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Abstract: The purpose of this paper is to show explicitly the spectral
density of the stationary stochastic process determined by the map F,
(a is a parameter in (0, 1)), the random variable ¢(z,y) = z and the invariant
probability » described below.

We first define the transformation Ty, : [0,1] — [0,1] given by

z, if 0<z<a
Tulz) =
dama) if @<z<l,

where « € (0,1) is a constant. The map T, describes a model for a particle
(or the probability of a certain kind of element in a given population) that
moves around, in discrete time, in the interval [0, 1].

The map F, is defined from K = ([0, 1] x (0,)) U ([0, a] X [a,1]) to itself
and it is given by F,(z,y) = (Tu(z), Ga(z,y)), for (z,y) € K where

ay , 0<a<a
Ga(ﬁh?)_{ﬂ_i_('i—?a)y , a<z<l.

The spectral density function of the stationary process with probability
v (invariant and absolutely continuous measure with respect to the Lebesgue

measure)
Zi = Xi+ & = $(Iy(Xo, Yo)) + &, for teZ,
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where (Xo,Y5) € R? and {¢},.7 is a white noise process, will be given
explicitly (see Theorem 1 in Section 3) by
2 2
g _ 1

120) = fx (V435 =l +1(e ™) =px 01435, forall A€ (-7,

where 7 is given by the last equality in (2.13) at Proposition 5.
We will show the consistency of the periodogram in this situation. We
shall also estimate the parameter o based on a time series.

Keywords: Spectral density; chaotic time series; dynamical system; pe-
riodogram.

1. INTRODUCTION

We shall present a complete spectral analysis of the stationary stochastic
process

Zy = Xi+€ = ¢5(F;(-Tosyo))+§t = ¢(Fo (X1, Yimy)+&, for t€Z, (1.1)

where ¢(z,y) = z is a random variable, {; is a white noise process, and F,
is a transformation defined below.

The map Fy is defined from K = ([0,1] x (0,«))U ([0, a] X [a, 1]) to itself
and it is given by F,(z,y) = (Ta(z),Galz,y)) where the transformation
Ta: [0,1] — [0,1] is defined by

2 if 0<z<a
Talz)=
de=e) §f a<a<l, (1.2)

with e € (0,1) as a constant, and

C' _ ay 3 0§T<a’
70(:"":?)_ a_i_(l.i_?.)y y QS:LSI (13)

The graph of the map T, is shown in Figure 1. The action of the difeomor-
phism F, is presented in Figure 2. The transformation F, is a modification
of the well known Baker transformation.
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The map T, describes a model for a particle that moves around in the
interval [0,1]. If the particle is at position @, then after a unit of time it
jumps to T,(z) and so on. According to the model considered here suppose
the spatial position of the particle is T%(z) = X¢, t € N, in the interval [0,1].
If the particle X, is in the interval [0, @), it has a uniformly spread possibility
to jump to any point X4 in [0,1]. However, if it is in the interval [a, 1) it
has a uniformly spread possibility to jump to any point X;4; in the interval
[0, @).

We are primarily interested in the map T,, but for defining the spectral
density we need a bijective map. Therefore, we have to consider F,, the
natural extension of T, (Bogomolny and Carioli (1995)).

The difeomorphism F, leaves invariant (see definition in Lopes and Lopes
(1995)) an ergodic probability » on K C R?, absolutely continuous with
respect to the Lebesgue measure, that will be described in Section 3.

Choosing a point (zg, o) at random, according to the Lebesgue measure
(or according to r), the spectral properties of the process Z; will be analyzed.

ore precisely, we shall present explicitly the analytic expression of the
spectral densily function of such stochastic process (see Section 3). )

We refer the reader to Lopes and Lopes (1995) for general definitions
and more detailed explanations for the context of the class of problems we
consider here.

In Section 2, we present the basic results for a map T, that are used in
Section 3 for obtaining results for the map F,. In the appendix, we show the
consistency of the periodogram in the model considered here.

The main result of this paper, the expression for the spectral density of
F,, 1s presented in Theorem 1 in Section 3.

