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ABSTRACT 

The purpose of this paper is to show explicitly the spectral distribution function of 
some stationary stochastic processes as 

where </> is a given continuous function, Fe is a deterministic invertible map with parameter 
() E e ç R n and { ~ t} tEZ is a noise process. 

We present several examples of transformations Fe and </> and for each one we analyze 
spectral properties for the above process. One of the examples considered here generalizes 
the classical harmonic model 

Zt = Acos(wo t + '1/J) + Çt, for tEZ. 

The harmonic model is the motivation for this work. 

1. INTRODUCTION 

We will consider the parametric analysis of several examples of time series determined by 
deterrninistic systems given by chaotic bijective transformations. 

When F : [0, 1] ~ [O, 1] is given by F ('ljJ) = wo + '1/J (mod 2n), then the classical 
harmonic model 

Zt = Acos(wo t + '1/J) + ~t, for tEZ, 

can be alternatively given by 

where {Çt} 1ez is a white noise process. 
We want to analyze time series obtained from stochastic processes as 
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where {Çt}tEZ is a white noise process, <P is a random variable and F is an invertible 
transformation on R n. 

We will consider the noise process {Çt}tEZ independent of the signal process 
{<P(Ft(Xo))}tEZ· Therefore, for practical purposes we can omit it. One can obtain the 
spectral density function of Z1 = <P(Ft(Xo)) + Çt from the spectral density function of 
Xt = <P(Ft (Xo) ). 

We shall show the consistency of the periodogram for a large class of transforma­
tions (see Section 4) and the explicit expression of the spectral density function in several 
examples. 

The parameter (} can be estimated by the method of moments and this is analyzed in 
Lopes and Lopes (1995). 

2. STATIONARY STOCHASTIC PROCESSES 

The general setting of chaotic time series we shall analyze is the following. Consider K a 
compact subset of R n with a given Borel (T-algebra F, a bijective continuous transformation 
F : K ~ K (or Fo), an invariant probability P on K (that is, P(F-1(A)) = P(A), for 
any set A E F) and <P : K ~ R a continuous function. We will analyze the stationary 
stochastic process { Zt} tEZ given by 

Zt = Xt + Çt = (<P o F)(Xt-1 ) + Çt , fortE Z. (2.1) 

The natural measure on Kz is the product measure on Kz and it is invariant for the 
stationary process {Xt}tez or {ZdtEZ· The process {Çdtez is considered to be a Gaussian 
white noise process (see Brockwell and Davis (1987)) independent of {( <PoF)(Xt)}tez, with 
zero mean and variance (Ir One observes that in the model (2.1) the random variables Xt 
( or Zt) and Xt+1 ( or Zt+I) are generally not independent. 

We shall denote the above system by (K,F, P,<jJ,F,(TV. Following the terminology 
in Tong (1990) we may call the system (2.1), when (T~ =O, the skeleton of the system. 

Given a certain measurable function <P : K -+ R the autocovariance function at lag 
h E Z (see Brockwell and Davis (1987)) of the process {Xt}tEZ as in (2.1) is given by 

Rxx(h) = E(X,Xt+h) - [E(X,)F =f ,P(x),P(F•(x))dP(x)- [j ,P(x)dP(x)]
2 

(2.2) 

The autocovariance function Rxx(h) in (2.2) measures the covariance between two values 
of the process {Xdtez separated by lag h. The autocorrelation function at lag h of the 
process {Xt}tEZ (see Brockwell and Davis (1987)) is given by 

Rxx(h) 
Px(h) = Rxx(O) , for h E Z, (2.3) 

where Rxx(O) = E(Xl)- [E(Xt)) 2 = Var(Xt) is the variance of the process. 
The reason to consider F a bijective map and not just a map is for defining Rx x (h) 

also for negative values of h E Z. 
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From the Herglotz's theorem (see Brockwell and Davis (1987)) a function px(h) is 
non-negative definite if and only if 

for any h E Z, (2.4) 

where Fx(·) is a right-continuous, non-decreasing, bounded function on [-1r, 1r) with 
Fx( -1r) = O. The function Fx(·) is called the spectral distribution function of {XdtEZ 
and if 

Fx(À) = j_: fx(w) dw, for - 1r ~À :::; 1r, (2.5) 

then fx(·) is called the spectral density function of the process {XdtEZ· When 

00 

L IPx(h)l < oo, 
h=-oo 

then px(h) = J.:-;r eih>-.fx(À)dÀ, for h E Z, where fx(·) is given by 

00 

fx(À) = 2~ L e-ih>-.Px(h). 
h=-oo 

(2.6) 

This function has real values if px(h) = px( - h), for ali h E N. 
• Each particular invertible transformation F will require a. different technique in order 

to obtain explicitly the spectral distribution function. 

Example: When the compact subset K is equal to [-1r, 1r], the transforma.tion F is 
given by F(x) = wo + x (mod 21r), with wo E (0,1r), and <P(x) = cos(x) (this is the 
classical harmonic model), the spectral distribution function of the process {Xt}tEZ = 
{(<P o F)(Xt-I)}tEZ a.s in (2.1) is not a function but a generalized spectral distribution 
function exists and it is given by 

(2.7) 

where Ôw
0 

is the Dirac delta function concentrated at wo . 

