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A modification of A ˚ ngströ m’s method that employs photothermal
radiometry to measure thermal diffusivity: Application to chemical
vapor deposited diamond
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A modification of the one dimensional A˚ ngström’s method that employs photothermal radiometry
has been used to determine the longitudinal thermal diffusivity of three thin long bars of chemical
vapor deposited diamond. Long bar specimens permit us to use a simple one-dimensional treatment
that employs a linear least squares fitting procedure on both magnitude and phase data as a function
of position, provided that the condition for ignoring end effects is fulfilled. Any differences in
diffusivities obtained from magnitude data and from phase data can be attributed to surface heat
losses; the values of diffusivity obtained with the two types of data showed no significant difference.
The diffusivities obtained agree reasonably well with the mean values calculated from
measurements made by several other laboratories on the same specimens. The heat source was the
beam of an argon-ion laser focused onto the specimen surface either with a cylindrical lens to form
a line focus or with a spherical lens to form a point focus. The differences in diffusivities obtained
when a line source was used and when a point source was used were not statistically significant. A
theoretical calculation indicates that the measurements on the specimen were made sufficiently far
from the heat source for the one-dimensional treatment to be valid whether the line source or the
point source were used: either source is expected to give the same result as was observed
experimentally. A point source is preferable because the optical configuration of the experiment is
simpler and larger signals are obtainable. ©1998 American Institute of Physics.
@S0034-6748~98!04101-X#

I. INTRODUCTION

In this article, we present an experimental procedure that
employs photothermal radiometry1 ~PTR! in combination
with the one dimensional geometry employed by A˚ ngström2

to measure longitudinal thermal diffusivity, with application
to chemical vapor deposited~CVD! diamond. PTR is a tech-
nique that has been used to determine the thermal diffusivity
of various materials3–7 and in particular CVD diamond.8–12

The technique is based on the detection of thermal radiation
emitted from a specimen that has been heated by a modu-
lated source,4–8,11,12 usually a chopped laser beam, or a
pulsed source,3,9,10 such as pulsed laser beam. We limit our
treatment here to the ac case. The thermal diffusivity,D, can
be obtained from the behavior of the thermal signal either as
a function of the modulation angular frequency,4,5,7,8,12v, or
as a function of the distance,z, from the heated spot.6,11 The
signal will consist of both a magnitude and a phase. In order
to determineD for a given specimen geometry, one must fit
the experimentally measured phase and/or magnitude to the-
oretical models that predict the complex temperature depen-
dence onv and/orz. The theoretical and numerical analysis
required for obtainingD are one of the challenges of the
PTR technique for arbitrary specimen shapes and heating
beam geometries.

By choosing a specimen in the shape of a long thin bar,
considerable simplification of the analysis occurs. If the

specimen is sufficiently long,v can be made sufficiently
large so that end effects will be minimized, yet sufficiently
small so that the temperature distribution along the width and
thickness of the specimen can be considered uniform, even if
the heating source is nonuniform. Thus, the following simple
one dimensional steady state solution of the thermal diffu-
sion equation is applicable:

T~z!5
q
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uzu
m i 1

p
4 i , ~1!

wherez is the distance along the bar from a heating source
near the center of the bar,T(z) is the complex temperature,q
is the power input,k is the thermal conductivity,r is the
density,C is the specific heat, andm is the thermal diffusion
length given bym5A2D/v; this one dimensional case was
treated by A˚ ngström2 and any method based on it is called
Ångström’s method or a modified A˚ ngström method. Both
the phase ofT(z), w(z), and the logarithm of the magnitude,
lnuT(z)u, depend linearly onz provided the region of measure-
ment is sufficient far from the heating source; thus, the cal-
culation of D from the experimentally measured phase and
magnitude as a function ofz is straightforward. Fabbri and
Fenici6 have shown only that phase of a thermal signal ver-
sus radial distance from an ac heating source will be linear
provided the region of measurement is sufficiently far from
the source. In an appendix, we give the general solution to
heating of a thin bar by a nonuniform heating source and
show that under the condition describe in this article, the
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measurements have been performed sufficiently far from the
heating source to insure that Eq.~1! is appropriate for the
analysis of both phase and magnitude data.

