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In this paper, a fully kinetic theory for the relativistic electron flow in a crossed-field device is

developed and analyzed. The theory takes into account self-electric, self-magnetic, and thermal

effects and allows determining the final stationary state achieved by the electrons in phase-space. A

number of different possible stationary modes are identified and described in detail. Particular

attention is given to the study of how space charge and thermal effects affect the magnetic insula-

tion when the external magnetic field exceeds the Hull cutoff field. In the nonrelativistic limit, it is

found that there is only a single mode transition that leads to the loss of the magnetic insulation.

This transition is completely independent of the electron density and occurs for relatively large

injection temperatures. On the other hand, in a moderate relativistic regime a much richer scenario

is found with the onset of a series of stationary state mode transitions as both electron density and

injection temperature are varied. In particular, it is found that the transitions and the consequent

loss of magnetic insulation may occur even at very low injection temperatures. Self-consistent

numerical simulation results are also presented and used to verify the theoretical findings.

Published by AIP Publishing. https://doi.org/10.1063/1.5028384

I. INTRODUCTION

The study and characterization of the dynamics of elec-

trons immersed in a crossed electromagnetic field have

attracted a lot of attention over the years due to its relevance

in the development of important technological devices such as

electric thrusters,1,2 radars,3 RF generators,4 and sputterings.5

The early models based on single particle dynamics showed

that if the magnetic field is strong enough, it can prevent the

electrons from reaching the anode.6 This is the so called mag-

netic insulation (MI) that occurs whenever the external mag-

netic field exceeds the Hull cutoff field BH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV0=eL2

p
,

where m and e are the mass and charge of the electron, and V0

and L are the cathode-anode voltage difference and distance.

This expression is readily obtained if one considers that the

electron is emitted from the cathode with vanishing kinetic

energy. Nevertheless, it is known since the pioneering works

of Child and Langmuir7,8 that the space charge self-electric

field may play a very important role in such non-neutral devi-

ces by inducing the onset of a virtual cathode that limits the

current density which can be extracted from the cathode.9 The

same effect occurs in crossed field devices.10 In fact, not only

the self-electric field, but also the self-magnetic field may be

of relevance.11,12 This is particularly true when the accelerat-

ing potential energy becomes a sizable fraction of the electron

rest mass and the relativistic effects become noticeable. In

this regard, a fully self-consistent theory which includes rela-

tivistic effects has been developed for the case of cold

injection.13

Another important issue that has been investigated is the

effect of temperature on the electron injection. It has been

shown that thermal velocity spread may affect the magnetic

insulation and lead to the onset of stationary states in the

space charge limited regime, among other effects.14–18

However, as a simplifying assumption, all the theoretical

investigations done so far that include thermal effects neglect

the self-magnetic fields.

In this work, we develop and analyze a fully kinetic

theory for the relativistic electron flow in a crossed-field gap

that takes into account both self-electromagnetic and thermal

effects. The theory allows determining the final stationary state

achieved by the electrons in phase-space. We consider that the

velocity distribution at injection corresponds to a waterbag dis-

tribution and identify four different types of stationary mode

solutions. The waterbag distribution is considered not only for

its simplicity, but also because it reproduces results from more

realistic distributions.19 Particular attention is given to the

study of how space charge and thermal effects affect the mag-

netic insulation when the external magnetic field exceeds the

Hull cutoff field. In the nonrelativistic limit, it is found that

there is only a single mode transition that leads to the loss of

the magnetic insulation. This transition is completely indepen-

dent of the electron density and occurs only for relatively large

injection temperatures. On the other hand, in a moderate rela-

tivistic regime when the self-magnetic fields start to play a

role, we find a much richer scenario in the parameter space. A

series of stationary state mode transitions that go all the way

from complete insulation (when no electrons reach the anode)

to no insulation at all (when all the electrons reach the anode)

occur as both injection temperature and charge density are var-

ied. In particular, it is found that the transitions occur even at

very low injection temperatures. Moreover, two different types
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of non-insulated (NI) stationary states are identified. While on

one there is only a single population of electrons where all con-

tribute to the cathode-anode current, on the other there are two

distinct electron populations: one that contributes to the

cathode-anode current and a more tenuous one that stays

trapped in the gap region, not contributing to the cathode-

anode current. Such a stationary state is present only when

self-magnetic fields and thermal effects are properly taken into

account. We also run N-particle self-consistent simulations to

verify the theoretical results. A very good agreement is found

between the theory and the numerical results.

