
Volume 25, N. 1, pp. 1– 26, 2006
Copyright © 2006 SBMAC
ISSN 0101-8205
www.scielo.br/cam

Weak solutions for the electrophoretic motion
of charged particles

LUCIANO BEDIN1 and MARK THOMPSON2

1Departament of Mathematics, UFSC, Trindade, 88040-900 Florianópolis, SC.
2Departament of Pure and Applied Mathematics, IM, UFRGS

Av. Bento Gonçalves 9500, 91509-900 Porto Alegre, RS.

E-mails: luciano@mtm.ufsc.br / thompson@mat.ufrgs.br
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1 Introduction

In this paper we establish results on existence and uniqueness of the weak solu-

tions for a system modelling the motion of a charged particle driven by the action

of an external electrical field. This phenomena is known as electrophoresis and

is important in many technical applications (a vast literature is available: see for

example [29], [24], [27], [2], [1], [3], [13], [30], [14]).

We are considering a particle (a charged polymer, for example) immersed in

an ionized solution (a viscous incompressible fluid). On the boundary of the

enclosure an external electric field induces the electrical potential inside the

enclosure which is determined by the Poisson-Boltzmann equation (see [19],
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2 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

[10]). The hydrodynamic behavior of the system is governed by the Navier-

Stokes equation.

We are not considering the usual approximation for the effect of the electrical

field on the particle based on Prandtl boundary layer theory well known in colloid

science, the so called slip-velocity condition (for details see [4], [22], [27]); their

derivation requires better regularity properties of the boundary of the particle

(see [28] and the discussion in the introduction of [27]).

As remarked in [24] the theoretical analysis of the electrophoretic motions is

quite difficult, as it combines specific features of polymer physics with the intrin-

sic complexity of electrokinetic phenomena. From a mathematical standpoint

the difficulties reside in the treatment of the electrical-hydrodynamic couple and

on the low regularity of the data. We have established elsewhere [6] the existence

of a H 1-variational solution for the electrostatic potential, for a general class of

domains. In the case of Lipschitz regions we have established a H 3/2-regularity

result by means of the singular integral operators theory; this regularity is opti-

mal, even in C1-domains (see the comments and negative results in [20]). For

C1,α-domains, 0 < α ≤ 1, and suitable charge distribution this theory can be

applied in the classical sense ([25], [18], [7]) in order to obtain more regularity

for the potential [5].

Recently, the motion of rigid bodies in a bounded domain filled with a viscous

flow has been treated rigorously ([11], [17]). Special techniques (from the trans-

port theory [23]) have been used in order to obtain existence and properties of

the suitable weak solutions for these systems. In particular in [11] a global weak

formulation is introduced and existence of solutions local in time is established

when a L2 body force and C1,1-domains are considered. Evidently, in the study

of the electrophoretic motion we can not use directly these results because we

have an external electrical field interacting with the ionized solution. However,

we obtain a similar result of local existence (see Theorem 3.1); this is obtained

as a consequence of uniform bounds and convergence properties involving the

electrical force term F (Corollary 4.1, Theorem 4.2). Following the discussion

in [6] we choose to prove these properties restricted to the case which the surface

charge distribution of the particle and the fixed charge distribution (in the parti-

cle and in the solution) are L2 and L∞ functions, respectively; in this case we

need only consider the Lipschitz regularity on the boundary of the particle. The
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existence of weak solutions obtained in Theorem 3.1 follows from the additional

hypothesis that the particle domain is of class C1,1. More properties on F can be

obtained in the C1,α context if we assume stronger hypotheses [5] on the charge

distributions but we do not consider this situation in this paper.

2 The governing equations

Consider a rigid, charged particle immersed in a electrolyte solution under the

action of an external electrical field. We suppose that the solution (a viscous

fluid) occupies a region D ⊂ R
3 and at the initial moment of time, the particle

(a rigid body) occupies a compact region K 0 ⊂ D such that its center of mass is

located at the origin y = 0 of a Cartesian coordinates y.

