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Abstract: The purpose of this paper is to show explicitly the spectral 
density of the sta.tionary stochastic process determined by the map Fa 
(ais a parameter in (0, 1) ), the random variable ifJ(x, y) = x a.nd the invariant 
probability v described below. 

We first define the transformation Ta : [0, 1] ~ [O, 1] given by 

Ta(x) = 
{ 

=-ex' 

cx(x- cx) 
l - ex ' 

if O~ x <a 

if a~ x ~ 1, 

where a E (0, 1) is a constant. The map Ta describes a model for a parti ele 
( or the probability of a certain kind of elemcnt in a given population) that 
moves around, in discrele time, in the interval [0, 1]. 

The map Fa is defined from ]( = ([0, 1] x (0, a)) U ([O, a] x [a, 1]) to itself 
and it is given by Fa(x,y) = (To-(x),Go-(x,y)), for (x,y) E f( where 

G { ay , O~ x <a 
o-( X, y) = a+ e~er) y ' a~ X ~ 1. 

The spectral density function of the stationary process with probability 
v (invarian t and absolutely continuous measure with respect to the Lebesgue 
measure) 
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where (X0 , Yo) E R 2 anel {Çt} teZ is a white noise process, will be given 
explicitly (see Theorem 1 in Sect.ion 3) by 

where ·, is given by the last equa.lity in (2.13) a.t Proposition 5. 
vVe will show the consistency of the perioelogra.m in this situation. We 

shall also estimate the parameter a baseel on a t ime series. 

Keywords: Spectral elensity; chaotic time series; dyna.mical system; pe
rioelogra.m. 

I. INTRODUCTION 

We sha.ll present a complete spcctral ana.lysis of the stationary stochastic 
process 

where </>(x, y) = x is a ranelom variable, ( 1 is a white noise process, anel F01 

is a transforma.tion elefineel belo""· 
The map F01 is elefined from f( = ([0, 1] x (0, a)) U ([O, a] x [a, 1]) to itself 

anel it is given by F01 (x,y) = (Ta(x),G01 (x,y)) where the t ra.nsformation 
T01 : (0, 1] ---+ (0, 1] is elefineel by 

T01 (X) = 
{ 

E 
a' 

a( x-a) 
l-01 ) 

if 0 ~X < O' 

i[ O' ~ X ~ 1, 

wi th a E (0,1) as a constant , anel 

{ 
ay , O~ x <a 

Ga(x,y) = a+ (1~01 ) y , O'~ X~ 1. 

(1.2) 

(1.3) 

The graph of the map T01 is shown in Figure 1. The action of the difeomor
phism Fa is presented in Figure 2. The transformal.ion F01 is a modification 
of the well known Baker t ransformation. 
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The map Te. describes a model for a pa.rticle that moves a.round in the 
interva.l [0,1]. If the particle is a.t position x, then after a unit of time it 
jumps to Tc.(x) a.nd so on. According to the moelel consielereel here suppose 
the spatial position of the pa.rticle is T~(x) = Xt, tE N, in the interva.l [0,1]. 
If the particle Xt is in the interval [O, a), it ha.s a uniformly spreael possibility 
to jump to a.ny point Xt+l in [0,1] . However, if it is in the interval [a, 1) it 
ha.s a·uniformly spread possibility to jump to any point Xt+l in the interval 
[O, a). 

' We are prima.rily interesteel in the rnap Ta, but for elefining the spectra.l 
elensity we need a bijective rnap. Therefore, we have to consieler Fa, the 
nabtml extension of Te. (Bogomolny anel Carioli (1995)). 

The elifeornorphism Fcr leaves invariant (see elefinition in Lopes anel Lopes 
(1995)) an ergoelic proba.bility v on f( C R 2

, a.bsolutely continuous with 
respect to the Lebesgue measure, that will be elescribeel in Section 3. 

' Choosing a point (x0 , y0 ) at ranclom, a.ccoreling to the Lebesgue rnea.sure 
(<;>r a.ccorcling to 11), the spectral properties o f the process Zt will be analyzeel. 

ore precisely, we shall present explicitly the analytic expression of the 
spectral density function of such stocha.stic process (see Section 3). 

We refer the reaeler to Lopes anel Lopes (1995) for general definitions 
anel more eletaileel explanations for thc context of the class of problems we 
consieler here. 