This paper is organized as follows: in Sec. II, we intro-

duce the theoretical physical model of the relativistic crossed

field gap; in Sec. III, we identify and discuss the properties

of the different stationary modes obtained from the kinetic

theory; in Sec. IV, we investigate based on the theory the

changes in magnetic insulation as the parameters are varied;

in Sec. V, we present results from the N-particle self-consis-

tent simulations and compare them to the theory; and, finally,

in Sec. VI, we draw our conclusions.

II. THEORETICAL MODEL

The geometry and the electromagnetic field configuration

of the relativistic crossed-field gap are shown in Fig. 1. There,

we can observe two long parallel plates kept at a constant

potential difference. The plates are oriented in the xz–plane

and separated by a distance L along the y–axis. The plate at

y¼ 0 is a cathode kept at zero electric potential and the plate

at y¼ L is an anode kept at an electric potential value V0. As

a consequence of the electric potential difference, there is

a constant external electric field E0 ¼ �ðV0=LÞŷ in the gap

between the plates. Moreover, there is a uniform constant

external magnetic field B0 ¼ �B0ẑ that is orthogonal to the

electric field E0. This type of electromagnetic field configura-

tion is known as the crossed-field configuration.

At time t¼ 0, the cathode starts emitting electrons which

enter the gap, being accelerated by the external electric field E0

along the y–direction and deflected by the external magnetic

field B0 along the clockwise direction. It means that the elec-

trons released by the cathode may not reach the anode because

of the magnetic field. Indeed, if the magnetic field is such that

B0 > BH, it can be shown that electrons emitted from the cath-

ode with vanishing velocities will not reach the anode in the

non-relativistic regime eV0=mc2 � 1.6 However, in addition to

the influence of the external electromagnetic fields, the electron

flow is influenced by the fields self-generated by the electron

distribution, such that E ¼ E0 þ Es and B ¼ B0 þ Bs. Hence,

to properly describe the electron flow behavior when the self-

fields and the relativistic effects are non-negligible, we develop

a kinetic theory that explicitly takes into account such effects.

To start, let us consider the Hamiltonian that describes the

dynamics of each particle in the gap

H ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ ðPþ eAÞ2

q
� e/; (1)

where m and e are the mass and the charge of the electron, c
is the speed of light in vacuum, P is the particle canonical

momentum, and / and A are the total electric and vector

potentials that take into account both external and self-fields.

Given the symmetry of the cathode and the anode plates,

we assume that the electron distribution is uniform along

that xz–plane, such that all the field quantities only depend

on the y coordinate. From the Poisson equation, we obtain

that the electric potential is given by

@2/
@y2
¼ e

e0

nðyÞ; (2)

satisfying the boundary conditions /ðy¼ 0Þ ¼ 0 and /ðy¼ LÞ
¼ V0. In Eq. (2), e0 is the permittivity of free space and n
¼
Ð

f ðy;PÞdP is the electron density obtained integrating the

particle distribution function on the phase space. It is easy to

see that when there is no charge inside the gap, Eq. (2) repro-

duces the external electric field. In a crossed field device, the

electrons are not only accelerated along the gap direction by

the external electric field but also in a transverse direction due

to the external magnetic field. In the configuration considered

here, this corresponds to a flow in the x direction which is

responsible for the generation of a self-magnetic field that

tends to shield the cathode from the external magnetic field.