Remark: Expanding maps (see Section 3 for the definition) always have an exponential 
decay of autocorrelations, for any <P Holder continuous function ( see Parry and Pollicott 
(1990)). Therefore, in this case (see Examples 1, 3 and 4), the spectral density function 
always exists and it is an analytic function. The function F of Exa.mple 1 in Section 5 is 
an expanding map but the one of Example 2 in Section 6 is not. 
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3. THE NATUR AL EXTENSION Fe OF To 

It is well known that in generallarger the dimension of the set K , more difficult isto 
analyze the dyna.mics of the map Fo. 

When K is one-dimensional, that is, when K is a segment, the diffeomorphism 
Fo : K ---+ K has a simple dynamics. When Fo is linear (mod 1) then one obtains the 
harmonic model by taking </>( x) = cos( x ). 

In general the dynamics of an one-dimensional diffeomorphism is too simple (see Sec­
tion 6 for a more difficult case). 

The simplest example in two dimensions, that is, when K is a square (0, 1] x [0, 1], is 
obtained when Fo is the natural extension of an one dimensional map To. The map To is 
not an one-to-one map, but Fo is. 

When the transformation Te is an expanding_ map (see Examples 1, 3 and 4), that is , 
there exists À > 1 such that IT~(x)l > À, for all x E [0, 1}, then there exists (see Lasota 
and Yorke (1973)) a density g(x) such that dp(x) = g(x)dx is invariant for Te (that is , 
p(Tõ1 (A)) = p(A), for any Borel set A). The probability /.L is ergodic (see Parry and 
Pollicott (1990) for the definition) for such map Te. T here exists a natural way to obtain 
from such Te a bijective map Fe , called the natural extension of To. Denote by (x, y) a 
vector in the domain K and by ( x' , y') = F o( x, y) its image by the map F e. Then, ( see 
Bogomolny and Carioli ( 1995)) 

defines Fe. 
The invariant probability f.L for Te on [0, 1] has a natural extension to a probability v 

on K = (O, 1] x [0, 1] invariant for Fo. 
When Tis an expanding map, the transformation F is AxiomA (see Robinson (1995) 

for definitions). · 
Consider now the random variable </> : K ---+ R o f the form </>( x, y) = </>( x). Then, the 

time series 
X t = </>(FJ(x,y)) = </>(TJ(x)) , for 1 :::; t:::; N, 

and the probability v define the simplest example of a chaotic time series. 
The dynamics comes basically from an one-dimensional map even if the setting is for 

a two-dimensional bijective map. As we mentioned before the reason to consider bijective 
maps isto obtain Rxx(h), for h E Z . 

For a certain class of such maps ( see Examples 1,3 and 4) we shall be able to show 
explicitly the spectral density function. We call a stochastic process obtained from the 

. system (Fe, </>) as above a standard stochastic process obtained from (To,</>). 
The spectral density functions of maps T are important for the spectral analysis 

of chaotic time series and also because the zeta function associated with the potential 
-log T'(x) has poles on the same values of the poles of the spectral density function (see 
Ruelle (1987) and Rugh (1992)). 
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4. THE PERIODOGRAM C ONSISTENCY 

We analyze in this section the periodogram for (~,Te) ( or for ( ~' Fe)) when Te defines 
a standard time series. Our purpose here is to show how to obtain an approximation of 
the spectral density fx(À) from a time series data Xt = ~(TJ(Xo)), for 1 ~ t ~ N, (that 
is, when ~(x,y) = ~(x)), where Xo is chosen at random according to the measure I-L (or 
according to the Lebesgue measure ). 

One can say from the reasoning below that in this case the periodogram is consistent 
in the sense of generalized functions (see Rudin (1986)). Suppose, for the sake of simplicity, 
that E(Xt) = O. We can alternatively estimate 

00 

fx(À) 21r Var(Xt) = L E(XoXh) exp( -ih>-.), 
h=-oo · 

with X h = ~(Ft(x, y )) and from this result estimate the spectral density fx(>-.). By abuse 
of the notation we shall also call the above expression as the spectral density function. 

Notice that as the random variable if>(x, y) depends only on x (for positive t, 
~( FJ ( x, y)) = ~( TJ ( x)) independently of y) we shall consider the periodogram for Te 
instead of Fe . 

Consider the transformation Te : (0, 1] ~ [O, 1], where () E 0 Ç Rn, an expanding 
map. 

We shall assume that ~ is the random variable ~(x,y) = ~(x) and dl-"(x) = g(x)dx is 
the unique ergodic and absolutely continuous invariant probability for Te. 

The goal here isto sketch the proof of the smoothed periodogram's consistency (in the 
seni>e of generalized functions) for the above setting. One denotes Xt by (~o TJ)(X0 ) = 
~(FJ(Xo, Yo)), and {Xt}~1 is a time series of N observations where (Xo, Yo) is an initial 
point chosen randomly according to I-L· From the Birkhoff's Ergodic Theorem (!-" is ergodic 
for Te), for each subinterval6.j = (aj, bj) C [0, 1] and for 1-"-almost every x0 E [0, 1] 

If lbj- ail = € is small and N is large enough, then 

for some Cj = Cj(N) E 6.j. 
The expression AN( €) ~ BN( €) means that the quotient AN( €)/ BN( €) goes to one 

when N goes to infinity and € goes to zero. 
Consider the discrete Fourier transform of the spatial position of the data obtained 

as the sampled time seríes Xt = ~(TJ(Xo)), for 1 ~ t ~ N, 
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where wk = 21rkN- 1 , k = 1, 2, · · · , N, are the so-called Fo1trier frequencies of the time 
series Xt, 1 ~ t ~ N. The periodogram value I(wk) at the frequency Wk, for 

is defined in terms of the discrete Fourier transform f(k) of a sample Xt, for 1 ~ t ~ N, 
by 