In Scction 2, we present the basic results for a map Ta that are useel in 
Section 3 for obtaining results for the map Fcr. In the appenelix, we show the 
consistency of the perioelogram in the model considered here. 

' The main result of this paper, the expression for the spectral elensity of 
Fa, is presenteel in Theorem 1 in Section 3. 

The explicit expression of the spectral density function (as obtained here) 
of a stochastic process allows one to analyze the efficiency of a given numerical 
methoel for estirnating the spectrum, baseel on the closeness of the estirnation 
obtained from the methoel compareci to the true spectral elensity function. 

We also estimate the parameter a at the enel o[ Section 2. 
We refer the reaeler to Lopes anel Lopes (1995) whenever definitions are 

useel on this paper. 

2. THE AUTOCORRELATION FUNCTION 

Before consielering Lhe transformation Fcr we will neeel to consider the 
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transformation T01 • 

Let the transformation To- : [0, 1] -t [0,1] be given as in (1.2), where 
a E (0, 1) is a constant. The derivative of T01 (x) at xis a= 1/a if O:::; x <a 
and b = a/1 - a if a :::; x :::; 1. 

One observes that {f is always greater than 1, however b :::; 1 <* a :::; 1/2 
and b > 1 <* a > 1/2. The transformation To- is an expansive map (see 
Robinson (1995)) when a > 1/2. It is easy to show that when a < 1/2, T~ . . 
ts an expanstve map. 

Vve will be interestecl here in finding Lhe invariant measure J.l absolutely 
continuous with respect to the Lebesgue measure (see Parry anel Pollicott 
(1990); Robinson (1995); Ruelle (1978)) anel also in analyzing the autocor
relation function associatecl with the stationary stochastic process (T~,ft). 

First we shall ·finei the invariant measure for the transformation To- . The 
transformation T01 has an invariant absolutely continuous measure !L with 
respect to the Lebesgue measure, if and only if, the Ruelle-Perron-Frobenius 
equation is satisfied (see Parry and Pollicott (1990); Ruelle (1978)), that is, 
if there exists a density function g(x) such that 

1 
g(y) = L g(x)T'(x) 

x:g(x)=y cr • 

a nel df.L = g(x)dx. The above equation implies that if O:::; y <a then 

1 1 
g(y) = g(xi)T'( ) + g(x2)T'( ) , o- X t o- X2 

for O :::; x1 <a< x2 :::; 1, anel if a:::; y:::; 1 then 

1 
g(y) = g(xt)T' ( ·)' forO:::;x1 <a. 

a Xt 

Therefore, the Ruelle-Perron-Frobenius equation in th is s.ituation is given 
by 

anel 

g(y) = ag(xt), O:::; x 1 <a anel a:::; y:::; 1. (2.2) 
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One considers the following density function 

{ 

a(La)' 

g(x) = 
1 

2-a' 

jf Ü ::::; X < 0: 

jf 0: ::::; X ::::; 1. (2.3) 

For the above guess of the density function, it is easy Lo see that equations 
in (2.2) hold. 

Therefore, the Ruelle-Perron-Frobenius equations are satisned and the 
density function g(x) given in expression (2.3) defines an invariant measure 
J.L such that, for any Borel setA, J.L(A) = JA g(x)dx. 

Consider in the sequei the following notation 

1 
c = ---

a:(2- a:) 
and 

1 
d=--. 

2-a: 
(2.4) 

When T is expansive the measure Jt is an ergodic one (see Parry and 
Pollicott (1990)) . Hence, the measure J.L given by the expression (2.3) is an 
ergodic rneasure ( applying the last statement for Ta or r;;). 

In an analogous way as in Lopes and Lopes (1995), consider Fa : f( -+ ]( 

(K will be defined ]ater), the natuml extension of Ta (see Bogomolny and 
Carioli (1995)). We shall give the explicit expression for the spectral density 
function of the stationary stochastic process F~ = Xt, the random variable 
<P(x,y) = x anel a measure 11 that will be denned later. 

The reason to consider F,y( x, y) and not Ta( x) in our reasoning is beca use 
Fa is a bijective map while Ta is not. 

Consider now the stationary slochastic process given by (1.1), where 
{Çt} teZ is a noise process. For simplicity of the exposition we suppose 
Çt "' N(O, <Ji), for any t E Z, that is, a Gaussian white noise process. We 
assume that { (Xt, Yt)} teZ and { Çt} teZ are uncorrelated processes. 