Let us define K (t) as the domain occupied by the particle in the time t and

φ(x, t) as a real valued function which represents the electrical potential in

(x, t) ∈ D × [0, T ], where ∀t ∈ [0, T ], dist(∂D; ∂K (t)) > d, where d is a

fixed constant. We setψ(x, t) = φ(x,t)e
�

, where� is the temperature (constant) of

the system and e is the electron charge. The governing equations and boundary

conditions to ψ are (see [6], [19])

∇ · (k(x, t)∇ψ(x, t))− b(x, ψ(x, t)) = ρ(x, t), x ∈ D,

ψ2(x, t) = ψ1(x, t), x ∈ ∂K (t),

ψ2(x, t) = �(x), x ∈ ∂D,

k1
∂ψ1

∂n
(x, t)− k2

∂ψ2

∂n
(x, t) = 4πe

�
σ(x, t), x ∈ ∂K (t).

(2.1)

Here

• k : D × [0, T ] → L(R3,R3) is defined as ki j (x, t) = δi j k1 if x ∈ K (t),

ki j (x, t) = δi j k2 if x ∈ D\K (t), where k1, k2 are the dielectric constants

in K (t) and D\K (t) respectively.

• b : D × R → R, b(x, ψ(x, t)) = k2r−2
D sinhψ(x, t) if x ∈ D\K (t),

b(x, ψ(x, t)) = 0 if x ∈ K (t), r−2
D is the Debye radius [10].

• �(x) = e�(x)
�

, ψ1(x, t) = ψ(x, t)|K (t) and ψ2(x, t) = ψ(x, t)|D\K (t).
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• σ is a superficial charge distribution and ρ(x, t) = (ρ1(x, t), ρ2(x, t)),

where

ρ1(x, t) = −4πe

�
ρ0

1(x), ρ2(x, t) = −4πe

�
ρ0

2(x, t),

ρ0
1 = ρ0|K (t), ρ0

2 = ρ0|D\K (t)

are the charge distribution in K (t) and D\K (t) respectively.

The action of the electrical field on the particle produce its motion. The motion

of fluid is described by the velocity field v f (x, t) (velocity of the fluid material

point which has Cartesian coordinates x at time t) and satisfies the Navier-Stokes

equation

ν f

(
∂t v f + div(v f ⊗ v f )

)− η�v f + ∇ p = ν f F, in D′(�T )
3

div v f = 0, in �T

v f = 0, in ∂D

v f |t=0 = v f
0 in D\K 0

(2.2)

for all t ∈ (0, T ). Here η > 0 is the viscosity of the fluid, ν f > 0 is the

homogeneous fluid density (of the mass) and �T = {
(t, x)/t ∈ (0, T ), x ∈

D\K (t)
}
; denoting ρions as the ion density of the solution, we have F = −(ρ0

2 +
ρions)∇φ2 as the electrical force on the fluid domain (see [30]). Then F =
�

4πe

(
ρ2 + r−2

D k2 sinh (ψ2)
)
(∇ψ2)ID\K (t), using the Boltzmann distribution for

ρions (see [16]).

Let us set xc(t) as the center of mass of the particle; w(t) the rotation vector;

R(t) the translational velocity; A the symmetric inertial matrix; vp the velocity

of the particle. We observe that if ν p > 0 is the density (of the mass) of the

particle,

yT Ay = ν p

∫
K0

|y × (x − xc(0))|2dx,

for all y ∈ R3. We have also vp(x, t) = R(t)+ w(t)× (x − xc(t)) for x ∈ K (t).

It is important to observe the implicit dependence of F on vp.

