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A theory is presented to account for the increase in surface tension of water in the presence of
electrolyte. Unlike the original ‘‘grand-canonical’’ calculation of Onsager and Samaras, which
relied on the Gibbs adsorption isotherm and led to a result which could only be expressed as an
infinite series, our approach is ‘‘canonical’’ and produces an analytic formula for the excess surface
tension. For small concentrations of electrolyte, our result reduces to the Onsager–Samaras limiting
law. © 2000 American Institute of Physics.@S0021-9606~00!50345-6#

I. INTRODUCTION

It has been known for almost a century that aqueous
solutions of inorganic salts have greater surface tension than
pure water.1 An explanation of this effect was advanced by
Wagner2 in 1924 on the the basis of the theory of strong
electrolytes, which was introduced only a year earlier by
Debye and Hu¨ckel.3 The fundamental insight of Wagner was
to realize that the presence of ions polarizes the air–water
interface, inducing an effective surface charge. Since the di-
electric constant of water is significantly larger than that of
air, each ion’s image charge equals it in sign and magnitude.
Thus, the repulsive interaction with the imagesreducesthe
density of electrolyte near the interface. Appealing to the
Gibbs adsorption isotherm,4 it is evident that the depletion of
solute near the interface results in anincreaseof surface
tension. Furthermore, the experimental observation that for
small concentrations this increase depends only weakly on
the ionic size1,5–8 suggests the existence of a universal lim-
iting law, similar to the one obtained by Debye and Hu¨ckel
for bulk properties of electrolyte solutions.3 Indeed, the cal-
culation of Onsager and Samaras~OS! seems to confirm such
a limiting law.9 A number of approximations adopted by OS
in the course of calculations, however, obscure the full range
of validity of their findings.

To check the thermodynamic consistency of the OS re-
sults it is, therefore, worthwhile to explore other routes to
surface tension. In the absence of an exact calculation, these
will provide a way to assess the self-consistency of the for-
mulas obtained. To this end, we propose a new approach for
calculating the increase in interfacial tension of water due to
1:1 electrolyte. Our method differs from that of OS—who
integrated the Gibbs adsorption isotherm—in that we iden-
tify the excess surface tension directly with the Helmholtz
free energy necessary to create an interface. The advantage
of this approach is that it allows the writing of an analytic
formula for the excess surface tension. This should be con-
trasted with the method of OS, who were able to express
their result only as an infinite sum. Nevertheless, in the limit
of large dilution our expression reduces to that of OS, sug-

gesting that the limiting law is, indeed, exact. The paper is
organized as follows: in Sec. II we briefly review the ther-
modynamics of interfaces and the relationship between the
canonical and the grand-canonical routes to surface tension;
in Sec. III we outline the OS theory and present our calcu-
lations; the results and conclusions are summarized in
Sec. IV.

II. THERMODYNAMICS OF INTERFACES

Consider anr component mixture confined to volumeV.
The system is in contact with a hypothetical reservoir of
solute particles at temperatureT and chemical potentialm i ,
with $ i 51,...,r %. If the periodic boundary conditions are im-
posed onV, at equilibrium, the system will have$Ni% par-
ticles uniformly distributed throughout the volume.

On the other hand, ifV forms part of a larger system, its
domain must be delimited by an interface. We shall idealize
this interface as a mathematical surface—the Gibbs dividing
surface for solvent. The discontinuity produced by the inter-
face will affect the interactions between the particles in its
vicinity. If the interface–particle interaction is repulsive, it
will lead to the depletion of solute from the interfacial re-
gion, forcing it backinto reservoir. On the other hand, if this
interaction is attractive, a concentrated layer of solute will
build up along the interface, producing a net flow of solute
from the reservoir. When the equilibrium is reestablished, the
distribution of solute is no longer uniform, but characterized
by a density profiler i(z), wherez is a distance from the
interface. Clearly, if the system has a thermodynamic limit,
the interface does not influence the bulk distribution of par-
ticles andr i(`)5r i , wherer i5Ni /V. The presence of an
interacting interface, however, is responsible for a net in-
crease or decrease of solute in the system. Thus, we define
the amount of solute ‘‘adsorbed’’ as

Ni
s5E

0

`

~r i~z!2r i !dz. ~1!

Note that this quantity can be either positive or negative
depending on whether the solute enters or leaves the system.a!Electronic mail: levin@if.ufrgs.br
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Now, from general thermodynamic principles, the change in
the total Helmholtz free energy of a system atfixed volume,
temperature, and the amount of solvent, is

dF5s dA1(
i 51

r

m i dNi , ~2!

wheres is the surface tension andA is the area of the inter-
face. We shall now divide the solute particles into the
‘‘bulk’’ Ni

b and the ‘‘surface’’Ni
s . Equation~2! can also be

separated into the bulk

dFb5(
i 51

r

m i dNi
b , ~3!

and the surface contribution

dFs5s dA1(
i 51

r

m i dNi
s . ~4!