Hatta et al.13 used a one-dimensional approach to mea-
sure the thermal diffusivity of long bars. In their procedure, a
partially masked specimen was illuminated with a modulated
halogen lamp and a thermocouple was attached to the speci-
men in the shadowed region beneath the mask. While mov-
ing the mask parallel to the specimen surface along the
length of the bar, they monitored the temperature as a func-
tion of the distance from the thermocouple to the shadow
edge which was perpendicular to the long specimen dimen-
sion. Gu and Hatta14 have modified Hatta’s original
technique13 by heating a narrow strip across the specimen
rather than a large area of the specimen.

Altmann et al.15 have employed another modification of
Ångström’s method. They deposit a metallic heating strip on
the specimen and measure the phase of the thermal signal
versus position with a thermocouple that is held in contact
with the specimen surface at different distances from the
heating source. The magnitude is not used because it will
depend on the reproducibility of the heat transfer between
the thermocouple and the specimen at different contact
points whereas the phase is not expected to be as sensitive to
this heat transfer.

In this work, we present results forD calculated from
PTR experimental data obtained by a modification of A˚ ng-
ström’s method where we used an infrared detector instead
of thermocouples to monitor the phase and magnitude of the
thermal signal as a function of the distance from the heated
region. The specimens were three free-standing bars of CVD
diamond. The heat source was the beam of an argon-ion laser
focused onto a specimen surface either with a cylindrical
lens to form a line focus along the specimen width or with a
spherical lens to form point focus centered on the specimen
width. The differences in diffusivities obtained when a line
source was used and when a point source was used were not
statistically significant. Larger signals were obtainable with a
point heating source because more power could be put into
the specimen.

To verify the validity of the approach used, our results
are compared to previous results obtained on these same
specimens by different experimental techniques.16 In order to
make the comparison meaningful, our results are compared
only with those based on A˚ ngström’s method. Finally, we
give values for thermal conductivity,k, of the specimens
based on the relationshipk5rCD.

Advantages of the use of the PTR technique include:~1!
it is a noncontact method;~2! it can use higher modulation
frequencies than techniques that use thermocouples. The ad-
vantages of the long bar geometry is that a linear fit can be
used both with the magnitude and phase of the thermal signal
to compute D. Although planar geometries require less
specimen preparation, the linear theory is applicable only to
the phase;6 a nonlinear fitting procedure is needed if the
magnitude is to be used in the computation. Furthermore, the
long bar geometry confines the thermal energy to a smaller
region than a planar geometry region resulting a larger ther-
mal signal.

II. THEORETICAL CONSIDERATIONS

The homogeneous heat diffusion equation for one-
dimensional heat flow is given by4,10

d2T~z!

dz2 1S v

D
i 2hDT~z!50, ~2!

whereh is a term that accounts for heat loss to the surround-
ings, such as radiation loss. Heat input is treated as a bound-
ary condition with a time dependence,qe2 ivt. Equation~1!
represents a simple solution to Eq.~2!. Hattaet al.17 and Gu
and Hatta14 have discussed the range of validity of Eq.~1!
based on specimen dimensions. In the strictest sense, it is
valid under the following conditions: heating occurs uni-
formly in a plane normal to the bar axis; heat losses to the
surroundings are negligible at the measurement frequency
(h50); and,z is sufficiently far from the ends of the speci-
men so that reflections of thermal waves from the ends are
negligible. The distance from an end should be.1.5m. The
solution may still be valid even if these conditions do not
strictly hold. If the specimen is heated on the top surface
with a line source, Eq.~1! is valid when the thickness of the
bar,d!m provided the measurement is made several timesd
away from the heating source. If the specimen is heated with
a point source on a surface, we must add the condition that
half the specimen width,w/2!m. Even the conditions on the
on w and d can be relaxed considerably, provided that the
data points used in computations are sufficiently far from the
heating source. In the appendix, we present the three dimen-
sional solution to the thermal diffusion equation for a long
rectangular bar assuming a nonuniform heat source. We
show the validity of Eq.~1! under the experimental condi-
tions described in this article.

