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ABSTRACT

The purpose of this paper is to show explicitly the spectral distribution function of
some stationary stochastic processes as

Zy=X1+ & = ¢(Fo(Xy—1))+ &y, for teZ,

where ¢ is a given continuous function, Fy is a deterministic invertible map with parameter
6 € © CR™ and {£;}1ez 1s a noise process.
We present several examples of transformations Fp and ¢ and for each one we analyze

spectral properties for the above process. One of the examples considered here generalizes
the classical harmonic model

. Zy = Acos(wot+ o)+ &, for teZ.

The harmonic model 1s the motivation for this work.

1. INTRODUCTION

We will consider the parametric analysis of several examples of time series determined by
deterministic systems given by chaotic bijective transformations.

When F : [0,1] — [0,1] is given by F(¥) = wo + ¥ (mod 27), then the classical
harmonic model

Zy=Acos(wot+ 1)+ &, for telZ,

~ can be alternatively given by
Z, = Acos(F'()) + &, for teZ,

where {:}1ez is a white noise process.
We want to analyze time series obtained from stochastic processes as

Zy = (o F)(Xi—1) + & = ¢(FY(Xo)) + &, for teZ,
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where {{;}1ez is a white noise process, ¢ is a random variable and F is an invertible
transformation on R™.

We will consider the noise process {{;}1cz independent of the signal process
{¢(F*(X0))}tez. Therefore, for practical purposes we can omit it. One can obtain the
spectral density function of Z; = ¢(F*(Xy)) + & from the spectral density function of
X = ¢(F(Xo)).

We shall show the consistency of the periodogram for a large class of transforma-
tions (see Section 4) and the explicit expression of the spectral density function in several
examples.

The parameter 6 can be estimated by the method of moments and this is analyzed in
Lopes and Lopes (1995).

2. STATIONARY STOCHASTIC PROCESSES

The general setting of chaotic time series we shall analyze is the following. Consider K a
compact subset of R™ with a given Borel o-algebra F, a bijective continuous transformation
F : K — K (or Fp), an invariant probability P on K (that is, P(F~1(A)) = P(4), for
any set A € F) and ¢ : K — R a continuous function. We will analyze the stationary
stochastic process {Z; }iez given by

Zy=Xi+& =(poF)Xi1)+ &, forteZ (2.1)

The natural measure on K2 is the product measure on KZ and it is invariant for the
stationary process {X;}tez or {Z:}:tez. The process {£;}+cz is considered to be a Gaussian
white noise process (see Brockwell and Davis (1987)) independent of {(¢0F)(X;)}:ez, with
zero mean and variance o7. One observes that in the model (2.1) the random variables X,
(or Z;) and X,41 (or Zy41) are generally not independent.

We shall denote the above system by (K, F,P, ¢, F, crg). Following the terminology
in Tong (1990) we may call the system (2.1), when o7 = 0, the skeleton of the system.

Given a certain measurable function ¢ : K — R the autocovariance function at lag

h € Z (see Brockwell and Davis (1987)) of the process {X:}:cz as in (2.1) is given by

Rixx(k) = B(XiXen) ~ B = [ 6@s(F )P - | [ s@ap@)] - @2)

The autocovariance function Ry x(h) in (2.2) measures the covariance between two values
of the process {X;}+ez separated by lag h. The autocorrelation function at lag h of the
process {X:}iez (see Brockwell and Davis (1987)) is given by

_ Bxx(h)
Rxx(0)’
where Rx x(0) = E(X}) — [E(X})]? = Var(X,) is the variance of the process.

The reason to consider F' a bijective map and not just a map is for defining Rx x(h)
also for negative values of h € Z.

px(h)

for heZ, (2.3)
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From the Herglotz’s theorem (see Brockwell and Davis (1987)) a function px(h) is
non-negative definite if and only if

px(h) =/ e*dFx()\), forany he€Z, (2.4)

where Fx(-) is a right-continuous, non-decreasing, bounded function on [—m, 7| with

Fx(—w) = 0. The function Fx(-) is called the spectral distribution function of {X}iez
and if

A
Fx(A) = / fx(w)dw, for —m <AL, (2.5)
then fx(-) is called the spectral density function of the process {X{}icz. When

> lpx(h)| < oo,

h=—cc

then px(h) = f_ e fx(X)dA, for h € Z, where fx(-) is given by

oo
—hx\
D, & ‘ (2.6)
h=—cc

This function has real values if px(h) = px(—h), for all h € N.

Each particular invertible transformation F' will require a different technique in order
to obtain explicitly the spectral distribution function.

| -

) =

|8

Example: When the compact subset K is equal to [—m, 7|, the transformation F is
given by F(z) = wyp + z (mod 27), with wy € (0,7), and ¢(z) = cos(z) (this is the
classical harmonic model), the spectral distribution function of the process {X;}iez =
{(¢ 0 F)(X¢-1)}tez as in (2.1) is not a function but a generalized spectral distribution
function exists and it is given by

dFx(A) = 5(6un + 6-00), 2.7)

where 6., is the Dirac delta function concentrated at wy.

Remark: Expanding maps (see Section 3 for the definition) always have an exponential
decay of autocorrelations, for any ¢ Holder continuous function (see Parry and Pollicott
(1990)). Therefore, in this case (see Examples 1, 3 and 4), the spectral density function
always exists and it is an analytic function. The function F' of Example 1 in Section 3 is
an expanding map but the one of Example 2 in Section 6 is not.