SincedFs is an extensive function ofA and$Ni
s%, the Euler’s

theorem for first-order homogeneous functions allows us to
integrate Eq.~4!, yielding

Fs5sA1(
i 51

r

m iNi
s . ~5!

On the other hand, differentiating Eq.~5! and comparing it
with Eq. ~4!, we find a Gibbs–Duhem-type equation

A ds1(
i 51

r

Ni
s dm i50. ~6!

For r 51, this reduces to the Gibbs adsorption isotherm

]s

]mU
T,V

52
Ns

A
. ~7!

Since the thermodynamic stability requiresdm/dr.0,
where r is the concentration of solute, it is evident that a
positive adsorption leads to a decrease in surface tension,
while a negative adsorption increases the surface tension.
This, then, explains Wagner’s original observation that the
repulsion of ions from a polarized air–water interface results
in a depletion of electrolyte and an increase in surface ten-
sion.

Knowledge ofNi
s allows a calculation of the excess sur-

face tension through the integration of Eq.~6!. Following
Wagner, this was the procedure adopted by OS.

The discussion outlined above relies on the presence of a
hypothetical reservoir. In the language of statistical mechan-
ics it is intrinsically grand canonical. A different, canonical
calculation should also be possible. In the thermodynamic
limit, the choice of ensemble will not matter, if anexact
calculation is performed. In practice, however, no exact cal-
culation is possible and approximations have to be made.
Thus, there is noa priori guarantee that the two ensembles
will lead to identical results. The canonical approach, pre-
sented below, is conceptually simpler than its grand-
canonical counterpart, since no reservoir is present. Thus,
when the interactions between the interface and the solute
are turned on, the particles do not leave the systems andNi

s

50. Therefore, canonically the interfacial tension is equiva-

lent to the surface Helmholtz free-energy density,s
5Fs/A. Now, consider a mixture confined to a cylinder of
lengthH and a cross-sectional areaA. DefineF as the total
Helmholtz free energy of solute andFbulk as the free energy
of solute in the absence of an interface. The change in the
surface tension of solvent due to addition of solute is then

sex5 lim
A→`

1

A
lim

H→`

~F2Fbulk!. ~8!

III. THE SURFACE TENSION

We are interested in the surface tension of an interface
between an aqueous solution of a symmetric 1:1 electrolyte
and air. The extension to asymmetric electrolytes is, in prin-
ciple, straightforward. Some extra care, however, has to be
taken to account for the strong correlations between the cat-
ions and the anions, which result from an increased ionic
charge.10,11 In view of the experimental observation that for
small concentrations of electrolyte the excess surface tension
depends only weakly on the ionic size,1,7,8 to simplify the
calculations we shall treat ions as point-like. The solvent will
be modeled as a uniform dielectric medium.

According to statistical mechanics, the concentration of
solute a distancez from the interface is given by the Boltz-
mann distribution

r i~z!5r ie
2bWi ~z!, ~9!

where b51/kBT, and Wi(z) is the adsorption potential of
the speciesi and is defined as the work required to bring a
particle from infinity to distancez from the interface. For
symmetric electrolyteW1(z)5W2(z)[W(z), and r1(z)
5r2(z)[r(z). Now, consider an ion located at distancez
from the interface. If the electrolyte is infinitely dilute, the
electrostatic potential distancer 1 from the ion can be calcu-
lated directly from the Laplace equation

c~r 1 ,r 2!5
q

Dr 1
1

~D2D8!

~D1D8!

q

Dr 2
, ~10!

whereD is the dielectric constant of water,D8 is the dielec-
tric constant of air, andr 2 is the distance from the image
charge located opposite the ion at2z. From the second term
of Eq. ~10!, the charge of the ‘‘image ion’’ isqimage5(D
2D8)q/(D1D8). For an aqueous solution close to room
temperatureD'80 andD8'1, so thatqimage'q. Therefore,
in a perturbative theory,D8/D can play the role of a small
parameter. SinceD@D8, the zeroth-order calculation is al-
ready quite accurate, andD8 can be set to zero. This is the
first approximation proposed by Wagner2 and used by OS.9

In the following discussion we shall also adopt this approxi-
mation. The repulsive force felt by an ion due to the dielec-
tric discontinuity produced by an air–water interface is then

F~z!5
q2

4Dz2 . ~11!

The amount of work required to bring this ion from in-
finity to a distancez from the interface is
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W`~z!52 Èz

F~x!dx5
q2

4Dz
, ~12!

where we have added the subscript` to W(z) to emphasize
that the calculation is done at infinite dilution. Alternatively,
the Güntelberg charging process12 can be used to calculate
the amount of electrostatic work necessary to ‘‘create’’ an
ion of chargeq at distancez from the interface

W`~z!5E
0

1 lq

2Dz
qdl5

q2

4Dz
. ~13!