The explicit expression of the spectral density function (as obtained here)
of a stochastic process allows one to analyze the efficiency of a given numerical
method for estimating the spectrum, based on the closeness of the estimation
obtained from the method compared to the true spectral density function.

We also estimate the parameter « at the end of Section 2.

We refer the reader to Lopes and Lopes (1995) whenever definitions are
used on this paper.

2. THE AUTOCORRELATION FUNCTION

Before considering the transformation F,, we will need to consider the
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transformation 7.

Let the transformation 7, : [0,1] — [0,1] be given as in (1.2), where
a € (0,1) is a constant. The derivativeof To(z) at zisa=1/aif 0 <2z < «a
and b=af/l —aifa<z <1

One observes that a is always greater than 1, however b <1 & a < 1/2
and b > 1 & a > 1/2. The transformation T, is an expansive map (see
Robinson (1995)) when o > 1/2. It is easy to show that when o < 1/2, T2
is an expansive map.

We will be interested here in finding the invariant measure g absolutely
continuous with respect to the Lebesgue measure (see Parry and Pollicott
(1990); Robinson (1995); Ruelle (1978)) and also in analyzing the autocor-
relation function associated with the stationary stochastic process (7%, ).

First we shall find the invariant measure for the transformation 7,. The
transformation 7}, has an invariant absolutely continuous measure p with
respect to the Lebesgue measure, if and only if, the Ruelle-Perron-Frobenius
equation is satisfied (see Parry and Pollicott (1990); Ruelle (1978)), that is,

if there exists a density function g(z) such that

)= ¥ sla)ms

z:g(z)=y

and dpu = g(x)dz. The above equation implies that if 0 < y < & then

9(y) = g(ml)T’—(l:c_l_) 2 g(mZ)T_’(%;)”’

for0<z<a<az;<1,and il @« <y <1 then
1
g =g(a1)=———, for0 <: ’
9(y) = g( I)Té(-‘rl)’ or0 <z <

Therefore, the Ruelle-Perron-I'robenius equation in this situation is given
by

Tres

and

9(y) =ag(ry), 0<z; <aanda<y<l (2.2)
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One considers the following density function

{;‘(21_—&), if I<z<a

L, il agz<Ll (2.3)

For the above guess of the density function, it is easy to see that equations
n (2.2) hold.

Therefore, the Ruelle-Perron-Frobenius equations are satisfied and the
density function g(z) given in expression (2.3) defines an invariant measure
p such that, for any Borel set A, u(A) = [, g(z)dz.

Consider in the sequel the following notation

2 and d= 1

When T is expansive the measure y is an ergodic one (see Parry and
Pollicott (1990)). Hence, the measure p given by the expression (2.3) is an
ergodic measure (applying the last statement for T, or T72). .

In an analogous way as in Lopes and Lopes (1995), consider F, : K — K
(K will be defined later), the natural extension of T, (see Bogomolny and
Carioli (1995)). We shall give the explicit expression for the spectral density
function of the stationary stochastic process F'! = X, the random variable
#(z,y) = @ and a measure v that will be defined later.

The reason to consider F,(x,y) and not T, (x) in our reasoning is because
F, is a bijective map while 7, is not.

Consider now the stationary stochastic process given by (1.1), where
{&t},c7 is a noise process. For simplicity of the exposition we suppose
& ~ N(0,02), for any t € Z, that is, a Gaussian white noise process. We
assume that {(Xi,Y:)},z and {{},c7 are uncorrelated processes.

Define the autocorrelation function of order k of the process {X.},. 7 by

N COU(X(,X:.H;) =
px(k) = =
\/I/(IT(Xg)VGT(JX’b{_k)

_ BEXug(Fa(X0, Yi))] — B(X) El$(Fa(X0, Yo))] _
VVar(X)Var[¢(F5(X,, Y2))]




_ E(zT%(2)) — E(?) (2.6)
o Var(z) .

Our goal is to derive the spectral density function of the process {X:},.7

fX(,\)=—2—1— Y exp—ikApx(k), forany A€ (~m,m]
T

k==c0

Hence, one needs to derive the autocorrelation function, px(k), defined above.