N N 

I(wk) = f(k)f(k) = -~ LXt exp(-iwkt) LXs exp(iwks) = 
t=l s =l 

N N 

= ~L LXtXs e:>..'P( -i(t :- s)wk) , 
t=l s=l 

where z denotes the complex conjugate of z . 
For each h E Z consider t and s such that t- s = h. Then, 

N-l N-h 

= ~ L L Xs</>(Feh(Xs, Ys)) exp( -ihwk)+ 
h= O s=1 

1-N N 

+ ~ L L Xs</>(Ft(Xs, Ys)) exp( -ihwk)· 
h=-1 s=-h 

(4.2) 

Now if we take 6.j, 1 ~ j ~v, as a partition by intervals (of the same size) of the interval 
[0 ,1], with l6.il = € = 1/v small, one observes from (4.1) that 

#(Xj E 6.j] "'6.. ( ·) 
N "' J g cJ , 

where Cj E 6.j, 1 s; j s; v. 
We shall sum up Xs = </>(Tê(Xo)) = </>(Fê(Xo, Yo)) according to its position in each 

6.j. Hence, 

Then, from ( 4.2) 
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v 

= L L <f>(cj,Yj)</>(Ft(cj,Yj ))g(cj) 6.j exp(-ihwk)· (4.3) 
ihi<N j=l 

We shall show that for a.ny Xo chosen at ra.ndom, then L~=l I (wk) ~8w" converges in 
the distribution sense to the spectral density function 

2~ L E(XoXh) exp( -ih>.), 
hEZ 

where Dwk is the Dirac delta function concentrated at the frequency wk, 1 ~ k ~ N. Hence, 
we will show that for any test function z(>.),).. E [0, 21r), 

converges to 

{2-r. z(>.) ( 2~ L E(XoXh) exp(- ih)..)) d).. 
lo hEZ 

when N goes to infinity. 
By integrating the smoothed periodogram against a test function z()..), ).. E [O, 27T), 

and by using ( 4.3) 

N 

J~=-~~t;I(wk) ~ z c;k) = 

. 
= J~Ji.~ t ( L t </>(cj, Yj)</>(Ft(cj , Yi))g(cj )6.j exp( - ih 

2~k )) ~ z (2~k) = 
k=l ihi<N J=l 

= 2~ t• [~ ([" .f>(x, Y) 4>(F/:(x, y)) g(x)dx) exp( -ihA)] z(A)dA = 

= t tr 2~ (:2: E(XoXh) exp( -ih)..)) z(>.)d>.. 
lo hEZ 

(4.4) 

Therefore, the smoothed periodogram converges in distribution sense to the spectral den­
sity function. 

The property considered above in ( 4.4) describes a method for obtaining a good ap­
. proximat ion to the spectral density function. This method will be e:>..rplained below. 

Consider z( )..) = I[x-e,x+eJ(>.) for a fixed x anda small fixed é. 

From the reasoning described before, for such z()..) , (2€)-1 L~=l I(wk) }vz(21ik/N) is 
approximately equal to 

N-1 

2~ L E(XoXh) exp( -ih>.), 
h=l -N 
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if N is large and € small enough. 
There will approximately exist 2€N /27r elements of the form 21r k / N in the interval 

[x - €, x + €} c [O, 21r) if N is large. Therefore, 

N 1 
(2€)- 1 L NI(wk)z(2TrkjN) 

k=l 

is approximately the mean value of (27r)-1 I(wk) in the interval [x- €, x + €]. 
One can alternatively obtain the approximated value of ~~~1-N E(XoXh) exp( -ihx) 

by taking directly the mean value of I( w k) in a small interval around x. 
Considering now several zi(À) = I[x;-e,x;+E](À), where Xi are equally spaced, 

is a partition of [0, 21r) and applying the same reasoning to each Zi(À), we obtain the 
approximated shape of the graph of 

N-1 

L E(XoXh) exp(-ihÀ) , À E [0,21r), 
h=l-N 

as a function of À. 

From the above expression, one can derive (see the expression (7.6)) the approximated 
graph of the spectral density fx(À) or fz(À). 

The proceeding just described above is called smoothing the data ( see Brockwell and 
DaVis (1987)). For instance, if one takes a large sample TJ(x0 ), for 1 ~ t ~ 10, 000, the 
periodogram is given by 

N N 
I (wk ) = N-1 LXt exp(-iwkt) LXs exp(iwks) = 

t=l s=l 

N N 

= N-1 LLXsXt exp(-i(t- s)wk) 
t=l s=l 

and one can plot this real function in the interval [O, 21r) as a function of w k. This graph 
will show a sparse amount of data, but if one takes a partition of the interval in small 
intervals and takes means of this data in each small interval ( also called smoothing the 
data), then the graph of a well defined spectral density function 

00 

L E(XoXh) exp(-ihÀ), 
h=-oo 

as described in this séction, will be obtained. 
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5. EXAMPLE 1 

Sakai and Tokumaru (1980) (see also Grossmann and Thomae (1977)) introduce the 
following model of chaotic time series. For a given constant a E (0, 1), consider the 
transformation Ta : [0,1] -+ [O, 1] given by 

{ 

X 

Ta(x) = 1 _ :' 

1- a ' 

i f o:::;x<a 
(5.1) 

i f a:::;x:::;l. 

