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A bstract 

Fir!>t we consider a nonlinear Cauchy problem depending on a small. parameter e > O . 
• 

The parcial differencial equation describes a "slow" diffusion ( coefficient of order e) in x-

direction , x E R, anda "fast" motion in y-direct.ion which ís a homogeneous Markov process 

in a COtnpact subset of Ilr and \Vhose generator has infinitesimal characteristÍCS of arder 

f . Secondly, we generalize the above problem by considering as the "slow" motion a locally 

infinitely divisible process in R . The Feynman-Kac formula provides a representation for the 

generalized solution of both problems. We use a stochastic approach (Freidlin's approach) to 

study the wave front propagation as e! O. 

K cywords: slow motion, fast motion, wave front propagation, Markov process, locally 

irdiuitely divisible process, Largc Dcviation Principie, action funclional. 
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l. J lll rod uc: l Íoll 

lu 1 h i~ pap0r we SI udy sOIIl(; g•·J~t:ra ]i;~,ations of lhe following mixed problem: 

( 1.1 ) 
X E R , y E ( - b;b) , t >o 

ut(O,x,y) = g(x,y) 

Ô11c ( t , X , y) I _ O 
ôy y=±b-

This problem was studied in (2] using Freid lin 's stochastic approach. We analyzed Lhe 

wave fronl propagation as ~ 1 O for Lhe solution u' (t, x, y) of (1.1). Using the Feynman-Kac 

formula and large deviations theory, we defined a function V(t, x) , t > O, x E R such that, 

uude r suitable condit.ions (Condition (N) formulated by Freidlin [4]) , 

limu'(t,x , y) = { 0 
dO 1 

if V(t,x) < O, lvl ~ b 

if V(t, x) >O, IYI ~ b. 

Clearly, Lhe sct {(t,x,y): V(t,x) =O, IYI ~ b) determines t he position of the wave front, 

as € lO . and G1 = {(x,y) : V(t,x) >O, IYI ~ b} represents Lhe excited region at time t. 

Obs<:rvc that in problcm ( 1.1) the moLion in y-direction is described by a Wiener process in 

[ - b; b] wi tb instant,aneous refl ection at the end points o f the interval. Its diffusion coefficient 

is of ordcr t and for this reason it is called " fast motion" . T he motion· in x-direct ion is a 

diffusion with coeffi cient ca(~,y) (of orde r t:) and is called "slow motion". 

It is desirable, for instance, that Lhe results obtained in [2] remain valid in t he case of 

a weakly couplcd system of equations of the type in ( 1.1). In t his caset the fast motion is 

a proccs5 (Y.; ,v~) where Yr is a \Viener process in (-b;b] with instantaneous reflection 

ai 1 h e end poinls o f the interval and v1 is a Markov cha in in t he phase space { 1, · · · , n) 

with infin itesimal characteristics specified by a matrix (q;j)i,j=l, .. · ,n•% ~ O if i'# j, 

q, =- 2:;=1 fltj. 
In this pap<:r we in cludc a wider class of problems by exlcnd ing problem (1.1) in two 

dirc:c tiou;,. Firsl we considcr a .\l arko\· process in a compnd subset. of Rr as Lhe fast mot.ion 
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(in y-di rc;ct.ion). Secondly, II'C generalize lhe slow moti011 by considering processes bclonging 

tu t he elas:-. of locally infinit.c ly di \'isibl e processes in R . 

ln th<; first case wc kccp t.hc slow motion as in (LI ) bul the fast motion is dcscribed 

IJy a family of processes (Y/ ; P;) whcre Y/ = Y; anel (Y1 ;Py) is a homogeneous Ma.rkov 

family in the phase space (D, B(D)) where D C R r is compacl and B(D) is the o--field 

g<:rH; raV:d by Lhe Bord subscts of D in the topology inherited from the Euclidean norm in 

n.r. \\'c denote by A 1 and A 1
·' rcspect.ivcly t.he infinitesimal gcnerator corresponding to 

th f; processes Y1 and Y/ . 

?\ow problem (1.1) bcco111cs 

( l.l) 

l
ôu'(t ,x,y) Ale '(t ) w(x,y)ô2u' (t,x,y)+lf( ') 

ôt = ' u 'x, Y + 2 ôx2 c x, y, u ' 

x E R, y E D, t > O 

u'(O,x , y) = g(x,y). 

The boundary conditions are specified according to the infinitesimal generator A 1•' • 

\Ve say that a function f(u) belongs to the class :F1 (see [4]) if f is differentiable in u, 

• f (O) =f(!) = O, f( u) >O in (O; 1), f(u) <O if u fi, [O; 1] ,/'(0) = SUPu>o 1M. We assume 
- u 

that for each x,y, f(x,y,u) E :F1 • Put / (:r~v ,u) = c(x,y,u) and c(x,y):: c(x,y,O) = 

sur.,;;:o c(x, y, u) . Assume that. c(x, y, u) is Lipschitz continuous in x and u, continuous in 

y, and O< f~ c(x, y)::; c. 

T he initial funct.ion g(x) is boundcd, nonncgative, continuous or with discont.inuities 

of firsL kind , and (Go] = ((Go)) where G0 = supp g :j:. R . The set (A) is the clousure of 

.4 and (A) is its interior. \\1e also assume that a(x, y) is Lipschitz continuous in x and 

O< g ::; a(x,y)::; ã. 

Let Xf represent the slow motion (in x-direction). Then Xf satisfies the stochastic 

differential equation 

wl•erc W1 is a Wicner proccss in R, start.ing at zero, adaptcd to some increasing family of IJ

fiekls and independent. of Y1 • One can verify (see [4]) that the Markov process (X~, Y1' ; ?;
11

) 

i:; a.c,sociatccl wi t.h lhe operalor 
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It is known (see Freidlin [4]) that if c(x , y, u) is Li pschitz continuous in x and u then 

thc generalized Feynman-Kac formula 

h'ts a unique solut.ion u'(t, x, y). Bcsides, one can prove that a solution of (1.2) satisfies 

(1.~~). In this sense we say Lhat problern (1.2) has a unique generalized solution u'(t,x, y). 

Sirrt:(; r:(x, y) = supu~ u c(x, y, u) we have 

As in the case of problem (1.1) (see [2]) the asymptotic behavior of u'(t, x , y) as € l O is 

related with probabilities of large deviaLions for Lhe family of processes 

( 1.'1 ) 

\\"e shall obtain Lhe action functional for (1.4) using the same approach as in [2]. section 2. 

In that. approach the action functional for processes of the type J; b(tp3 , Yn ds where tp is 

a cont.inuous fun cLion on [O; 71 in to R plays an important role. 

In section 2 of this paper we formulate sufficient conditions on (Y,; P11 ) in order that 

f ar nilil:S o f processes o f the type J~ b( tp3 , Y.c) ds obey a Large Deviation Principie. The main 

tool here is the theory of semigroups of linear operators. We suggest Pazy [12] and Kat.o 

[10] as referenccs . 

In section 3 we cstablish a Large Deviation Principie for (1.4) under the conditions 

formulaled in section 2. Our goal in section 3 is just to make clear that the theory developed 

irr [2) cau IJe applicd whcn we cons ider Markov processes of a general type· as thc fast molion. 

In S(;ction 4 we consider a weakly coupled system of equations of the type in (1.1) and 

also a problem wit.h fasL motion being a nondegcnerated diffusion process in a compact subset 
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•Jf n:· . \\"c: dcscribc cxpficitdy thc wave front as ~ f O in both cxampfcs, followin g tltt' S<tJll C 

;q,l ll·c>ac: h it~ Í ll [2] . 