By abuse of the notation, we shall denote ¢(z) = @ and ¢(z,y) = = by
the same letter ¢.

In an analogous way as in Lopes and Lopes (1995; Section 2), we will show
that for positive k the autocorrelation function of order k of the dynamical
systems (Fa(z,y), ¢(z,y),v) and (T,(z), ¢(2), i) are the same. For negative
values of k the autocorrelation function of order k of Fj, is equal to the
corresponding autocorrelation function of positive lag k of (Ty, ¢, t). These
properties will be described in Section 2.

There is no meaning for the autocorrelation function of 7, at negative
lag k because T} is not an invertible map.

First one needs three technical propositions involving the transformation
Th

The following proposition gives a characterization of the k-th iterated of
the transformation 7, (z) by a recursive formula.

PROPOSITION 1: The k-th iterated of the transformation Ty(z) given
by the expression (1.2) is defined by

T2 (;—:), if 0<z<a
THz) = (2.7)
T2 (82), i agesl,

1-a

for any integer k < 2.

PROOF: The proof is given by an induction in k. First one wants to
show that the expression (2.7) holds for k = 2 knowing that



Since T? = Id, by using the recurrence formula when & = 2 one has

T;(g), if 0<z<a

Ta(z) =
=y i aLz<l.
We know that
I
1 (e P PR : 5
T“(a)_a—aﬁ’ if 0<a<cx,
that is,
x x
T;(a)-—ai', if 0§$<a2
or
(Y(—'—CI’) 9
T T — T
@) et e,
a l—ao l -« o
that is,
Aol =T’ if a<z<a
Therefore, we have
Z, if 0<2<a?
TXz)={ =2, if o*<z<a

= if ezl

Y



Hence, the recurrence formula holds for £ = 2. Suppose now that (2.7) holds
for k. One wants to show it also holds for k£ + 1. Suppose 0 < & < a. Then,

TH(z) = TA(Ta(e)) = T4 (Z).

Ifa <z <1 then

THe) = THE() = TH( )

l—-«
o (n() = (5),

since a(z — a)/(1 — @) < a whenever z € [0,1]. Therelore,

Tj(i), if 0<z<a
TH(m)={ ° |
T;“l(;i:—:-), if a<z<l1

and the proposition is proved.
PROPOSITION 2: The integral
1
Alk) = f T*(z)da
0
satisfies the recursive equation

A(k) = aA(k — 1)+ (1 — a)A(k — 2), (2.8)

for any integer k > 2, with initial values A(0) = 1/2 and A(l) =
(2 — a)a/2.

PROOF: IFFrom Proposition 1 one has, for any integer k£ > 2,

1 o 1 =
AR = [ Te)do = [ T:—*(E)JHL T:'z(f—_—Z)dx.
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By changing the variable z to y = x/a in the first and the variable z to
z = (z — a)/(1 — @) in the second above integrals one has

A(R) = [ TE @ady+ [ TEH(2)(1~a)dz = aA(k—1)+(1— @) A(k—2),

for any integer k > 2. So, the equation (2.8) holds. Now one observes that

A©) = [ Te)de = [ wda =

and

AQl) = ]DIT;(:c)dm:/n“%d:wfa'a(“’h“)dx:

¢, @ (1 . 02+ 2)

= — —_——— —dt gt ) =

2 l1—al\2 2
o a /1 a? a o o

= — SR A iy [l M A = —(2 —
2+1—a(2 a+2) 5 gl —a=gl2—a)

The proposition is proved.
PROPOSITION 3: The integral

B = [ aT¥a)de

0

satisfies the recursive equation

B(k) = &*B(k —1) + (1 — a)?B(k — 2) + a(1 — a) A(k — 2), (2.9)

for any integer k > 2, with initial values B(0) = 1/3 and B(l) =
(1+a)(2—a)a/b.

PROOF: From Proposition 1, for any integer k > 2,

1 o | —
B(k):fn ij(m)dm=/n ng-‘(g)da:+L mTj_z(T_:)d:z:.




