
J. Chem. Phys. 121, 12100 (2004); https://doi.org/10.1063/1.1824013 121, 12100

© 2004 American Institute of Physics.

Effective charge of colloidal particles
Cite as: J. Chem. Phys. 121, 12100 (2004); https://doi.org/10.1063/1.1824013
Submitted: 23 August 2004 . Accepted: 01 October 2004 . Published Online: 30 November 2004

Alexandre Diehl, and Yan Levin

ARTICLES YOU MAY BE INTERESTED IN

Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory
The Journal of Chemical Physics 80, 5776 (1984); https://doi.org/10.1063/1.446600

Effective charge saturation in colloidal suspensions
The Journal of Chemical Physics 117, 8138 (2002); https://doi.org/10.1063/1.1511507

Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative
Properties
The Journal of Chemical Physics 51, 924 (1969); https://doi.org/10.1063/1.1672157

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519827791&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ec42be1e5157177578ec02e7b63d7170461d1664&location=
https://doi.org/10.1063/1.1824013
https://doi.org/10.1063/1.1824013
https://aip.scitation.org/author/Diehl%2C+Alexandre
https://aip.scitation.org/author/Levin%2C+Yan
https://doi.org/10.1063/1.1824013
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1824013
https://aip.scitation.org/doi/10.1063/1.446600
https://doi.org/10.1063/1.446600
https://aip.scitation.org/doi/10.1063/1.1511507
https://doi.org/10.1063/1.1511507
https://aip.scitation.org/doi/10.1063/1.1672157
https://aip.scitation.org/doi/10.1063/1.1672157
https://doi.org/10.1063/1.1672157


Effective charge of colloidal particles
Alexandre Diehla)

Departamento de Fı´sica, Universidade Federal do Ceara´, Caixa Postal 6030, CEP 60455-760,
Fortaleza, CE, Brazil

Yan Levinb)

Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, CEP 91501-970,
Porto Alegre, RS, Brazil

~Received 23 August 2004; accepted 1 October 2004!

A new dynamical definition of the effective colloidal charge, especially suitable for the Monte Carlo
and Molecular-dynamics simulations, is proposed. It is shown that for aqueous colloidal suspensions
containing monovalent counterions the ‘‘dynamical’’ effective charge agrees perfectly with the
‘‘statistical’’ effective charge calculated using the Alexander prescription. In the case of multivalent
ions, the effective charge behaves in a qualitatively different way from the predictions of the
Poisson–Boltzmann theory. ©2004 American Institute of Physics.@DOI: 10.1063/1.1824013#

I. INTRODUCTION

While the bare charge of a colloidal particle can be eas-
ily measured by chemical methods such as titration, its ef-
fective charge is much more illusive. In the absence of a
specific adsorption, the colloidal charge renormalization
arises from strong electrostatic coupling between the ionized
surface groups and the counterions. A number of dissociated
counterions can re-condense onto the colloidal particle form-
ing a colloid–counterion complex. These complexes behave
as new entities, strongly affecting all the thermodynamic
properties of the colloidal suspension.

The phenomenon of counterion condensation has been
known in the polyelectrolyte literature for close to four de-
cades under the name of the ‘‘Manning condensation.’’1,2 A
quantitative analysis of the charge renormalization in the col-
loidal lattices is comparatively more recent, initiated by the
pioneering work of Alexanderet al. in the early 1980th.3

A major stumbling block to the development of a quan-
titative theory of colloidal charge renormalization is the ab-
sence of an explicit experimental or simulational method to
directly probe the effective colloidal charge. Since the ex-
periments yield quantities other than the effective charge, the
experimental data must be converted into the effective
charges through the use of some theory.4 For example, the
Smoluchowski equation relates the electrophoretic mobility
to the zeta potential at the shear plane of the colloidal par-
ticle. While it is quite reasonable to argue that the Smolu-
chowski equation should be quite accurate for thin double
layers, one must still locate the shear plane, and then use a
different theory to translate the zeta potential into the effec-
tive charge.5 Clearly, reliance on a number of different theo-
ries in order to extract the effective charge, makes it very
difficult to judge the accuracy of the final result.