3. THE NATURAL EXTENSION Fy OF Tj

It is well known that in general larger the dimension of the set K, more difficult is to
analyze the dynamics of the map Fj.

When K is one-dimensional, that is, when K is a segment, the diffeomorphism
Fy : K — K has a simple dynamics. When Fy is linear (mod 1) then one obtains the
harmonic model by taking ¢(z) = cos(z).

In general the dynamics of an one-dimensional diffeomorphism is too simple (see Sec-
tion 6 for a more difficult case).

The simplest example in two dimensions, that is, when K is a square [0,1] x [0, 1], is
obtained when F} is the natural extension of an one dimensional map Ty. The map Ty is
not an one-to-one map, but Fy is.

When the transformation Ty is an ezpanding map (see Examples 1, 3 and 4), that is,
there exists A > 1 such that |Tj(z)| > A, for all z € [0,1], then there exists (see Lasota
and Yorke (1973)) a density g(z) such that du(z) = g(z)dz is invariant for Ty (that is,
w(T;(A)) = u(A), for any Borel set A). The probability u is ergodic (see Parry and
Pollicott (1990) for the definition) for such map Ty. There exists a natural way to obtain
from such Ty a bijective map Fy, called the natural eztension of Tp. Denote by (z,y) a
vector in the domain K and by (z',y') = Fg(z,y) its image by the map Fy. Then, (see
Bogomolny and Carioli (1995))

To(z) =2" and Ty(y')=y

defines Fj.

The invariant probability p for Ty on [0, 1] has a natural extension to a probability v
on K = [0,1] x [0,1] invariant for Fy.

When T is an expanding map, the transformation F'is Axiom A (see Robinson (1995)
for definitions).

Consider now the random variable ¢ : K — R of the form ¢(z,y) = ¢(z). Then, the
time series

X = ¢(F§(z,y)) = ¢(Te(z)), for 1<t< N,

and the probability v define the simplest example of a chaotic time series.

The dynamics comes basically from an one-dimensional map even if the setting is for
a two-dimensional bijective map. As we mentioned before the reason to consider bijective
maps is to obtain Rx x(h), for h € Z.

For a certain class of such maps (see Examples 1,3 and 4) we shall be able to show
explicitly the spectral density function. We call a stochastic process obtained from the
. system (Fy, ¢) as above a standard stochastic process obtained from (Tp, ¢).

The spectral density functions of maps T are important for the spectral analysis
of chaotic time series and also because the zeta function associated with the potential

—log T'(z) has poles on the same values of the poles of the spectral density function (see
Ruelle (1987) and Rugh (1992)).



4. THE PERIODOGRAM CONSISTENCY

We analyze in this section the periodogram for (¢, Ty) (or for (¢, Fy)) when Ty defines
a standard time series. Qur purpose here is to show how to obtain an approximation of
the spectral density fx(A) from a time series data X; = ¢(T4(Xy)), for 1 <t < N, (that

is, when ¢(z,y) = ¢(z)), where X is chosen at random according to the measure y (or
according to the Lebesgue measure).

One can say from the reasoning below that in this case the periodogram is consistent
in the sense of generalized functions (see Rudin (1986)). Suppose, for the sake of simplicity,
that E(X;) = 0. We can alternatively estimate

fx(X) 27 Var(X,) = Z E(XoX3) exp(—ih),

h=—c0 -

with X, = ¢(F}(z,y)) and from this result estimate the spectral density fx()). By abuse
of the notation we shall also call the above expression as the spectral density function.

Notice that as the random variable ¢(z,y) depends only on z (for positive ¢,
#(Fj(z,y)) = ¢(Ti(z)) independently of y) we shall consider the periodogram for Ty
instead of Fp.

Consider the transformation Tp : [0,1] — [0,1], where § € © C R"™, an expanding
map.

We shall assume that ¢ is the random variable ¢(z,y) = ¢(z) and du(z) = g(z)dz is
the unique ergodic and absolutely continuous invariant probability for T}.

The goal here is to sketch the proof of the smoothed periodogram’s consistency (in the
sense of generalized functions) for the above setting. One denotes X; by (¢ o T} )(Xo) =
o(F§(Xo0,Ys)), and {X¢}IL, is a time series of N observations where (X, Y;) is an initial
point chosen randomly according to . From the Birkhoff’s Ergodic Theorem (u is ergodic
for Tp), for each subinterval Aj = (aj,b;) C [0,1] and for p-almost every zo € [0, 1]

W)= [ gla)de = Jim TOHE 1SS N Tim) € A,))

J

If |b; — a;| = € is small and N is large enough, then

An(e) = —1]\7(#{?5 |1 <t < N,T3(Xo) € Aj}) = g(cj)A; = Bn(e), (4.1)

for some ¢; = ¢j(N) € A;.

The expression Ay(e) =~ Bpn(€e) means that the quotient An(e)/Bn(€) goes to one
when N goes to infinity and € goes to zero.