By changing the variable z to ¥y = z/a in the first and the variable = to
z = (2 — a)/(1 — &) in the second above integrals one has

Bt) = [ ayTiwady + [ (1~ ) +alTi )1 - a)dz =
= af /01 yTE (y)dy + (1 — a)? j: 2TF2(2)dz +
+ a(l —a) /01 T5%(2)dz = *B(k— 1) + (1 — a)*B(k — 2) +
+ ol —a)A(k—2),

for any integer k > 2. So, the equation (2.9) holds. The initial values are
given by

2 1
BO) = [ T2l = [ sde =3

and
B{l) = /l:rT’('L)d'c—_/a"rfdr%-_/lta(m_a)d —
“Jo % ~h T« ” l — o =
_ 02+ fat (1 a o o:3)_
B Pl T i S T
o o
= — 2_ 3N
3 +6(1— )( a4+ a”)
& W ! &
T =2 i _
3 6(0: + a ) 6(2—i—a: a”) 6(1+0¢](2 a).

And the proposition is proved.
From Propositions 2 and 3 we shall derive the autocorrelation function
px(k), k = 0, of the process {X:},.I\y-

PROPOSITION 4: Let { X}, be the stationary stochastic process given
in (2.5). The autocorrelation function of order k of the process {X.},.N
defined in expression (2.6) is given by

ar Yy mk 1+a—a? 2
i o E[X,THX,)] - (5=2)
Px - (o —a+1)(a?—5a+5) ?
12(2—a)?

(2.10)
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where E[X,T*(X,)], denoted by C(k), is given by the three term relation
C(k) = o® ¢ B(k—=1)+(1—a)*d B(k=2)+a(l—a)d A(k-2), (2.11)

for any integer k > 2, with A(k) given by (2.8), B(k) given by (2.9) and the
constants ¢ and d are defined in the expression (2.4). Moreover, the initial
values C'(0) and C(1) are given by

_1+a’-a°

CO) =35

=a(4—oz—arz)

and C(1) 62 —a)

PROOF: From the stationarity of the process {Xt}:el\h one observes that
B(X,) = B(Xuss) = B(TH(X.))
and
Var(X;) = Var(Xyx) = Var(THX,)).
The expected value of the process {X,}, .y is given by
1 o 1
E(X:) = fo adp(z) = c/o xdx + dfﬂ zdz =

a? 1 — a? _1+a—a2

%(2-a)  22—a) 202-a)

The second moment of the process {X:}, .y is given by

2§ o 1
E(X?) = fo 22du(z) = ¢ fg 2?dz + d /ﬂ *dy =
o? 1-ad _1+a2—a3

32-a) 1 32-a) 3@-a)

Hence, the variance of the process {X;}, .y is given by

14+ a?—-a® 1+ o—ca? 2_*

3(2—a) “(2w—a))‘

at =60+ 11a* = 10a+5 (@ —a+1)(a? —5a +5)
12(2 — a)? - 12(2 — )2 '

Var(X) = B(X?)~ [E(X)] =

11



The autocorrelation function of order k of the process {X;}, 1y is defined
in (2.6) where E[X; T¥(X,)] is given by

(k) = EXTHX)= [ | oTH()du(z) =
= ¢ [) " 2T (z)dz + d f ' 2TH(z)dz =

_ * k-1 T y k_2(:r:—-a)
= o |} (a)da:-!-d/a o5 (222 do.

The last above equality is due to Proposition 1. By changing the variable
to ¥y = =/ in the first and variable @ to z = (2 — a)/(1 — @) in the second
above integrals one has

1 1
Ctk) = ¢ ]D ayT 1 (y)ady + d ]0 (1 = @)z + a)T*2(2)(1 — a)dz =
1 1
= caQL YT (y)dy + d(1 — a«z)/ 2TF2(2)dz +
0

1
+ daf(l -—rx)/ T (2)dz =
0
= a*eBk=1)+(1-a)*dB(k—-2)+a(l —a)dA(k - 2),
for any integer k > 2, where A(k) is given by (2.8), B(k) is given by (2.9)

and the constants ¢ and d by (2.4). Hence, the expression (2.11) holds.
One observes that the initial values for C'(k) are given by

1
c) = /0 eT(x)du(z) 2_/013?2@*("9) -
_14a?-0®

o 1 3 d
27, By o, 3 Sope o
cjorcd:1+d/ﬂa,(fm-—c + —(1 - a?)