From the Newtonian mechanics for rigid bodies and the stress tensor in fluid

dynamics, if M is the mass of the particle, the evolution law for the motion is

given by

M
dR(t)

dt
=
∫
∂K (t)

σ H (x, t) · n(x, t)ds +
∫
∂K (t)

σ E(x, t) · n(x, t)ds
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and

A
dw(t)

dt
=
∫
∂K (t)

(x − xc(t))× (σ H (x, t) · n(x, t))ds + w(t)× (A · w)(t)

+
∫
∂K (t)

(x − xc(t))× (σ E(x, t) · n(x, t))ds.

If we set D(v f ) = 1
2

(∇v f +(∇v f )T
)

then σ H (x, t) = 2ηD(v f (x, t))− p(x, t)I
is the stress tensor of the fluid;

σ E(x, t) = σ E
i j (x, t) = �k2

4πe

(
∂ψ2

∂xi

∂ψ2

∂x j
− 1

2
δi j (∇ψ2)

2

)
is the electrostatic tensor (see [30]).

We assume the following hypotheses on the data

(i) K0 is a Lipschitz domain.

(ii) D is a C2-domain,� ∈ H 1(∂D)∩C(∂D), σ(. , t) ∈ L2(∂K (t)), ρ(. , t) ∈
L∞(D), ∀t ∈ [0, T ].

Remark 2.1. As remarked in the introduction of this paper, under the above

hypotheses we have established elsewhere [6] that

ψ(. , t) = (ψ1, ψ2)(. , t) ∈ H 1(D) ∩ (H 3/2(K (t)), H 3/2(D\K (t))),

for all t ∈ [0, T ]. This regularity result and Trudinger’s inequality (see discussion

in [6]) give us that

‖ sinh (ψ2)(. , t)‖0,p,D\K (t) < +∞, ∀ 1 ≤ p < +∞ .

Recalling the Sobolev embedding H 1/2(D) ⊂ L3(D), the Hölder’s inequality

gives us ∫
D\K (t)

sinh2 (ψ2(x, t))|∇ψ2(x, t)|2dx

≤ ‖ sinh (ψ2(. , t))‖2
0,6,D\K (t)

‖ψ2(. , t)‖2
0,3,D\K (t)

< +∞.

Then F(. , t) ∈ L2(D)3, ∀t ∈ [0, T ] (evidently this implies F ∈ L2((0, T ) ×
D)3). A similar calculation shows us that σ E

i j (. , t) ∈ L3/2(D\K (t)), ∀t ∈ [0, T ].
As can be seen in the following section an existence result local in time of

the suitable weak solutions for (2.2) coupled with (2.1) is available if we as-

sume that K0 is a C1,1-domain.
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3 The notion of weak solution

Following [11], let us define the Eulerian densities νp(x, t) = ν p IK (t)(x),
ν f (x, t) = ν f ID\K (t)(x) and the global density ν = νp + ν f . We also define

the global velocity in D as

u(x, t) =
{

v f (x, t) if x ∈ D\K (t),

vp(x, t) if x ∈ K (t).

In view of the conservation of mass, ν satisfies the linear transport equation

in D

∂tν + div(νu) = 0.

We require that vp · n = v f · n and σ H · n = T in ∂K (t), where −T is the

force applied by the particle on the fluid. We can write T = � · n, where � is

the Cauchy stress tensor in the body.

On the walls, we enforce homogeneous Dirichlet boundary conditions u|∂D =
0. Moreover, the incompressibility of the fluid, the rigidity of the structure and

vp · n = v f · n imply that div u = 0.

The evolution laws of the momentum for the fluid and for the particle are

given by

∂t(ν f u)+ div(ν f u ⊗ u) = 1

ν f
div(ν f (2ηD(u)− pI ))+ 1

ν p
� · ∇νp + ν f F

∂t(νpu)+ div(νpu ⊗ u) = 1

ν p
div(νp�)− 1

ν p
σ H · ∇νp − 1

ν p
σ E · ∇νp,

respectively. Here D(u) = 1
2

(∇u + (∇u)T
)

is the global rate-of-deformation

tensor.