When conditions for satisfying Eq.~1! are met, then
lnuT(z)u andw(z)52arctan(IT/RT) are linear functions ofz
with the magnitude of the slope equal to 1/m, whereIT is
the imaginary part ofT andRT is the real part ofT. Thus,
by determining these slopes from the experimental data, we
can computem and, hence,D.

If heat loss to the surroundings is present (hÞ0) the
solution to Eq.~2! will be modified.2,18 Both lnuT(z)u and
w(z) will still depend linearly onz, but, their slopes will
differ. However, the product of the slopes will be 1/m2 so we
can still computeD. This provides a test for heat loss to the
surroundings at the measurement frequency; if the slope of
lnuT(z)u is steeper than the slope ofw(z), then significant heat
loss is present. An examination of Eq.~2! indicates that the
importance ofh decreases with increasingv.19

III. EXPERIMENTAL METHOD

The specimens, which were long thin bars of CVD dia-
mond, are described in Table I. During the experiment, a
specimen was held at one end by double sided adhesive tape.
The center portion and the free end of the specimen were
unsupported so that both the back and front surfaces were in
contact with air. A chopped argon laser beam~514.5 nm!
operating at a power of;1.0 W, was used to heat the speci-
men at the approximate center of the front surface. The
amount of energy reaching the specimen was about 20% of
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the laser power due to chopping of the laser radiation and
reflection and absorption by the optical elements. Figure 1
shows the experimental setup used.20

The heating beam that was focused onto the specimen
was assumed to have a gaussian intensity profile and the
beam diameter, as determined from the 1/e points, was cal-
culated from a knife-edge test. Two different heating con-
figuration were used: in one case, the heating beam was fo-
cused to a pointlike image with a gaussian beam diameter of
about 0.044 mm; in the other case, a cylindrical focusing
lens was used to produce an elongated linelike image. The
beam was assumed to have an anisotropic gaussian profile;
the full length between the 1/e points was 3.6 mm and the
full width between the 1/e points was 0.2 mm. The long
dimension of the beam was perpendicular to the long axis of
the specimen. The reason for the two configurations was to
determined whether the measurement was sensitive to the
shape of the heating beam.

The infrared detector which was made of indium anti-
monide was located in a cryostat and cooled by liquid nitro-
gen. Its sensitive area was 1 mm in diameter. The infrared
radiation emitted by the specimen was focused onto the de-
tector by a calcium fluoride lens with a magnification of one.
The detector and lens were scanned in a step-wise manner
under microcomputer control in steps of 0.5 mm parallel to
the specimen surface and along the long specimen dimen-
sion. At each detector position, the magnitude and phase of
the thermal signal arising from infrared emission was mea-
sured by a lock-in amplifier also under microcomputer con-
trol and saved to disk. Each data set was obtained at one
modulation frequency. The procedure was repeated at differ-

ent modulation frequencies to improve the accuracy of the
results.

Before each measurement, specimen temperature was al-
lowed to stabilize and then the temperature was recorded.
The temperature was measured with a typeK thermocouple
placed in contact with the specimen on the back surface ap-
proximately midway between the heated region and a speci-
men end. The temperature did not vary significantly during
one measurement.

In the case of the transparent specimen, LB-X, in order
to increase the absorption of the laser energy and, hence,
increase the thermal radiation emitted by the specimen, a
narrow black stripe of about 1 mm wide was written with a
pen marker in the heated spot region of the top surface. The
other specimens were not coated because they absorbed suf-
ficient energy for making the measurements.