Because the magnetic generated current is along the x direc-

tion, the relevant component of the vector potential is Ax which

is determined by Ampere’s law as given by

@2Ax

@y2
¼ el0�vxðyÞnðyÞ; (3)

satisfying the boundary conditions @Ax=@yjy¼L ¼ �B0 and

Axðy ¼ 0Þ ¼ 0, where l0 is the permeability of free space

and �vxðyÞ is the average (fluid) transverse velocity at position

y. These boundary conditions are consistent with a stationary

solution where the electromagnetic fields have become time

independent in the system.20,21

The particle Hamiltonian (1) can then be written as

H ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ Px þ eAxðyÞ½ �2 þ P2

y þ P2
z

q
� e/ðyÞ: (4)

The Hamiltonian given by Eq. (4) does not explicitly depend

on x and z variables; consequently, Px and Pz are constants of

motion and their values are determined by the initial condi-

tions. We assume that the electrons are emitted with vanish-

ing parallel velocities to the cathode plane. It means that

Pxð0Þ ¼ Pzð0Þ ¼ 0 and Pyð0Þ ¼ P0, where P0 is the initial

momentum of the electron at the cathode which is non-null

only along the y direction. We stress that this initial condi-

tion does not imply that the velocity parallel to the cathode is

FIG. 1. Geometry and field configuration of a crossed field device. The elec-

trons are emitted by the cathode and their trajectories are determined by the

electromagnetic fields inside the gap region which include both externally

and self-generated fields.
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always zero, indeed vk ¼ ðPk þ eAkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðPþ eAÞ2=c2

q
.

Therefore, as discussed above, the x component of the veloc-

ity is nonvanishing due to the magnetic field and is given by

vxðy;PyÞ ¼
ecAxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ P2
y þ e2A2

xðyÞ
q : (5)

The thermal effects are characterized by a dispersion

around the mean momentum. Here, we assume that the

momentum dispersion of the electrons entering the gap satis-

fies a waterbag distribution. Such distribution is considered

not only because it is simple, but also because it reproduces

results from more realistic distributions.19 We write the

waterbag distribution at emission as

f ðy ¼ 0;PyÞ ¼ n0

HðPyÞ �HðPy � P0maxÞ
P0max

; (6)

where n0 is the electron density at the emission and H is the

Heaviside step function whose value is zero for negative argu-

ment and one for positive argument. In Eq. (6), P0max is the

momentum of the faster electrons in the distribution and is

therefore related to the injection temperature. Note that we

assume that the electrons are not pre-accelerated before enter-

ing the gap region. The slower electrons are thus injected with

vanishing velocities. Given the injection distribution function

of Eq. (6), we can estimate the mean electron velocity along

the gap as given by �vxðyÞ ¼ ð1=P0maxÞ
Ð P0max

0
vxðy;PyÞdPy.

Using Eq. (5), we obtain

�vx ¼
ecAxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ e2A2
x

p tan�1 P0maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ e2A2

x

p
 !

; (7)

which can be substituted in Eq. (3). We stress that in our

model the electron injection temperature is not isotropic

because we only consider thermal effects along the direction

transverse to the cathode plane.

III. STATIONARY SOLUTIONS

Once the system has reached the steady state, all variables

become time independent. In particular, the single particle

Hamiltonian of each electron becomes a conserved quantity.

From the energy conservation, HðyÞ ¼ Hðy ¼ 0Þ, we can write

the absolute value of the momentum of a given electron as a

function of the position as

Pyðy;P0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

0 � e2A2
x þ

e/
c

e/
c
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ P2

0

q� �s
: (8)

Electrons with a positive (negative) momentum are moving

towards the anode (cathode). Using Eq. (8) and a method

analogous to the one developed in Refs. 16 and 17, which

are based on the incompressibility in phase space of the

Vlasov equation that dictates the evolution of the electron

flow, we can obtain expressions for the stationary electron

density as a function of the electromagnetic potentials, i.e.,

nð/;AxÞ. Substituting this in Eqs. (2) and (3), we then obtain

a closed set of equations to determine the stationary solu-

tions. It is worth noting that since the present method is

based on the Vlasov equation, it does not take into account

collisional effects.22 We identify that for the relativistic flow

considered here there are four different types of modes of

stationary electron flow that may appear as the parameters

are varied. These different modes and their characteristics

are described below.