In tlw remainiug section~ wc deal wi th the slow motion which will be dcscribcd by a 

Jocally infinitely divisible process. Wc are not interested in Lhe most general concept but only 

on thosc processes with valucs in R . The next definition was taken from Wentzell (15]. 

Lei (n, F , P) be a probability space and {F, : t 2: O} be a nondecreasing family of 

a -ficdds with F1 C F, for ali t 2: O. Lct B(R) be thc u-ficld gencrated by the Borel s ubsets 

0f n.. ,\ strong M arkov proccss (Ç1 ; P1:r) on (Q, F , P) wit.h values in (R , B(R)) is called 

locally i11jinítdy divi siúle if its sample functions are right-continuous with left- hand limits 

wit.h probab ility one and whose infinitesimal generator is given by 

df(x) 1 d2 f(x) 
Ad(x) =b(x,t)~ + 2a(x,t)7x2+ 

+f [f(x + u) - f(x) - u d~~)] n.,,t(du) 
R f 

where x E R , t 2: O, l7z,t(·) is a nonrandom measure on B(R), measurable in x and t, 

flx,c({O}) =O, and 

j u2 JI.,,1(du) < oo, for ali x, t. 
R. 

Thc funct.ions b(x, t) and a(x, t) are measurable with O< Q ::=; a(x, t) :::; ã, Q ::=; b(x, t) :::; li 
and f(x) is meac;urable, bounded, and twice-continuouslly differentiable. The question about 

large devi ations for this class o f processes is considered by Wentzell [15). 

The main goal in sections 5 and 6 is to analyze the wave front propagation of the solution 

of a Cauchy problem of the type 

( 1.5) l 
ôu'(t,x,y) 1 

ôt = A 1''u'(t,x,y) +A2·'u'(t,x,y) + ~f(x,y,u') 

for t > O, x E R , y E (D), D C R 

u'(O,x,y) = g(x,y) 

Thc op<:rator A 1 
·' is t.he infinitesimal gene r ator of the process Y/ = Y~ wherc (Y,; Py) 

sati~fics su itable conditions formulatcd in scction 2, and A 2·' is the infinitesimal gcnerator 
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<Jf t he slow rno tion which is dcscribed by a locally inflnitcly divisible proccss with frcqucnt 

srnal l j lliii!>S (~ee (G] or [15]) . 

\\ ·1: ~ltal l study two cases. ln section 5 Lhe slow rnotion is a locally infinitely divisil>le 

jJrCJccss who~e infinitesimal gcnerator is 

A 2,, J(x) = ó(y) df(x) + ca(y) d
2 
f(x) + 

dx 2 dx2 
( l.fj) 

+~j [!(x+eP) - f(x)- ejJd(~;x)] ll(dP) 
R 

where ll(-) is a nonrandom measure with ll( {O}) = O and J j32 ll(djJ) < oo. Not ice that 
R f 

t.he coefficicnts b(y) and a(y) depend only on the fast variable y. 

In section 6 the s low motion is a locally infinitely divisible process in R , independent of 

the fast motion, whose infinitesimal generator is 

A2,c f(x) = b(x) df(x) + ca(x) d2 J(x) + 
dx 2 dx2 

( 1.7) 

+ ~ j [t(x + eP) - f(x)- cj)d(~;x)] ll.:(djJ) 
R 

wilf:rt: !!,(-) is a nouraudorn rneasurc with flx({O}) = O and Jj32 IIx(dj3) < oo for ali 
n. 

x E R . O bserve that in this case the infinitesimal characteristics of the slow motion depend 

ouly on x. 

In both cases wc shall use the action functional for the family of random processes (1.4) 

to <kscribe Lhe wave front. for t.hc generalizcd solution of (1.5). 
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In tiJis sr:c t ion tlw féLSt motion is ét homogcncous Markov family (Y1 ; Py) 111 t.h c phasc 

, ,,an· r U. 8 ( /J )) w!..~re D C n.r is cornpact and B(JJ) is t.hc o--field of ~ he Bor<' l s ubscts of 

/) i11 l h•· topology inh(·r ited from Lhe Euclidcan norm in n.•· . 

(~ .] ) 

Tlw ,.,(;migroup {7~ } 1 ~ 0 associated with (Y1 ; Py ) is 

'llh(y) = jh( z)P(t,y,dz) = Eyh(Y1 ), 

D 

lt being a bo undcd and measurable function, P(t , y,-) the transition function of the process 

Y, , and Ey thc corrcsponding condit ional expectation. The infinitesimal generator is denoted 

by A 1
• 

Let us int rod uce some noLation: 

B : space of bounded, B(D)-measurable numerical functions on D. 

Co : space of continuous numerical functions on D. 

8 0 : subspace of B of "strong continuity" of {Tt}1 ~0 . 

C'[o.Tj (R "' ) : space of continuous functions on [O, T) into n.m. 

Por ((rp 1 
1 .. • , )0

111
), (1,b1, · .. , 1/Jm)) = 2:::~ 1 llr,oi - 1/Jill where 11 ·li is the supremum norm in 

C'[o,Tj (R ) · 

Our goal m this section is to formulate sufficient conditions in order that. processes 

satisfying equation 

( 2 . ~) ~f = b( Çf ; Y f ) 1 Çô = X E Rm 1 t ~ O, 

OIJC:Y a Large Dcviation Principie . The function b(x l y) = (b 1(xly)l· .. ,bm(x ly)) I X E nm I 

y E n.r is assumcd to be bounded and Lipschi tz continuous in both variables . 

Lct us introduce Lhe following conditions: • 
(i) for any x, (3 E n.m 

1 

(1.3) lim _!_ log Ey exp { {T ((J ,b(x 1 Y,) ) ds } = H(x, (3) 
T-oo T Jo 

l!xists uniformly in y E Rr 1 
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(ii) JI(.J.·, í}) is differcntiable in (J . 

Undcr cond it.ions (i)-(ii) 1 Frcidlin provcd (scc Theorem 7.4.1 and Lemma 7.4.3 in [6]) t hat 

t.hc normalized actio11 fun ction al on the space (G[o,rj(R m),Por) for the family ofprocesses 

{Ç~} 1 solut.ion of (2.1), is given by 

(2.'1 ) S. ( ) { J{ L(lf/,;<P,)ds , 
01' cp = 

+oo, 

if cp is a .c. 

in thc rest of C[o,rj(R m) 

witlt normalizing coefficient ~. The function L(x1 a ) is the Legendre transform of H(x 1 /3 ) 

with rcspcct to t he variable (3 , i.e., 

L(x,a) = sup {(a,/3)- H(x,/3)}, for a E R m 
PER.m 

\\'hcre (-, ·) denotes thc inner prod uct in R m. T herefore , we shall formulate cond itions on 

(Y1 ; Py) in order t.hat conditions (i) and (ii) be fulfilled . 

l t is well known (see [14J or [3]) that in the case of a compact phase space D, if C v Ç Bo 

t,lten thc transition function of the process Y1 is uniquely determined' by the semigroup 

{Tt} 1 ~o acting on Co . Besides, the infin itesimal generator A 1 of {7t } 1 ~o uniquely deter

mines the trans it ion function and hence the fi nite-dimensional d is t ribut ions of t he Markov 

family. 