Similarly, up to now the Monte Carlo and molecular-
dynamics simulations provided only an indirect route to the

effective colloidal charge.6–8 While from the simulations it is
relatively straightforward to obtain the thermodynamic
functions,9 it is much more tricky to translate these into the
effective charges. For example, the osmotic pressure is a
natural barometer of the degree of counterion
condensation.10 Unfortunately, it is in general quite difficult
to write an expression for the osmotic pressure in terms of
the renormalized charge.11–17 One must then rely on some
subjective measure of the effective charge based on the
colloid–counterion correlation functions.18–20

It is the goal of this paper to begin to rectify this situa-
tion. Specifically, for salt free suspensions, we shall propose
a general criterion which allows a straightforward calculation
of the effective charge using either the molecular dynamics
or the Monte Carlo simulations.

II. COUNTERION ASSOCIATION
AND SIMULATION METHODOLOGY

A. The model

We shall work in the context of the Wigner–Seitz cell
model ~WS! of a colloidal lattice. A colloidal particle of ra-
diusa and chargeZ is located at the center of a spherical cell
of radiusR. To preserve the overall charge neutrality, the cell
also contains counterions of radiusac52 Å. The solvent is
treated as a uniform continuum of a dielectric constante. In
this paper we shall explore two distinctCases: ~1! The cell
contains only monovalent counterions and~2! the cell con-
tains multivalent counterions. In conclusions, we will discuss
a more generalCase~3! of the the cell containing both coun-
terions and coions.

To start the discussion of colloidal charge renormaliza-
tion we first consider theCase~1!. Our objective is to come
up with a general criterion which would allow us to clearly
define when the counterions are associated~condensed! with
the colloid. Mechanically, association is easily seen from the
dynamics of particle trajectories. If, in the absence of exter-
nal fields, the particle trajectories are confined to a finite
volume~in the center of mass coordinate system!, we can say
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that the particles belong to a bound state, or are ‘‘associ-
ated.’’ For a two body system, the criterion for association is
particularly simple. It is sufficient that the total energy of the
system~kinetic plus potential! be negative. Unfortunately,
this criterion already breaks down for a three body problem.
Thus, if we consider a classical Helium atom—two electrons
~of charge2q) orbiting a nucleus of charge12q—and start
with a initial condition such that the total energyE is nega-
tive, in general this does not guarantee that the atom will not
ionize in a fairly short time.21,22 On the other hand, statisti-
cally there seems to be a fairly clear distinction between the
condensed and the free counterions. In the case of an aque-
ous colloidal suspension with monovalent counterions there
is a ‘‘natural’’ way of defining the effective colloidal charge
by asymptotically matching the exact electrostatic potential
to the solution of the linearized Poisson–Boltzmann~PB!
equation, this is known as the Alexander prescription.3,23,24

The Alexander prescription is particularly straight for-
ward to use for aqueous suspensions with monovalent coun-
terions, since in this case the correlations between the coun-
terions are negligible and the Poisson–Boltzmann WS cell
theory is very accurate.25,26The asymptotic match of the nu-
merical solution of the nonlinear PB equation with the lin-
earized equation, then determines the effective colloidal
charge. The Alexandre prescription, however, is difficult to
implement directly within the Monte Carlo or molecular-
dynamics simulations since, in practice, there is never suffi-
cient accuracy to do a reliable match. Furthermore, since for
multivalent counterions~or low dielectric solvents! the ion–
ion correlations become important, the PB equation breaks
down and up to now there was no reliable prescription for
obtaining the effective colloidal charge.

The fact that statistically the effective charge is a well
defined quantity, suggest that in the limit of large number of
counterions there should also exist a dynamical prescription
for charge renormalization. The simplest such criterion might
be to suppose a linear relationship between the kinetic and
the electrostatic potential energies of the condensed counte-
rions. We shall, therefore, assume a counterion to be associ-
ated with the colloid if

U<2xK, ~1!

whereK5p2/2m is the kinetic energy of the counterion,U is
its electrostatic energy, andx is a proportionality factor. At
this point, Eq.~1! is only a proposition. Whether it correctly
describes the counterions condensation will depend on its
ability to reproduce the charge renormalization obtained us-
ing the statistical Alexander prescription.