IV. RESULTS AND DISCUSSION

Figure 2 shows the experimental data for specimen LB-T
obtained with the line heat source; a similar set of data was
obtained with the point heat source. Measurements were
made at modulation frequencies (f ) of 9, 16, 25, and 36 Hz.
In addition to the experimental data points on the figure, we
show straight line segments representing linear fits to the
data. The extent of the segments indicates the range of the

TABLE I. CVD diamond specimens.

Designations

Dimensions~mm!

Descriptionlength width,w thickness,d

LB-E 40 4 0.30 dark
LB-T 50 4 0.40 translucent
LB-X 50 4 0.35 transparent

FIG. 1. Schematic diagram of photothermal radiometry experiment. The
detector and infrared focusing lens move together, parallel to the specimen
surface. The arrows indicate motion of translation stages.

FIG. 2. Typical experimental data for a long bar specimen obtained with the
line heat source. The data are from specimen LB-T. Plotted are~a! the
logarithm of the signal magnitude vs detector positionz and~b! the phase of
the signal vs detector positionz. Superimposed on the data are straight line
segments representing the fits to the data; the extent of the lines represent
the region fitted. The modulation frequencies are shown.
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data used in the computation. The range of fit was chosen to
maintain the applicability of Eq.~1! to the analysis, namely,
all of the data are sufficiently far from the specimen ends and
from the heating source to insure that lnuT(z)u andw(z) de-
pend linearly onz. Similar analyses were done for the other
two specimens, both for data obtained with the line source
and data obtained with the point source. For a given heat
source geometry and frequency, we calculated four values
for the slope, corresponding to the right and left side of the
heated spot from both the magnitude data and the phase data.
Therefore, from data for the four frequencies, we obtained 16
values for the slope. The average of these 16 values was used
to computeD; the combined standard uncertainties21 are at-
tributed principally to measurement repeatability and thus
are taken to be one standard deviation of a measurement.

Table II lists the values of thermal diffusivity obtained
together with the average specimen temperature. Three val-
ues ofD are given for each specimen, one value based on
one point source measurement set and two values based on
two line source measurement sets. We performed the mea-
surements with the line source twice in order to check the
reproducibility of the results. These are labeled~a! and~b! in
Table II. The following conclusions can be drawn from the
table: ~1! there is no statistical significance to differences
between the point source value and the line source values.
~2! There is no statistical significance between the two line
source values indicating good measurement reproducibility.
Furthermore, we found no statistically significant difference
between values computed from lnuT(z)u and values computed
from w(z). This implies that losses to the surroundings, such
as radiation loss, are negligible at the measurement frequen-
cies~i.e., h50!. Also shown on the table are values of ther-
mal conductivity calculated for each of the specimens. The
calculation was based on averaging the three values of ther-
mal diffusivity from the table and the valuesr
53.515 g cm23 @Ref. 21# andC50.516 J g21 K21 @Ref. 23#.

Because the point source gives essentially the same re-
sult as the line source, an outcome consistent with the exact
theory given in the appendix, it is preferable to use a point
source when performing measurements on long bars. Larger
signals were obtainable with a point heating source because
more power could be put into the specimen. Furthermore,
focusing the heating spot on the specimen is simpler with a
spherical lens than with a cylindrical lens and alignment of
the infrared optics is simpler with point heating.

Figure 3 shows a composite plot of all line source data
and all point source data obtained from specimen LB-T. The
data have been normalized by dividing by the square root of

the modulation frequency. Equation~1! predicts a universal
curve for w(z)/Af and a series of parallel curves for
lnuT(z)u/Af which is essentially what we observe. The close
coincidence of the phase data and the parallelism of all of the
magnitude data away from the source~away fromz50! in-
dicates that the one dimensional treatment in the infinite bar
limit represents a good model for fitting the data. In the
phase, the small differences observed near the origin are due
to differences in data from the line source and data from the
point source. These differences are attributed to the different
source geometries. A similar argument holds for the differ-
ences in slopes of the magnitude data near the origin. These
differences decrease as the distance from the source in-
creases, as expected.