Introducing the global stress tensor

T = ν f σ
H

ν f
+ νp�

ν p
,

we obtain the global system in D′((0, T )× D)3,

∂t(νu)+ div(νu ⊗ u) = div T + νF,

div u = 0, ∂tν + div(νu) = 0, νp D(u) = 0,
(3.1)
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u(x, 0) =
{

v f
0 (x), x ∈ D\K 0

vp(x, 0) = w(0)× (x − xc(0))+ R(0), x ∈ K0,
(3.2)

νp(x, 0) = ν p IK0(x), ν f (x, 0) = ν f ID\K0
(x)

ν(x, 0) = ν0(x) = νp(x, 0)+ ν f (x, 0).
(3.3)

We reproduce here, following the paper [11], the notion of the weak solution

of the above system

Definition 3.1. (ν, u) is a weak solution of (3.1)– (3.3) in (0, T ) if it satisfies

the a priori energy bounds

ν ∈ L∞((0, T )× D), u ∈ L∞(0, T ; L2(D))3 ∩ L2(0, T ; H 1
0 (D))

3,

and if for all φ ∈ V and for almost every t ∈ (0, T ),∫ t

0

∫
D
(νu · ∂tϕ + νu ⊗ u : D(ϕ)− ηD(u) : D(ϕ)+ νF · ϕ) dxdτ

+
∫

D
ν0u0 · ϕ(0)dx =

(∫
D
νu · ϕdx

)
(t),

∂tν + div(νu) = 0, div u = 0,

νp D(u) = 0, u|∂D = 0, in D′((0, T )× D)3,

ν0 ∈ L∞(D), u(. , 0) ∈ L2(D)3,

(3.4)

where V is defined by

V = {
ϕ ∈ H 1((0, T )× D)3/ϕ(t) ∈ V (t), ∀t ∈ (0, T )

}
,

and

V (t) = {
ϕ ∈ H 1

0 (D)
3/div ϕ = 0, νp D(ϕ) = 0

}
.

The following existence theorem for the above weak solutions is available [11]

Theorem 3.1. Under the hypothesis (ii)– (v) (see Section 4) and the additional

assumptions that K0 is a C1,1-domain, u0 ∈ H 1
0 (D)

3, div u0 = 0, νp D(u0) = 0

and δ(0) > d, there exist T ∗ ∈ (0,+∞] and a solution (ν, u) of (3.4) such that

(i) β(ν) ∈ C([0, T ]; L p(�)) ∩ L∞((0,∞) × D) for all T < T ∗, p < ∞
and β ∈ C1(R;R).
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8 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

(ii) u ∈ L∞(0, T ; H 1
0 (D))

3 and ∂t u ∈ L2((0, T )× D)3 for all T < T ∗.

In [11] the hypothesis F ∈ L2((0, T ) × D)3 (a body force) is assumed (see

Remark 2.1) and the proof of the existence theorem as Theorem 3.1 is based on

the solution of an approximated system (obtained by regularization techniques).

The existence of the approximated solutions is obtained by the Schauder fixed-

point theorem (see [5]), via a solution of an appropriate inhomogeneous (linear)

Stokes equation. Using the C1,1-regularity of the domains and the smoothness of

the coefficients, this linear problem has a solution with the necessary regularity.

The solution (u, ν) is built as a limit of these approximations; the existence of this

limit is derived from the compactness properties of the linear transport equation

