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Abstract. Due to their enhanced tribological properties that contribute to an increased useful 
life of components, martensitic stainless steels are an excellent option for industrial 
applications such as hydroelectric, petrochemical, civil construction and mineral processing 
plants. In the present investigation, the erosive wear of AISI 410 martensitic stainless steel is 
evaluated after thermal treatment by quenching and tempering by mass loss, under erosive 
attack at 30◦ and 90◦ incidence angles, using a self-made jet slurry erosion equipment 
controlling parameters such as speed, volume of fluid, temperature and concentration of 
erosive particles of erodent. The characterization of the eroded samples was carried out in 
terms of the microstructure (SEM) and microhardness as well as the particle size distribution 
(LG) and morphology of the erodent. It was possible to establish the relationship between the 
slurry erosive wear and the physical properties inherent of stainless steel for this particular 
experimental configuration, concluding that the steel presents better resistance to jet slurry 
erosion wear when compared to austenitic steel commonly used in the industry. 

1. Introduction 
In different industrial applications, such as hydraulic turbines in hydroelectric plants, petrochemical 
industry, construction, and in the processing of minerals, the loss of metal due to slurry erosion caused 
by the particulate material in the liquid represents a major industrial problem affecting the life of the 
components and reducing their performance. Thus, the ideal choice of engineering materials is 
important in order to decrease the wear rate and to improve their tribological behavior. Among the 
different alternatives for such applications, the most current being studied is the austenitic and 
martensitic stainless steels. Austenitic stainless steels are used in many components where corrosion 
resistance is crucial. However, under the mechanical action of hard particles, they present a high plastic 
deformation and wear [1]. On the other hand, martensitic stainless steel presents better mechanical 
resistance to erosive particles than austenitic steel, with the compromise of a lower corrosion 
resistance [2-5]. 

In the present investigation, it was possible to evaluate the erosive wear of the martensitic stainless 
steel AISI 410 thermally treated with quenching and tempering, evaluating the volume loss under jet 
slurry erosion conditions at incidence angles of 30◦ and 90◦ between the axis of symmetry of the fluid 
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flow and the surface of the samples, via the control of parameters such as angle and speed of impact, 
test temperature and concentration of erosive particles in the suspension. In this case, electrofused 
alumina was used as erodent. 

The materials were characterized with regard to their microstructure by scanning electron 
microscopy (SEM), roughness, microhardness, and the particle size distribution analyzed with laser 
granulometry (LG) and morphology of the erodent. 
 
2. Materials and Methods 

 
2.1. Martensitic stainless steel AISI 410 
AISI 410 martensitic stainless steel cylindric coupons with 30 mm in diameter and 10 mm in height were 
used. The chemical composition of the steel is presented in Table 1. The steel samples were tempered 
at 1263 K for 35 min then oil-quenched at 793 K for another 35 min. The microstructure obtained after 
this procedure was composed of martensite with its grain contours and some precipitated carbides, 
typical of quenching and tempering thermal treatments presented in Figure 1. 

 
Table 1. Chemical composition of the AISI 410
martensitic stainless steel used in this investigation (wt.%). 

Elements Composition (%)
C 0.020
Cr 11.200
Mn 0.590
Si 0.720
Ni 0.350
P 0.022
S 0.002
N 0.021

 

Figure 1. Microstructure of AISI 410 stainless steel quenched and tempered. (SEM 5000x, 
Vilella’s acid etching). 
 
 
2.2. Erodent particles 
Cilas 1180 laser diffraction particle size analyzer was used to measure the particle size distribution of 
the alumina erodent (Al2O3). The technique follows the ISO 13320:2009 standard [6]. The abrasive 
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particle size distribution is shown in Figure 2, yielding an average abrasive particle size of about 
98.55 µm. SEM micrograph shows angular and irregularly shaped particles in Figure 3. 
 

 

Figure 2. Particle size distribution of aluminum oxide. 
 

 
Figure 3. SEM micrograph showing the abrasive particles shape and size. (56x). 