A first mode is a magnetic insulated (MI) flow where all

the electrons emitted from the cathode eventually return to it,

such that there is no anode current. This type of stationary

solution has been studied in detail in the nonrelativistic

regime in Ref. 16. It was shown that although the particles are

initially distributed along an annular region in phase space

bounded by the curves that represent the phase space orbits of

the initially slowest and fastest electrons, namely, Pyðy; 0Þ
and Pyðy;P0maxÞ, when the slowest electrons are injected

with vanishing velocities, the inner region ends up being

completely filled between 6Pyðy;P0maxÞ due to an instability

as it approaches the stationary state. Hence, the electron den-

sity as a function of the coordinate can be written as

nMIðyÞ ¼ 2n0

Pyðy;P0maxÞ
P0max

; (9)

since 2Pyðy;P0maxÞ is the area occupied by the flow in the

phase space. Here, the factor “2” accounts for the fact that

the same fraction of electrons that are moving to the anode is

moving back to the cathode in this mode [see Fig. 2(a)].

A second mode is a completely noninsulated (NI) flow

where all the electrons eventually reach the anode, causing a

gap closure. In this stationary configuration, the electron

density as a function of the coordinate is given by

nNIðyÞ ¼ n0

Pyðy;P0maxÞ � Pyðy; 0Þ
P0max

: (10)

Since in this case even the slowest electrons reach the anode,

the curve Pyðy; 0Þ plays a role in defining the stationary solu-

tion. The area occupied by the particles in the phase space is

Pyðy;P0maxÞ � Pyðy; 0Þ [see Fig. 2(b)].

A third mode is a partially insulated (PI) flow because

part of the electrons reach the anode and part, return to the

cathode. This mode can be seen as a composition of the two

previous ones. The electrons emitted from the cathode with

momentum ranging from P0 ¼ 0 and a limiting momentum

P0lim return to it after a transient time. The mathematical

treatment for these electrons is equal to the MI mode. On the

other hand, the electrons with momentum between P0lim and

P0max reach the anode. The mathematical treatment of these

electrons is equal to the NI mode. Here, P0lim is defined as

the minimum momentum required for an electron emitted

from the cathode with P0 ¼ P0lim reach the anode [see Fig.

2(c)]. Clearly, 0 < P0lim < P0max must be satisfied. In this

case, the electron density becomes

nPIðyÞ ¼ 2n0

Pyðy;P0limÞ
P0max

þ n0

Pyðy;P0maxÞ � Pyðy;P0limÞ
P0max

: (11)
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For some parameters, we notice that a solution of the PI

form given by Eq. (11) is found but with a negative P0lim. This

solution is nonphysical because the lowest injection velocity

possible is zero. However, if, in these cases, we set P0lim ¼ 0

and allow the existence of a tenuous particle distribution

within the phase space region bounded by �Pyðy;P0limÞ and

þPyðy;P0limÞ [see Fig. 2(c)], then a new stationary solution

is found by the theory. When we say, tenuous, we mean with

a density that is lower than the injection density n0. Note

that this lower density distribution does not contradict the

incompressibility imposed by the Vlasov equation. In fact, the

Vlasov equation only sets a maximum density that can be

found in the phase-space – n0 in this case – but does prevent

the occurrence of lower densities in a coarse grained sense.23,24

In any case, it is worth mentioning that the onset of lower den-

sity distributions was not observed in previous nonrelativistic

studies16,17 and is, therefore, a consequence of the relativistic

and self-current effects. Since the tenuous distribution is

bounded by the 6Pyðy;P0limÞ curves in phase space, we notice

that these particles are not in contact with neither the cathode

nor the anode; they are actually trapped in the gap region and

do not contribute to the anode current. On the other hand, all

the electrons that are being launched from the cathode with

0 � P0 � P0max eventually reach the anode. In this respect,

this mode corresponds to a modified noninsulated stationary

solution that we refer to as NI*. The corresponding density can

be written as

nNI� ðyÞ ¼ n0

Pyðy;P0maxÞ
P0max

þ n0ð2dn0
� 1ÞPyðy; 0Þ

P0max
; (12)

