complicated: se€8.44—(3.49. The endpoint bin-
odals B2 and B which limit the critical phasegsee Figs.
3(c) and Gc)]?* have also been studied and were found to
have the same leading exponent,~(&)/B, as the lambda-

the coefficient of theh? term diverges. In terms ofi we
obtain the same leadirtgdependent coefficients far, (t; h).
Finally, in thenonsymmetric casee obtain the equation

(D;—roD3)g+(Dy—r_,Da)t+Dsh+-- line binodals; the symmetric forms are given(®52, and
N o o the nonsymmetric expressions are(#156).
=—QW [t]2"*— QW U[t|#|h|— QW ,U?[t| "h? In addition,abovethe endpoint temperature the binodals

separating the spectator-phase from the near-critical phase

o (4.78 [seeB® andB#” in Figs. 3c) and &c)]** were studied. They
By using(4.64), we can solve this fog to obtain are analytic, but their slopes and curvatures develop singu-
~ 5 larities asT— T+ . The spectator-phase binodal is given in
g.(t;h)=—g, =g, t|* *— (I, %9, Jt|")h (3.58 and (3.59; its curvature diverges likeT—Tg) 7

I, when the critical endpoint is approached. The conjugate,
—g,4tl "ho -, (479 near-critical-phase binodal is described(By64 and (3.67);
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although in singular fashion, upon approaching the endpoint.’See. e.g., the review by M. E. Fisher, Rioceedings of the Gibbs Sym-
Finally, the binodals that approach the three-phase re- posium edited by D. G. Caldi and G. D. Mostomerican Mathematical

. . . Society, Providence, Rhode Island, 1990. 39.
gion below the endpoint temperature have been consideredy c Barbosa and M. E. Fisher, Phys. Rev48 10 635(1991: M. C.

The spectator-phase binodd#$™ and B~" [see Figs. &) Barbosa, Physica A77, 153(1991); Phys. Rev. B45, 5199(1992.
and Qa)]Zl are presented i63.68 and (3.69; as above the "But note the comments below, after H&.6), regarding the Yang—Yang
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0 vsis h lized . ial . 8C. Borzi, Physica AL33 302(1985.
ur analysis has utilized certain essential convexity Orsp’ jinger. Chem. Phys. Letl45 219 (1988.
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