Consider the discrete Fourier transform of the spatial position of the data obtained
as the sampled time series X; = ¢(T§(Xo)), for 1 <t < N,

1 &
ZX: exp(—iwgt),
N i=1
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where wy = 20kN~1,k = 1,2,--- , N, are the so-called Fourier frequencies of the time
series Xy, 1 <t < N. The periodogram value I(w;) at the frequency wy, for

kE{jGZ;0<w,‘=2-l—$‘1§2w},

is defined in terms of the discrete Fourier transform f(k) of a sample Xy, for 1 <t < N,
by

N N
I(wi) = f(k)f(k) = —;—ZX: exp(-—z’wkt)ZXs exp(iwis) =

s=1

N N
1 ;
= -]_\T_ E E XX, exp(—i(t e s)wk),
=1 a=l

where Z denotes the complex conjugate of z.
For each h € Z consider t and s such that t — s = h. Then,

1 N—-1N—h 1-N N
I(wr) = & (Z D XoXopn exp(—ihwr) + Y > XeXogn exp(—ihwk)) =
h=0 s=1 h=—1 s=—h
1 N—-1N-h

_1
o

Il

o

Il

X.0(Fg(X,,Ys)) exp(—ihwi)+

s=1

T
2

M=

X d(Fo(Xs,Ys)) exp(—ihwy). (4.2)

S

-
h

Il
Il

=¥

—1s

Now if we take A;, 1 < j < v, as a partition by intervals (of the same size) of the interval
[0,1], with |A;| = € = 1/v small, one observes from (4.1) that

#[X; € Aj
[ Jj\r J] = jg(cj)a
where ¢; € Aj, 1< j <.

We shall sum up X, = ¢(Ty(Xo)) = ¢(F;(Xo,Ys)) according to its position in each
A;. Hence,

Ajg(e;)N=#{s |1 <s< N, X, € Aj}.

Then, from (4.2)

Iwd) 5 30 3 865 u) SR (es,u))A; g(e)N) exp(—ihioy) =

|h|<N j=1



= Y D olei i) ¢(Fg (c5,95)) 9(c5) A exp(—ihwy). (4.3)

|h|<N j=1
We shall show that for any X chosen at random, then 22;1 & (wk)—flq-éw,‘ converges in
the distribution sense to the spectral density function
1 : .
- ;E(AUX” exp(—ih}),

where 4, is the Dirac delta function concentrated at the frequency wg, 1 < k < N. Hence,
we will show that for any test function z()), A € [0,27),

2w N 1
/ 2(\)d (Z I(f-t)k)wﬁwk)
0 k=1

2w
/0 z(A) (% > E(XoX) exp(—ih,\)) dA
hEZ

when N goes to infinity.

By integrating the smoothed periodogram against a test function z(A), A € [0,27),
and by using (4.3)

converges to

i 1 2k
A%E.nm?i.%gf(wk)w (T) =

' & . ok \ 1 [ 2rk
= vli.fizoZ( DD CRALEACRMIICHINS exp(—a'h—}-)) 4 (%) =
k=1 \|h|<N j=1

1 2w 27 .
= [Z ( ¢(:c,y)¢(F;‘<x,y))g(z)dx) exp(_z-m)] 2(A)dA =
- 0 heZ 0

- L ! % (Z E(Xth)exp(—ih,\)) 2(A)dA. (4.4)

heZ

Therefore, the smoothed periodogram converges in distribution sense to the spectral den-
sity function.

The property considered above in (4.4) describes a method for obtaining a good ap-
' proximation to the spectral density function. This method will be explained below.
Consider z(A) = Ijz—¢,z+¢(A) for a fixed z and a small fixed e.

From the reasoning described before, for such 2()), (2¢)~? Ei\;] I(wi)F2(27k/N) is
approximately equal to

N-1
1 . .
Hr thIFN E(XoX3) exp(—ih)),



if N is large and € small enough.

There will approximately exist 2e/N/27 elements of the form 27k/N in the interval
[z — €,z + €] C [0,27) if N is large. Therefore,

N
(267> %I(wk)z@?rk /N)
k=1

is approximately the mean value of (27)™! I(ws) in the interval [z — €,z + €].

One can alternatively obtain the approximated value of E::ll_ ~n BE(XoX4) exp(—ihz)
by taking directly the mean value of I(w;) in a small interval around z.

Considering now several z;(A) = I[z;—¢z;+¢(A), where z; are equally spaced,

[z1 — €, 21 +€)U[z2 — 6,22 + €)U ....U [z — €,Zn + €]

is a partition of [0,27) and applying the same reasoning to each z;j(A), we obtain the
approximated shape of the graph of

N-1

> E(XoXp)exp(—ih)) , A€ [0,27),
h=1—-N

as a function of A.

From the above expression, one can derive (see the expression (7.6)) the approximated
graph of the spectral density fx(A) or fz(A).
The proceeding just described above is called smoothing the data (see Brockwell and

Davis (1987)). For instance, if one takes a large sample Tj(zo), for 1 < ¢t < 10,000, the
periodogram is given by

N N
I(wy)= N1 Z Xy exp(—wwit) ZX, exp(iwis) =
i=1 =1

N N
=N"TY 3" XX, exp(—i(t — s)wr)

t=1 s=1

and one can plot this real function in the interval [0,27) as a function of wi. This graph
will show a sparse amount of data, but if one takes a partition of the interval in small
intervals and takes means of this data in each small interval (also called smoothing the
data), then the graph of a well defined spectral density function

oo

> E(XoXa) exp(—ih)),

h=—co

as described in this section, will be obtained.



5. EXAMPLE 1

Sakai and Tokumaru (1980) (see also Grossmann and Thomae (1977)) introduce the
following model of chaotic time series. For a given constant a € (0,1), consider the
transformation T, : [0,1] — [0, 1] given by

%, if D<€ <a
Talz) = _ (5.1)
! T if gl
1—a’

The Lebesgue measure dz is invariant and ergodic for the transformation T, (see Lasota
and Yorke (1973)). In the notation of Section 2, P(A) is the length of A, for any interval
A. 5

We now consider the stochastic process

Zg = Xf_ -+ Ei = Ta(Xg_l) + ft, for ¢ (= Z, (52)

where ¢(z) = z according to the notation of Section 2.