Table III listsm for each specimen at each frequency. An
important test for the validity of Eq.~1! depends on the re-
lationship ofm to d,w, and the distance of the data used in
the computation from a specimen end. Let us consider each
case individually.

Above we stated that the conditiond!m should hold for
Eq. ~1! to provide an adequate description of the data. A
comparison of values ford in Table I with values form in

TABLE II. Average specimen thermal diffusivity and thermal conductivity.a

Specimen
designation

D (cm2 s21)
k

(W cm21 K21)Point source Tave~°C! Line sourcea Tave~°C! Line sourceb Tave~°C!

LB-E 2.260.1 29.060.5 2.060.2 30.860.5 2.260.2 29.260.1 3.960.4
LB-T 6.660.4 31.560.6 6.360.6 30.560.7 6.460.6 30.961.0 1261
LB-X 7.960.9 28.860.2 7.960.6 30.360.8 8.060.8 27.560.4 1461

aAll combined standard uncertainties~6! are attributed principally to measurement repeatability and thus are
taken to be one standard deviation of a measurement.

bTave5average specimen temperature.

FIG. 3. A composite plots of all data obtained from specimen LB-T with
both the line source and the point source. Plotted are~a! the logarithm of the
signal magnitude divided by the square root of the modulation frequency vs
detector position and~b! the phase of the signal divided by the square root
of the modulation frequency vs detector position.
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Table III indicates that this condition is adequately satisfied
in all cases.

We find the relationshipw/252 mm!m is not fulfilled.
However, this represents a sufficient condition for using Eq.
~1! but it is not a necessary condition. Experimentally we
find that 2 mm,m in all cases except for specimen LB-E at
frequencies 25 and 36 Hz in which 2 mm.m. If the original
condition were a requirement, we should find thatD would
depend on frequency. In fact, we find that the data follow a
linear behavior sufficiently far~4 mm! from the source and
D does not show any significant frequency dependence. The
most severe test of this condition is the case of the point
source. The data as seen in Fig. 3 reveal a nonlinearz de-
pendence of the thermal signals in the immediate vicinity of
the heating source. However, at a small distance from the
heating source, the data become linear. In the case of line
heating, we find that the region of linear signal behavior
comes much closer to the heat source.

The distance from an end of the specimen should be at
least 1.5m in order for interference by thermal wave reflec-
tions to be ignored. This condition also implies that there
must be a minimum specimen length if Eq.~1! is to be ap-
plicable. Since the specimen is being heated at the center, the
length of the specimen should be greater than 3m to take
into account both ends plus an allowance for the heat source,
in our case 4 mm to each side of the source, for a total of
3 m18 mm. Using the values ofm for 9 Hz from Table III,
we see that LB-X should be more than 24 mm long, LB-T
should be more 23 mm long, and LB-E should be more than
17 mm long. In all cases, the length of the specimen is much
greater than the minimum required length. In the appendix,
we show that indeed, the linear behavior observed is to be
expected in all cases if the distance from the heated spot is
greater than 4 mm.

In order to show the effect of thermal wave reflection
from the end of the specimen, we plot in Fig. 4 lnuT(z)u and
w(z) vs z to one end of specimen LB-T~f 55 Hz, m
56.6 mm!. Data obtained at 5 Hz are presented because the
increased thermal diffusion length at this lower frequency
enhances the end effect. The solid curves shown on the fig-
ure are obtained from the theoretical expression for a speci-
men of finite length,

T~z!5
qep/4i
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whereL is the distance from the center of the heating source
to the end of the specimen~L526.5 mm in this case!; a

fitting procedure was not used but the curves were adjusted
visually which is equivalent to multiplyingq by an arbitrary
constant and adding an arbitrary constant to the phase. The
theory predicts that the slope of both lnuT(z)u andw(z) will
become zero at the specimen end, as can be seen in the
figure. For comparison, we show the solution for the infi-
nitely long specimen, which is represented by the dashed
straight lines; here again the curves were similarly adjusted.