where 0 � dn0
� 1 is the density variation for the trapped par-

ticles distribution, which can be self-consistently determined

by imposing that the electron emitted with P0 ¼ 0 reaches the

anode with zero momentum, i.e., Pyðy ¼ L; 0Þ ¼ 0. This corre-

sponds to a fourth type of stationary solution. It is worth noting

that when dn0
¼ 0, Eq. (12) reduces to the NI mode given by

Eq. (10), whereas when dn0
¼ 1, it reduces to the PI mode

given by (11).

In practice, in order to determine the stationary solution

for a given set of parameters we initially assume that the sta-

tionary flow belongs to one of the four modes described

above and use the corresponding charge density to solve the

equations for the electric (2) and vector (3) potentials.

Inspecting the trajectories of the most and least energetic

electrons for the solution found, we can then validate or

discard the initial assumption made about the flow mode.

For instance, if we initially assume that the flow is a MI

mode, but end up finding that Pyðy ¼ L;P0maxÞ > 0 we see

that the solution is inconsistent and a different mode must be

assumed. In our analysis we find that for a given set of

parameters, there is only one consistent stationary solution.

The numerical code that we developed automatically tests

for the different modes with charge densities given by Eqs.

(9)–(12) to determine the fully consistent stationary solution.

IV. MAGNETIC INSULATION ANALYSIS

The main purpose of the present paper is to investigate

how the self-fields may change the overall electron flow in

relativistic regimes. More specifically, since the magnetic

insulation is an important issue in crossed-field devices, we

want to determine how it may be affected by the self-fields as

the parameters are changed. In order to simplify the analysis,

we conveniently normalize the space variable to L and the

momentum to eB0L. We also define the scaled parameters

�0 ¼ 2mV0=eB2
0L2; g0 ¼ en0L2=�0V0; T0 ¼ P2

0max=12e2B2
0L2,

and n0 ¼ l0�0eV0=m ¼ eV0=mc2 which measure, respec-

tively, the voltage to magnetic insulation ratio, the charge

intensity, the injection temperature, and the normalized

potential. These scaled quantities completely characterize the

system properties. In the absence of thermal and self-field

effects, the insulation is solely determined by the parameter

�0. In particular, for �0 < 1 a single particle ejected from the

cathode with vanishing velocity does not have enough energy

to reach the anode, guaranteeing the magnetic insulation.

With that in mind, for the remainder of the paper we fix �0

¼ 0:8 and investigate how thermal, relativistic, and self-field

effects affect the insulation.

In Fig. 3, a parametric plot showing the stationary solu-

tion mode found as a function of the normalized charged

density g0 and injection temperature T0 is presented. In panel

(a), the results for a nonrelativistic case with n0 ! 0 are

shown. We observe that as we increase the injection temper-

ature, the electron flow goes from the MI to the PI mode

when T0 � 0:017. This occurs because for such large injec-

tion temperatures there are already some electrons that are

FIG. 2. Representation of the phase space showing the curves that delimit the particle distribution in the different stationary modes. Panel (a) represents the MI

mode where the particles do not reach the anode and are distributed between 6Pyðy;P0maxÞ. Panel (b) represents the NI mode where all the particles reach the

anode and are distributed between Pyðy; 0Þ and Pyðy;P0maxÞ. In panel (c), the particles located between 6Pyðy;P0limÞ do not reach the anode, whereas those

located between Pyðy;P0limÞ and Pyðy;P0maxÞ, reach the anode. It serves to describe both PI and NI* modes. While in the PI mode the particles are distributed

between �Pyðy;P0limÞ and Pyðy;P0maxÞ with the same density, in the NI* mode, there is a lower density particle distribution between 6Pyðy;P0limÞ and a higher