Define the autocorrelation function o f order k of the process { Xt} teZ by 

px(k) = Cov(Xt,Xt+k) 
Jvar(Xt)Var(Xt+k) 

E[Xt<P(F:(Xt , Yt))]- E(Xt)E [<P(F:(x~, Yt))J 
- Jvar(Xt)Var[<P(F!(Xt, Yt))] 

= 
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E(xT~(x))- E(x2
) 

Va1·(x) 
(2.6) 

Ou r goal is to derive the spectral densi ty function of the process { Xt} teZ 

1 00 

/x(À) = 
2

11" I: exp -ikÀpx(k), for any À E (- ?r, 1r]. 
k=-oo 

Hence, one needs to derive the autocorrelation function, px(k), defined above. 
By abuse of the notation, we shall denote <P(x) = x anel <P(x, y) = x by 

the same letter 4>. 
In an ana.logous way as in Lopes anel Lopes (1995i Section 2), we will show 

that for positive k the au tocorrelation function of order k of the dynamical 
systems (Fa(x,y),4>(x,y),v) anel (Ta(x),cp(x),!t) are the same. For negative 
values of k the autocorrelation function of order k o[ Fa is equal to the 
corresponding autocorrelation function of positive lag k of (Ta, 4>, ft). These 
properties will be described in Section 2. 

There is no meaning for the autocorrelation function of Ta at negative 
lag k because Ta is not an invertible map. 

First one needs three technical propositions involving the transformation 
Ta. 

The following proposition gives a characterization of the k-th iterated of 
the transformation Ta( x) by a recursive formula. 

PROPOSITION 1: The k-th iterated o f the transformation Ta(x) given 
by the expression (1 .2} is defined by 

! 
T k-1 (~) 

(X (X ' 

T~(x) = 
Tk- 2 (x-ex) 

ex 1-cx ' 

if O~ x <a 

(2.7) 

ij O' ~ X ~ 1, 

for any integer k ~ 2. 

PROOF: The proof is given by an induction in k. First one wants to 
show that the expression (2. 7) holds for k = 2 knowing that 
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X i f O~ x < a2 
a2' 

r;(x) = 
X-0'2 i f a2 ~ x <a 1-Ct , 

x- a i f a ~ x$1. 1- Ct' 

Since T2 = I d, by using the recurrence formula when k = 2 one has 

r;(x) = 

Vve know that 

r~(:) 
that is, 

o r 

that is , 

Therefore, we have 

{ ~~.(~ ), i[ O$x<a 

i f a~x~l. 1- Ct' 

~ 
~ 

a 
X 

- 2, a 

X 
a2 , 

i f 
X 

O :::; - < a, 
a 

i f 
X 

a~- ~ 1, 
a 

x-a
2 if a 2 _< x < a 1-Ct , 

x - Ct jf a ~ X _< 1. 
1 - et' 
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Hence, the recurrence formula holds for k = 2. Suppose now that (2. 7) holds 
for k. One wants to show it also holds for k + 1. Suppose O ~ x < a. Then, 

r:+1 (x) = r:(Ta(x)) =r;(~)· 

If a ~ x ~ 1 then 

r:+l(x) = r:(ra(:l;)) = r:CYiT,_-aa) ) = 
r;-t (Ta( aiT,--aa))) = r;- 1 

(; = :) , 
since a(x - a)/(1 - a) ~ a whenever x E [O, l ]. Therefore, 

and the proposition is proved. 

PROPOSITION 2: The integral 

if O$ x <a 

if a$ x ~ 1 

A(k) = fo1 

T!(x)dx 

satisfies the recursive equation 

A(k) = aA(k- 1) + (1 - a)A(k - 2), (2.8) 

for any integer k ~ 2, with initial values A(O) - 1/2 and A(l) = 

(2- a)a/2. 

PROOF: From Proposition 1 one has, for any integer k ~ 2, 
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By changing the variable x to y = xja in the first and the variable x to 
z = (x- a)/(1 - a) in the second above integrais one ha.s 

for a!ly integer k ~ 2. So, the cquation (2.8) holds. Now one observes that 

A(O) = T2(x)dx = xdx = -11 11 1 
o o 2 

and 

A(l) 

The proposition is proved. 