Il

33 32 — )
and
1 o 1
Cc(l) = /ﬂ 2Ty (z)dp(z) = ¢ A aTo(z)dz+d | 2Ts(z)de =
SO T .
= cfa mad:r:—i-d/a:z.crl_adm—
_ 2a—c*—a’+2a _afd—a-ao?)
B 6(2 — @) T 6(2—-a)

12



and the Proposition is proved.

From (2.10) we still need to know the quantity C'(k) in order to give the
autocorrelation function py (k) of the process {X:}, 7. One can equivalently
describe the quantities A(k), B(k) and C(k) by the following power series

o(z) = S A(k)2*, U(2) =3 B(k)z* and 4(2) = Y C(k)z". (2.12)

k>0 k>0 k>0

PROPOSITION 5: The power series for A(k), B(k) and C(k) as in

expression (2.12) are given, respectively, by
_ 1+ oz(l —a)
W) = AR+l -5

2 —az(a? + a—2) + 6a(1 — a)2?p(z)

Y(z) = 6[1 — o2z — (1 — )27 and
2 - z — —ﬂ‘2
7(z) = L -:5(22-{;(;)(2 “ :
& [az +2(1P-aa) z }w(z) i+ 0(12‘:?;)3 o(z). (2.13)

PROOF: From Proposition 2 one has the recursive formula for A(k), for
any integer k > 2, and the two initial values. Hence,

p(z) = A0)+ A1)z + Y [aA(k —1) + (1 - a)A(k - 2)]s* =

= A0)+ Az + 0 Y Ak = 1)2* + (1 - ) Y Ak - 2)2* =
k>2 k22
- % +5(2 = @)z + azle(z) — AO)] + (1 - a)%p(z) =
1 a
= 5 4 %z(Q —a) + azp(z) — —23 + (1 — a)2%p(z).
Therefore,
e 1+ az—a’z _ 1+ az(l —«a)
p(z) = M-—az—(1-a)z? 21l-az+1l-2)

13



And the first equality in (2.13) holds.
To prove the second equality in (2.13) one considers the recursive formula

for B(k), for any integer k > 2, with two initial values given in Proposition

3. Hence,
P(z) =

+

Therefore,

¥(2)

3" B(k)z* = B(0) + B(1)z + Y _[e*B(k—1) +

k>0 k>2

(1—a)*B(k—2) + a(l — a)A(k —2)]z* = B(0) + B(1)z +

a2 B(k—1)2"+(1-a)? Y Bk —2)z* +

k>2 k>2
a(l—a);Ack—z)z*= S+ Sa(l +a)2 - a)+
a’zip(z) — i (1 — a)22%h(2) + a(1 — @)22¢p(2).

3

2+ a(l +a)(2—a)z—2a’2 4 6a(l — a)z’p(z) _
6(1 — a?z — (1 — a)?2?] -
2 — az(a® + a —2) + 6a(l — a)z%p(2)
6[1 — a?z — (1 — a)?2?] '

And the second equality in (2.13) holds. To prove the third equality in (2.13)
one considers the recursive formula for C'(k), for any integer k > 2, with two
initial values given in Proposition 4. Hence,

wWz) = Y, C(k) )2¥ = C(0 )-!-C(l)z-i-Zach(k—l)zk-{-

k>0 k>2
+ Y.(1—a)*d B(k—2)+a(l —a)d A(k —2)z* =
k>2

l14e?—-a®  od—a—a?)z

C(0) +C(1)z+a%cd B(k—1)z" + (1 —a)’d Y B(k — 2)z* +

k>2 k>2

a(l — cr)dz A(k - 2)2" =

k>2

32—a) | 62-a)