In our case Co Ç B but Co is not contained in Bo necessari ly. J owever 1 if (Yí;Py) 

is uniforrnly stochastically cont,inuous then Co Ç Bo (see Problem 10.9 in [141). Moreover 1 

\\' ilh probability one, the pat hs are cont i11uous 011 the right and have limit 011 the left a t each 

point. 

ll is also known (see Chapter 9 in [141) that ali the Feller-Markov families with paths 

continuous on the righ t cxhibit t.he strong Markov property with respect to the family of 

0'-ficlds :F <t+ = n ;:<. , t E (0, + oo) where :F< t is t he smallest 0'-field such that Y. I 

- s>l - -

O :S: s :S: t are measurable. 

Relying on the above facts we can e11unciate the following result: 

P roposition 2.1. !f (Y1 ; Py) is a homogeneous Fe/ler-Markov family, uniformly sLochast.i

cally con t.i 11 uous, Uwn 
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f it ) {:!; J 12 o e<tn IJe rcgardcd as acting 0 11 Co ; /iJ r/.hcr, ii is a si rongly continuo us sc/J/ Í.tjroup 

w lh(' .~Cll.~c t hat IITrf - f ll-0 as l i O for a// !E Co . 

O) () ·, ; f>y ) h;,.c; paLhs conLinuous on t.hc righ/, wiLh lc fi -hand limils fi L all poinls , wiLh prob

Rliility 0 /l C. 

(cj ()'1; Py) is <l slrong .Markov (amily with respect to the 0'-fields F -5 1+. 

T h t:OJ'(!IU 2.1. Lcl us ass ume Lhat {i~} 1:20 is a cornpact strongly cont.inuous semigroup witil 

III; II ::; M t w r for some tvf > O and w ~ O. Lei c+ = {!E 8 0 : f~ O} and assume that 

{'l; }12o is strongly positive with respect to c+. Then Lhe eigenvalue À .of the infinitesimal 

gene r ator Ã o( {Te} r>o wíth the maximal real part is real and simple; tlw correspondíng 

(·igenvcctor t/J is posítive and ll t/JII = 1 . 

Proof: T his res ult is well known in the theory of semigroups of linea r operators and we 

• 0ruit its proof. The readcr may consult. Pazy (12]. 

• 
For each h E Co let. us introduce t.he operator r,Ch) on B defined by 

(2 .5) T,(h) J(y) = Eyf(Yr) exp {11 

h(Y,) ds }• f E B. 

Propos ition 2.2. 

(a) {T/h ) } r~o ís a semigroup of bounded linear operators and IIT?)II ::; ewt for some w E R . 

(b) {T1( lo ) } 1;::o is s trongly contínuous in ih e same space 8 0 as {Tt}1;::o and only on tlJís space . 

. \lorcOI'Cr, íts infinitesimal generator is given by 

A (") f( y) = A 1 J(y) + h(y)f(y), f E V .A<hl 

and V A ' '• > = V A I where V A I is t he domain of dcfini t ion of A 1 . 

Proof: The proof of t.his proposition can b e found in Vlentzell [14] and '"'e omit it. 

• 
TIH:m·<:m2.2. Lct (Y1; Py) /;e a homogcneous !llarkov[a.milyin t}Jeplwse space (D, 6 (D)), 

f) C 11.' cunt[J i.Ld uncl 6(D) i /te 0' -ficld o[ Uw 13orel sub::;ets o( D in Lhe t.opology in lw ril c<l 

frulfl 1/te Euclidca.n non n in Il' . A ssume thaí f 
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( L.l) (}; ; Py) is a hornogcncous Feller-Markov process. 

(L.2) o·r: fiv) is uniformly sLocha.stically conlinuous, i.e., 

'rlc >O, Fy(IY.- Ytl ~c)-+ O as t - s-+ O 

un ifo rmly in y E D and in t, sE [0, +oo). 

f 

(L.3) Th<: scmigroup {Tt}t~ o in (2.1) is strongly'positive with respect to the cone {f E 

Co :f~ O}. 

(L.4) for eacii h E Cv, tl!e semigroup {~(h)} 1 ~o in {2.5) satisfies the Feller-condition, i.e. , 

T 1hiCo Ç Cv. 

(L. ri) for cach h E Cv, {~(")} 1 ~o is a compact semigroup. 

Then, for any (3 E R , 

(2.6) 

cxist.s uniformly in y. Moreover, H(/3) is d ifferentiable and convex in {3. 

Proof: Conditions (L.l)- (L.5) imply that {T1(fJh)}t~O is a compact1 strongly continuous 

scmigroup acting on Co and strongly positive with respect to c+ = {f E Co : f~ O} (this 

is a consequence of Proposition 2.1 and Proposition 2.2). Thcn, by Theorem 2.1 the maximal 

eigenvalue >.({3) of A(fJil) is real and simple; the corresponding eigenvectôr </> is positive and 

lloll = l. 

lt is known (see Pazy [12]) that for a strongly continuous scmigroup {T1}t2;0, 

B>-.(t)(>.J -Ã) f = (e>-. 1 -fi) f, 
f 

for >. E C, f E VÃ 

t - • 
where B>.(t) = fo e>-.(t-•)Tjf ds and C JS the set of complex numbers. Using the above 

rclation, onc can see that e>-.(fJ)t is an eigenvalue of T1({Jh) with the same eigenvector </>. 

Since D is compact, there exists a constant I< > O such that O < ]( :5 <P(y) :5 1 for ali 

y E D. :\lso, T1(fJh)<fi(y) = e>.(fJ)t<P(y). Hence, O< I< </>(y) < <P(y) :5 1 (y), for ali y E D and 

then O< 1\"TifJh)l (y) < T ,(!Jh)<fi (y) = e>-(P)'<fi(y) :5 T1({Jh)1 (y) which implies t.hat 

lim ~ log J?Ph)l (y) = >.({3). 
t-oo t 
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,\ , ,i t••· tlt•tl 1~·Y vxp { J~ ;Jit ( }'~) d;,} = Tc(J~h) l (y) . Take JI({J) = )..({3) and we gd (2.6). 

II'JI 

' llw fu11nio11 // (.J) is cont inuous and convcx (sce Lemma 7.'1.1 in (G]). Desidcs, it is 

dilfirult to \"l:rify tllaL 1~!ffh) is rcal-holomorphic in f3 near f3 = O (T1(Ph) J(y) lias a 

Taylor ~·xpansiou in (3, near zero) . Now, using Lhe fact. that e>.(P) 1 is an isolated eigenvalue 

'>f ·1; ·'" l , w1; ohtai n from T heorem 1.8, Chaptcr VII in [10] that )..((3) is diiTerentiable . 

• 
\' ow w1; cau conclude that if (Y1;Fy) satisfies conditions (L.l)-(L.5) then the limit in 

(:z.:l) 1:xists uJJifonnly in y E n.r and H(x,{J) is diiTerentiable in {3. Therefore, the family 

v f t>rocesscs {~f} , sol ution of (2.2), obeys a Large Deviation Principie with action functional 

given by (2.tl ). The fu nction L( x, <X) is the Legendre transform of the first eigenvalue .À( x, /3) 

wi t l1 rcspcct to {J of thc operator A 1 + f3 b(x, y). 