The autocovariance function at lag h of the process {X;}iez in (5.2) (see Sakai and
Tokumaru (1980)) is given by

1
Rxx(h) = /0. zT*(z)dz — [B(X,))? = 315(2(_1 — 1), dfor R>0, (5.3)

where E(X;) = ; and Rxx(0) = Var(X;) = &.

The main obstacle to proceed in the spectral analysis of Example 1 is that the map T},
is not invertible. Therefore, the autocovariance function Ry x(h) of the process {X;}icz,
given by expression (5.2), for negative lag h does not have a precise meaning.

We shall analyze the natural extension F, of T,, instead of T, itself.

As a particular example, we mention that the Baker map is the natural extension of
the tent map (with inclination 2).

In Example 1, the natural extension of T, is the map F, : [0,1] x [0,1] — [0,1] x [0, 1]
defined by

Fo(z,y) = (Ta(z),Ga(z,y)), forany (z,y)€[0,1]x [0,1], (5.4)
where s 4
' ya, 1 S g
Ga b] = "
(2,9) {(a—l)y+1, if a g <1,

The map F, is invertible and it is easy to see that the Lebesgue measure dzdy is invariant
and ergodic for Fj.

Therefore, we shall consider the dynamical system (K, F,,P) where K = [0,1] x [0, 1]
and P is the Lebesgue measure dzdy on [0, 1] x [0, 1]. Instead of ¢(z) = z, one can consider
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é(z,y) = I(z,y) = z for any (z,y) € [0,1] x [0,1] as a random variable. In the setting of
Section 2, we shall analyze in this section the system (K, F,,P,II, F, a?). Now, if h > 0
then

/O : 2T} (z)dz = fu 1 /0 ] zII(FM(z,y))dedy = ]0 ] /0 1 (z, y)I(F*(z,y))dzdy

and we obtain, from the expression (5.3), Rx x(h) for positive h when X; = Il o F. As
the map F), is invertible, it makes sense to estimate, for A > 0, the integral

/o _/U (z,y)I(F; " (2,y))dzdy.

Now, as dzdy is invariant for F*, one obtains the following

/U 1 ]; 1 I(z, y)II(F; " (z,y))dzdy = /D 1 fu 1 I(FM(z,y))(z,y)dzdy = fo ] T*(z) z dz.

The example considered above defines a standard time series. After these results one
can have the spectral density function associated with the stochastic process { X;}1cz. The
last term in the above equalities has already been calculated (see (5.3)).

Theorem 5.1: The spectral density function of the stochastic process
=X+ & =loFp)(X¢—1)+ &, forteZ,
where F, 1s defined by the expression (5.4), is given by

2a(1 — a) o}
7[1 —2(2a — 1) cos(A) + (2a — 1)?] ¥ or’

fz(A) = for X € [0,2m). (5.5)

Proof: Since Rx x(h) is given by the expression (5.3) and goes to zero exponentially when
h — +o00, the spectral density function (see (2.6)) does exist and it is given by

Fulhy = 2% Z =My (h) = Z ~ixk(9q _ 1yl =
h=—o0 h=—oc
= E?.%r Z((za-l)e—‘* z ((2a — 1)e)~ ] -
_h>0 h=—oc
_ 1 1 (2a — 1)e*? ] _
T 2r |[1—(2a—1)e= ' 1—(2a—1)eir|
2a(1 —a)

7[1 — 2(2a — 1) cos(A) + (2a — 1)?]’
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for all A € [0,27), since |(2a — 1)eT**| < 1 when a € (0,1). The spectral density function
of the process {Z;}icz follows from this.

The spectral density function of the signal process { X }+cz is continuous and its graph
is shown in Figure 1 (a), (b) and (c¢). Notice that if a is small then the function fx(A) has
a maximum on 7 and if a is large it has a maximum on zero.

We refer the reader to Lopes and Lopes (1995) for more details in the example con-
sidered in this section.

6. EXAMPLE 2

Consider the two parameters mapping family {F, : [0,1] — [0,1]; a,b € R} where
F,b 1s given by

; T, if 0<z<b
Fop(z) = a (6.1)
7 b(:c—b), if b<z <1,

with a and b constants. This map is not an expanding one. Let a be the derivative of F, j
on [0, b) and S its derivative on [b,1]. Then,

a= ;,b(x)=1"%£, if 0<z<b and ﬁ=F3.b(~"’)=1ib’

if b<z<1 (6.2)

The ergodic properties of the family {F,, : [0,1] — [0,1]; a,b € R} are analyzed in
Coelho et al. (1995). This map does not define a standard time series.

In Example 2 we want to consider the spectral analysis of the process { X }¢z defined
in (6.3) below.

Notice that when b = 1 — a, the transformation Fj ; of Example 2 is F(z) = a+ z
(mod 1), which corresponds to the harmonic model analyzed by Lopes and Kedem (1994).
Therefore, the presented analysis of Example 2 is a generalization of that work when there
exists only one frequency.