+ a’c z[p(z) — B(0)] +

14



+ (1 —0a)’d 2Y(2) + a(l — a)d 2%p(z) =

b | T RO, | 1
_ 21+’ —a’)+ad—a—a )z+agcz'¢’)(z)~—azcz+
6(2 — @) 3

+ (1 —a)d 2(2) + a1 — a)d 2%p(z) =

_ 21+’ —a®)+az2—a—a?) az-}-(l—a)zz?] e
6(2 — ) +l 2—a ¥(z) +

a(l —a)z?

g

Therefore,

20:2(1 —a)+2+cez(2—0:—a2)
e = 6(2 - a)

(e + (1 = @)5*)(2) + (1 = )22(2)].

+

22—«

Hence, the proposition is proved.
Note that the estimation of a for the stationary stochastic process (1.1)
can be obtained from Proposition 4. This follows from the fact that

a(4 — a —a?)
6(2 — a)

=o(t)= [ e T2)du(z).

Considering a times series {Z;}/V, and using the Birkhoff’s Ergodic The-
orem one can estimate o by solving the equation

; 143 &(4 — & — &%)

C(l) = W Z lef-i"l —= m)——m,
t=1

in the variable &.

15



3. THE SPECTRAL DENSITY FUNCTION

In this section we shall use the results for T}, obtained in the previous
section for the map F,.

Now we define the natural extension F, of the transformation 7. Con-
sider the transformation I, : K — K, where K = ([0,1] x (0,a)) U ([0, a] x
[a,1]), given by Fy(z,y) = (Tu(z), Galz,y)) where Go(,y) is defined by
(1.2).

One observes that I, is a homeomorphism of K and F} is of the form
Fe(=,y) = (T3(2), Gan(z, ),

that is, the action of F, in the first variable is just the action of T,.

Now we shall define the F,-invariant measure » on K, absolutely contin-
uous with respect to the Lebesgue measure dzdy.

For sets of the form A; x A,, where A; C (0,a) and A; C (a,1) or
A1 C (1) and Ay C (0,a), we define v(A; x Az) = (2 — o) u(Ar) u(As).

For sets of the form A, x Ay, where 4; C (0,a) and A, C (0,«), we
define v(A; X Az) = (2 — a) a u(A)) u(A,).

It is not difficult to see that v is invariant for F, and is absolutely con-
tinuous with respect to the Lebesgue measure. The measure v satisfies
v(A x (0,1)) = p(A), when A C (0,e) and v(A x (0,e)) = p(A), when
AC (a,1).

THEOREM 1: The spectral density function of the process
Zy =X+ & = ¢(Iy(Xo, Yo)) + &, for t € Z,

s given by

1 - - o?

S bre™) +2(e™) = px(0)] + 55, (214)

f2(3) = 5

for any A € (—m, 7], where v(2) is given by the third equality in expression

(2.13) of Proposition 5. The point (Xo,Ys) is chosen randomly according to
the measure v (or according to the Lebesque measure).

16



PROOF: The integral of v with respect to any function H that depends
only on the z variable is such that

/ H(z)dv(z,y) = / H(z)dp(z). (2.15)

One ‘observes that ¢(z,y) = x is a random variable and F, : K — K
defines a stationary stochastic process X; = ¢(F%(Xo, Yo)) with respect to
the invariant probability v defined above.

From the expression (2.15) and for any positive t € N,

/cgﬁ(F’(r,J Yo(z,y)dv(z,y) /¢ (Ti(z))p(x)dp(z).