PROPOSITION 3: The integral 

B(k) = h1 

xTí(x)dx 

satisfies the recursive eqttation 

·B(k) = a 2 B(k - 1) + (1- a)2 B(k- 2) + a(l- a)A(k- 2) , (2.9) 

for any integer k ~ 2} with initial values B(O) = 1/3 and B(l) = 
(1 + a)(2 - a)a/6. 

PROOF: From Proposition 1, for any integer k ~ 2, 

B(k) = fo1 xT;(x)dx = locx ;t:r;-1 (~)d:z: + [
1 

xr;-2 (~ = :)dx. 
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By changing the variable x to y = x/ex in the first and the variable x to 
z = (x- ex)/(1 -ex) in the second above integrais one has 

B(k) - fo
1 

exyr;-1(y)ady + fo
1 
[z(l- ex)+ a]r;-2(z)(1 - ex)dz = 

a? foi vr:-1(y)dy + (1- ex? fol zr;- 2(z)dz + 

+ ex(1 - ex) 11 

r;-2(z) dz = ex2 B(k - 1) + (1- ex) 2 B(k- 2) + 
+ ex(1 - ex)A(k - 2), 

for any integer k 2: 2. So, the equation (2.9) holds. The initial values are 
given by 

rl ri 1 
B(O) =lo xT~(x)dx =lo x

2
dx = "3 

and 

B(1) 11 J l a x 11 ex(x- a) xTa(x)dx = x-dx + x dx = 
o o a a 1-a 

_ a2 +_a_(~ _ =: _ a3 + a3) = 
3 l-a 3 2 3 2 
2 

~ + 6(1 ~ex) (2- 3a + a3) = 

2 

- ~ - ~ (a2 +a - 2) = ~(2 + a - a 2
) = ~ (1 + ex)(2- ex). 

And the proposition is proved. 
From Propositions 2 and 3 we shall derive the autocorrelation function 

px(k), k 2: O, of the process {XtlteN· 

PROPOSITION 4: Let {Xt} tEN be the stationary stochastic process given 
in (2 .5) . The autocorrelation function o f order k o f the process {Xt} tEN 
defined in expression (2. 6} is given by 

(2.10) 
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where E [XtT;(Xt )J, denoted by C(k), is given by lhe three term relation 

C(k) = ci c B(k-1)+(1-ald B(k-2)+a(1-a)d A(k-2), (2.11) 

for any integer k ;::: 2, with A(k) given by (2.8}, B(k) given by {2.9) and the 
constants c and d are defined in the expression {2.4}. Moreover, the initial 
values C(O) and C(1) are given by 

C(0)= 1+a2-a3 and C(l)=a(4-a - a2) . 
3(2 - a) 6(2- a) 

PRO O F : From the stationa.rity of the process { Xt} teN, one observes that 

E(Xt) = E(Xt+k) := E(T;(Xt)) 

and 
Var(Xt) = Var(Xt+k) = Var(T;(Xt)) . 

The expectecl value of the process {Xt} teN is given by 

- h1 

xdjt(x) =c ha xdx + d l 1 

xdx = 

a2 1 - a 2 1 + a - a 2 

- --+ = - - - -
2a(2- a) 2(2- a) 2(2- a) 

The second moment of the process {Xt}teN is given by 

E(Xt) fo1 

X
2([ft(x) = c foCl x2dx + d l 1 

x 2dx = 

a 2 1 - a 3 1 + a 2 
- a 3 

- -- + = --,------,-----
3(2- a) 3(2 - a) 3(2- a) 

Hence, the variance of the process {Xt} teN is given by 

Var(Xt) E(X2) _ [E(Xt)]2 = 1 +a -a _ 1 +a- a 2 3 ( 2)2 
t 3(2 - a) 2(2 - a) 

a 4
- 6a3 + lla:2

- lüa + 5 (a2
- a+ l)(a2 - 5a + 5) 

12(2- a)2 12(2- a)2 
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The autocorrelation function of order k of t hc process {Xt} tEN is defined 

in (2.6) where E[Xt T~(Xt)] is given by 

C(k) _ E[Xt r;(Xt)] = 11 

xT;(x)d11-(x) = 

c l a xT!(x)dx + d 11 

xT!(x)dx = 

{a k-t(x) {1 
k-2(x - a)d c lo xTa a dx + d la xTa 1 _a x. 