Our measurements have been made on a set of speci-
mens that had been part of an interlaboratory round-robin
comparison.16 In Fig. 5, we compare our data with data ob-
tained by three other laboratories that had used Hatta’s modi-
fication of Ångström’s method;13 we did not include the
other data because the methods used to obtain the data did
not sample the thermal conductivity of the specimens in the
same manner. Each reported value is represented by a solid

TABLE III. Thermal diffusion lengths,a m ~mm!.

Frequency~Hz! Specimen LB-E Specimen LB-T Specimen LB-X

9 2.860.1 4.860.2 5.460.3
16 2.160.1 3.660.2 3.960.2
25 1.760.1 2.960.1 3.260.1
36 1.460.1 2.460.1 2.660.1

aAll combined standard uncertainties~6! are attributed principally to mea-
surement repeatability and thus are taken to be one standard deviation of a
measurement.

FIG. 4. Thermal wave signals for specimen LB-T as a function of detector
position showing end effects.f 55 Hz, m56.6 mm,L526.5 mm. Superim-
posed on the data are plots based on the one dimensional theory. The dashed
curves are straight lines that neglect the presence of the end; the solid lines
take into account the end effects. The theoretical plots are not fits but were
calculated from the thermal diffusivity value deduced in the prior measure-
ments. Also indicated with arrows are one end of the specimen and the
distance from the end equal to 1.5 times the thermal diffusion length, 1.5m.
~a! Logarithm of the magnitude vs detector position,z. ~b! Phase vs detector
position,z.
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square and the uncertainty by a vertical line through the
square; in the case of our measurements~the NIST data!, the
uncertainty represents one standard deviation of a measure-
ment. The horizontal line on the graph represents the average
of the mean values obtained by each laboratory.

All of the NIST values fall a little below the mean by an
amount about equal to the measured uncertainties. This can
be considered reasonably good agreement; our results agree
best with the results of laboratory A. The uncertainties
claimed by all of the other laboratories are much smaller
than the NIST uncertainty yet they do not overlap with each
other. The small uncertainty suggests that the precision of
their measurements is high, yet the lack of overlap of the
uncertainties suggests an unknown systematic difference.
One source of the discrepancy may be different measurement
temperatures at the different laboratories. Laboratory A and
C report a measurement temperature of 25 °C while labora-
tory B reports a measurement temperature of 29 °C. It was
not stated how these temperatures were measured.
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APPENDIX

The purpose of this appendix is to demonstrate that the
one dimensional solution is applicable under all of the ex-
perimental conditions described in this article.

The specimen consists of a long thin strip of widthw
and thicknessd. Let x be the coordinate axis across the
specimen width, wherex50 bisects the specimen; lety be
the coordinate axis through the thickness, wherey50 is lo-
cated on the specimen top surface; letz be the coordinate
axis along the specimen length. The specimen is heated by a
modulated source of angular frequencyv and having a spa-
tial distribution q(x,y) on a plane located at the specimen
center,z50. In this case, the complex solution to the heat
diffusion equation is given by

T~x,y,z!5
1

2k
(
n50

`

(
m50

`

qnm cosS 2npx

w
D cosS mpy

d
D

3

expS 2uzuAS 2np

w
D 2

1S mp

d
D 2

2
2i

m2D
AS 2np

w
D 2

1S mp

d
D 2

2
2i

m2

,

~A1!

where qnm is the nmth coefficient in the two dimensional
Fourier series expansion of the heating source

q~x,y!5 (
n50

`

(
m50

`

qnm cosS 2npx

w D cosS mpy

d D , ~A2!

and where we have assumed that the heating takes place on
the top surface of the specimen,y50, and is symmetrical
aboutx50. Furthermore, we have assumed no heat loss from
the edges or surfaces of the specimen. Notice that the
$n50,m50% term in Eq.~A1! is the one dimensional solu-
tion.