[12]. This is made possible if we can obtain elliptic estimates and a priori

bounds for u as well as energy bounds for ν (see Section 4 in [11]). However

as F depends on u we need to take some care in this regard. More precisely

let us define for each m ∈ N, (u(m), ν(m),F(m)) such that ν(m) is bounded in

L∞((0, T )×D)uniformly in m, u(m) is bounded in L2(0, T ; H 1
0 (D)∩W 1,4(D))3,

∂t u(m) is bounded in L2((0, T ) × D)3 uniformly in m, ν(m)0 converges to ν0

in L2(D), u(m)0 converges to u0 in L2(D)3 and (3.4) is valid, for all ϕ(m) ∈
V (m). We set K (m)(t) = M (m)(t)K0, where M (m)(t) is an invertible affine

transformation, and we suppose that δ = inf{δ(m)(t), t ∈ [0, T ],m ≥ 0} > d ,

where δ(m)(t) = dist(∂D, ∂K (m)(t)); F(m) is defined by the calculation of ψ(m),

the solution of (2.1) considering (K (m)(t), ρ(m), σ (m)). We have to show that∫ T
0 ‖F(m)(. , τ )‖2

0,2,Ddτ ≤ C , where C does not depends on m.

Admitting this uniform bound on F(m), the stability results [12] for linear

transport equation can be used as in [11]: there exist (ν, u) such that up to the

extraction of a subsequence, β(ν(m)) converges to β(ν)weak∗ in L∞((0, T )×D)

and in C([0, T ]; L p(D)) for all p < +∞ and all β ∈ C1(R), and u(m) converges

to u in C([0, T ]; H s
0 (D))

3 for all s < 1. However, if F is related with ψ , where

ψ is the solution of (2.1) considering K (t), ρ, σ , it is not obvious that (3.4) holds

for (u, ν,F) for all given ϕ ∈ V . This is established by the special argument in

Section 4 of [11] if we can show that∫ t

0

∫
D

Fm · ϕdxdτ →
∫ t

0

∫
D

F · ϕdxdτ,m → ∞, ∀ϕ ∈ V , ∀t ∈ [0, T ] .
As we shall see in the next section, in order to establish these results for F(m),F,

we need to study the properties of the solutionψ of (2.1). Additional hypotheses
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on ρ and σ are also necessary and as remarked in the Section 2 we shall prove

the results in a more general framework: we assume hypothesis (i), i.e., K0 is a

Lipschitz domain.

4 Bounds and convergence for the potentials

As remarked in [6], the determination of the charge densities in bio-molecular

systems is a non-trivial question which is treated in some computational studies

using Hartree-Fock approximation techniques (see [9], [26]). Here we assume

explicitly the following hypothesis

(iii) Let ρ(m) as in the Section 3. Then ‖ρ(m)‖L∞((0,T )×D) ≤ C , where C does

not depend on m;

(iv) For all t ∈ [0, T ], σ (m)(M (m)(t)x, t) = σ(M (m)(t)x, t) = σ(M(t)x, t) =
σ(x, 0), ∀x ∈ ∂K0.

(v) ‖ρ(m) − ρ‖L∞((0,T )×D) → 0, m → +∞.

Recalling that � ∈ H 1(∂D) and following [6] we consider the problem

∇ · (k(x, t)∇�̂(x, t)) = 0, x ∈ D

�̂(x, t) = �(x), x ∈ ∂D,

which has a solution �̂ ∈ H 3/2(D) such that ∂�̂1
∂n , ∂�̂2

∂n ∈ L2(∂K (t)), ∀t ∈ [0, T ]
and ∥∥∥∥∂�̂∂n

(. , t)

∥∥∥∥
0,2,∂K (t)

≤ C‖�̂(. , t)‖3/2,2,D, (4.1)

where C depends only on the Lipschitz nature of ∂K0 (see the papers [8], [31]

for details). We observe also that �̂(. , t) ∈ L∞(D) (see [15] or [21]).

Introducing ψ = ψ̂ + �̂, we see that (2.1) may be reformulated as

∇ · (k(x, t)∇ψ̂(x, t))− b(x, ψ̂(x, t)+ �̂(x)) = ρ(x, t), x ∈ D,

ψ̂2(x, t) = ψ̂1(x, t), x ∈ ∂K (t),

ψ̂2(x, t) = 0, x ∈ ∂D,

k1
∂ψ̂1

∂n
(x, t)− k2

∂ψ̂2

∂n
(x, t) = 4πe

T
σ(x, t)−

(
k1
∂�̂1

∂n
(x, t)− k2

∂�̂2

∂n
(x, t)

)
= σ̂ (x, t), on ∂K (t).