 

2.3. Microstructure characterization 
The microstructure characterization was done in an EVO MA10 SEM and an optical microscopy LEICA 
DM2700 M. Surface roughness of the steel samples was measured before the jet slurry erosion and 
after it using a surface roughness tester Mitutoyo SJ-400. Then, cross-sectional Vickers microhardness 
measurements were performed by using a Buehler Micromet 2001 microhardness tester (HV300 g, 30 s) 
following ASTM E- 384-11 standard [7]. 
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2.4. Jet Slurry erosion tests 
The jet slurry erosion tests were carried out in a modified commercial high pressure washer which is 
based on ASTM G-76 standard [8-12] and adapted in the nozzle of the gun a system of feeding of 
erodent particles using an inner Venturi accelerator of particles inside a test chamber. This equipment 
allows controlling the angle of impact, the speed of impact, the concentration of erosive particles in the 
suspension and test temperature, all important parameters to determine the distribution of frictional 
energy along a surface [13]. Figure 4 shows the configuration of the testing device. 

The tests were performed using water between 25 and 28◦C of temperature with 960 g of (Al2O3) 
erodent. The samples were placed at the nozzle output to guarantee the incidence of impact fluid and 
mean jet velocity of erosive material in the suspension of 77 m/s. This velocity was calculated using 
flow rate, time and nozzle area measurements of flow output. The incidence angles studied were 30◦ and 
90◦ between the axis of symmetry of the fluid flow and the surface of the samples. In all cases, the 
concentration of particles in the slurry was 7 wt% [14-16]. The erosion resistance was determined from 
the volume loss results per unit of time from the difference of mass loss considering the relation of the 
apparent density of the studied material (7.73 g/cm3 for AISI 410 stainless steel [17-19]). Mass losses 
were measured every 1 min by using a scale with 0.01 mg resolution. The total duration of each test 
was 4 min. The samples were cleaned in an ultrasonic bath with deionized water before and after each 
test and dried and weighted afterwards. 

 
3. Results and Discussion 

 
3.1. Mechanical Properties of Materials 
Microhardness reflects the microstructure and the physical and mechanical properties of both substrate 
and coating, which in turn are dependent on the materials and processes employed in their 
manufacture. Hardness is a property that can be considered variable throughout the material in certain 
zones due to eventual heterogeneities of the material. For this reason, when measuring this property, one 
must consider the preparation of the surface, the section analyzed, as well as the number of indentations 
performed. The microhardness of AISI 410 is presented in Table 2. 

Figure 5 shows the indentation performed on the thermally treated martensitic AISI 410 stainless 
steel. The measured microhardness value was 219 HV0.3, which is very similar to that reported by [16] 
of 199 HV0.3. 
 
 

 

Figure 4. Schematic diagram of the jet slurry erosion tester. 
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Table 2. Results of Vickers microhardness measurements - cross section (HV0.3 - 2.94N) 

Microhardness (HV) 
Average 219.30 
Standard Deviation ± 31.07 
Coefficient of Variation (%) 14.16 

 

Table 3 shows the accumulated erosion rate by mass of erodent impacted in loss of volume of the 
samples tested, as a function of the impact angle, in a total time of 4 minutes, for the samples used in 
the research of stainless steel AISI 410 martensitic. 
 

Table 3. Accumulated erosion rate after 4 minutes. 

Material 
Impact Angle (°) Volumetric Erosion Rate 

(cm3
target/gerodent)*10-5 

Standard Deviation 
(cm3

target/gerodent)*10-5 

Steel AISI 410 
30 0.8449 ± 0.0114 
90 0.7025 ± 0.0495 

 

Figure 5. Vickers indentation (219 HV0.3) performed for thermally treated AISI 410 
martensitic stainless steel. (OM, 50x). 

Figure 6 shows the average mass losses measured in 3 samples every 1 min until a total erosion time 
of 4 minutes for the impact angles of 30◦ and 90◦. Steel exhibits a much higher erosive wear at 30◦ 
impact angle than at 90◦, demonstrating a ductile behavior with a ploughing-predominant material 
removal mechanism, as reported in the literature [20,21]. Furthermore, many authors confirm that metals 
present an enhanced erosion rate at lower angles [22-25]. Figure 6 also shows that, for the impact angle 
of 90◦, the samples presented an accumulated volumetric erosion rate slightly lower than the 30◦ impact 
angle. 