By using the notation introduced in Section 2, for a given transformation F, ; and
¢(z) = = one considers the signal process {X}:cz given by

Xy = Fas(Xim), for teZ. (6.3)

_ In the present example the spectral density function does not exist and the spectral
density distribution has a quite different behavior compared to the Examples 1 and 3.
To consider the constants a and b is the same as to consider a and 3, since one has
the following identities

o =

1;a s 5=T%_b<=>a=%a—__-ﬁl—) and b=-§%%. (6.4)

11



Figure 1: The spectral density function fx(A), 0 < A <, for Example 1 as in (5.4)
when 0‘3 = 0 and

(a) a = 0.15240; (b) a = 0.36570; (c) a = 0.93459.

8.3 i L2 H .3 1

(a)

H 1.5 H 2.5 1

()

Therefore, for the sake of simplicity, we shall consider the parameters a and S in our
analysis.

The invariant measure Py,g = P (see Coelho et al. (1995)) for the process {X;}iez,
in terms of a and f3, is given by the density

12



B 1 1 - 1
T Teurs R R R

1 B 1 g
c=ﬁ_alog(a)=§_1log<a>. (6.6)

For a set A C [0,1] x [0,1], with Lebesgue measure equal to 1, for all (a, #) € A, the map
Ta,p is ergodic for Py, = P. We will assume (a, f) € A in the sequel.
In other words, in this case P given by

(6.5)

where

P(A) = /;lgo(m)d:z:, for all A € F,

where now F is the Borel o-algebra in [0, 1], defines an invariant ergodic probability mea-
sure for Fg 3.
From the expressions (6.1) and (6.4) the transformation F, g is given by

—ﬂ(a—l) az 1 T 1—¢

- a—p + az, f 0< <a—ﬁ
Fop(z) = (6.7)

ﬁ(z—l"ﬁ) ¢ oo @ @

a—pB)" a—-p~-" 7

The list of integrals below are useful to understand the spectral analysis that we shall
present in the sequel.

y log( (ﬂf—ﬁ)y-l-ﬁ)
1. dz =
| e loa(%)

1
2. E(Z)=E(X)) = fo zo(z)ds =

1B
log(5)  a—5

1 B \?
3. E(2})=EX])+oi= ]0 p(e)dz + of = (a - ﬁ) Ty

a— 343
a— 3)log(F)
4. E(Z4Z441) = BE(X1 X441) = /0 zFo p(z)p(z)dz = (a, f 5) Ly 2(1;'-35; i;:(ﬁ%)

(6.8)

2
+05.

" Some of these integrals are obtain after long calculations.

For a given F = F, g and the corresponding invariant density ¢ = 4,3 We consider
the signal process {X;}iez = {(¢ 0 Fu,8)(Xt-1) }tez-

From the expressions (6.5) and (6.6) one observes that the density function ¢4 s(z)
depends only on the quotient A = % Consider now the transformation F*, for any h € Z,

where F' = F, g is given by the expression (6.7). From Coelho et al. (1995) it is known
that

13



by, Qp

B

1 —ay - :1—51.

Fh(-'ﬁ) = Fa,.,ﬁ,,(:c) where ap =

with ap = F*(0) and by = F~*(0). From Coelho et al. (1995) it is also known that

Qp

e
— =—, forany hé€N,
B B .

and hence

Poy,Br = Pa,p; forany heN.

The conclusion is that, for any continuous function ¢ and h € N,

E(XiXean) = ] 8(2)$(F* (z))p(z)dz = j H(2)(Fon . (2)) 0 p(x)dz =
=/¢(I)¢’(Fah,ﬂh(m))@ah.ﬁh(x)dm' (69)

As we know [ ¢(z)¢(Fa,8())pa,s(z)dz (see integral 4. in (6.8)), for any a and 3, one can
calculate [ ¢(z)¢(Fa, 6, (2))@an, s, (z)dz, for any h € N.

Notice that E(XX4+n) = E(X{X¢—4), for all h € N.

Therefore, we are able to obtain the exact values of Rx x(h), for all h € Z, from the
positive and negative orbit of zero by F (since a; and Sy depend only on a; and by ).

We now consider ¢(z) = z. It is known (see Lopes and Lopes (1995)) that, for fixed
a and f, there exists A such that ap = ABs, for all h € Z. From integral 4. in (6.8), a
simple calculation shows that (see Lopes and Lopes (1995)) there exist ¢;(A) and ca(A)
such that

1
/ zF*(z)p(z)dz = ¢1(A) + cz(A) (% + cvh) :
0

As ap and - wander around the interval [0,1], then the above integral does not
converge to zero as h — oco. Therefore, the spectral density function is not a function, but
there exists the spectral distribution function also called the generalized spectral density
function.

First one observes that the process {X:}tez = {Fa,8(Xi-1)}tez has mathematical
expectation given by the integral 2. in expression (6.8), that is,

1 B
o == ’
tog (5) g
We want to derive the spectral distribution function of the process {Z;}:ez. We first con-

sider the autocorrelation px (k) at lag h of the process {X;}iez = {Fa,s(Xi-1)}icz and
then use the Herglotz’s theorem (see (2.4)) for the process {X;}icz.

E(X;) = forall teZ.

14



Remark: The Fourier coefficients of the spectral distribution function in the case where
F(z) = wo + = are given by px(h) = cos(hwy) = cos(F*(0)), for h € Z, that is, they are
determined by the iterates F* of zero. The next theorem claims a similar property for the
transformation F, g and ¢(z) = z.