R e mark 2.1. Jn particular, i f Çf is defined by ~f = x + f~ b(Y~) ds or Çf = x + 

f~ b( li•., Y.;) ds where t/J E qo,TJ(R m) is a fixed function, then the functional in (2.4) bc

comes rcspcc tively 8or(t.p) = J: L(cp3 )ds and Sor(t.p) =f[ L(t/Jsicps)ds, t.p a.c. The func

l ions L (o) and L( x, <X) are respectively the Legendre transform o f the fi~st eigenvalue o f the 

operators A 1 +f3b(y) and A 1 +f3b(x,y). 

R cm a rk 2.2. I f (Y1 ; Py) satisfies conditions (L.1)-(L.5) then the process Y1 h as a unique 

in\·ariant probabili t.y measure. The existence of an ergodic probability measure follows from 

thc: facl th at Y1 is a homogeneous Feller-Markov family on a compact se\ {see Theorem 21, 

C ltapl<·r I in [131) . 'J'he uniquencss follows by cont.radiction taking into account. t.hat the 

liJtJ Ít Í11 ('2.0) exis ts aud 11((3) is diffcrcntiable. 

3. Wav<J Frout Prupagation 

In Lhis sr.ction we assume that (Y1;i'y) satisfies conditions (L.l)-(L.5) introduced in 

Tlt r:rm : lll 2.2 and Xf satisfies tbe stochastic differencial equat.ion 

The anion func tional on the space (qo,TJ(R2 ),Por) for the two-dimensional family of pro

r(·ss,·s (S:. J; c(,Y!, Y;) ds) is obtained similarly t.o section 2 in [2]. \Ve will not go int.o 

dr·tail:; in this malt.cr but just point out the main steps. 
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Jkfi llr; for C:ilcll f}= (tJ1 ,{1"1.) E R :! aud x E R thc sem ig ro up o f o pe rators {7f }r~o by 

f0r f E Co and a(.c,y), c(x,y) Lhe fundions inLroduced in section 1. By Theorem 2.2, 

exists uniformly in y, H(x,{Jl,fl2) being Lhe first eigenvalue of thc opcrator A.a given by 

A .a f(y) = A 1 f(y) + L81 a(x, y) + fJ2c(x, y)] f(y) , Y E (~) . 

.\fo reove r , H(x,fJI.fl2) is differentiable in f3 = (fJI,fJ2). Using the same proof of Theorem 

7.4 .l in [6] one can show that, for each tp E C[o,TJ(R), the adion functional for the family 

o f processes (f~ a( tp, .Yn ds, f; c(tp,, Y.c) ds) is %-SóT( t/J, TJ) with 
f 

if t/J, TJ are a.c. 

in the rest of C[o,TJ(R 2) 

where L(x,o 1 , o-2
) is the Legendre transform of H(x ,{J1,fJ2) with respect to {J. 

\"o ticc that thc trajecLories of Lhe processes f~ a( <p,, Y,c) ds and f~ c(<p,, Y.c) ds belong, 

wilh probability one, respectively to Fã and Fl whcrc 

Fr: = {t/J E C[o,TJ(R): 1/Jo =O, 3~t , k :5 ~~ :5 k, tE (O,T] }. 

!\ow, r:xaclly as in [2]. onc can prove that (X f, f~ c( X~ , Y,') ds) h as action functional 

tSr,.r(<p, 1J) with 

inf ~fo "',· ds+f0 L(<p.; t/J.,i], )ds , 
t/IEF4 VJ , 

{ 

{ 
7'~ T · } 

SoT( rp,7J) = +oo, 

if <p is a.c., TJ E F-c. 

in the rest of 

C[o,Tj(R2
). 

In particular, using Theorem 3.3.1 in [6], we concludc that the action functional for X~ 

is tSoT(y) with 
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0.2) 
if <p is a.c. 
in thc rcst of Cro:n(R). 

In (:3.2) the funct.ion J,(x ,a) is Lhe Lcgendre transfor m ofthe first eigenvalue >.(x,[J) of thc 

üp<:rator • 

AP = A 1 + [Ja(x,y) , {3 E R 

As in (2], Lhe wave front propagation for the solution u~(t , x, y) of (1.2) is analyzed by 

means of t.he action functional (3.1). Define, for each x E R , t >O, a function V(t, x) by 

(:!.3) V(t, x) = sup{ry,- Sot(<p, 17) : <p E Cro,tJ(R ), <po = x, <f>t E (Go], 17 E F~ }. 

This function is analogous to a function V(t, x) inlroduced in [2], section 3. 

o 
\Ve say that Condition (N) (see Freidlin [4]) is fulfilled iffor ali (t,x) such that V(t,x) = 

V(t , x) = sup { 77t - Sot(<f>, 17): c.p E Cro,tJ(R ), cpo = x, IPt EGo, V(t - s, <p,) < 0 

for s E (O, t), 17 E Fé} 

/\ ~ Í11 secticm :l of (2] onc can prove that, undcr Condition (N), 

I. '( ) {0, ifV(t, x )<O,yED 
lll11L l, X, y = 

e l O 1, if V(t,x) > 0, y E D. 

Further, the convergence is uniform in compact sets. The above resuft tells us that the 

wa,·e front at time tis det.errnined by the sets G1 = {(x,y) : V(t,x) =O, y E D}. In 

a more general situalion, without Condition (!'\), the wave front is described in t.erms of a 

difrerent function. As in [2], seclioH 3, define a functional r= rF(t , <p1 , <p2
) on ( -oo; +oo) x 

C[o,+~J( R) x C'[o;+ooJ(D) witb values in [O; +oc) by 

13 



• wherc F is a ny closed s ubsct of ( - oo; + oo) x R. We denote by 0 the seL of ali s uch 

funct ionals . LeL us defi ne for each X E R a.ncl t >o a function v •(t , x) 

(3 4) v· (l, x) = inf sup {7JtAT- So,rAT (!f>, 17): !f> E C[o, rj (R ), lf>o = x, lf>r E Go, 7J E Fz } 
. . TE 0 <p,fj 

wherc Sor is t he action functional in (3.1). Clearly V .. (t,x) $ (O 1\ V(t,x)) $ O where 

V(l,x) is lhe function defined in (2.1). Assuming lhat a(x , y) = a(y) and that t he nonlinear 

tc rm in ( 1.2) depends on x and y , one can p rove, as in [2], t hat the wave front is described 

by the set ôM x D where M = {(x, t): V"(t , x) =O} and ôM is the frontier of M. 

Using results from [5) and (7) one can show that V(t, x) = v •(t, x) for t > O, x E R 

wi th 

V (t , x) = sup { min [7Ja- Soa(!f>, 77): cp E qo,rj(R), I(Jo = x, !f>t EGo, 1J E F,] }. 
<p,rJ O~a $( 

4 . E xamples 

Example 4.1. Let us consider (Y1 ; Py) as a difl'usion non-degenera ted process in a bounded 

doma in D C n.r with smooth boundary âD and normal refledion on the boundary . 