In the following discussion, we consider only those
terms withm50. This is because the terms containingm and
n have the same form and therefore will exhibit analogous
behavior. Becaused!m in the case treated, we discuss be-
low why terms withm.0 need not be considered at all.

Let us examine how each of the first three Fourier coef-
ficients inside the summation in Eq.~A1! varies with z,
where we assumeqn051 for all values ofn. In our calcula-
tion, we have chosenw54 mm andm51.4 mm. This gives
the smallest ratio reported in this article for 2m/w, 0.7; if use
of the one dimensional equation is valid in this case, then use
of the one dimensional equation would be valid in all of the
other cases. Figure 6 shows the dependence onz of the first
three Fourier coefficients. All Fourier coefficients, including
the higher order coefficients not shown, depend exponen-
tially on z with the decay constant increasing dramatically

FIG. 5. A comparison of the values of thermal diffusivity we have obtained
with the values obtained by three other laboratories. The horizontal line
represents the average of the mean values of each laboratory and the vertical
lines represent the error bars stated by each laboratory. In our case, an error
bar represents one standard deviation.~See Table II.!
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with an increase inn ~andm!. Observe that forx.4 mm, the
first order coefficient is less than a factor of 1023 smaller
than the zeroth order coefficient and all higher order coeffi-
cients are much smaller and therefore may be neglected, pro-
vided thatqn0,'q00.

In our experiments, we employ a laser with an approxi-
mately Gaussian power profile, exp(2x2/x0

2), where x0

50.044 mm. Let us calculate the ratio,q00/q10. The largest
ratio occurs when the spot size is small, that is,x0!w. In
this case,q10'2q00, a result that has a minor effect on the
relationship between the zeroth and first order terms in Eq.
~A1!. Thus, whenx.4 mm, it is evident that the zeroth or-
der term dominates completely, and the one dimensional
treatment is applicable as stated in the manuscript. This is
further demonstrated in Fig. 6 by the dotted curve which is
the computed temperature magnitude normalized with re-
spect toq00 and 2k. The curve cannot be distinguished from
the zeroth order curve even for values ofx,4.

Equation~A1! demonstrates that the decay constants of
the Fourier coefficients of the temperature increase withn
and m; thus, the one dimensional term$n50,m50% will
always dominate provided that the distance from the heat
source is sufficiently large. This distance will depend on the
ratios 2m/w and m/d. There is an inverse relationship be-
tween these ratios and the distance required for the one di-
mensional term to dominate.

In the case treated, 2m/w50.7 and m/d54.67 (d
50.3 mm). We can now justify ignoring terms withm.0. If
m were to be>1, the decay constants would be much greater
than those discussed above. If the specimen is partially or
totally opaque, the degree of opacity will determine the rela-
tive size of Fourier components having different values ofm.
Since the term withm50 is the only important one, the heat
flow will be one dimensional regardless of the degree of
opacity.

In real experiments, the source will also extend along the
z axis. In this case,qnm will be a function ofz. If we replace
uzu by uz2z8u in Eq. ~A1!, wherez8 is the source coordinate,
we obtain the Green’s function24 representing a planar
source. A source distributed alongz will not affect our gen-
eral conclusions; however, the position at which the one di-
mensional solution begins to dominate will shift by an
amount determined by the spatial extent of the source along
the z axis. In the case of Gaussian shaped source, the shift
will be several times the width of the heating beam.
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FIG. 6. Semilogarithmic plots of the magnitude of the complex temperature
as a function ofz along the central axis of the specimen (x50). The pa-
rameters used in the computation werex050.044,w54, andm51.4 mm.
The solid curves represent each of the first three Fourier components of the
temperature (n50,1,2) assumingqn0/2k51 for all n. The dotted curve
represents the composite temperature obtained by summing onn (m50),
taking into account the relative strengths of the Fourier components of the
heating beam. The vertical dashed curved corresponds toz54 mm, a dis-
tance beyond which the one dimensional solution is clearly seen to be valid.
The horizontal dashed lines are spaced by a factor of 103 in the magnitude.
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