Theorem 6.1: The spectral distribution function of the process

Zt— aﬂ()"‘gt ,,B(Xt 1)+§t1 fﬂffEZ,

where Fy g s defined by the expression (6.7), is given by

3 e~ U?
dFz(A) = 5 ;_ + 50 for A€ [0,27), (6.10)
where px(h) is given by -R—xi% (see the ezpression (2.8)) with
1
Rxx(h) = a -1;3&)}115;&( (6.11)
=P OB gy {log( )]
and :
Rxx(0) = 5—4F (6.12)

2(a— B) 108( ) [log(% )] %R

where a and B are given by the ezpression (6.2) and

1—ap ap
b 1— by

ap =

, ap=F"0) and b,=F""0).

Now we consider ¢(z) = cos(2mz). One wants to calculate the spectral distribution of
the process

Zg = X1 -+ f-g = COS(ZTFFQ,ﬁ(Xt_l )) -+ 51, for t e Z.

For this purpose we need the following integral:

1

2log (%)

k = cos(2dB)[ci(d(a + 1)) + ci(da(B + 1)) — ci(dB(a + 1)) — ci(d(8 + 1))]+
+ sin(2dB)[si(d(a + 1)) + si(de(B + 1)) — si(dB(a + 1)) — si(d(B + 1))]+
+ ci(d(a — 1)) + ci(da(B — 1)) — ci(d(B — 1)) — ci(dB(a — 1)),

E(XiXi41) = ]0 cos(27z) cos(27 F(z))p(z)dz = %k, (6.13)

where

15



with d = az_wﬁ’ ci(z) is the cosine integral and si(z) is the sine integral (see Gradshteyn
and Ryzhik (1965), page 928). The integral (6.13) comes after a long calculation.

In order to calculate the spectral distribution function, one should obtain the Fourier
coefficients of such distribution by substituting in (6.13) the values of a-and 8 by a; and
Br (see expression (6.9)).

Theorem 6.2: The spectral distribution function of the process
s F{i,ﬂ() + Et = COS(g’JT Fa,ﬁ(Xt—l )) + E;, fﬂ?" i€ Z,

where Fo g 1s defined by the ezpression (6.7), is given by

(= ]

dFz(\) = Z Ao x(h) + a‘i for A € [0,2x), (6.14)

where px(h) is given by BJ—&% (see the ezpression (2.8)) with
Rxx(h) 3 x k L l
xx(h) = o—g X bkp — —5—z X I
2log(t) (log( )1

where

kp = cos(2dnBn)[ci(dn(an + 1)) + ci(dnan(Br + 1)) — ci(dnBu(an + 1)) — ci(dn(Br + 1))]
+ sin(2dy Bn )[si(dn(an + 1)) + si(dran(Br + 1)) — si(dnBr(an + 1)) — si(dn(Br + 1))
+ ci(dp(ap — 1)) + ci(dpan(Br — 1)) — ci(dr(Br — 1)) — ci(dpBr(anr — 1)),

and
Ih = {cos(dnpn)[ci(drar) — ci(dnBn)) + sin(dnBi)[si(drar) — si(dpBn)]}?
with 5 g
B w _l—ay _ap
dn oy R L v Br = T
= F*0) and b, = F~"(0). The variance of X; is given by
Rxx(0) = . = {cos(2dB)[ci(2da) — ci(2dB)] + sin(2dpB)[si(2da) — si(2dB)]} + <.
2log(%) 2
1 %l

~ [og(5)? "

where

! = {cos(dp)[ci(da) — ci(dp)] + sin(dB)[si(da) — si(dB)]}>
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with

27 l—a a
= = d —
=g BETy WE Pegmy
In Figure 2 we plot the graph of the Fourier series 5= Y400 o e~ px(h) when

a = 2.41809 and B = 0.22052. Therefore, we are considering here an approximation of the
generalized spectral density function fx(A) up to an order of 100.

Figure 2: The generalized spectral density function fx(A), 0 < A < 7, for Example 2 as

in (6.14) when o} = 0, @ = 2.41809 and 8 = 0.22052.

ﬁhnmxpm
i'z".

Remark: The rotation number (see Devaney (1989)) of F, 3 is

_ log(a)
%= fog(®)

and the rotation number of F&‘ 5= F; :9 is

log(8)
8 = .
log(£)

One observes that 6; + 6, = 1. We denote by ( the smallest value between #; and 6.
Therefore, ( < 0.5. We call { the rotation number of the stochastic process.

It is extremely interesting the fact that, for any @ and f, the spectral measure is
not a Dirac delta function concentrated on the rotation number of F, g (we checked the
coefficients px(h)) but it has a very strong peak on the value 27( where ( is the rotation
number of the process. In other words, the spectral distribution is very close to

17



(6211‘ 5'1 + 6—211' 91 ):

Ve

1
5(5%( +b_2x¢) =

where 6; < 0.5 < 6, were defined above.

In conclusion, if one applies the Fourier transform to the data it will appear a strong
peak in the rotation number.

This property requires, in the future, a deeper analysis in order to understand the
spectral distribution function given by (6.14). Notice in Figure 2 the strong peak in the
value 27 ¢ = 2.31671, where ( is the rotation number of the process when o = 2.41809 and
B = 0.22052 (corresponding to the values of a = 0.1423 and b = 0.3547).

We remind the reader that if @ = 1 — b then the rotation number of Fy g is equal
to a and, in fact, in this case, the spectral distribution function is a Dirac delta function
3(6za + 6—xa), when ¢(z) = cos(27 z). '

Notice that for Fy g(z) = a + z (mod 1), the inverse map Fa_}i = F, 5 is such that
Fj 5(z) =z — a (mod 1). In this case, ( = 7a|.