The last above equality is due to Proposition 1. By changing the variable x 
to y =x/ a in the first and va.riable x to z = (x- a)/(1- a) in the second 
above integrais one has 

C(k) c 11 

ayr;-1 (y)ady + d 11 

((1- a)z + a)r;-2(z)(1- a)dz = 

- ca2 fo1 

vr;-1(y)dy + d(1- a 2
) la1 

zr;-2(z)dz + 

+ da(!- a) 11 r;-2(z)dz = 

a 2 cB(k - 1) + (1- a) 2 d B(k- 2) + o (1- a) d A(k- 2), 

for any integer k ~ 2, where A(k) is given by (2.8), B(k) is given by (2.9) 
and the constants c and d by (2A). Hence, the expression (2.11) holds. 

One observes that t he ini tial values for C(k) are given by 

and 

C(l) la1 

xT~(x)cl11-(x) =c foa xTa(x)clx + d 11 

xTa(x)dx = 

- c ro. x:.dx + d e xa (x-a) dx = 
lo a lo. 1 -a 

2a - o 3 
- a 2 + 2a a( 4 - a - a 2

) 

6(2- a) 6(2- a) 
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and the Proposition is proved. 
From (2.10) we still need to know the quantity C(k) in order to give the 

autocorrelation function px(k) o[ the process {Xt}tEZ · One can equivalently 
describe the quantities A(k), B(k) and C(k) by the following power series 

cp(z) = L A(k)z\ W(z) =L B(k)zk and 1(z) = L C(k)zk. (2.12) 
k>O k>O 

PROPOSITION 5: The power series for A(k) , B(k) and C(k) as in 
expression (2.12) are given, respectively, by 

cp(z) 
1 + az(1- a) 

2[(1- a)z + 1](1 - z)' 

'if;(z) 
2- az(a2 +a- 2) + 6a(1 - a)z2cp(z) 

and -
6[1 - a2z- (1 - a)2z2] 

!(z) -
2a2(1- a)+ 2 + az(2- a- a2

) 
- + 6(2- a) 

+ [az + ~1--aa)
2

z
2

] 'if;(z) +a(~-=-;z
2 

cp(z). (2.13) 

PROOF: Frorn Proposition 2 one has the recursive formula for A(k), for 
any integer k ~ 2, and the two initial values. Hence, 

cp(z) - A(O) + A(1)z + L [aA(k - 1) + (1 - a)A(k- 2)]zk = 
k?_2 

- A(O) + A(1)z +a L A(k- 1)zk + (1 - a) L A(k - 2)zk = 
k~2 k>2 

1 a - 2 + 2(2- a)z + az[cp(z)- A(O)] + (1 - a)z2cp(z ) = 

1 a az 
-
2 

+ ?z(2- a)+ azcp(z) - - + (1- a)z2cp(z). 
~ 2 

Therefore, 

() 
1+az - a2z 

cp z = 
2[1 - az - (1 - a)z2] 

1 + az(l- a) 
2[(1- a)z + 1](1- z) · 
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And the first equality in (2.13) holds. 
To prove the second equality in (2.13) one considers the recursive formula 

for B(k), for any integer k 2:: 2, with two initia.l values given in Proposition 

3. Hence, 

'1/J( z ) 2: B(k)zk = B(O) + B(1)z + 2:[a2 B(k- 1) + 
k~O k~2 

+ (1- a? B(k- 2) + a(l - a)A(k- 2)]zk = B(O) + B(1)z + 

+ a2 'L: B(k- l)zk + (1- a)2 L B(k- 2)zk + 
k~2 k~2 

+ a(l- a) 'L: A(k- 2)zk = ~ + ~ z(l + a)(2- a)+ 
k~2 

a2z 
+ a2z'lj;(z)- T + (1 - a)2z2'1j;(z) + a(1- a)z2cp(z) . 

