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SUMMARY

The purpose of this paper is to show explicitly the spectral distribution function of
some stationary stochastic processes as

Xg = F(Xt_}_), for ¢ € Z,

where F' is a deterministic two-dimensional invertible map. The invertible map F' that will
be considered in this paper is the natural extension of a map T on a class F; (see Section 1
for definition) of one-dimensional piecewise linear expanding monotonic transformations.

Any non-linear expanding piecewise monotonic transformation g € F; (see Section 1
for definition) can be approximated by a map T' € F;. From the structural stability of
the maps we consider here, it will follow that the spectral density function of the natural
extension of any non-linear expanding piecewise monotonic transformation ¢ € F; can
be approximated by explicit expressions obtained for the spectral density function of the
natural extension of maps T in F>.

Results for the one-dimensional map T can be obtained from results for the two-
dimensional map F.

Keywords: CHAOTIC TIME SERIES; SPECTRAL ANALYSIS; EXPANDING TRANS-
FORMATION.

1. INTRODUCTION

We shall consider a special class of non-linear piecewise monotonic expanding C*
transformations ¢ in which the image of any interval of monotonicity is all the interval
(0,1) (see Lasota and Mackey (1994) or Section 3 for definition). For instance, Figure 1
shows an example of a map g of such class while Figure 2 shows the graph of a map that
is not of the above defined class. The number of intervals of monotonicity of g will be
assumed to be finite.

We will denote the set of such class of maps g by Fi.

Consider the class of piecewise linear monotonic continuous expanding transformations
T of the following form.



Let 4;, 1 < i < n, be an open interval and a; be the length of 4;, 1 < i < n, the
intervals of monotonicity (we assume that T(4;) = (0,1), for 1 <1 < n), and suppose that
a; = E;.":i b;;. Denote by B;j,for1<:<mn and 1 € j < m, intervals such that the .length
of Bjj is b;j and UL, B;; = A;, for all 1 < i < n. Suppose there exists Cj, for 1 S_ j 5 m,
such that g(Bi;) = Cj, independent of i. Finally, assume that each C; is contained in a
unique A; and each C; is a union of sets of the form By. Denote by c; the length of Cj,
forl1 <j <m.

The analytic expression of T(z) is given by

j—1 i—1 j—1
C
T(z)=) e+ |o=D aa=D bis | £
k=0 a=] A=1 v

We will denote the set of this second class of maps T by F».

In Géra and Boyarsky (1989) and Parry and Pollicott (1990) the explicit expression
of the invariant density

Y Ig(z)pj, pj€(0,1), with Y pj=1

i=1 =1

of T € F3 is obtained by finding the eigenvector (py,p2,- - ,pm) of a large matrix. In this
way the number pj, for 1 < j < m, can be explicitly obtained.

It is easy to see (we refer the reader to Géra and Boyarsky (1989)) that each g € F,
can be C! approximated by T € F; (up to a finite number of points where T is not
differentiable). In Figure 3, we show the graph of a map T' € 7.

We will show an explicit formula (see Section 4) for the spectral density function of
the natural extension of the piecewise linear map T' € F, described above.

Géra and Boyarsky (1989), Li (1976), Ding and Li (1991) and also Parry and Pollicott

(1990) show that the invariant density n,(z) of a sequence of maps T, € F» converging to
g € F, satisfies the weak convergence

m(z) = n(z),

where n(z) is the invariant density for the map g.

Therefore, one can obtain an approximation of the spectral density function of g € F;
by an explicit formula for the spectral density function of T}, € F;.

The spectral density function of such map g € F; will be a meromorphic function (see
Ruelle (1987)).

The spectral density function of maps g of the class F; are important for the spectral
analysis of chaotic time series and also because the zeta function associated with the
potential —logg'(z) has poles on the same values of the poles of the spectral density
function (see Ruelle (1978, 1987) and Rugh (1992)).