density distribution between Pyðy;P0limÞ and Pyðy;P0maxÞ.
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launched from the cathode with enough kinetic energy to

surpass the magnetic insulation and reach the anode. We also

observe that the normalized charge intensity g0 plays no role

in determining the stationary mode. This is in agreement

with previous nonrelativistic analysis.16 In panel (b), we con-

sider a moderately relativistic case with n0 ¼ 0:2. This corre-

sponds to an accelerating potential of the order of V0 � 100

KV.25 Now, we find a much richer scenario with many tran-

sitions occurring in the electron stationary flow and in the

resulting magnetic insulation. In particular, we observe that,

differently from the nonrelativistic case, not only injection

temperature, but also charge intensity play a major role in

determining the stationary mode. This is related to the fact

that as relativistic effects become more important, the space

charge does not only affect the accelerating electric field but

can also generate self-magnetic fields which may change the

insulation properties. In particular, it should be noted that in

the moderately relativistic case mode transitions and the con-

sequent loss of magnetic insulation occur even at relatively

low injection temperatures.

To investigate how the fields are affected by the charge

distribution in the relativistic case of Fig. 3(b), we compute

the cathode electric and magnetic fields as a function of the

normalized charge density g0 for a fixed injection tempera-

ture T0¼ 0.006. The results are shown by the curves in

Fig. 4. Naturally, when g0 ! 0 the space charge effects are

negligible and the electromagnetic fields approach the vac-

uum values Bc¼B0 and Ec¼E0. However, as the charge

intensity is increased the electromagnetic fields at the cath-

ode start to decrease. Because the magnetic insulation is los-

ing its strength, the electron flow tends to get closer to the

anode. In particular, when g0¼ 0.16 the most energetic elec-

trons finally reach the anode and the flow goes from MI

(solid line) to PI (dashed line) mode. It is interesting to note

that at this transition the cathode magnetic field is just 4%

lower than the vacuum field. So, despite being a small varia-

tion, it is enough to destroy the magnetic insulation. As we

increase the charge density to g0¼ 0.51, we observe a transi-

tion to a NI* mode (dotted curve) with all the injected par-

ticles reaching the anode in the stationary regime. Further

increasing g0 from this point we note that the electromag-

netic fields at the anode present a linear grow. This occurs

because the number of electrons trapped in the gap region

gradually decreases with increasing g0. This occurs up to

g0¼ 2.21 when there are no more trapped electrons and the

stationary flow passes from the NI* to the NI mode (dotted-

dashed curve). From this point on, the electromagnetic fields

become decreasing functions of g0 again. Finally, when the

charge intensity reaches g0¼ 3.14, the electric field at the

cathode vanishes [see Fig. 4(b)] and the flow becomes space

charge limited. A virtual cathode emerges inside the gap and

the less energetic electrons that were reaching the anode will

be decelerated by the electric potential barrier and will return

to the cathode. Hence, the flow goes from NI to PI again.

FIG. 3. Parameter space showing the stationary solution mode predicted by

the theory as a function of g0 and T0. In (a), we consider a nonrelativistic

case with a small relativistic parameter f0 ¼ 0:0002. The only transition

found is a MI to PI that occurs as the normalized temperature exceeds

T0 � 0:017. On the other hand, for the moderately relativistic case with

f0 ¼ 0:2 shown in (b), it is a found a much richer scenario with many mode

transitions appearing as the temperature and charge intensity parameters are

varied. The curves represent where the mode transitions occur: MI to PI

(black solid curve), PI to NI* (red dashed curve), NI* to NI (blue dotted

curve), and NI to PI (green dotted-dashed curve).