(4.2)
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Let us consider t ∈ [0, T ] fixed and recall the weak formulation for (4.2).

Find u ∈ V = H 1
0 (D) such that b(x, u + �̂) ∈ L2(D) and satisfying

a(u, v)+ (N (u), v) = L(v), ∀v ∈ H 1
0 (D) , (4.3)

where

a(u, v) =
∫

D
k(x, t)∇u∇vdx, (N (u), v)

=
∫

D
b(x, u + �̂)vdx, L(v)

=
∫
∂K (t)

σ̂ γ0vds −
∫

D
ρvdx, γ0

is the usual trace operator. Here k(x, t) = k1 if x ∈ K (t), k(x, t) = k2 if

x ∈ D\K (t).

As can be seen in [6] (see also [19]), this problem is equivalent to find the

minimum in H 1
0 (D) of the functional

F(u) = 1

2

∫
D

k(x, t)|∇u|2dx − L(u)+ J (u) (4.4)

where J (.) is defined as

J (u) = k2r−2
D

∫
D\K (t)

{
cosh (u + �̂)− cosh (�̂)

}
dx,

if
∫

D\K (t)

∣∣ cosh (u + �̂)− cosh (�̂)
∣∣2dx < ∞,

J (u) = + ∞ if the square integral is + ∞.

Below we establish the first bound on ψ derived from (4.3)

Lemma 4.1. Let us assume the hypothesis (i)– (iv). Then the solution ψ ∈
H 1(D) of (2.1) belongs to L∞(0, T ; H 1(D)) and ‖ψ‖L∞(0,T ;H1(D)) ≤ M,

where M depends only on ‖ρ‖L∞((0,T )×D), ‖σ(. , t)‖0,2,∂K (t), k1, k2, r−2
D , D,

∂K0 and �.
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Proof. By ψ = ψ̂ + �̂ we only need to prove the lemma for ψ̂ . Using (4.3)

we have, for all t ∈ [0, T ],

−k1

∫
K (t)

|∇ψ̂(x, t)|2dx − k2

∫
D\K (t)

|∇ψ̂(x, t)|2dx +
∫
∂K (t)

(̂σγ0ψ̂)(x, t)ds

=
∫

D
(ρψ̂)(x, t)dx + k2r−2

D

∫
D\K (t)

sinh(ψ̂(x, t)+ �̂(x, t))ψ̂(x, t)dx

or

min (k1, k2)

∫
D

|∇ψ̂(x, t)|2dx

≤
∫
∂K (t)

(̂σγ0ψ̂)(x, t)ds −
∫

D
(ρψ̂)(x, t)dx+

− k2r−2
D

∫
D\K (t)

sinh (ψ̂(x, t) + �̂(x, t))(ψ̂(x, t) + �̂(x, t))dx

+ k2r−2
D

∫
D\K (t)

sinh (ψ̂(x, t) + �̂(x, t))�̂(x, t)dx

≤ ‖ρ(. , t)‖2
0,2,D

2ε1
+ ε1‖ψ̂(. , t)‖2

0,2,D

2
+

‖σ̂ (. , t)‖2
0,2,∂K (t)

2ε2
+
ε2‖(γ0ψ̂)(. , t)‖2

0,2,∂K (t)

2

+ k2r−2
D ‖�̂(. , t)‖∞,D

∫
D\K (t)

| sinh (ψ̂(x, t)+ �̂(x, t))|dx,

where we have used inequalities of Schwarz and Young. Now, recalling that ψ̂ is

the minimum of the functional F(.) defined in (4.4), we have F(ψ̂) ≤ F(0) = 0

so that

k2r−2
D

∫
D\K (t)

| sinh (ψ̂(x, t)+ �̂(x, t))|dx

≤ k2r−2
D

∫
D\K (t)

cosh (ψ̂(x, t)+ �̂(x, t))dx

≤ k2r−2
D

∫
D\K (t)

cosh (�̂(x, t))dx

+
∫
∂K (t)