2. STATIONARY STOCHASTIC PROCESSES

The general setting of chaotic time series we shall analyze is the following. Consider
K a compact subset of R™ with a given Borel o-algebra F, a bijective continuous trans-
formation F' : K — K, an invariant probability P on K (that is, P(F~*(A)) = P(A), for
any set A € F) and ¢ : K — R a continuous function. We will analyze the stationary
stochastic process {Z;}:cz given by

Zy=Xe+ & =(d0 F)(Xi—1) + &, forteZ. (2.1)

The natural measure on K?Z is the product measure P% on K% and it is invariant
for the stationary process {X;}:cz or {Z¢}icz. The process {&;}¢ecz is considered to be
a Gaussian white noise process (see Brockwell and Davis (1987)) independent of {(¢ o
F)(X:)}tez, with zero mean and variance 2. One observes that in the model (2.1) the
random variables X; (or Z;) and X4+; (or Z;4,) are generally not independent.

We shall denote the above system by

(K, F,P,$,F,02).

Following the terminology in Tong (1990) we may call the system (2.1), when o‘§ =0,
the skeleton of the system.

Given a certain measurable function ¢ : K — R the autocovariance function at lag
h € Z (see Brockwell and Davis (1987)) of the process {X,}:ez as in (2.1) is given by

Ryx(h) = B(XXern) = [BCOP = [ (a)o(F@)dP(@) - [ f as(:«:)dp(x)]'- (23)

The autocovariance function Rx x(h) in (2.3) measures the covariance between two values
of the process {X,}cz separated by lag h. The autocorrelation function at lag h of the
process {X:}iez (see Brockwell and Davis (1987)) is given by

-: Rxx(h)
Rxx(0)’
where Rx x(0) = E[(X; — E(X.))?] = Var(X,) is the variance of the process.

From the Herglotz’s theorem (see Brockwell and Davis (1987)) a function px(h) is
non-negative definite if and only if

px(h) for heZ, (2.4)

px(h)=/ eMdFy()\), forany heZ, (2.5)

-7

where Fx(-) is a right-continuous, non-decreasing, bounded function on [—=, 7] with

Fx(—=) = 0. The function Fx(-) is called the speciral distribuiion function of {X:}iecz
and if

A
Fx(A) =f Belildo, Tor —m &3 £, (2.6)
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then fx(-) is called the spectral density function of the process {X;}1ez. When

> lex(h)] < oo,

h=—0co

then px(h) = [T_e**fx(X)dA, for h € Z, where fx(-) is given by

o0
F(A) = 51? 3 e ox(h). 2.7)
h=—co
This function has real values if px(h) = px(—h), for all h € N.

The reason to consider F' a bijective map and not just a non-invertible map is for
defining Rxx(h) also for negative values of h € Z and, from this, (2.7) will be well
defined.

Each particular invertible transformation F' will require different technique in order
to obtain explicitly the spectral distribution function (see Lopes and Lopes (1995)).

Example: When the compact subset K is equal to [—m, 7], the transformation F is
given by F(z) = wg + = (mod 27), with wy € (0,7), and ¢(z) = cos(z). This is the
classical harmonic model Z; = cos(wgt + z) + &. The spectral measure of the process

{Xittez = {(¢ 0 F)(Xi—1)}tez as in (2.1) is not a function but a distribution function
given by

AFx(A) = 5(6un +6-u0) (2.8)

where é., i1s the Dirac delta function concentrated at wy.

Remark: Expanding maps (see Section 3 for the definition) always have an exponential
decay of autocorrelations, for any ¢ Holder continuous function (see Parry and Pollicott
(1990)). Therefore, in this case the spectral density function always exists and it is a
meromorphic function (see Ruelle (1978, 1987)).

3. THE NATURAL EXTENSION F OF T

It is well known that in general larger the dimension of the set K, more difficult is to
analyze the dynamics of the map F.

When K is one-dimensional, that is, when K is a segment, the diffeomorphism
F : K — K has simple dynamics.

In general, the dynamics of an one-dimensional diffeomorphism is very simple.