Therefore, 

'1/J(z) -
2 + a(l + a)(2- a)z- 2a2 z + 6a(l - a)z2cp(z) 

6[1- a2z- (1- a)2z2J 

2- az(a2 +a- 2) + 6a(l- a)z2cp(z) 
6[1- a 2z- (1- a)2z2] 

-

And the second equa.lity in (2.13) holds. To prove the third equality in (2.13) 
one considers the recursive formula for C(k), for any integer k 2:: 2, with two 
initial values given in Proposition 4. I-Ience, 

1(z) = L C(k)zk = C(O) + C(l )z +L a2cB(k- 1)zk + 
k~O k~2 

+ 2:(1 - a)2d B(k- 2) + a(1- a)d A(k- 2)zk = 
k~2 

C(O) + C(1)z + a2c L B(k- 1)zk + (1 - a)2d L B(k- 2)zk + 
k~2 k~2 

+ a(l- a)d L A(k - 2)zk = 

1 + a 2
- a3 a(4- a - a 2)z 2 

3(2- a) + 6(2- a) +a c z['!fJ(z) - B(O)] + 

14 



2(1 +o? - o:3 ) + o:( 4 - o:- o:
2
)z + 2 .!.( ) 1 2 + _ o: c z1p z - -

3 
a c z 

6(2- o:) 

+ (1- o:)2d z2 '1j;(z) + o:(1- o:)d z2<p(z) = 

_ 2(1 + o:2
- o:3 ) + az(2- o:- o:

2
) + [o:z + (1 - o:)2z

2
] '1/J(z) + 

6(2-o:) 2-o: 

o:(l - o:)z2 
( ) + <p z . 

2-o: 

Therefore, 

'Y(z) 

Hence, the proposition is proved. 
Note that the estimation o[ o: for the stationary stochastic process (1.1) 

can be obtained from Proposition 4. This follows from the fact that 

o:(4- 0:- o:2) { 1 o 

6(2 _o:) = C(l) =lo XT0 (x)df.L(x). 

Considering a times series { Zt}~ 1 and using the Birkhoff's Ergodic The
orem one can estimate o: by solving the equation 

1 N-1 .(A A •2) 
A 0:~ - o:-o: 

C(l) = N ~ ZtZt+l = 6(2 _ &) , 

in Lhe variable &. 
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3. THE SPECTRAL DENSITY FUNCTION 

In this section we shall use the results for Ta obtained in the previous 
section for the map Fa . 

N ow we define the natural extension F a of the transformation Ta. Con
sider the transformation Fa: f( -t K, where ]( = ([0, 1] x (0, a)) U ([0, a] x 
[a,l}), given by Fa(x,y) = (Ta(x),Ga(x,y)) where Ga(x ,y) is definecl by 
(1.2) . 

One observes that Fcx is a homeomorphism of 1( anel F;: is of the form 

F;:(x, y) = (T;:(x), Ga,n(x, y)), 

that is, the action of Fcx in the first variable is just the action of Ta. 
Now we shall define the F0 -invariant measure 11 on ](, absolutely contin

uous with respect to the Lebesgue measure dxdy . 
For sets of the form A1 x A2 , where A1 C (0, a) anel A2 C (a, 1) or 

A1 C (a, 1) a.ncl A2 C (0, a), we define v(A1 x A2) == (2 - a) J-t(AI) fl(A2). 
For sets of the form A1 x A2, where A1 C (0, a) anel A2 C (0, a), we 

define 11(At x A2) = (2- a) a p(AI) fl(A2)· ' 
It is not difficult to see that v is invariant for Fa and is absolutely con

t inuous with respect to the Lebesgue measure. The measure v satisfies 
v( A x (0, 1)) = f-t(A), when A C (0, a) anel v( A x (0, a)) = p(A), when 
A c(a,l). 

THEOREM 1: The spectral densíty fun ction of lhe process 

is given by 

1 ~ ~ ~ 
fz(À) = -

2 
b(e' ) + 1(e- ' ) - Px(O)] + ?' 

~ ~~ 
(2.14) 

for any À E ( -~, 1r L where 1( z) is given by the third equality in expression 
(2.13) of Proposition 5. The point (Xo, Yo) is chosen randomly according to 
the measure v (or according to lhe Lebesgue measure) . 
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PROOF: The integral of v with respect to any function H that depends 
only on the x variable is such that 

f H(x)dv(x,y) =f H(x)dlt(~;). (2.15) 

One ·observes that <f>(x, y) = x is a random variable and Fa : J( -t ]( 

defines a stationary stochastic process Xt = </>(F!(X0 , Yo)) with respect to 
the invariant probability 11 defined above. 