Figure 6. Variation of the accumulated volumetric erosion rate as a function of the impact 
angle of for AISI 410. 
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Figure 7 shows the areas of the erosion regions of the samples subjected to the jet slurry erosion 
test for the impact angles of 30◦ and 90◦. It is observed that the eroded region of the pieces (highlighted 
in red) tested with the angle of 30◦ have an elongated shape and greater erosion area. The erosion of the 
pieces tested in the angle of 90◦ is more localized, has a smaller area and a greater depth. In the samples, 
it is possible to notice the formation of a concentric ring, described as ”halo erosion” in the literature, 
which is a mechanical characteristic of the damage due to the development of craters that appear as 
macro pits on the surface for this angle [26-28]. The eroded region roughness in the samples, for the 
two impact angles, as shown in Table 4. Table 5 shows the areas of eroded regions according to the 
impact angle. It is observed that the eroded area is greater for the impact angle of 30◦. 

Table 4. Result of the average roughness measurement before and after jet slurry erosion. 

Roughness 

Material 
Before 
Erosion 

(µm) 

Standard 
Deviation 

(µm) 
Angle (°) 

After 
Erosion 

(µm) 

Standard 
Deviation 

(µm) 
Steel AISI 

410 
0.07 ± 0.03 

30 2.97 ± 0.47 
90 2.56 ± 0.11 

 
 

Figure 7. Areas of the eroded regions of the materials submitted to the jet slurry erosion test. 
 

Table 5. Eroded area as a function of the impact angle. 

Material Impact angle (°) Eroded area (mm2) 

Steel AISI 410 
30 277.7 
90 147.1 

 
Figure 8 shows the three-dimensional scanning of the samples submitted to the jet slurry erosion 

test obtained through the Geomagic Studio software, for impact angles of 30◦ and 90◦, with which it was 
possible to estimate the average of the erosion depth (Table 6). As result, the average erosion depth of 
the samples tested at 90° is higher and more localized in relation to the samples tested at 30◦. 

 

 
Figure 8. Three-dimensional scanning of the samples submitted to the jet slurry erosion test. 
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Table 6. Average depth of the eroded regions. 

Material Impact angle (°) Average depth (µm) Standard Deviation (µm) 

Steel AISI 410 
30 93 ± 2.88 
90 102 ± 15.87 

 
The erosion study [20] conducted in steel tubes, varying impact angle and velocity, also found out that 

at a 90◦ angle, deeper eroded areas are found in comparison to samples tested at 30◦, agreeing with 
the results presented in Table 6. Similarly, studies [28] have investigated the performance of the 
AISI 420 stainless steel subjected to particle erosion tests using two different abrasives at the angles of 
incidence of 30◦, 45◦, 60◦ and 90◦. The results also showed that the samples evaluated at 90◦ presented 
a greater depth profile than those at 30◦ even when two different abrasives are adopted, obtaining 450 
and 929 nm for the angle of 90◦, and 180 and 400 nm for the angle of 30◦, respectively. 

Furthermore, it is possible to verify that large erosion rates at smaller impact angles are an intrinsic 
feature of metals, whereas in the case of brittle ceramics, for instance, higher erosion rates are 
identified in angles closer to 90° [29]. For this reason, ceramic coatings are an alternative to improve 
the erosion resistance of metallic materials [30, 31]. 
 
4. Conclusion 
In the present investigation, completing provisional results from similar researches [32], the jet slurry 
erosion behavior of martensitic stainless steel AISI 410 was investigated. From the results obtained in 
the accomplishment of the experimental work, it is possible to infer the following conclusions: 

• An experimental erosion wear simulation equipment of the jet slurry type was developed, 
considering conditions that allowed the control of the test parameters such as impact angle, 
impact velocity, erosive particle concentration in the suspension and test temperature, all 
significant variables in the determination of the behavior of the materials. 

The AISI 410 martensitic stainless steel presented a higher rate of accumulated volumetric 
erosion in the impact angle of 30◦, presenting a predominantly ductile behavior, and a higher 
resistance to jet slurry erosion at the impact angle of 90◦ with the compromise of deeper 
eroded area. 
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