The simplest example in dimension 2, that is, when K is a square [0,1] x [0,1], is
obtained when F' is the natural extension of an one-dimensional map 7. The map T is not
an one-to-one map, but F is.

When the transformation T is an ezpanding map, that is, there exists A > 1 such that
|T"(z)| > A, for all z € [0, 1], then there exists (see Lasota and Yorke (1973) and also Parry
and Pollicott (1990)) a density n(z) such that du(z) = n(z) dz is invariant for T (that is,
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p(T~1(A)) = p(A), for any Borel set A). The probability y is ergodic (see Cornfeld, et al.
(1982) for the definition) for such map T. There exists a natural way to obtain from such
T a bijective map F, called the natural extension of T. Denote by (z,y) a vector in the
domain K and by (z',y') = F(z,y) its image by the map F. Then, (see Bogomolny and
Carioli (1995))

T(z)=2' and T(y')=y

defines F.

If T is an expanding map the corresponding F' is Aziom A (see Robinson (1995) for
definition).

The invariant probability p for T' on [0,1] has a natural extension to a probability
v = P (according to the notation of Section 2) on K = [0,1] x [0, 1] invariant for F'.

Consider now the random variable ¢ : K — R of the form ¢(z,y) = ¢(z). Then, the
time series

X, = ¢(Fi(z,y)) = ¢(Tz)), for 1<t<N,

and the probability v define the simplest example of a chaotic time series on dimehsion 2.

The dynamics comes basically from an one-dimensional map even if the setting is for
a two-dimensional bijective map. As we mentioned before the reason to consider bijective
maps is to obtain Rx x(h), for h € Z.

The analysis of the dynamics of F' is more general and results for T' can be derived
from the former transformation.

When ¢(z,y) = z, for a certain class of maps T in F, (see Section 4) we shall be able
to show explicitly the spectral density function. This is obtained by solving some linear
systems as we shall explain later. We call a stochastic process obtained from the system
(F, ¢) as above a standard stochastic process obtained from (T, ¢).

Any expanding map ¢ in F; can be approximated by maps T in F, and the corre-
sponding absolutely continuous invariant measure of T will converge to the corresponding
one for g (see Gora and Boyarsky (1989)). Therefore, we will be able to approximate
the spectral density function of expanding maps by known expressions. This is the main
purpose of this paper.

In the sequel, we shall omit the noise process {£;:}:ez of the system due to the fact
that it does not interfere in the dynamics of T and that the spectral density function of

the whole system with noise can be easily obtained from the one without noise (see Lopes
et al. (1995, 1996)).

4. THE SPECTRAL DENSITY OF PIECEWISE LINEAR EXPANDING TRANSFOR-
MATIONS

In this section we will show the explicit expression of the spectral density function of
the system X; = T%(X,), where T € F>.

We will denote by p the T-invariant measure absolutely continuous with respect to
the Lebesgue measure. Denote by p(z) the density of such measure pu. It is well known
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(see Parry and Pollicott (1990)) that p(z) is of the form

p(z) = 3 Ic,(2)ps.

=1

Therefore, u(Cj) = fc,- p(z)dz = pj, for 1 £ j £ m. The number p;, for 1 < j < m, can

be obtained by finding an eigenvector of a large matrix (see Goéra and Boyarsky (1989) and

Li (1976)). Denote also by p;; the measure u of the interval B;;, 1 <i <nandl <j <m.
It is enough to show the explicit expression of

1= ([ s T entas) o

k=0

and the corresponding explicit expression for the spectral density function (2.7) will easily
follow (see Lopes et al. (1996)).