FIG. 4. Normalized magnetic (a) and electric (b) fields at the cathode as a

function of the charge density g0 for a fixed T0 ¼ 0:006. The curves corre-

spond to the theoretical results: solid line refers to the MI mode, dotted line

to the PI mode, dashed line to the NI* mode, and dashed-dotted line to the

NI mode. The symbols are the results obtained from the N� particle simula-

tions. The remainder parameters are the same as those in Fig. 3(b).
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It is worth noting that although the electric field is negative

for g0> 3.14, we still find stationary solutions because of the

finite temperature.17 Moreover, increasing the normalized

density even further will not lead to other stationary mode

transitions, such that space charge limited cases are always

PI modes.

V. NUMERICAL SIMULATIONS

In order to verify the results from the theory, we run

N-particle self-consistent numerical simulations. In the simu-

lations, electrons are emitted from the cathode at position

y¼ 0 with an initial momentum determined by the waterbag

distribution Eq. (6). The dynamics of each particle is derived

from the Hamiltonian described in (4), resulting in

dyi

dt
¼

Pi
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ e2ðAi
xÞ

2 þ ðPi
yÞ

2
q ; (13)

dPi
y

dt
¼ � ce2Ai

xBi
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ e2ðAi
xÞ

2 þ ðPi
yÞ

2
q � eEi

yðyÞ; (14)

where 1 � i � N is the particle label and N is the total num-

ber of particles in the gap region. The electromagnetic fields

are computed from Eqs. (2) and (3) using Green’s function

method.26 When an electron reaches the anode or returns to

the cathode, it is removed from the simulation. The simula-

tions are initialized with an empty gap region (N¼ 0). As the

time evolves, N starts to vary eventually reaching the station-

ary state. In the simulations presented here, the number of

electrons in the gap region in the stationary state ranges from

7500 to 15 000, which was found to be large enough to give

a proper description of the electron flow.

In Fig. 4, the circles correspond to the results obtained

from the simulations for the normalized magnetic and elec-

tric field at the cathode once the flow becomes time indepen-

dent. We note that there is a very good agreement between

theoretical (curves) and simulational (circles) results.

For the parameters of Fig. 4, we noticed that the station-

ary flow suffers a series of mode transitions as the normalized

charge density is increased from g0¼ 0. More specifically,

these transitions are MI! PI! NI*! NI! PI as discussed

above [or see Fig. 3(b)]. To perform a more detailed compari-

son between the theoretically predicted stationary state and

the one obtained from the simulations, let us look at the phase

space distributions obtained for each one of these modes. In

Fig. 5(a), for g0¼ 0.05, the self-fields are small such that the

flow is MI. The theoretical profile in this case is dictated by

Eq. (9), which depends on 6Pyðy;P0maxÞ that is represented

by the solid curve in Fig. 5(a). We see that there is a perfect

agreement between 6Pyðy;P0maxÞ and the boundary of the

particle distribution from the simulation. When g0 ¼ 0:4,

the self-fields are more intense than in the previous case

and now the more energetic particles reach the anode, as

shown in Fig. 5(b). This characterizes the PI mode with uni-

form density theoretically described by Eq. (11). The curves

Pyðy;P0maxÞ and 6Pyðy;P0limÞ that describe this density are

shown in the figure. While the particles contained between

Pyðy;P0limÞ and Pyðy;P0maxÞ reach the anode, those contained

between 6Pyðy;P0limÞ return to the cathode. When g0¼ 1.5,

Fig. 5(c), we see the appearance of two populations of par-

ticles with distinct densities in the phase space. Theoretically,

this corresponds to the NI* mode described by the density

of Eq. (12). The lower density population is formed by par-

ticles that were trapped inside the gap region before the sta-

tionary state was attained. They are distributed in the region

between 6Pyðy; 0Þ. Because their velocity vanishes at both

the cathode and the anode, they can never leave the system.

The higher density population corresponds to particles that

are launched from the cathode after the formation of the sta-

tionary state. They all reach the anode and are distributed

between Pyðy; 0Þ and Pyðy;P0maxÞ. For comparison, the

curves 6Pyðy; 0Þ and Pyðy;P0maxÞ are shown in the figure.