The Lebesgue measure dx is invariant and ergo di c for the transformation Ta ( see Lasota 
and Yorke (1973)). In the notation of Section 2, P(A) is the length of A, for any interval 
A. 

We now consider the stochastic process 

(5.2) 

where ~( x) = x according to the notation of Section 2. 
The autocovariance function at lag h of the process {XdtEZ in (5.2) (see Sakai and 

Tokumaru (1980)) is given by 

Rxx(h) = t xT/:(x )dx- [E(Xt))2 = _!_(2a- 1)\ Jo 12 
for h > O, (5.3) 

whoce E(Xt) = t and Rx x(O) = Var(Xt) = 1
1
2 . 

The main obstacle to proceed in the spectral analysis of Example 1 is that the map Ta 
is not invertible. Therefore, the autocovariance function Rxx(h) of the process {Xt}tEZ, 
given by expression (5.2), for negative lag h does not have a precise meaning. 

We shall analyze the natural extension Fa of Ta, instead of Ta itself. 
As a particular example, we mention that the Baker map is the natural extension of 

the tent map ( with inclination 2). 
In Example 1, the natural e:>..'iension of Ta is the map Fa : [0, 1) x [0, 1]-+ [O, 1] x [0,1) 

defined by 

Fa(x,y) = (Ta(x),Ga(x,y)), for any (x,y) E [0,1] X [0,1), (5.4) 

where 

{ 
ya, 

G a (X' Y) = (a - 1 )y + 1' 
if o:::;x<a 

if a::::; x ::::; 1. 

The map Fa is invertible and it is easy to see that the Lebesgue measure dxdy is invariant 
and ergo di c for F a . 

Therefore, we shall consider the dynamical system (K, Fa, P) where K = [0, 1] x [O, 1] 
and P is the Lebesgue measure dxdy on [0, 1] x [0,1]. Instead of ~(x) = x, one can consider 
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cf>(x, y) = IT(x, y) = x for any (x, y) E [0, 1] x [O, 1] as a random variable. In the setting of 
Section 2, we shall analyze in this section the system (K,Fa, P,TI,F,uD. Now, if h~ O 
then 

11 

xT/:(x)dx = 11 11 

xiT(F/:(x, y))dxdy = 11 11 

TI(x, y)IT(F/:(x, y))dxdy 

and we obtain, from the expression (5.3), Rxx(h) for positive h when Xt = TI o F:. As 
the map Fa is inver tible, it makes sense to estimate, for h >O, the integral 

Now, as dxdy is invariant for F:·, one obtains the following 

The example considered above defines a standard time series. After these results one 
can have the spectral density function associated with the stochastic process {Xt}tEZ· The 
last term in the above equalities has already been calculated (see (5.3)). 

Theorem 5.1: The spectral density function of the stochastic process 

where F a is defined by the expression ( 5.4 )1 is given by 

fz( À) = 2a(l -a) + u~ + À [ ) 
7r[1-2(2a-l)cos(Ã)+(2a-1)2] 21r ' 10

r E 0, 2
1r . (5.5) 

Proof: Since Rxx(h) is given by the expression (5.3) and goes to zero exponentially when 
h ~ +oo, the spectral density function ( see (2.6)) does exist and it is given by 

= 2~ [ ~((2a- l )e-")' +h~= ((2a- l)e'")- h] 

_ _!__ [ 1 + (2a - 1 )é>- ] _ 
- 27r 1 - (2a- l)e-i). 1- (2a- l)ei). -

2a(1- a) 
1r(1- 2(2a - 1) cos(..\) + (2a - 1)2]' 
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for all À E [0 ,2?r) , since l(2a- 1)e± i>. I < 1 when a E (0, 1). The spectral density function 
of the process { Zt} tEZ follows from this. 

The spectral density function of the signal process {XdtEZ is continuous and its graph 
is shown in Figure 1 (a), (b) and (c). Notice that if ais small then the function fx(>.) has 
a maximum on 1r and if a is large it has a maximum on zero. 

We refer the reader to Lopes and Lopes (1995) for more details in the example con­
sidered in this section. 

6. EXAMPLE 2 

Consider the two parameters mapping family {Fa,b : (0, 1} -t (0, 1}; a, b E R} where 
Fa,b is given by 

{ 

1- a 
a+-b-x, 

Fa,b(x)= a 
- (x-b) 1 -b l 

i f O~x<b 
(6.1) 

i f b ~X~ 1, 

with a and b constants. This map is not an expanding one. Let a be the derivative of Fa ,b 
on [0, b) and {3 its derivative on [b, 1}. Then, 

1-a a 
a= F~,b(x) = -b-, if O~ x < b and {3 = F~,b(x) = 

1
_ b' if b ~ x ~ 1. (6.2) 

Th'e ergodic properties of the family {Fa,b : [O, 1} -t [O , 1]; a, b E R} are analyzed in 
Coelho et al. (1995). This map does not define a standard time series. 

In Example 2 we want to consider the spectral analysis of the process {Xt}tez defined 
in (6.3) below. 

Notice that when b = 1- a, the transformation Fa,b of Example 2 is F(x) = a+ x 
(mod 1), which corresponds t o the harmonic model analyzed by Lopes and Kedem (1994). 
Therefore, the presented analysis of Example 2 is a generalization of that work when there 
exists only one frequency. 