For any positive ¢ € N (that is, when —¢ is negative)

/z,ﬁ(F;E(.'c,y)) z,y)dv(z,y) /qﬁ (z,9)d(Fi(z,y))dv(z,y)

because v is invariant for F,. Therefore, from (2.15) and for any positive
teN

[ #F @) o, v)dv(a,y) = [ 4(T4()d(w)du(a). (216)

The conclusion is that the autocorrelation coefficients C'(t) = C(—t),
t € N of the stochastic process given by the random variable ¢(z,y) = z, the
transformation F, and the probability v can be obtained from the autocor-
relation coefficients obtained previously for the stochastic process given by
the random variable ¢(z) = z, the transformation T, and the probability p.
The spectral density function of the process {X;}, 7 is given by

1 o0

fxN) =57 3 eml-ik\ox(k) 20

for all A € (—m, ] (see Brockwell and Davis (1987)). Therefore, the spectral
density function of the process (1.1) is (see (2.16)

2

f20) = Fx (V455 = s tr(e™)—px O+ 25, forall A € (—,),
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where « is explicitly given by the expression (2.13) in Proposition 5.

From Parry and Pollicott (1990) it is known that py (k) decays exponen-
tially to zero, hence fx()) is an analytic function for any A € (—7, 7).

We can also analyze alternatively fz(u), v € (—1,1) when u = ;‘:- We
shall use this notation in the appendix. If px(k) = px(—#k) (as in the present
case), one just needs to consider fz(u), u € (0,1), because fz(u) = fz(—u).

APPENDIX. THE CONSISTENCY OF THE PERIODOGRAM

We analyze in this section the periodogram for (¢,7,) (or for (¢, F,)).
Our purpose here is to show how to obtain an approximation of the spectral
measure fx(u) from a time series data X, = T%(Xy), for t € {1,---,N},
where Xj is chosen at random according to the measure u (or according to
the Lebesgue measure). We can alternatively estimate

> E(XoXn) exp(—2mwihu),

h=-00

with X, = ¢(F"(z,y)) and from this result estimate the spectral measure
fx(u). By abuse of the notation we shall also call the above expression as
the spectral measure.

Note that as the random variable ¢(z,y) depends only on z (for positive
t, p(F(z,y)) = T(z) independently of y) we shall consider the periodogram
for T, instead of Fj,.

In fact, the proof presented here works for any expansive map 7', any
Holder random variable ¢ and the ergodic absolutely continuous invariant
probability u for T. We leave to the reader the extension of the reasoning
below to such case.

Consider the transformation T, : [0,1] — [0, 1], where a € (0,1), given
by (1.2). The map T, (or T?) is an expanding one.

We shall assume, for the sake of simplicity, that ¢ is the random variable
¢(2) = x and dp(z) = g(x)dz is the unique ergodic and absolutely continuous
invariant probability for T,.

The goal here is to sketch the proof of the smoothed periodogram’s con-
sistency in the above case. One denotes X; = (¢ o T2)(Xo) = TL(Xo) =
$(FL(Xo,Y0)), and {X,}¥, a time series of N observations where X; is an
initial point chosen randomly according to p. From the Birkhoff’s Ergodic

18



Theorem (y is ergodic for T, ), for each subinterval A; = (a;,b;) C [0,1] and
for p-almost every zo € [0, 1]

u(8)) = [ ga)de = Jim LOG#HE 1S 1S N, Ti(w0) € A,))

¥

If |b; — a;| = € is small and N is large enough, then
1
An(€) = 5 #{t |1 St < N, To(Xo) € Aj}) = g(c;)A; = Bu(e), (2.17)

for some ¢; = ¢j(N) € A;j.

The expression Ay(€) ~ By(e) means that the quotient An(€)/Bn(€)
goes to one when N goes to infinity and € goes to zero.

Consider the discrete Fourier transform of the spatial position of the data
obtained as the sampled time series X; = T}(X,), for 1 <t < N,

f(k) = m ZA, exp(—iwyt),

where wy, = 2rkN~1 k =1,2,--. N, are the so-called the Fourier frequencies
of the time series X;, 1 < t < N. The periodogram value I(w;) at the
frequency wy, for

; 2w
kE{}GZ;U«(wj— NJ <21r}

is defined in terms of the discrete Fourier transform f(k) of a sample X, for
1<t< N,by

1 N
Iwe) = f(k [L ZX: exp(—1wgt) ZX exp(iwgs) =
f.=1 s=1
1NN
= LY XX, exp(—ilt - s)ar),
Nt:l s=1

where Z denotes the complex conjugate of z.
For each h € Z consider t and s such that ¢t — s = h. Then,