When g0 ¼ 2:35, Fig. 5(d), the lower density distribution of

trapped particles of the previous case disappears and all the

particles emitted from the cathode reach the anode with finite

velocities. This characterizes the NI mode theoretically

described by the density given in Eq. (10). All the particles

are contained between the curves Pyðy; 0Þ and Pyðy;P0maxÞ
which are shown in the figure. Increasing even more the

normalized density to g0¼ 3.75, Fig. 5(e), the space charge

becomes high enough to create a virtual cathode in the gap

and put the system in the space charge limited regime.

The virtual cathode created by the self-electric field forces

the particles back to the cathode. While the lower energy

particles are not able to transpose this barrier and return

to the cathode, the higher energy particles do reach the

anode. This corresponds to a PI mode with a density theoreti-

cally described by Eq. (11). The curves Pyðy;P0maxÞ and

6Pyðy;P0limÞ that describe this density are shown in the fig-

ure. It is worth to stress that the perfect agreement between

the boundaries of the particles distribution obtained numeri-

cally and the corresponding theoretical curves [6Pyðy; 0Þ,
6Pyðy;P0maxÞ, etc.] for all the cases presented in Fig. 5 give

FIG. 5. Phase space plots of the stationary state for different values of the

density parameter g0. The dots correspond to the particle position in phase

space obtained from simulations after the flow attained a stationary state.

The solid curves show the proper distribution boundaries [6Pyðy; 0Þ,
6Pyðy;P0maxÞ;6Pyðy;P0limÞ] predicted by the theory for the corresponding

stationary mode solution. Varying the charge density leads to transitions

between different stationary modes: for g0 ¼ 0:05 (a) the flow is MI, for

g0 ¼ 0:40 (b) the flow is PI, for g0 ¼ 1:5 (c) the flow is NI*, for g0 ¼ 2:35

(d) the flow is NI, and for g0 ¼ 3:75 (e) the flow returns to PI. The remainder

parameters are the same as those in Fig. 4. �Py corresponds to the normalized

momentum.
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a strong support to the validity of the theoretical approach

developed here to determine the stationary state.

VI. CONCLUSION

We have developed and analyzed a fully kinetic theory

for the relativistic electron flow in a crossed-field device. The

theory takes into account both self-electric and self-magnetic

fields and allows determining the final stationary state achieved

by the electrons in phase-space. We have identified a number

of different possible stationary modes and described their char-

acteristics. Particular attention was given to the study of how

space charge and thermal effects affect the magnetic insulation

when the external magnetic field exceeds the Hull cutoff field.

In the nonrelativistic limit it was found that there is only a sin-

gle transition from a MI to a PI mode as the injection tempera-

ture is increased. This transition is completely independent of

the normalized electron density. On the other hand, in a moder-

ate relativistic limit when the self-magnetic fields start to play

a role, we found a much richer scenario in the parameter space.

A series of stationary state mode transitions that go all the way

from complete insulation (when no electrons reach the anode)

to no insulation at all (when all the electrons reach the anode)

occur as both injection temperature and charge density are var-

ied. In particular, it was found that the transitions occur even at

very low injection temperatures. Moreover, two different types

of non-insulated stationary states were identified. While in the

so called NI mode there is only a single population of electrons

where all contribute to the cathode-anode current, in its variant

NI* there are two distinct electron populations: one that con-

tributes to the cathode-anode current and a more tenuous one

that stays trapped in the gap region, not contributing to the

cathode-anode current. Despite the fact that the self-magnetic

field plays a major role in the mode transitions in the relativis-

tic case, we noticed that the net variations in the total magnetic

field can be relatively small. For the particular case considered,

we found that changes as small as 4% in the magnetic field at

the cathode were sufficient to drive the onset of cathode-anode

current. This shows how sensitive the system is to magnetic

field variations and, therefore, how important a proper descrip-

tion of the self-magnetic field is. We have also run N-particle

self-consistent simulations to verify the theoretical results. A

very good agreement was found between the theory and the

numerical results, which provides strong support to the validity

of the theoretical approach developed here.
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