In the sequel, we shall consider the following notation:

A(k,z‘,j):L“m(x)p(:c)dx, (4.1)
Vikii)= [ THa)ds, (4:2)
B;;
B(k,i,j):/ z T*(z)dz (4.3)
B;
and 3
A(k) = /0 z T*(z)p(z)dz. (4.4)

First of all we shall compute a recursive formula for V(k, 1, 7). One observes, from the
expression (4.2), that

V(k+1,7,8) = f TH+(5)dg = / TH(T(z))dz =
By,

rs

=fc Tk(y)dybcﬁ= Z (LuuTk(y)dy)iL::iﬂ Z V(k,u,v). (4.5)

4 5 BwCC, d Buuccs

Now we shall obtain the recursive formula for B(k,7,7). One observes, from the
expression (4.3), that

B(k-}-l,r,s):/ _«:T’*“(:s)dm:/ z TH(T(z))dz =

t ] Ts
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T O ST

k=0

=fca[(y f ) +§aa+zbr,@]Tk(y—dy—

k=0

brs brs
= ¥ B[ yreae
Btacca . B, .

( fck +Zaa+Zbrﬁ) f Tk(y)dy] s

- bﬁ[
C
B, ca, ° =0 a=1

We denote 3;;(z) by

Bile) = Vikii)s® = Z (/B Tk(m)dm) 2
and @;;(z) by ,

pij(z) =Y B(k,i,j)z* = Z(/&j zT*“(x)dx) 2

k>0 k>0

Our purpose is to estimate
v(z) = Z Azt = Z (] a:Tk(m)p(m)d:c) "
k>0 k>0

but first we need to estimate v;;(z).
From (4.5), the power series of V(k,1, ) satisfies the following equation

pij(2) =Y V(k,i,5) 25 =V(0,5,5) + Y V(k+1,i,j) 2 =

k>0 k>0

=V(0,i,5) +2 ) V(k+1,,5) 2" =

k>0
B . bi; k_
= V(O‘E’J)+22(?}7 > V(k,u.v))z =
k>0 By G

7

+( fck—+zaa+2b,5)wk ]

(4.6)

(4.7)

(4.8)

(4.9)



= V(0,i,5) +2 2 Y (ZV(“U ):

€ BuyCCj “k>0

(0,1,})+Z_“‘ Z Tpu v(z)

% Bu,cc;

Therefore, one can estimate ¥; j(z) by solving the linear system

¢fj( ) V(O 353)"_3 Z wuv (410)

o B CC;

Finally, the power series of B(k,1, ) satisfies the equation

0ii(z) = B(k,i,j) 2" = B(0,i,j) +z Y _ B(k+1,i,5) 2" =

k>0 k>0
= B(0,1,7)+ '
3 bi; bi; = s =
= Y=tk —t
et ( 5 ot (-Taki Fat Sh)vins)]) -
k>0 Bicc; ‘ =0 9 =1 B=1
5.\ 2
= : Jif .
_B(O,z,j)+z|: Z (c) wii(z)+
Bi;jcc; ~ 7

+ D, ( ) ( jf,c:c—+2ao,+2b.ﬁ)¢”( )} (4.11)

Bi; CC; k=0 a=1

As we know the values 1;;(z) from (4.10), one can obtain ¢; ;(z) from the linear
equation (4.11). '
Finally, we obtain v(z) explicitly by

1(z) =) Ap* =Z:(_/::::Tk(x)p(:z:)dm)zk

k>0 k>0
- ;kzm(/ e T*(z p(a:)da:)
_ %:pij g(/ﬁ J:Tk(:x)d:r:) % = %:p,-j ey, (4.12)

The spectral density function of X; is given by

1

fX(/\) = m ['Y(ei,\) - & 7(8_i‘\) == E(X;Z)] ) for any AE (-ﬂ.i "T]: (413)



where Var(X:) = B(X?) — [E(X¢)]? and 7(z) is given by the expression (4.12).

Remark: The power series 7(z) is an analytic function on the unit disc
{z € C|| z||< 1} and the expression (4.13) has the meaning of the radial limit

lim re'* = e = z.
r—1

In this sense, the series

Ze"“"z,‘z?{e( 1 )-—120, for A#0,

1 — ei
ned

even though the series ), .5 €™ A does not converge. We are using this fact in the expres-
sion (4.13) above.
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