If the electrolyte is at finite concentration, the electro-
static potential in the vicinity of a fixed ion satisfies the
Debye–Hu¨ckel equation

¹2c5k2c, ~14!

wherek2(z)58pr(z)/DkBT. In order to simplify the cal-
culations, Onsager and Samaras suggested replacingk(z) in
Eq. ~14! by its bulk valuek~`!.9 This certainly seems like a
reasonable thing to do, in view of the fact that for an aqueous
solution at room temperature the boundary layer is very nar-
row and the density profile rapidly approaches its bulk value.
Nevertheless, this approximation introduces some internal
inconsistency into the theory which can, in principle, mani-
fest itself when different thermodynamic routes are taken to
calculate the excess surface tension. To zeroth order inD8/D
and withk(z)→k(`), Eq. ~14! can be integrated,9,13 yield-
ing

c~r 1 ,r 2!5
qe2kr 1

Dr 1
1

qe2kr 2

Dr 2
, ~15!

where, once again,r 1 is the distance from the ion, andr 2 is
the distance from the image charge located at2z. The ad-
sorption potential is obtained through the Gu¨ntelberg charg-
ing process or by direct force integration, producing

W~z!5
q2e22kz

4Dz
. ~16!

The density profile for cations and anions is found by sub-
stituting this expression into Eq.~9!

r6~z!5r expS be22kz

2z D . ~17!

We have definedb as half the Bjerrum length,b5lB/2
5q2/2DkBT. For water at room temperature
b'3.6 Å—comparable to the size of a hydrated ion—and
the density profile rapidly reaches its bulk value. The amount
of solute adsorbed can now be calculated by inserting Eq.
~17! into Eq.~1!. With skillful complex variable analysis, OS
were able to integrate the Gibbs adsorption isotherm, obtain-
ing an expression for the excess surface tension as an infinite
series inkb.9 As was discussed in Sec. II, this procedure
does not conserve the number of particles in the system and
is, intrinsically, grand canonical. We now present an alterna-
tive, canonical, calculation of the excess surface tension.

Let us suppose that the electrolyte is confined to a cyl-
inder of heightH and cross-sectional areaA. If the interface–
ion interactions are neglected~periodic boundary condi-

tions!, the electrolyte will be uniformly distributed over the
volume of the cylinder. In the thermodynamic limit, the elec-
trostatic free energy can be easily calculated from the
Debye–Hu¨ckel theory, yielding

Fbulk52
q2k

3D
Nt , ~18!

whereNt5N11N2 is the total number of solute particles.
On the other hand, the presence of an interface produces a
concentration gradient characterized by thenormalizeddis-
tribution

r6~z!5
N6e2bW~z!

A*0
He2bW~z!dz

. ~19!

Now, suppose we fix an ion some distancez from the inter-
face, far from the radial boundary of the cylinder. The elec-
trostatic potential in the vicinity of this ion is approximately
given by Eq.~15!—where, in view of the thermodynamic
limit of Eq. ~8!, we can neglect the finite size corrections.
Evidently this potential is produced by the ion itself, as well
as by the interface and the ionic atmosphere. The potential
that the ion feels due to polarization of the interface and the
ionic atmosphere is

c0~z!5 lim

r 2→2z

r 1→0
S c~r 1 ,r 2!2

q

Dr 1
D5

2qk

D
1

qe22kz

2Dz
. ~20!

The electrostatic energy is

E5
Aq

2 E
0

H

~r1~z!1r2~z!!c0~z!dz. ~21!

This can be subdivided into the bulk and surface contribu-
tions, corresponding to the first and the second term of Eq.
~20!, respectively. The bulk term is easily integrated, yield-
ing

Eb5
2q2k

2D
Nt . ~22!

The surface contribution is found to be

Es5
q2Nt

4D

E
0

H

exp~22kz2bW~z!!
dz

z

*0
H exp~2bW~z!!dz

. ~23!

Now, in the limit H→` relevant for the calculation of
surface tension

lim
H→`

1

H E
0

H

~e2bW~z!21!dz50, ~24!

and Eq.~23! simplifies to

Es5
Aq2r

2D E
0

`

e22kz2bW~z!
dz

z
. ~25!

Unfortunately, no method is available for analytic evaluation
of this integral. We note, however, that if the adsorption
potential is replaced by its value at infinite dilution,W(z)
→W`(z), the integral can be done explicitly, yielding
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Es5
q2rA

D
K0~2Abk!, ~26!

whereKn(x) is the modified Bessel function of ordern. Re-
placement of the adsorption potential by its value at infinite
dilution should be a good approximation, since the large
distances—for which the discrepancy betweenW(z) and
W`(z) becomes significant—are not important because of
the exponential drop in the electrostatic potential away from
the interface. To confirm this, we have numerically evaluated
the integral

I ~kb!5E
0

`

e22kz2bW~z!
dz

z
, ~27!

and compared it with the exact analytic expression obtained
whenW(z)→W`(z), Fig. 1. As was hoped, the agreement is
indeed quite good, extending all the way toy[kb'0.45. In
water at room temperature, this corresponds to concentration
of 0.15 M, which is above the maximum for which the lim-
iting laws of this paper can be expected to apply realistically.