• It is known (see Fre idlin [4)) t ha t t he infinitesimal genera tor A 1 of t his process is de fi ned 

at lc:ast on the functions f(y) having continuous first- and second-order derivat.ives up to 

th<: bound ary âD for wh ich ~~~~~ lyE éiD =O, where n(y) = (n 1(y) , · · · , nr (Y)) is t he inward 

normal to the boundary âD . For these functions, 

1 - ~ i( )âf (y) 1 ~ ' j â2 f (y) 
A f (y)-~c y (3i + 2 ~ d' (y) â iô i ' y E (D ) 

i=l y i ,j=l y y 

where dii (y) are assumed to be twice continuously differentiable up to the boundary and 

L~.i=l dii (y) ...\i ,.\i > O; t he functions ci(y) a re assumed to be Lipschitz continuous . A 

construction of such process is available, for example, in Freidlin (4) or, with more dctails, in 

An derson and O rey [1] . ln that const ruct.ion t he process (Y; ; Py) is obtained as the solution 

o f t h c stochastic diffe rent.ia l equaLion 

14 



wh cre A'&o(y) is the indi cator of t.he sei ôD 1 W1 is a Wiener process in R r adapted to 

an in creasing family of o--fields N, 1 (dii(y))iJ=l.-··,r = o-(y )o-"(y). The process çr is a 

non-decrcasing process which increases only for t E r = {t : Y/' E ôD} I r having Lebesgue 

meas ure zero a.s. The random function r,r is refer'red as the local time on the boundary. 

From lhe construüion of (Y1 ; 1\) it is derived that Y1 is a strong Feller-Markov process 1 

Íl is uniforrnly stochastically continuous 1 and it.s transition function h as density p(t 1 Y1 z) with 

p(l, y , z) > O for t > O. Therefore 1 condit.ions (L.l)-(L.3) are satisfied. Conditions (L.4) 

and (L. !:i) are easily verificd if we take in to account that (Yi; Fy) is a Feller-Markov family 

aml satisfies the stochastic diffcrential equat.ion (4.1). f 

H.clying on Thcorem 2.2 1 conditions (L.l )-(L.5) allow us to apply Theorem 7.4.1 in [6] 

t.v cvucludc that ih e act.ion funct.ional for thc family of processes (.X; 1 J; c(.,.Y~ 1 Y.') ds) is 

~Sor(<p 1 1J) with Sor(<p17J) given in (3 .1). But now the function L(x ;a 11a2) in (3.1) is t he 

L<:g<:udre transform of thc first eigenvalue >.(x;{31,{h) of the operator AP defined by 

[J ~ • ôj(y) 1 ~ . . ô2J(y) 
A f(y) = LJ c'(y)&T + 2 LJ d'1 (y) Ôt iôt i + [81a(x1 y) + fJ2c(x 1 y)] f(Y) 1 y E (D) 

i =l y i ,j =l y y 

_. I ôJ(y)l - O 
\\ lll éln(y) yEéi D - · 

Problem (1.2) reduces to 

ôu'(t1X 1Y) _ ~Lr ;( )ôu'(t1X1Y) _.!._ Lr dii( )ô2u'(t1x,y) 
- c Y . + Y ·a . + ôt é . Ôy' 2€ . . Ôy' yJ 

•=1 l,J=l 

(4 .2) 
é ( )ô

2
u<(tlxly) 1J( ') xE R

1
yE(D)

1
t>O +2axly ôx2 +~ xly,u I 

uc(0 1 x 1 y) = g(x) 

ôu'(t 1 x,y)l _
0 ôn(y) yEéiD - · 

The wave front propagation for the solution u'(t 1 X 1 Y) of (4.2) is an~yzed as in (2), but 

usiug tbe action functional in (3 .1). The funct.ions in (3.3) and (3.4) become respedively 
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and 

<;o = x, <p, EGo, 1J E Fê, 1/J E Fa }. 

1 11AT I . 12 1ti\T . 
V" (l,x) = infsup{7]tAT - -

2 
~ds- L(cp,;l/J.,i].)ds: 

r€0 cp,r1 o 1/J. O 

• cp E C[o,rJ( R), 'Po = x, IPt EGo, TJ E Fê ). 

Example 4.2. Let. (Y1; P11 ) be a homogeneous Markov chain with continuous time and 

statf:s { 1, 2, · · · , n} for which 

with q;j >O for 'i :f: j. Thephase spaceis ({1,2,· ·· ,n},B({1,2,· ·· , n})), 8({1,2,··· ,n}) 

being the class of ali subset.s of {1,2, · · · , n} . The semigroup {Tt} 1 ~0 is written as 

n 

Td(i) = E;J(Yt) =L f(j)Pij(t) 
i=l 

wit h l'ij (i) = P(t , i, j) being thc transition funct,ion ofthe process and f : {1, 2, · · · , n} -+ R. 

ll •·tJcr;. w1: can identify t.hc domain of Tr wit.h R". It is easily seen that t.he infinites imal 

g•·I• c·rator of {Tt h2:o is 

n 

A 1 j(i)= L [f(j)-f(i)]q;j , i =1,···, n. 
j = 1, j 'Fi 

• 
A 1[f(l),· ·· ,f(n))T = Q[f(l), · · · , f(n)f 

diiÓ t.l1c infiuitesirnal gcncrat,or is identified with lhe mat.rix Q. 

Condition (L.l ) is obvious . Condition (L.2) follows from 
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tU) { 
1, ifi=j 

lirnp .. (t)= 
I) o . f . -+ . r-o , 1 1.,... J. 

!1 is easily verified that (4.:3) implies that (Y1; Py) is uniformly stochastically continuous. 

'J J,,; a~~urttption th at f/ij > O for i f: j ensures that Ttf > O for every f~ O, f f: O, i.e., 

condition (1.3) is fulfilled. 

• For caclt h : {l, · · · , n} ~ R , Lhe sernigroup {T1(h)} 1:::o m (2.5) is a semigroup of 

rnatricc!> acting in Lhe n-dimensional space o f vectors f = (!( 1), · · · , f( n )) . The infinitesimal 

gc:neralo r is 

The semigroup {T
1
(h)h:::o can be represented in the form T1(h) = exp { t Q(h)} . Clearly 

condition (1.4) is fulfilled. The operator ~(h) is compact because the space is finite

di n t<: nsi onal and then condition (1.5) is also verified. 

Problem ( 1.2) reduces to Lhe system 

{ 

âul(t, x) _ w~.: (x) ô2
ul(t, x) ~ [f ( ') ~ ·( , _ ~)] R 0 

ôt - 2 ôx2 + é k x' uk + LJ qk; uk uJ ' x E ' t > 
j=l 

uk(O,J:) = 91.:(x), 1.: = 1, ,n. 

T!Jis prol) I em is a particular case of the reaction-diffusion system studied by Freidlin in [5). We 

iucluded this example here just. to make more natural the construction of the next example. 

Example 4.3. Let (Y1 ; Py) be a Wiener proccss in [- b; b] wiLh instantaneous reflection 

at the end-points (particular case of Example 4.1). Let v1 be a step r~1dom process with 

states { 1, · · · , TI} and P;j(.ó.) = q;i Ll + O(Ll) as Ll ! O, i f: j, Qij ~O (as in Example 4.2). 

\\·e con~iJer the hornogencous right-continuous Markov process (Y1 , v1) in the phase-space 

[ - Ú: ój X { l, · · · , TI} . 

The scmigroup 011 the space D of bounded, measurable fundions 011 [-b; b] x { 1, · · · , n} 

illto R associaled wiLh thc process (Y1, v1) is 
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Jl 

'J~f(y , i) = Ey,;f(Y,,v,) = L l:;Yf(}',,j)J>;(v, = j). 
j = l 

Tl11: abovc scmigroup can be regarded as acting on the space of bounded, measurable funct ions 

on [- b; b] into R 11
, i.e., f(y) = (fi(y), · · · ,/n(Y)), y E [-b; b]. In this case, Tt[JT(y)] = 

[ Ey. 1 !0'1, vt), · · · , Ey,nf(Y1 , v r) f . Thc infinitesimal. gene r ator of {Tt} t~ f JS 

A I J(y) = ~ ô2 f(y) + QF(v) 
2 ôy2 

wbere Q = (q;j )i,j =l .- . ,n . Conditions (L.l )-(L.5) can be easily verified similarly to examples 

'1.1 a nd 4.2. 