We refer the reader to Lopes and Lopes (1995) for more details about the example
considered in this section.

7. EXAMPLE 3

We shall present a complete spectral analysis of the stationary stochastic process
Zi =X+ & = ¢(Fi(Xo0,Y0)) + & = ¢(Fo(Xi—1,Ye1) + &, for te€Z, (7.1)

where ¢(z,y) = = is a random variable, {£;};cz is a Gaussian white noise process, F,, is a
transformation defined below and (Xg,Y)) 1s an initial point chosen at random according
to the measure v also defined below.

The map Fj, is defined from K = ([0,1] x (0, a))U([0, o] x [a, 1]) to itself and it is given
by Fo(z,y) = (Ta(z),Go(x,y)) where the transformation T, : [0,1] — [0, 1] has definition

G .

—, if (s <ax
To(z) = 3 (7.2)

2(_?:__:_‘321 if a<z<l,

l1—a
with & € (0,1) as a constant, and
avy, if 0<z<a

Gulz,y)= 1- ” 7.3
(,9) a:+< aa>y, if asz<l. (7-3)

The graph of the map T, is shown in Figure 3. The action of the piecewise diffeomor-
phism F, is presented in Figure 4. The transformation F, is a modification of the well
known Baker transformation. It defines a standard time series.
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The map T, describes a model for a particle that moves around in the interval [0,1].
If the particle is at position z, then after a unit of time it jumps to T,(z) and so on.
According to the model considered here suppose the spatial position of the particle is
T!(z) = X;, t € N, in the interval [0,1]. If the particle X; is in the interval [0,«), it
has a uniformly spread possibility to jump to any point X4, in [0,1]. However, if it is in
the interval [a, 1) it has a uniformly spread possibility to jump to any point X,; in the
interval [0, a).

We are primarily interested in the expanding map T,, but for defining the spectral
density we need a bijective map. Therefore, we have to consider F,, the natural extension
of T, (as mentioned in Section 3).

The piecewise diffeomorphism F,, leaves invariant (see Lasota and Yorke (1973)) an
ergodic probability » on K C R?, absolutely continuous with respect to the Lebesgue
measure, that will be described later.

Choosing a point (zg, yo) at random, accordmg to the Lebesgue measure (or according
to v), the spectral properties of the process Z; will be analyzed.

One observes that Fy is a piecewise homeomorphism of K and F}} is of the form

Fo(z,y) = (T5(2), Ga,n(z,9)),

that is, the action of F,, in the first variable is just the action of 7.
Now we shall define the F,-invariant measure v on K, absolutely continuous with
respect to the Lebesgue measure dzdy.

From Lopes, Lopes and Souza (1996) the transformation T, has an invariant absolutely
continuous measure du = g(x)dz where

*

IR (7.4)

Consider in the sequel the following notation

i 1
¢ a(2 - a) s 2—-a

(7.5)

Now we shall define v on subsets of K by using the u above.

For sets of the form A; x A,, where A; C (0,a) and A, C (a,1) or 4; C (a,1) and
A, C (0,a), we define v(A; x Az) = (2 — a) u(A;) u(A42).

' For sets of the form A4; x A, where A; C (0,a) and A; C (0, a), we define v(A; X A;) =

(2— @) a p(Ar) p(Az).

It i1s not difficult to see that v is invariant for F,, and is absolutely continuous with
respect to the Lebesgue measure. The measure v satisfies v(A x (0,1)) = u(A), when
A C (0,a) and v(A x (0,a)) = u(A), when A C (a,1).

The next theorem gives the spectral density function for the process (7.1) and the
proof can be found in Lopes, Lopes and Souza (1995).
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Theorem 7.1: The speciral density function of the process
Zi=Xe+ &= ¢(FL(Xo, Vo)) + &, for teZ,

where F, 1is defined by the ezpressions (7.2) and (7.8) and the point (Xo,Yy) 1s chosen

randomly according to the measure v or according to the Lebesgue measure dzdy, is given
by

) . 1 2 O 2
fz(A) = m ['y(e"\) + y(e™) - ﬁ] +g—f_r’ for all X € [0,27), (7.6)

2 2_ o
where Var(X,) = (o "1”;:%(_";)25“-"5) and v(z) is given by

_2a*(1-a)+2+az(2—a-a?)
v(z) = 6@ —a) +

4 . 222 [ 4 o 22
+ [ o + 2D,
with
- 1+ az(l—a) _ 2—az(a® 4+ a—2)+6a(l — a)z’p(z)
i e e QL 61 — a2z — (1 — a)222]

Remark: The power series y(z) is an analytic function on the disc {z € C| || z ||< 1} and
the expression (7.6) has the meaning of the radial limit

Iiu:i ret = ¢ = 2.
T—

In this sense, the series

. 1
mA _ n ot
E e _2Re(1—ei'\>_1_0’ for A#0,

neZ

even though the series ) ., ei"* does not converge. We are using this fact in the expres-
sion (7.6).