1-N N

1 [N=1N=h
Hwy) = = (z Z: XsXsyn exp(—ihwy) + Z Z X Xsin exp(— ihwk)) =

N h=0 s=1 h=—1s=-h

19



N—h
X,0(FMX,,Y,)) exp(—ihw)+

-

{4

-

=0 s=1

+ Z Z X (FMX,,Y,)) exp(—ihwy). (2.18)
h——l s==—h
Now if we take A;, 1 < j < v, as a partition by intervals (of the same size)
of the interval [0,1], with |A;| = € = 1/v small, one observes from (2.17) that

X; €A;
#[JTE]“AN(C;'),

where ¢; € Aj, 1 <7 <w.
We shall sum up X; = T3(Xo) = ¢(F3(Xo, ¥o)) according to its position
in each A;. Hence,

Ajgle;)N = #{s |1 £s < N, X, € Aj}.

Then, from (2.18)

I(wy) ~ N > Zc: o (3> ¥i))(A; 9(c;)N) exp(—ihwy) =
|h|<N j=1

= ¥ ZCJ FMejyi) g(c;) A exp(—ihwy). (2.19)

|h|<N 1=1

We shall show that for any Xy chosen at random, then 2,‘?:, I(wi )b,
converges in the distribution sense to the spectral density function

z E(XoX4) exp(—2m2hu)
heZ

, where 4, is the Dirac delta function concentrated at the frequency wy,
1 < k < N. Hence, we will show that for any test function z(u), u € [0, 1],

/0 " sl (kz:; I(wk)é'wk)
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converges to

]01 z(u) (Z E(XoX») exp(—?vrihu)) du

heZ

when N goes to infinity.
By integrating the smoothed periodogram against a test function z(u),

u € [0,1], and using (2.19)

llm lim Zf(wk) (;:r) =

—'00 U=+

2wk k

= lim lim ij(z ch (c;,9;)9(c;) A, exp(-zh——)) (ﬁ) -

— — 00
Newi® [h|<N j=1

_/[

—j (ZE XoXn) exp(— 2mhu)) z(u)du. (2.20)
heZ

(/ z ¢(F(z, J))g(:n)dx) exp(—?.’:rihu)] z(u)du =

hEZ

Therefore, the smoothed periodogram converges in distribution sense to the
spectral density function.

The property considered above in (2.20) describes a method for obtaining
a good approximation to the spectral density function, This method will be
explained below.

Consider z(u) = Ijp—er+q(u) for a fixed z and a small fixed e.

From the reasoning described before, for such z(x), (2¢)~' S8, I(wi)z(k/N)
is approximately equal to

N-1
> E(XoXy) exp(—2mihu),

h=1-N

if N is large and e small enough.
Considering now several z;(t) = Ijz;~cz+¢ (), Where z; are equally spaced,

[t1 — €6, z1+€)U [22 — 6,2+ €)U ..U [z, — €, Ty + €]



is a partition of [0,1] and applying the same reasoning to each z;(u), we
obtain the approximate shape of the graph of

N-1
> E(XoXy) exp(—2nihu) , u€|[0,1],
h=1-N

as a function of u.
From the above expression, one can derive the approximate graph of the

spectral density fx(u) or fz(u). |
The proceeding just described above is called smoothing the data (see

Brockwell and Davis (1987)). For instance, if one takes a large sample 7' (o),
for 1 <t < 10,000, the periodogram is given by

N N
I(wi) = N7' ) X, exp(—iwgt) Z X, exp(iwgs) =

i=1 s=1

N N
=N7! z X X; exp(—i(t — s)wy)

t=1 s=1

and one can plot this real function in the interval (0, 27| as a function of wy.
This graph will show a sparse amount of data, but if one takes a partition
of the interval in small intervals and takes means of this data in each small
interval (also called smoothing the data), then the graph of a well defined
spectral density
> BE(XoXy) exp(=2mihu)
h=—0c0

as described in this section will be obtained.
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