P rob lem ( 1.2) reduces to a weakly coupled R-D equation: 

ôui(t ,x,y) 1 ô2ui(t,x,y) w.~:(x,y)ô2uHt,x , y) 
____:~___;;...;. = - + + & ~ ô~ 2 ~2 

( 4.4) 
+ ~ [fk(x ,y,ujJ + :tQkj(ut- uj)l, x E R ,jyj < b,t >O 

~ j=l 

ut(O,x,y) = g.~;(x) 
âuHt, x, y) I _ 

0 : . y=±b-
u!J 

for k = 1, · · · , n 

1\'lic:r<.: IJij ~ O for i,j E {J, ... ,n}. For each k, the functious aJ.:'(x,y), h(x,y,1t), 

!ld~;) satisfy lhe same conclitions given in the introduction of this paper. Ilere, G0 = 

suw C2:Z= 1 9k). VVc assume that Go is contained in the closure of the set (Go) of its 

in terior points. 

System ('1.'1) is associated with a right-continuous strong Markov pr~cess 

in thc phase-space R x (- b; b] x { 1, · · · , n} . The process vf is obtained from v, by taking 

vi = //J. , thc process Yt' is defined by Y/ :: Y.L, and the first component 5(f satisfies Lhe 
< < 

s toc has t ic differential equation 
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Thc probabilistic rcp rcscntation of the solution of ( 4.4) is obtaincd from thc Fcynman-

1\ac formula: Onc ca n prove that 

Thr: asyrnplotic bchavior, as € ! O, of t he solution of (4.4) is analyzed by means of the 

act iou functional for thc family of random processes ( Xf, f~ Cv: ex:, yn ds) . Since (Yt, Vt) 

satisfics conditions (L.l)-(L.5 ) we can apply the results obtained in section 3. 

\otice thaL usiug 8xample 4.1, problem (4.4) can be generalized to 

âuk(t ,x, y) -~ Lr ;( )âui(t,x,y) _!_ Lr· dii( )â2ui(t,x,y) 
Ô - ck y â . + 2 k y â ·a . + t ( . y' ! . . y' yJ •=1 •.J=l 

x E R , y E (D), t > 0 

ui(O ,x,y) = gk(x) 

ôu'(t,x,y)l _ 
0 Ôn(y) yE DD -

for k = 1, · · · , n and 9ij 2: O for i, j E { 1, · · · , n} . 

\ow, the action functioual for ( Xf , J; c( X;, Yn ds) is given in (3.1) but the fuuction 

L( x; o 1 . o 2
) is th e Legendre transform o f Lhe first eigenvalue >..( x; {31 , {32 ) o f the operator 

f 

I ô2 

2 ôy• + Q + [,B1a(x, y) + fJ2c(x, y)], y E (D), x E R. 

5 . Slow motion dcpcndcut of the fast variable 

Lct us considcr the following mixed problcm: 
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(.'>.I) ! 
Du' ( l. ::r, lJ) 1 

f)~ · =A 1 ·'u' (l,x, y) + A 2•'u' (t , x , y) + e f( x , y, u') , 

for t >O, x E R , y E (D), D C Rr 

t/(O,x,y) =g(x , y). 

'I" h<.: nonlincar terrn f (x, y, u) and lhe ini t ia l fund ion g(x, y) satisfy the conditions specified 

in Lhe introtluction of this paper. T he operator A 1•' is the infinitesimal genera tor of the 

fast process Y,' = Y.; where (Y,; 1\) is a homogeneous Markov process in the phase space 

(D;B(D)), D C Rr being a compacL set and B(D) the cr-field of Lhe Borel subsets of D 

in tl1c; l opology in herited from the Euclidean norm in Rr . We assume thf-t (Y1 ; Py) saLisfies 

corJdi tions (L.l)- (L.5 ) formula ted in Thcorem 2.2. 

T!Je operator A 2·' is Lhe infinitesimal generat.or of Lhe slow process Xf and is defined 

in (Ui). We assume thaL a(y) and b(y) in (1.6) are real-valued cont inuous fu nctions and 

O < Q $ a(y) $ ã, Q $ b(y) $ b. It is impor tant to observe and kee- in mind that the 

infi ni t.csinml charact.eristics of X[ depend only on the fast variable y and the measure Jl(-) 

does not depend neither of x or y. 

The strong i\·Jarkov process (X f , Yt'; ?;y) is associaLed with the operator A l,c + A 2 ·'. 

\loreover, one can prove (see for example Frcidlin (4]) that there exists a unique generalized 

solution of problem (5. 1) in the sense that it satisfies the unique solution of the generalized 

Fey nman- l\ ac formu la (1.3). 

,\s in problem (1.1) which was studied in [2), t he asymptotic behavior of the solution 

1/(l,x,y) of (5.1) as ' L O is related with probabilities of large deviat ions for the two

dimcns ional family of processes ex:' Z,) where Zf = f~ c( X~ I Yn ds . To determine the 

action functional for (X f, Zt) we shall express .X: as the unique solution of a stochastic 

differcntial equat ion. 

Let us consider the stochastic differential equation 

(5 .2) d}:;f = b(Y/) dt + Viu(Y/) dW1 +c j u Jl~(dt, du), X0 = x 
R 

wherc u:!(y) = a(y) and q is a (F t)-stationary Poisson point process in R (see defi nit ion 

i r1 lkr:da !-..: \V;ltanabc [9]) wiLh charactcristic measure ~Jl(-). Let v;(t,A) be the integer-
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\·:dwtl r :ll1dv111 111c as urc associa tcd with q and J-l~( t, A) the corrcsponding orthogonal local 

111;trt inga l·· 1111: a:-;ure. lt i~ known (see [8], Vol 3) that v~(t, A) = p~(t, A)+ ~JJ(A) t for ali 

:\ E U( H.J wi t h fl (A) < oc and Ev~(t,A) = :n(A)t. Thc process W1 is a R-Wiener 

prot: t:~:-. ~~ arting a L zero, (Fc)-adapted, and independenL of q. 

One can prove similarly to the proof of Theorem VJ.9.1 in [9] that, for a fixed t rajectory 

()r ~ '/ . tlu: rc eú;ls a unique solution Xi of (5 .2) which can be writ.te n as 

X~ = x + lt b(Y,') ds + ~ 11 

Ja(Y,') dW3 + €: f up.~(t, du). 
It 

Usi n.g thc gene ralized Itô's formula (see (8), Vol 3) one can ve rify that the infinitesimal 

g~:n.;raLOr of Xf is g iven by (1.6). 

We shall now derive the action functional for (x:, J; c( X~, Y.c) ds) on (V[o,Tj(R2), 

Por). ll ere 'D[o,rj(Rm) is the space of right-continuous functions with liinit on the left and 

POT is clcfined by por((<p1
, ... ,<pm),(l/J1

,··· ,ljlm)) = 2::~ 1 ll<pi- t/1;11 where 11· 11 is the 

S UJJrC; IfiUIII nonn in 'D[o,Tj( R ) . 