8. EXAMPLE 4
The example in this section generalizes the results by Grossmann and Thomae (1977).
Let aj,az,--- ,a, be any positive real numbers such that Y, ; a; = 1 and, for each

1 <1 < n,let biy,biz,- -+ ,bi; be any positive real numbers such that E};I b= =0
For each 7 € {1,2,--- ,n} one defines

i1 i
B;= {Z GI:ZGI:‘ )
{=1 =1
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where E?=1 a; = 0.
For each fixed 7 € {1,2,--- ,n}, one defines forany 1 < ;7 < n

{Z a + S bzm,ZaH— Z b:m} ;

m=1

where 30 _ bim = 0, for all 1 <4 < n. Note that length(B;) = a; and length(B;;) = b;;.
Consider now the following function T : [0,1] — [0, 1] given by

3—1 i—1 j=1 )
T(z) = Za“ + (:1: - Za; -~ Z b‘-m) %, for all z € B;;. (8.1)
=1 =1 m=1 * e

In Figure 5 we show the graph of 7" when n = 4. Consider F' the natural extension of
such function T'.

One is interested in the first order autocorrelation function of the stochastic process
X :T(Xt_l) —"'—F(Xt_l,y}_l), forall te Z.,

when o¢ = 0 and ¢(z,y) = z.
First we want to prove that the invariant measure associated with the function 7' is
of the form u(A) = [, S, pilp;(z) dz, that is, the density of u is given by

= ZpiIBi($)°

1=1

From the definition of the function T in expression (8.1), if z € B;; then
=1 J
T(z) € [Z a;,zag} C B,.
=1 =1

It is easy to see that 1‘3,,J = {:c € [0,1] | =z € B;, T(z) € B;}.

Suppose p(A) = [, > A ', pil;(z)dz, where p; > 0, d:s is the Lebesgue measure and
it is an invariant measure for T.

Let w; be p([z € Bj]). Then } . ,w; = 1. From the invariance of y, one obtains
wi = u([T(z) € B)). Since [T(z) € Bj] = UL, [z € B;] N [T(=) € B;] = UL, By, hence

= w([T(z) € Bj]) = Y _ u(ls € BN [T(z) € Bj]) = Z“(Bv) = Z #(fa”)) e
i=1 el

_ <~ pilength(B;;) N by
- - p,-length(B,')w - Z a;

i
i=1
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Therefore, for all j € {1,2,--- ,n}, wj =Y & % i or, in matrix form,

i=1 a;

w = Bw

where w = (wy,+++ ,w,) and B = (%ﬂ-) . It is easy to see that the matrix B is a stochastic
1] " -

W]

matrix.
In this way one can obtain, from the Perron- Frobenius Theorem, the invariant density
Yo, pilp;(z), by taking w; = p;, for 1 < ¢ < n, where w = (w1, -+ ,w,) satisfies w = Bw.
This shows that the values of p;, 1 <z < n, can be explicitly obtained by solving an
eigenvalue equation.

It will be necessary to obtain the value of the first and second moments of the random
variable X;. These moments are given as folows.

1. E(X.)= /Ulzd,u(z) = zn:l’z-[(z a,-)g—('f“aj)z}.

=1 =1 =1

2. E(X?)= /01 22 du(z) = Zn: % [(E aj)sﬂ(iiaj)a].

i=1 j=1 J=1

Denote A(k), B(k,i) and V(k, i) by

A(Ic)=‘/n z f¥(z)g(z) dz, B(k,i):j;;'f"‘(m)dz and V(k,i):/ﬁsz(m)dm.

L}

(82)
The values of B(k,?) and V(k,7) can be obtained from the recurrence formula
LI -
. B(k ) = L )
a. B(k+1,1) J; 2 B(k)
(83)

s b [ B o s, B bij .
b V(k+1,4) =) GL;[G—;VUC,;) P (‘; G+ Y bim— a—’ a;)B(k,J)].
=1 =1 m=1

7 =1

One can describe the quantities A(k), B(k,:) and V(k,t) by the following power series

o(z) =Y A(k)z*, Wi(z)=> B(k,i)2* and (z)=) V(ki). (84)

k>0 k>0 k>0

From (8.3 a.), the second power series in expression (8.4) is given by

Vi(z) = B(0,i)+2z %’Lmj(z), forall 1<i<n, (8.5)

i=1
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where the values B(0,%) can be calculated by

B(D,z’):/;amdm [(Ea; —-(ia;)z] forall 1<i<n.

=1

Consider the vector v = (B(0,1),B(0,2),--- ,B(0,n)) and A the n x n matrix A =
(%-’—) Then one can easily find the vector ¥(z) = (¥1(z), ¥2(2), -+ , ¥,(2)) by solving the

linear system (8.5) ¥ = v+ A(¥)z. In this way we obtain the values ¥i(z), 1 < < n.
From (8.3 b.), the third power series in expression (8.4) is given by

'rg(::):V(O,i)+zi(%)27j(z)+zz (Za,Jer,m—--jjg) (). (8.6)

7=X

The value V(0,2) can be calculated as

1 i—1
V(O,z’)=/;;Im2d:c:-g—[(lz:ag)3—(£2a;)3], forall 1<:<n.
' =1 =1

As we also know ¥;(2), one can solve the linear system (8.6) and finally find 7;(z), for
1<e £ 9.

From the first power series in expression (8.4) one obtains

o(z) =) A(k)e* = Zm. (8.7)

k>0

It is easy to see (Lopes, Lopes and Souza (1995)), by taking z = €'’ and z = ¢~
that, from the expression for ¢(2) in (8.7), the explicit expression of the spectral density
function associated with T" can be obtained by

1

2
m{w(c”‘Hw(E“*) E(X; )]+—E~, forall X € [0,27).

fz(A) =

where Var(X;) = E(X?) — [B(Xy)]* = [2®p(z)dz — ([ mp(z)dm) ;
A more general resu_lt for piecewise expanding linear maps is given in Lopes, Lopes
and Souza (1996).
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