The electrostaticfree energy can now be obtained
through the Debye charging process, in whichall the par-
ticles are simultaneously charged from zero to their full
charge3,10

F5E
0

1

2E~lq!
dl

l
. ~28!

Note that bothb and k are dependent onq, so thatb(lq)
5l2b(q) and k(lq)5lk(q). The integral can once again
be done explicitly, yielding the electrostatic free energy of an
electrolyte solution in the presence of an interface

F52
q2k

3D
Nt2

Aq2r

2D
@2K0~2Ay! 1F2~1;2/3,5/3;y!

13AyK1~2Ay! 1F2~1;5/3,5/3;y!#. ~29!

Here, pFq is the generalized hypergeometric function14 and
y[bk. Substituting Eq.~29! into Eq. ~8!, the increase in
surface tension of water due to 1:1 electrolyte is,

sex5s0
ex@2K0~2Ay! 1F2~1;2/3,5/3;y!

13AyK1~2Ay! 1F2~1;5/3,5/3;y!#, ~30!

wheres0
ex5q2r/2D. For very low concentrations, this ex-

pression reduces to the limiting law found by OS

s l
ex5s0

ex@2 ln~y!22gE13/2#, ~31!

wheregE50.577 215 664 901 53... is the Euler’s constant.

IV. RESULTS AND DISCUSSION

We have presented a canonical calculation of the excess
surface tension in an electrolyte solution. Unlike the earlier
grand-canonical method of Onsager and Samaras, our ap-
proach leads to an analytic expression for the excess surface
tension expressed in terms of Bessel and hypergeometric
functions. It is gratifying, however, that in spite of all the
approximations, the two ensembles produce the identical
limiting law. This thermodynamic self-consistency suggests
that the OS limiting law is, indeed, exact to zeroth order in
D8/D. In Fig. 2 we plot, as a function of concentration, the
sex Eq. ~30!; the sum of the first 20 terms of the infinite
series for the excess surface tension obtained by OS,9 and the
OS limiting law, Eq.~31!. The surface tensions is measured
in mN•m21 and the concentration of saltc in moles/liter~M!
so that

s0
ex5

69.4692c

D
~mN•m21!,

~32!

y5
420 174 2Ac

~DT!3/2 .

For water at room temperature,D'78.54. We note that both
ensembles agree fairly well over the full range of concentra-
tions, with the canonical calculation predicting a somewhat
larger excess surface tension. In Fig. 1 it was shown that the
substitutionW(z)→W`(z) leads to a good approximation
for the electrostatic energy. To confirm that this also extends
to the free energy, we have performed the Debye charging
process, Eq.~28!, numerically using the explicit form of
W(z), Eq. ~16!. The result is plotted as solid points in Fig. 2.
Indeed, the numerically calculated surface tension agrees
quite well with the analytic result, Eq.~30!, obtained with the
substitutionW(z)→W`(z).

FIG. 1. The solid curve is the numerically evaluated integralI (y), as a
function of y5kb, Eq. ~27!; the dashed curve is the analytic expression
obtained whenW(z)→W`(z); see Eq.~26!.

FIG. 2. The excess surface tension of an aqueous solution of a 1:1 electro-
lyte at room temperature. The solid curve is the analytic expression given by
Eq. ~30!; the long dashed curve is the sum of the first 20 terms of the OS
result~Ref. 9!; the short dashed curve is the Onsager–Samaras limiting law,
Eq. ~31!; the solid points are the result of numerical integration of Eq.~28!
with full W(z).
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It has been noted that the OS theory gives a fairly good
quantitative description for concentrations up to 0.1 M,
above which it consistently underestimates the increase in
the interfacial tension.5–8 The canonical calculation pre-
sented above extends the range of agreement between theory
and experiment. It is, however, unrealistic to demand that the
theory presented above should apply to concentrated solu-
tions, for which even the bulk thermodynamic properties lose
their universality. Thus, for concentrations above 0.2 M, the
molecular nature of the solvent as well as the lyotropic prop-
erties of solute will become important. In fact, it has been
observed experimentally that for concentrated solutions the
excess surface tension increaseslinearly with the concentra-
tion of electrolyte. For an aqueous solution of NaCl atT
525 °C it is found thatsex'1.6c,15 which begins to show
strong deviation from Eq.~30! for c.0.2 M.
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