By using the notation introduced in Section 2, for a given tra.nsformation Fa,b and 
rft( x) = x one considers the signal process { Xt} tEZ given by 

Xt = Fa,b(Xt-1 ), for t E Z. (6.3) 

In the present example the spectral density function does not exist and the spectral 
density distribution has a quite different behavior compareci to the Examples 1 and 3. 

To consider the constants a and b is the same as to consider a and {3, since one has 
the following identities 

1-a 
a=--

b 
and {3 = _a_ {::::::} a = {3( a - 1) 

1-b a-{3 

11 

and 
1 -{3 

b=--{3. 
a -

(6.4) 



Figure 1: T he spectral density function fx().), O::::; À::::; 1r, for Example 1 as in (5.4) 
when O"~ = O and 

(a) a= 0.15240; (b) a = 0.36570; (c) a = 0.93459. 

... 

... 

(a) 

.., 

... 
'·' 

'·' 

···1-----
'·' 

(b) 

l.) 

(c) 

Therefore, for the sake of simplicity, we shall consider the parameters a and {3 in our 
analysis . 

The invariant measure Pa,/3 = P (see Coelho et al. (1995)) for the process {Xthez , 
in terms of a and {3, is given by the density 
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1 1 1 1 
<t'cr,p(x) = <p(x) = ~ x + ~(1- x) - ~(o: - f3)x + /3' (6.5) 

where 

C = -
1 

}OIY (/3) = - 1 
}og (

13). 
{3-o: o 0: ~ -1 0: 

OI 

(6.6) 

For a setA c [0, 1] x [0, 1] , with Lebesgue measure equal to 1, for all (o:,/3) E A, the map 
T cr ,/3 is ergodic for P cr ,{3 = P. We will assume (o:, /3) E A in the sequei. 

In other words, in this case P given by 

P(A) =i <p(x)dx , for all A E :F, 

where now :F is the Borel u-algebra in [0, 1}, defines an invariant ergodic probability mea­
sure for F cr ,/3. 

From the expressions (6.1) and (6.4) the transformation F01 ,fJ is given by 

{ 

{3(o: -1) 
/3 + o:x, 

Fcr,f3(x) = (o:- 1 _ /3 ) 
/3 x --­o: - {3 , 

i f 

i f 

1-/3 Ü::; X< - -
13 o: -

1- /3 -- <x<l. o: - {3 - -

(6.7) 

The list of integrais below are useful to understand the spectral analysis that we shall 
present in the sequel. 

1. 

2. 

3. 

4. 

Some of these integrais are obtain after long calculations. 
For a given F = Fcr ,fJ and the corresponding invariant density <p = <f'cr,/3 we consider 

the signal process {Xthez = {(~o Fa ,p )(Xt- dhez· 
From the expressions (6.5) and (6.6) one observes that the density function 'Pcr,p(x) 

depends only on the quotient i::l = ~· Consider now the transformation ph, for any h E Z, 
where F = F01 ,p is given by the expression (6.7). From Coelho et al. (1995) it is known 
that 
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with ah = Fh(O) and h = p-h(O). From Coelho et al. (1995) it is also known that 

and hence 

Cth Q 
- = {3, for any h E N , 
f3h 

IPOth,{h = <p0t,(3, for any h E N. 

The conclusion is that, for any continuous function </> and h E N, 

E(XtXt+h) = f </>(x )</>(Fh(x ))<p(x )dx = f </>(x )</>(FOth ,f3h (x ))<fJOt,{3(x )dx = 

=f </>(x)</>(Fexh,f3h(x))<pOt 11 ,{311 (x)dx. (6.9) 

As we know f <f>(x)<f>(FOt,{3(x))<pOt,{3(x)dx (see integral4. in (6.8)), for any a and {3, one can 
calculate f </>(x)</>(F0th,f3h(x))<f>o:h,f3h(x)dx, for any h E N. 

Notice that E(XtXt+h) = E(XtXt-h), for all h E N . 
Therefore, we are able to obtain the exact values of Rxx(h), for all h E Z, from the 

positive and negative orbit of zero by F (since ah and f3h depend only on ah and bh)· 
We now consider <f>(x) = x. It is known (see Lopes and Lopes (1995)) that, for fixed 

a and (3, there exists .6. such that ah = .6.f3h, for all h E Z. From integral 4. in (6.8), a 
si~ple calculation shows that (see Lopes and Lopes (1995)) there exist c1(.6.) and c2(.6) 
such that 

11 

xF\x )<p(x )dx = c1 (.6) + c2(.6) (;h + ah) . 

As eth and ;
11 

wander around the interval [0, 1), then the above integral does not 
converge to zero as h--+ oo. Therefore, the spectral density function is not a function, but 
there exists the spectral distribution function also called the generalized spectral density 
function. 

First one observes that the process {Xt}tEZ = {Fo:,p(Xt-1 )}tEZ has mathematical 
expectation given by the integral 2. in expression (6.8), that is, 

1 {3 
E(Xt) = ( ) - -{3, 

log ~ a-
for all tEZ. 

We want to derive the spectral distribution function of the process {ZdtEZ· We first con­
sider the autocorrelation px(h) at lag h of the process {Xt}tEZ = {FOt,p(Xt-I)}tEZ and 
then use the Herglotz's theorem (see (2.4)) for the process {XdtEZ· 
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Remark: The Fourier coefficients of the spectral distribution function in the case where 
F(x) = w0 + x are given by px(h) = cos(hw0 ) = cos(Fh(O)), for h E Z, that is , they are 
determined by the iterates ph of zero. The next theorem claims a similar property for the 
transformation Fa,fJ and <f>(x) = x. 