From the expression (2.15) anel for any positive tE N , 

For any positive tE N (that is , when - t is negative) 

f </>(F;'(x,y))rp(x,y)dl;(x,y) =f </>(x,y)</>(F~(x,y))dv(x,y) 
because v is invariant for Fa. Therefore, from (2.15) and for any positivé 
tE N 

f rp(F;t(x, y ))</>(x, y)dv(x, y) =f </>(T~(x ))rp(x )dJ-l(x ). (2.16) 

The conclusion is that the autocorrelation coefficients C(t) - C( -t), 
tE N of the stochastic process given by the random variable </>(x, y) = x, the 
transformation Fa and the probability v can be obtained from the autocor
relation coefficients obtained previously for the stochastic process given by 
the random variable </>(x) = x, the transformation Ta and the probability 1-l· 

The spectral density function of the process { Xt} tEZ is given by 

1 00 

fx(>-.) = 
2

7r L exp( -ik>-.)px(k) ;::: O, 
k=-oo 

for ali ).. E ( -1r, 1r] (see Brockwcll and Davis (1987)). Therefore, the spectral 
density function of the process (1.1) is (see (2.16) 
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where 1 is explicitly given by the expression (2.13) in Proposition 5. 
From Parry anel Poll.icott (1990) it is known that px(k) decays exponen

tially to zero, hence f x ()..) is an analytic function for any ).. E ( -71', 7l']. 
We can also analyze alternatively fz(u), u E ( -1,1) when u = ~· We 

shall use this notation in the appendix. If px(k) = px( - k) (as in the present 
case), one just needs to consider fz(tt), u E (0, 1), because fz(u) = fz( -u). 

APPENDIX. THE CONSISTENCY OF THE PERIODOGRAM 

We analyze in this section the periodogram for (</>,Ta) (or for (</>,Fa)). 
Our purpose here is to show how to obtain an approximation of the spectral 
measure fx(tt) from a time series data Xt = T~(Xo), for t E {1, · · · ,N}, 
where X 0 is chosen at randorn according to the measure fL ( or according to 
the Lebesgue measure). V1le can alternatively estirnate 

00 

2::: E(XoXh) exp( -27l'ihu), 
h=- oo 

with Xh = </>(Fj:(x, y )) anel from this result estimate the spect ral measur~ 
fx(u). By abuse of the notation we shall also cal! the above expression as 
the spectral measure. 

Note that as the randorn variable <f>(x,y) depeneis only on x (for positive 
t, </>(F~(x,y)) = T~(x) independentlyofy) weshall considertheperiodogram 
for Ta instead of Fa. 

In fact, the proof presented here works for any expansive map T, any 
Holder random variable </> anel the ergodic absolutely continuous invariant 
probability J.L for T. VI/e leave to the reader the extension of the reasoning 
below to such case. 

Consider the transformation Ta : [0, 1] ---+ [O, 1], where o: E (0, 1), given 
by (1.2). The map Ta (or r;) is an expanding one. 

vVe shall assume, for the sake of simplicity, that </> is the random variable 
</>( x) = x anel clp,( x) = g( x )clx is the uni que ergodic anel absolutely continuous 
invariant probability for Ta. 

The goal here is to sketch the proof o f the smoothed periodogram 's con
sistency in the above case. One denotes Xt = (<I> o T~)(X0 ) = T~(Xo) = 
c/l(F~(X0 , Yo)), anel {Xt}~1 a time series of N observations where X 0 is an 
initial point chosen randomly according to JL. From the Birkhoff's Ergodic 
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Theorem (J.L is ergodic for Ta), for each subinterval !::li= (ai> bj) C [0, 1] and 
for J.t-almost. every x0 E [0, 1] 

lt(!::li) = j g(x)dx = lim Nl (#{t 11:::; t ~ N,T~(xo) E !::li}). 
Ó. j N -oo 

If lbi. - aii = é is small and N is large enough, then 

1 
AN( é) = N ( #{ t 11 ~ t ~ N, T~(Xo) E l::lj }) ~ g( Cj )!::li = BN( é), (2.17) 

for some Cj = cj(N) E l::lj . 
The expression AN( é) ~ BN( é) means that the quotient AN( é)/ BN( é) 

goes to one when N goes to infinity anel é goes to zero. 
Consider the discrete Fourier transform of the spatial position of the data 

obtained as the sampled time series Xt = T~(X0 ), for 1 ~ t:::; N, 

l N 
f(k) = ITr l:Xt exp(- iwkt), 

vN t=I 

where wk = 21rkN- 1
, k = 1, 2, · · · , N, are the so-called the Fourier f requencies 

of t.he time series Xt, 1 ~ t ~ N . The periodogram value I(wk ) at the 
frequency wk, for 

k E {;· E Z· O< w · = 
2
1rj < 21r} 

' J N - ' 

is defined in terms of the discre te Fourier transform f( k) of a sample Xt, for 
1 ~ t:::; N, by 