Let us inLroduce Lhe processes 

( 5.4) 

T :,killg in LO account lhe proprieties of the functions a(y) and b(y) we can see that the 

trn jl'c tories of the processes in (5.4) belong respectively to the sets F5 and Fr, a.s. where 

F'k = { l/J E C'[o,rj(R) : l/Jo =O, 3~t a.e. ,}f~ ~~ ~ k, tE (O, T]}. 

lt is known (see McKean [11]) that therc exists a Wiener process W1 in R, starting at 

t.<·ro . and indcpe nde nt of Y/ satisfying the relation 

Tl ... n J ' + fi f~ J a(Y.')dl\', = X1-; where X~ = x + fiW1 • Therefore, the process X~ 

sati~fying ( i>.:l) can be written as 

21 



(.'di) (~ =E j u J.L~(t, (lu). • 
rt 

Thc proccs~ (f is a proccss in R with frequent small jumps and trajectories belonging 

to "D[o,TJ( R ) with probability one. Moreover, it is independent of Y/ and Xf and has 

iufiuitcsima.l gcncra tor givcn by 

ITJ(x) = ~ j [f(x + c{J)- f(x) - c{Jdfd~)] ll(d{J) 

rt 

whcrc JJ(-) is a u- finite measure with fl( {O})= O and J~: {J2 fl(d{J) < oo. The cumulant 

of thc process c; (see [15)) is 

G'(z) = ~j[ecz {J -1 - cz{}]fl(d{J). 

R 

Thr:n 

G0 (z ) = limcG'(.:_) = j[e'P -1 - z{J] fl(d{J). 
eLO E 

rt 

Tltr: function G"0 (:) is rneasurable with respect to z and G0 (0) :=O. It is downward convex 

a ucl lowcr scmiconLinuous ; in the interior of its domain of finiteness it is analytic and the 

s•'Cünd-order dcri\"ative is st.rictJy positive (see [1 5)). Let Ho(u) be the l egendre transform 

0f (/' ( z) . Th i~ function is also lower semicontinuous and downward convex. 

Lct us assume that G0 and H0 satisfy the following conditions : 

(S .l} G"0 (z ) :S é 0
(.: ) for a li z where G0 is a downward convex nonnegative function , finit.e 

f0r ali z, and C0(0) = G0(0) = O. This condition means that H0(u) :S H 0 (tt) for ali u 

whcrc Il0 (u ) is th e Legendre transform of G0 (z); the condition offiniteness of G0 becomes 

I. fiol u I 
llllJuJ - oc !UI = ·X> . 
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f 

(S .2) flo(u) < ov for lhe samc u for which lfo(u) is finite. 

(5.3) 'fhc set {u: lfo(u) < oo} is open. 

(5.4) For any cornpaclum I< C {u : Flo(u) < oo} lhe derivative &J~º is bou udecl an<.l 

continuous in u E f(. 

'fhcn, relying on Thcorern 4.3.1 in Wentzell (15], we conclude t.hat lhe acl.ion functional for 

the family of processes ((f; P:) is ~Sor(v) where 

(5.7) S'or(v) = { f{ Ho(v.) ds, 
+oo, 

if vis a.c. 

in the rest of "D[o,rj(R). 

Now we shall determine the action functional for the two-dimensional family of processes 

(X~ . , ÇD in the space (1J[o,Tj(R 2), Por). Let Gt be the operatorfrom (1>[o,TJ(R 3), Por) in to 
I 

(1J{o,T)( R 2 ), Por) defined by G1(rp, 1/;, 77) =(<,o, 77); it is easily seen that G1 is a continuous op

erator. lising Theorem 3.3.1 in [6] and taking into account that (X..y., Çf) = Gt(X.y., TL Çf), 
I I 

wc can see that it suffices to obtain the action functional for (X.y., Yí ,Ç[). 
I 

Using the same proof of Propositions 2.1, 2.2, and 2.3 in [2], one can show that the 

action functional for (X h, YLÇf) is ~Sor(so, 1/;, 77) with 

{ 

1 rT Ji..J.: rr ( . · ) 
--: ( :! Jo ·'· ds + Jo L 1/!., 77• ds, 
.SuT <p , t/;' r/) = "'' 

+oo, 

• 

i f cp is a.c. , t/; E FlJ, 11 E Fi, 

in the rest of 1J[o,Tj(R3 ). 

Tbc function L( o- 1, a-2) is the Legendre transform o f the first eigcnvalue >.(/31 , /32 ) o f the 

op<:rator 

where A 1 is the infinitesimal generator o f lhe process (Y1 ; Py). 

Now, using Theorem 3.3.1 in [6], we conclude that the action function al for (X.y., Çf) 
I 

1s ~Sor(so, ry) with 
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in~ ~ fo v/ ds + j0 L(l/1, , r],) ds , i f 9 is a.c. , 
'-''Ef o .... t:t. 

(5.8) SoT (c,;:>, 77) = 17 E F1, l 
{ '/'~ . T . } 

+ oo, in the rest of 

'D[o,Tj(R2). 

T he action functional for XJ. , + Çf is easily obtained taking into account that XJ., + 
' ' 

Çf = G':!(.Xy, ,Çf) whcrc G':t{v>,7J) = <p + 7]. Clearly G2 is a continuous opcrator frorn 
' 

(1'[o,TJ(R2) , Por) into (V[o,rj(R),por). Using Theorem 3.3.1 in [5] once again, we obtain 

thc action functional for Xy~ + Çf which is given by ~S'oT('P) with 

(.).9) 
{ 

· f { rT 1</>.-•i ·l, d rT L(·i· · ) d } 
111 Jo ·'· s + Jo 'f's, 77s s , 

'1€ F&,.PE F. "' ' 

S'oT (t.p) = +oo, 

if fp is a. c 

in the rest of 

'D[o,TJ(R) . 

The process G in (5.6) is independent of Xy, + Çf. Then the normalized action func-
' 

tional for (Xy, + Çf, (f) is the sum of the functionals in (5.9) and (5.7), i.e, it is given 
I 

by 

Sor(<p , v)= 
if VJ, v are a.c 

The process Xf in (5.5) satisfies the relation 5(; = G3(Xy, +Çf ,(:) where G3(VJ, v)= 
I 

.,:; + v. It is easily secn th at the operator G3 from (V[o,TJ (R 2
) , Por) into. (V[o,Tj(R), Por) is 

:.t coutinuous operator . Relying on Thcorem 3.3.1 in [G] we obtain Lhe action functional for 

.\; which is ~S'oT(:P) with 
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(0 . l O) 

{ 1
T I' . . , ~ T . 1 <p, - fj, - v, ~ . . 

mf -
2 

. ds+ f L(t/J, 1 1J, ) ds+ 
1/IE F4 ,TJE F;,,v a .c 0 .,P, Jo 

+ J,'' Ho(V,) <U} , if <p ;, a.< . 

+ 001 in the rest of 'D(o,TJ(R). 