Theorem 6.1: The spectral distribution function of the process 

where Fa,fJ is defined by the expression {6. 1), is given by 

1 = . a2 
dFz(À)=

2
7T L e-t>.hpx(h)+

2
!, for>..E[0,27T), 

h=-= 

where px(h) is given by ~~~~~? (see the expressíon (2.3)) with 

and 
a: +{J 

Rxx(O) = 2(a: _ ,B)log(~) 

where a: and ,8 are given by the expression {6.2) and 

1 

1 

(6.10) 

(6.11) 

(6.12) 

N ow we consider </>( x) = cos( 27Tx). One wants to calculate the spectral distribu tion o f 
the process 

For this purpose we need the following integral: 

where 

E(X, X t+1 ) = J.' cos(2n) cos(21rF(x))<p(x)dx = \a) x k, (6.13) 
o 2log P 

k = cos(2d,B)[ci(d(a: + 1)) + ci(da(,B + 1))- ci(d,B(a: + 1))- cí(d(,B + 1))]+ 

+ sin(2d,B)[sí(d(a + 1)) + si(da:(,B + 1))- si(d,B(a: + 1)) - si(d(,B + 1))]+ 

+ ci(d(a: - 1)) + ci(da:(f3 -1))- ci(d(,B- 1))- ci(d,B(a:- 1)), 
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with d = a
2:_p , ci(x) is the cosine integral and si(x) is the sine integral (see Gradshteyn 

and Ryzhik (1965), page 928). The integral (6.13) comes aiter a long calculation. 
In order to calculate the spectral distribution function, one should obtain the Fourier 

coefficients of such distribution by substituting in (6.13) the values of a·and f3 by G'h and 
f3h (see expression (6.9)). 

Theorem 6.2: T he spectral distribution function of the process 

where Fcx ,{J is defined by the expression (6. 1), is_given by 

(6.14) 

where px(h) is given by ~~~~~? (see the expression (2.S)) with 

1 1 
Rxx(h) = 2 log(:Q~) x k~t- [log(~ ))2 x l~t 

where 

k[t. = cos(2dhf3h)[ci(dh(ah + 1)) + ci(dhah(f3h + 1))- ci(dhf3h(ah + 1))- ci(dh(f3h + 1))] 

+ sin(2d~tf3h)[si(d~t(ah + 1)) + si(dhah(f3h + 1))- si(dhf3h(ah + 1))- si(d~t(f3h + 1))] 

+ ci(d~t(ah- 1)) + ci(dhah(f3h -1))- ci(dh(f3h- 1))- ci(dhf3h(ah- 1)), 

and 

with 

ah = Fh(O) and bh = p-h(O). The variance of Xt is given by 

Rxx(O) = 210~(~) {cos(2df3)[ci(2da)- ci(2d/3)] + sin(2d/3)[si(2da)- si(2df3)]} + ~-
1 

[log( ~ ))2 x l, 

where 

l = {cos(df3)[ci(da)- ci(d/3)] + sin(d/3)[si(da)- si(d/3)]}2 
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with 
27í 

d=-- , 
a-{3 

1-a 
a=--

b 
and 

a 
(3=-. 

1 -b 

In Figure 2 we plot the graph of the Fourier series 2
1
7r 2:::~~- 100 e-i>.h Px(h) when 

a= 2.41809 and f3 = 0.22052. Therefore, we are considering here an approximation of the 
generalized spectral density function fx(>.) up to an order of 100. 

Figure 2: The generalized spectral density function fx(>.), O~ À~ 1r, for Example 2 as 
in (6.14) when o-~ =O, a= 2.41809 and f3 = 0.22052. 

10 

8 

-2 

Remark: The rotation number (see Devaney (1989)) of Fa,f3 is 

81 
= log(a) 

log(*) 

and the rotation number of F&,p =F;,~ is 

8 
_ log(f3) 

2
- log( ~) · 

One observes that 81 + 82 = 1. We denote by ( the smallest value between 81 and 82 . 

Therefore, ( ~ 0.5. We call ( the rotation number of the stochastic process. 
It is extremely interesting the fact that, for any a and f3, the spectral measure is 

not a Dirac delta function concentrated on the rotation number of Fa,/3 (we checked the 
coefficients p x (h)) but it has a very strong peak on the value 27r( where ( is the rotation 
number of the process. In other words, the spectral distribution is very dose to 
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where B1 s; 0.5 :::; B2 were defined above. 
In conclusion, if one applies the Fourier transform to the data it will appear a strong 

peak in the rotation number. 
This property requires, in the future, a deeper analysis in order to understand the 

spectral distribution functíon given by (6.14). Notice in Figure 2 the strong peak in the 
value 27r ( = 2.31671, where ( is the rotation number of the process when Q = 2.41809 and 
{3 = 0.22052 ( corresponding to the values of a= 0.1423 and b = 0.3547). 

We remind the reader that if a = 1 - b then the rotation number of Fa,{J is equal 
to a and, in fact , in this case, the spectral distribution function is a Dirac delta function 
Hón-a + Ó-n-a), when ~(x) = cos(27rx). · 

Notice that for Fa,p(x) =a+ x (mod 1), the inverse map F;,1 = Fã:,/3 is such that 
F&,t;(x) =x-a (mod 1). In this case, ( = 1rlal. 