___ 1 N N 
I(wk) = f(k).f(k) = N l:Xt exp(-iwkt) ,LXs exp(iwks) = 

t= l s=l 

~ 'ttx,Xs exp(-i(t- s)wk), 
t=l s=l 

where z denotes the complex conjugate of z . 
For each h E Z consider t and s such that t - s = h. Then, 
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1 N-1 N- h 
= N L L X.,<f>(Fj;(Xs, Ys)) exp( -ihwk)+ 

h=O s=l 
1 1-N N 

+ N L L Xs</>(Fj;(Xs, Ys)) exp( -ihwk). (2.18) 
h= -1 3=-h 

Now.if we take l:lj, 1 :5 j :5 v, as a partition by intervals (of the same size) 
of the interval [0,1], with ll:lil =e = 1/v small, one observes from (2.17) that 

\vhere Cj E l:lj, 1 :5 j :5 v. 
We shall sum up Xs = T~(Xo) = <f>(F~(Xo, Yo)) according to its position 

in each !:li. Hence, 

Then, from (2.18) 

I (wk) ~ ~ L t Cj </>(F/;(cj, Yi))(6.i g(cj)N) exp( - ihwk) = 
lhi<N j=l 

v 

L L Ci </>(Fj;(ci,Yi))g(cj) 6.j exp(-ihwk). 
lhi<N i=l 

(2.19) 

We shall show that for any X 0 chosen at random, then L:f=l I(wk )bwk 
converges in the clistribution sense to the spectral density function 

L E(XoXh) exp( - 27rihu) 
~teZ 

, where bwk is the Dirac delta function concentra.ted at the frequency Wk, 

1 :5 k :5 N . Hence, we will show that for any test fun ction z(u), u E [O, 1], 

f.' z{ tt )d (f 1 ( w, )6.,) 
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converges to 

when N goes to infinity. 
By integrating the smoothed periodogram against a test function z( u ), 

u E [0 , 1], anel using (2.19) 

= fo1 (L E(XoXh) exp( -27rihu)) z(u)du. 
!teZ 

(2.20) 

Therefore, the smoothed perioclogram converges in clistribution sense to the 
spectral density function. 

The property considered above in (2.20) clescribes a method for obtaining 
a good approximation to the spectral density function. This method will be 
explained below. 

Consicler z(u) = I[x-l,x+l](u) for a fixed x anel a small fixed €. 

From the reasoning described before, for such z( u ), (2Et1 I:f=1 I(wk)z( k/ N) 
is approximately equal to 

N -1 

L E(XoXh) exp( -21rihu), 
h=l - N 

if N is large anel é small enough. 
Considering now several z;( tt) = I[:&;-l,x;+l) ( tt), where x; are equally spaced, 
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is a partition of [O, 1) and applying the sarne reasoning to each zi(u), we 
obtain the approxirnate shape of the graph of 

N-1 

L E(Xo Xh) exp( -27ri hu) , u E [O, 1], 
h=l-N 

as a function of u. 
From the above expression, one can derive the approximate graph of the 

spectral density fx(u) or fz(u). 
The proceeding just described above is called smoothing the data (see 

Brockwell and Davis (1987)). For instance, if one takes a large sarnple T~(xo) , 
for 1 ~ t ~ 10, 000, the periodogram is given by 

N N 
I(wk) = N-1 L: X1 exp(-iwkt) L: Xs exp(iwks) = 

t=l s=l 

N N 

= N-1 LLXsXt exp(-i(t- s)wk) 
t=l s=l 

and one can plot this real fund ion in the interval (0, 21r] as a function of Wk. 

This graph will show a sparse amount of data, but if one takes a partition 
of the interval in small intervals anel takes means of this data in each small 
interval ( also called smoothing lhe data), then the graph of a well denned 
spectral density 

00 

L E(XoX~t) exp( -21rihu) 
h=- oo 

as described in this section will be obta.ined. 
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