B. Simulation method

The implementation of Eq.~1! within the molecular-
dynamics simulation is quite straight forward and will not be
addressed in this article. Here we shall restrict our attention
to the Monte Carlo~MC! method. The simulation procedure
adopted in this case is the following. A MC simulation is run
during 1253107 MC steps until the system is equilibrated.
To each ion of the equilibrium configuration is then assigned
a momentum vectorp5(px ,py ,pz), with the componentpi

drawn from the normalized Boltzmann distribution

P~pi !5
e2 pi

2/2mkBT

A2pmkBT
, ~2!

wherekB is the Boltzmann constant andT is the temperature.
The number associated counterionsn! in this configuration
is then determined using the criterion~1!. The simulation is
continued for another 1253106 MC steps to decorrelate the
configurations and the number of condensed counterions is
calculated again. The average number of condensed counte-
rions n̄! is calculated using the block average with 10 uncor-
related configurations. The effective colloidal charge is then
Zeff5Z2n̄!. To speed up the simulation a 1/r biased sam-
pling was used in addition to the usual Metropolis
algorithm.27

III. RESULTS AND DISCUSSION

We shall start our discussion with theCase~1!. For di-
lute aqueous suspension~largeR) with small counterions we
find that Eq.~1! with x54/3 produces the effective colloidal
charges almost identical to the ones obtained using the Alex-
ander prescription within the PB theory, see Fig. 1. It is
important to stress that under these conditions the PB equa-
tion is extremely accurate, and the effective charges obtained
on its basis can, therefore, be taken as ‘‘exact’’ within the
WS cell formalism. It is quite amazing that two such appar-
ently different criterions lead to almost identical results. Fur-
thermore, we find that a modification of the criterion~1!
which replaces the instantaneous kinetic energy of a particle
by the average kinetic energy^K&53kBT/2 affects very little
the value of the renormalized charge, see Fig. 1. Since this
modification significantly speeds up the simulations, it will
be adopted in the future discussion. The counterion is, then,
said to be associated if

U<22kBT. ~3!

Clearly, the criterion~3! is of practical relevance only if
it is universal, i.e., independent of other parameters of the
colloidal suspension. We can test that this is the case by
looking at different colloidal volume fractions. Indeed we
find an excellent agreement between the effective charges

FIG. 1. The effective charge of colloidal particles of radiusa5720 Å inside
a WS cell ofR52880 Å, as a function of the bare charge. Symbols are the
results of the MC simulation: Open squares for Eq.~1! with x54/3 and
open circles for criterion~3!. The solid curve is obtained using the Alexan-
dre criterion within the Poisson–Boltzmann theory. The dashed lineZeff

5Z, shows that there is no charge renormalization for weakly charged col-
loids. The effective charge saturates in the limitZ→`.

12101J. Chem. Phys., Vol. 121, No. 23, 15 December 2004 Effective charge of colloidal particles



calculated using the Alexander prescription within the PB
theory and those obtained on the basis of Eq.~3!. As might
be expected the disagreement appears only for large colloidal
volume fractions, when the correlational effects due to ion
hard core repulsion become important and the PB equation
fails. In Fig. 2, we compare the saturation value of the effec-
tive charge as a function of colloidal volume fraction, ob-
tained using the MC simulation and the criterion~3!, with the
saturation value of the effective charge determined using the
Alexander prescription within the PB theory. We see a per-
fect agreement between the dynamical and the Alexander
criterion, up to volume fractions as large as 15%.

Case~2!. Convinced of the general validity of the dy-
namical criterion~3! we can now apply it to the situations in
which the Poisson–Boltzmann theory fails and the Alexander
criterion is difficult to implement directly. Consider a colloi-
dal particle inside a WS cell in the presence ofn5Z/a
a-valent counterions. Increase of the counterion valence
leads to stronger colloid–counterion coupling, which should
result in a larger charge renormalization. The effective
charge is nowZeff5Z2an!, wheren! is the number of asso-
ciated counterions. To simplify the notation we have dropped
the bar overn!.

We first consider the charge renormalization of relatively
large colloidal particles of radiusa5720 Å. In Fig. 3 the

effective charge is plotted as a function of the bare charge for
three differenta’s. It is evident that while the saturation
value of the effective charge decreases with the increase of
the counterion valence, all three curves have a very similar
shape. Next, we consider a smaller colloidal particle of ra-
dius a5100 Å, Fig. 4. In this case a qualitatively different
behavior is obtained with the multivalent, as compared to the
monovalent counterions.28 While for monovalent counterions
the effective charge, as a function of the bare charge, still
saturates in the limitZ→`, for the multivalent counterions
the effective charge reaches maximum and then decreases
going to zero in the limitZ→`. The different behavior of
the effective charge in Figs. 3 and 4 is the result of electro-
static correlations between the counterions. The strength of
ionic correlations can be quantified by the plasma
parameter29