We refer the reader to Lopes and Lopes (1995) for more details about the example 
considered in this section. 

7. EXAMPLE 3 

We shall present a complete spectral analysis of the stationary stochastic process 

whêre ~(x, y) = x is a random variable, {Çt}tEZ is a Gaussian white noise process, Fa is a 
transformation defined below and (X0 , Y0 ) is an initial point chosen at random according 
to the measure v also defined below. 

The map F ais defined from K = ([0, 1] x (0, a))U([O, a] x [a, 1)) to itself and it ís given 
by Fa(x, y) = (Ta(x), Ga(x, y)) where the transformation Ta: [0, 1]----+ [0,1] has definition 

Ta(x)= { ( ):, a x-a 
1-a ' 

i f 

i f 

with a E (0, 1) as a constant, and 

{ 

ay, 

Ga(X, y) = (1- a) a+ -- y, 
a 

(7.2) 
a s; x :::; 1, 

i f 

i f 
(7.3) 

The graph of the map Tais shown in Figure 3. The action of the piecewise diffeomor­
phism Fa is presented in Figure 4. The transformation Fa is a modification of the well 
known Baker transformation. It defines a standard time series. 

18 



The map Ta describes a model for a particle that moves around in the interval [0,1]. 
If the parti ele is at posi tion x, then after a uni t of time i t jumps to Ta ( x) and so on. 
According to the model considered here suppose the spatial position of the particle is 
T~(x) = Xt, t E N, in the interval [0,1) . If the particle Xt is in the interval [O, a), it 
has a uniformly spread possibility to jump to any point Xt+l in [0,1]. However, if it is in 
the interval [a, 1) it has a uniformly spread possibility to jump to any point Xt+l in the 
interval [0, a). 

We are primarily interested in the e>..-panding map Ta, but for defining the spectral 
density we need a bijective map. Therefore, we have to consider Fcx, the natural extension 
o f Ta (as mentioned in Section 3). 

The piecewise diffeomorphism Fcx leaves invariant (see Lasota and Yorke (1973)) an 
ergodic probability v on K C R 2, absolutely continuous with respect to the Lebesgue 
measure, that will be described later. 

Choosing a point ( x 0 , y0 ) at random, according to the Lebesgue measure ( or according 
to v), the spectral properties of the process Zt will be analyzed. 

One observes that Fa is a piecewise homeomorphism of K and F;: is of the form 

F;:(x, y) = (T;:(x), Ga,n(x, y)), 

that is, the action of Fa in the :first variable is just the action of Ta· 
Now we shall define the Fcx-invariant measure v on K, absolutely continuous with 

respect to the Lebesgue measure dxdy . 
From Lopes, Lopes and Souza (1996) the transformation Ta has an invariant absolutely 

continuous measure df.L = g(x)dx where 

i f O$x<a 

i f 

Consider in the sequel the following notation 

1 
c=-----:-

a(2- a) 
1 

and d- -­- 2-a· 

N ow we shall define v on subsets of K by using the f.L above. 

(7.4) 

(7.5) 

For sets of the form A1 x A2, where A1 C (0, a) and A2 C (a, 1) or A1 C (a, 1) and 
A2 C (O, a), we define v(A1 x A2) = (2- a)J.L(AI)f.L(A2)· 

ForsetsoftheformA1 xA2, whereA1 C (O, a) andA2 C (O, a), we define v(A1 xA2) = 
(2 - a)aJ.L(AI)J.L(Az). 

It is not difficult to see that v is invariant for Fa and is absolutely continuous with 
respect to the Lebesgue measure. The measure v satisfies v(A x (0, 1)) = f.L(A), when 
A C (0, a) and v( A x (0, a))= f.L(A), when A C (a, 1). 

The next theorem gives the spectral density function for the process (7.1) and the 
proof can be found in Lopes, Lopes and Souza (1995). 
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Theorem 7.1: The spectral density f unction of the process 

where Fa is defined by the expressions (7.2} and (7.!1} and the point (Xo, Yo) is chosen 
randomly according to the measure v o r according to the Lebesgue measure dxdy, is given 
by 

1 [ i>. -i>. 1 + a-2 - a-3] ui 
fz ( .À) = 27rVar(Xt ) r (e ) +r(e )- 3(2 - a) + 27r , forall .ÀE(0, 27r),(7.6) 

with 

1 + a:z(1- a) 
tp(z) = 2((1- a)z + 1](1- z) and 

'1/J(z) = 2 - a:z(a-2 +a:- 2) + 6a(1- a)z\o(z) 
6[1 - a 2z- (1 - o )2z2] 

R e m ark: The power series 1(z) is an analytic function on the disc {z E Clll z 11< 1} and 
the expression (7.6) has the meaning of the radiallimit 

lim rei>.. = ei.>. = z . 
r--+1 

In this sense, the series 

~ e in>.. = 2Re ( 
1 

. ) - 1 = O, for .À =F O, 
~ 1- e'>-
nEZ 

even though the series LnEZ e in>.. does not converge. We are using this fact in t he expres­
sion (7.6). 