The ac t.ion funct.ional for t he two-dimensional family of processes (X f ; J; c( X: 
1 
Y.c) ds) 

is obtained in a similar way. IIere we shall just point out the differences. f 

For each <p E C'[o,TJ(R ) 1 define 

The: trajcctorics of z~ ,<p b<:long to Fc with probability one. Moreover I (Yt; .i\.) sa tisfies 

Cúndit ious (L.l )~ ( L. 5 ) introduced in Thcorem 2.2. Then we can apply Theorem 7.4.1 in (6] 

Lo coucl ude thal Ütc action functional for Lhe three~dimensional family of random processes 

cr~ , (~ .z:·'P) is givcn by ~st1·(t/J, fJ ,<P) wi th 

wlterc L(.t 1 a 1
, o 2

, o-3 ) is t he Lcgendre tra ns form of the first eigcnvalue >.(x 1 {31 , {32 , {33 ) with 

respect I o ;31 1 B2, !33 o f the operator 

A 1 + [{31 a(y) + {Jzb(y) + {33c( x , y) ]. 

l' 5ing t h c same arguments as in {2] one can obtain the action functional for (X r•, ~~ , Çf, Z:) 
f ' 

cllld tltf'n, as bdorc 1 to prove that Lhe normalized action functional for (_,~f I J; c( X! I Y.c) eis) 
is 
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{ 

T · · · 'l T . 1 j<p . - IJ. - v.l - · . · 
111f 2 r . ds + r L( <,o~, 'if;,, 1Js, <!>.) ds 

oJ- .•1,v lo t/J, lo 

( .') . 11 ) +la H o( v,) ds: t/J E Fã, 7J E F'h, I/ a.c. , T } 

if <p is a.c , </> E Fé 

+ oo, in the rcst of 'D[o,rJ(R 2
) 

widt normalizing coefficient ~ 

To analyze the asymptotic behavior o f thc solution u' (t, x, y) o f proÍlem (5.1) we shall 

follow Lhe same approach used in [2] . Lct us define for each t > O and x E R a function 

V(l , x) , 

(5.12) V(t,x) = s up{<f>t- Sot(<,o, </>): <p E Cro,cJ(R), <,oo = x, IPt EGo,</> E F,}. 

whúre 5'01 is defined in (5.11). 

Exactly as in [2] one can prove that limcJ OUc(t ,x,y) =O if (t,x,y) E Q_ x D where 

Q_ = {(t,x): V(t,x) <O}; further, the convergence is uniform in any compact subset of 

Q_ x D. Also, if Condition (N) (introduced in section 3) is fulfilled then limcto uc (t, x, y) = 1 

for (t ,x, y) E Q+ x D wh ere Q+ = {(t,x) : V(t,x) > O}; this convergence is uniform in 

colllpact s ubsets of Q+ x D. 

Condition (N) is a restriction. One can construct an example similar to Example 3.1 in 

[2] show ing that Condition (N) is not. fulfill cd necessari ly. Using t.he same approach as in (2), 

O JH: can analyze Lhe wave front propagation of uc (t, x, y) as é ! O without Condition (N). 

Ali thc results in section 3 of (2] can bc proved in a similar way in this ncw context. The 

wave front is described by means of the function V " (t,x) in (3.4) but using the functional 

Sor in (5.11). 

6. Slow motion independent of the fast variable 
f 

lu this section \\'C sLudy the wave front propagation as é J O for the solution uc (I , J: , y) 

(Jf llt (; fol lcnv iug Cauchy probbn: 

2G 



( () .1) ! 
ô u( (f , :J:, y) = A 1 < ut (l. :r. y) + A 2·'u'(t, x, y) + ~ f (x, y, u'), 

Ôl é 

forl>O,xER,yE(D) , DcRr f 

t/( O, x , y) = g(x) 

wltr:rc f(x , y , u) and g(x) satisfy Lhe conditions formulated in sect ion 1. The operator A 1·c 

is tlac sarnc as in (5 .1 ). Wc assume that conditions (L.l)-(L.5) (see Theorem 2.2) are fulfilled. 

Tbc opcrator Az,c describcs the moLion of thc slow variable. In this section we assume 

t!tat lhe slow motion is a timc-homogcncous locally infinitely divisible process (Xf; P;) 
(sc~c definition in section 1) with infinitesimal gencrator A 2·' defined in (1.7). We assume 

that b( x) and a( x) in ( 1.7) are bounded, measurable, and Lipschitz continuous real-valued 

functions satisfying O < Q :::; a(x) :::; ã and !!. :::; b(x) :::; b. Notice that tl:e infinitesimal 

characteristics of the slow motion are independent of the fast variable y. 

As in scction 5, the strong Markov process (Xf, Y/; J5;y) is associated with the operator 

U = A 1
·' +A2

·' . Besides, there exists a unique generalized solution of (6.1) and it satisfies the 

gcneralized Feynman-Kac formula in (1.3). Again, the asymptotic behavior of u'(t, x, y) as 

- - - I -
E J o is analyzed by means of Lhe action functional for (Xf, zn where Zf = fo c( X; , yn ds. 

The fact that Xf and Y/ are independent simplifies significantly the derivation of the 

action functional for (Xí, zn' We will not. go into details in this matte~ but just point out 

lhe main sleps. 

first. \\"C use the rcsull obtained by Wentzell [15} in Theorem 4.3.1. By assuming the 

hy potltcsis of that thcorem, we can say that the action functional for Xf is ~SoT(<p) with 

f 

if <p is a.c. 

in the rest of 'D[o,TJ(R). 

Thc funclion Ho(x; u) is the Legendre transform of G0 (x; z ) with respect to z and G0 (x; z) 

= lirn F. G'(:r 5. ) whcre 
< I o ' c 

w (x) ? lj a Gc (x; z) = b(x)= + -
2
-z· + ; [e'" z- 1- ê,Bz] Ilx(d,8). 

n. 
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,\ui ice that G'l Í!> Lhe cuurulauL of the proccss Xf (sce (15}). 

Secolldly, for cach t.p E G"[o,TJ (R), define z :·"' = j~c(cp.,Ynds. Rccall that (Y;;Fy) 

!>at ísfics conditions (L .l )- (L.5 ). Then, from T hcorem 7.4.1 in [6] we obtain the act ion 

funct ional ~ Sór ( <P) for z~·"' wi t h 

where L( x; o:) 1s the Legcndre transform of the first. eigenvalue >.. ( x; {3) o f t he operator 

A 1 + {3 c( x, y) . 

It turns out t.hat. Lhe action functional for (X f, zn IS ~Sor(t.p, </>) where 

(6.4) 
if cp is a.c., t<P E Fé 

in the rest o f V [o,T] (R 2) . 

To prove this fact wc shall verify conditions (A.O)-(A.2) introduced in [2] . 

T he compactness of t he levei sets (condition (A.O)) can be proved similarly to Propo

s ition 2.1 in [2] a nd T heorem 3.1.1 (b) in Wentzell [15]. The lower and uppcr bounds 

(conditions (A.l) and (A.2) ) a re easily obta incd by taking into account t hat. Xf and Y/ 

are independenl and c(x, y) is Lipschitz cont.inuous in x . 

The wave front p ropagat.ion of u' (t, x, y) as c l O is described by means of t.he function 

(6 .. )) 
V(t, x) = s up{ </! 1 - fot Ho('-PJi<PJ) ds- fo' L(cpJ; ~J) ds: 

<po = x, t.p E C[o,rj(R), '-Pt EGo,</> E Fé }. 

OIJscrve tlmt tire function in (6.5) is thc same funct.ion V(t, x) int.roduced in (3.3) but using 

thc ac tion functional in (6 .1). 

As in (2] onc can prove that u'(t,x,y) converges to zero as E lO in the region {(t,x) : 

\ '( t, x) <O} x D. 1\l o reover , if Condit ion (N) is fu lfi lled, t hen u'(t, x , y) 'converges to one in 

{(t,x) : V(t,x): \'(t ,x) > O} x D . 

f 
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