G5
a2q2

edkBT
5

a2lB

d
, ~4!

whered is the characteristic distance between the condensed
counterions andlB'7.2 Å, for water. If the condensed
counterions are located in a thin layer near the colloidal sur-
face, the averaged inter-ionic distanced satisfiesnp(d/2)2

54pa2, so thatd'4a/An!. This approximation should be
fairly good for multivalent counterions which are tightly
bound to the colloid, it will, however, strongly underestimate
the separation between the associated monovalent counteri-
ons. For strongly charged colloids, the number of condensed
counterions isn!'Z/a. Substitutingd into Eq. ~4! we find

G5
a3/2lBAZ

4a
. ~5!

The strong counterion correlations limit corresponds toG
.1. For colloidal particles of radiusa5720 Å, with diva-
lent counterions, the correlations become important only for
Z.20 000. For trivalent counterions this value drops down
to 6000, which is still too large to be seen on the scale of Fig.
3. On the other hand, for colloids witha5100 Å and diva-
lent counterions, the electrostatic correlations are relevant
already for Z.380, while for trivalent counterions the

FIG. 2. Variation of the effective charge with the colloidal volume fraction
Z52000. The symbols are the result of the MC simulation with the associa-
tion criterion given by Eq.~3!. The solid curve is obtained using the
Alexander prescription within the PB theory. The colloidal particle radius is
a5720 Å.

FIG. 3. The effective charge of colloidal particles of radiusa5720 Å inside
a WS cell ofR57200 Å, with counterions of either,a51 ~open circles!, 2
~open squares!, or 3 ~open triangles!. The effective charge, as a function of
the bare charge, appears to saturate in all three cases.

FIG. 4. The effective charges of colloidal particles of radiusa5100 Å
inside a WS cell ofR57200 Å, with counterions of different valences. For
these particles, in the presence of divalent or trivalent counterions the effec-
tive charge, as a function of bare charge, reaches maximum and then de-
creases. The symbols are the same as in Fig. 3.
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threshold drops down toZ5115. These values are consistent
with the location of the maximums inZeff appearing in
Fig. 4.

IV. CONCLUSIONS

We have presented a new method for calculating the
effective charge of colloidal particles. The method is particu-
larly applicable to Monte Carlo and molecular-dynamics
simulations. For monovalent counterions the new condensa-
tion criterion results in effective charges identical to the ones
obtained using the traditional Alexander prescription. The
dynamical condensation criterion, however, is also appli-
cable in the situations in which the Alexander prescription is
very difficult to implement directly, i.e., strong electrostatic
correlations between the counterions. The theoretical chal-
lenge now is to understand the dynamical basis for the con-
densation criterion given by Eq.~1!.

A possible application of the present work may be to the
study of the charge reversal in colloidal suspension contain-
ing multivalent ions and salt. The WS cell, in this case, con-
tains monovalent counterions,a-valent counterions, and
monovalent coions. The effective colloidal charge is then
Zeff5Z2ana

!2n1
! 1n2

! , where na
! is the number of con-

densed multivalent counterions,n1
! is the number of con-

densed monovalent counterions, andn2
! is the number of

condensed coions. Because of the many-body nature of the
electrostatic interactions, coion condensation must be taken
into account in the definition of the effective colloidal
charge.

It is important to also keep in mind that in suspensions
containing both counterions and coions, besides association
with colloid, the inter-ionic association between counterions
and coions is also possible.30,31 As formulated above, the
condensation criterion Eq.~3! will not distinguish between
these two effects. In the charge symmetric case~only
monovalent counterions and coions present! the cluster for-
mation should not affect the renormalized colloidal charge,
since the average charge of clusters is zero. However, in the
charge asymmetric case cluster formation between the coun-
terions and coions will invalidate a straightforward applica-
tion of the association criterion~3!. This will be the subject
of the future work.

In the present study we have used a simplified model of
a colloidal suspension in which both colloids and microions
are treated as hard spheres with point charge at the center
and the solvent is a dielectric continuum. While this model is
sufficient to study the electrostatic properties of rigid colloi-
dal particles,32 it will certainly fail as soon as the length

scales on the order of few angstroms become important. This
is particularly the case when one deals with the structural
properties of biomolecules.33–35 Under these conditions reli-
ance on simple models may be quite misleading.36,37
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