8. EXAMPLE 4 

The example in this section generalizes the results by Grossmann and T homae (1977). 
Let a1 , a2 , · · · , an be any positive real numbers such that 2::~ 1 ai = 1 and, for each 

1 :::; i :::; n, let bi1 , bi2, · · · , bij be any positive real numbers such that LJ=l bij = ai. 
For each i E {1, 2, · · · , n} one defines 
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where I:~=l a1 = O. 
For each fixed i E { 1, 2, · · · , n}, one defines for any 1 ::; j ::; n 

where I:~= I bim =O, for all 1 ::; i ::; n. Note that length(Bi) = ai and length(Bij) = bij . 
Consider no'"' the following function T: [O, 1] -+ [O, 1] given by 

T(x) =I: a/+ (x- fa1- I: bim) :.i, for all x E Bij· (8.1) 
1=1 1=1 m=l · lJ 

In Figure 5 we show the graph of T when n = 4. Consider F the natural extension of 
such function T. 

One is interested in the first arder autocorrelation function of the stochastic process 

Xt = T(Xt-1) = F(Xt-1, Y~_I), for ali t E Z, 

when a€ =O and <f>(x, y) = x. 
First we want to prove that the invariant measure associated with the function T is 

of the form J.L(A) = JA L:~= 1 piiB;(x)dx, that is, the density of J.L is given by 

n 

g(x ) = L Pds,(x). 
i=1 

From the definition of the function T in expression (8.1), if x E Bii then 

It is easy to see that Bij = {x E [O, 1] I x E Bi, T(x) E Bj}· 
Suppose J.L(A) = JA I:~1 pJs,(x)dx, where Pi 2::. O, dx is the Lebesgue measure and 

it is an invariant measure for T. 
Let Wi be J.L([x E Bi]). Then I:~=l wi = 1. From the invariance of J.L , one obtains 

. wi = J.L([T(x) E Bi]). Since [T(x) E Bj] = U~1 [x E Bi] n [T(x) E Bj] = Uf=1Bij, hence 
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Therefore, for all j E { 1, 2, · · · , n}, Wj = 2::::~=1 ~wi or, in matrix form , 

w= B w 

where w = ( w1 , · · · , wn) and B = ( ~) ... It is easy to see that the matrix B is a stochastic 
1,] 

matrix. 
In this way one can obtain, from the Perron- Frobenius Theorem, the invariant density 

L~= I pJBi(x ), by taking Wi = Pi 1 for 1 :::; i :::; n , where w = (w1, · · · ,wn) satisfies w = Bw. 
This shows that the values of Pi, 1 :::; i :::; n, can be explicitly obtained by solving an 

eigenvalue equation. 
It will be necessary to obtain the value of the first and second moments of the random 

variable X 1• T hese moments are given as folows. · 

1. E(Xt) = 11 

z dJ.L(z) = t ~ [(t ai)
2

- (~ ai)
2

]. 
o l=l ]=1 ]= l 

2. E(X'f) = 11 

z2 dJ.L(z) = t~i [(taj)
3

-(~aj)
3

]. 
o l=l J=l ) = 1 

Denote A(k), B(k,i) and V(k,i) by 

B(k,i) =li fk(x)dx and V(k , i) =li xfk(x)dx. 

(8.2) 

The values of B(k, i) and V(k, i) can be obtained from the recurrence formula 

a. 

b. 

B(k + 1, i) =~ bii B(k,j). 
~ a· 
j = l J 

V(k + 1, i) = t :~ [:~ V(k,j) + (~ az + ~ bim- :j ~ az)B(k,j)] . 
j=l ) 1 l=l m = l 1 l=l 

(8.3) 

One can describe the quantities A(k ), B(k, i) and V(k , i) by the following power series 

and /i(z) = LV(k,i)zk. (8.4) 
k2::0 

From (8.3 a.), the second power series in expression (8.4) is given by 

Wi(z) = B (O, i)+ z ~ bij '11 i(z), for all 1 :::; i:::; n, 
~a -
i=l J 
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where the values B (O, i) can be calculated by 

B (O, i) = !,; x dx = H <t, a,)' - <t, a,)'], for all 1 s; i S: n. 

Consider the vector v= (B(0,1),B(0, 2), · · · , B(O,n)) andA the n x n matríx A.= 
(~ ). Then one can easily find the vector w(z) = ('11 1(z), 'll2 (z), · · · , Wn (z)) by solving the 

J 

linear system (8.5) W =v+ A('ll )z. In this way we obtain the values Wi(z), 1 :::; i :::; n. 
From (8.3 b.), the t hird power series in expression (8.4) is given by 

n 2 n i -1 j-1 j-1 

'Yi(z) = V(O,i)+z L(~~) /j(z)+z L~~ (Lal + L bim- ~~ L al)wj(z). (8.6) 
j=1 J j=l J 1=1 m=1 J 1=1 

The value V(O, i) can be calculated as 

As we also know W j(z ), one can solve the linear system (8.6) and finally find 'Yi(z), for 
1:::; i:::; n. 

From the first power series in e:>..'"Pression (8.4) one obtains 

n 

cp(z) =L A(k)zk = LPi!'i(z). (8.7) 
k~O i=1 

It is easy to see (Lopes, Lopes and Souza (1995)), by taking z = ei8 and z = e-iB 

that, from the expression for cp(z) in (8.7), the explicit expression of the spectral density 
functíon associated with T can be obtained by 

2 
1 iÃ -iÃ 2 ae 

fz(À)=? V (X)[cp(e )+cp(e ) -E(Xt )J+-2 , forall ÀE[0,27T). 
~ M t 7T 

where Var(Xt) = E(Xl)- [E(Xt)F = f x2 p(x )dx - (f xp(x )dx) 
2

. 

A more general result for piecewise expanding linear maps is given in Lopes, Lopes 
· and Souza (1996). 
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