(̂σγ0ψ̂)(x, t)ds −
∫

D
(ρψ̂)(x, t)dx,
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and

min (k1, k2)

∫
D

|∇ψ̂(x, t)|2dx

≤ ‖ρ(. , t)‖2
0,2,D

2ε1
+ ε1‖ψ̂(. , t)‖2

0,2,D

2
+

‖σ̂ (. , t)‖2
0,2,∂K (t)

2ε2

+
ε2‖(γ0ψ̂)(. , t)‖2

0,2,∂K (t)

2
+ k2r−2

D ‖�̂‖∞,D

∫
D\K (t)

cosh (�̂(x, t))dx

+
‖�̂(. , t)‖2∞,D‖σ̂ (. , t)‖2

0,2,∂K (t)

2ε3
+
ε3‖(γ0ψ̂)(. , t)‖2

0,2,∂K (t)

2

+ ‖�̂(. , t)‖∞,D‖ρ(. , t)‖2
0,2,D

2ε4
+ ε4‖ψ̂(. , t)‖2

0,2,D

2
.

By the trace theorem and Poincaré’s inequality there exist constants λ1 =
λ1(∂K0, D) > 0 and λ2 = λ2(D) > 0 such that ‖γ0ψ̂(. , t)‖0,2,∂K (t)

≤ λ1‖ψ̂(. , t)‖1,2,D and ‖ψ̂(. , t)‖1,2,D ≤ λ2‖∇ψ̂(. , t)‖0,2,D . If we choose

0 < ε < min (k1, k2)/(2λ2
1λ

2
2), ε1 = ε4 = λ2

1ε, ε2 = ε3 = ε > 0 we have,

for C1 = C1(k1, k2, λ1, λ2), C2 = C2(k1, k2, λ1, λ2),∫
D

|∇ψ̂(x, t)|2dx

≤ C1
(‖ρ(. , t)‖2

0,2,D + ‖σ̂ (. , t)‖2
0,2,∂K (t)

) (
1 + ‖�̂(. , t)‖2

∞,D

)
+ C2k2r−2

D ‖�̂(. , t)‖∞,D

∫
D\K (t)

cosh (�̂(x, t))dx.

Finally, Poincaré’s inequality gives us

‖ψ̂‖L∞(0,T ;H1
0 (D))

≤ C∗(|D|1/2‖ρ‖L∞(0,T ;L∞(D))+‖σ‖0,2,∂K0 +‖�̂‖L∞(0,T ;H3/2(D))

)
(
1 + ‖�̂‖L∞(D,T ;L∞(D))

) + C∗‖�̂‖L∞(D,T ;L∞(D))‖ cosh �̂‖1/2
L∞(D,T ;L1(D))

,

where

C∗ = max

(
λ1C1/2

1 , λ1C1/2
2 k1/2

2 r−1
D ,

4πe

�
, C max {k1, k2}

)
.

Then

‖ψ‖L∞(0,T ;H1
0 (D))

≤ M,

where M = M(C∗, �, ‖ρ‖L∞(0,T ;L∞(D)), ‖σ‖0,2,∂K (t)).

The following theorem is central in order to establish an uniform bound

for F(m).
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Theorem 4.1. Let us assume hypotheses (i)– (iv) then the solution ψ(m) of

(2.1) related with (K (m)(t), ρ(m), σ (m)) satisfies, for each t ∈ [0, T ],

max
(
‖ψ(m)

1 (. , t)‖3/2,2,K (m)(t), ‖ψ(m)
2 (. , t)‖3/2,2,D\K (m)(t)

)
≤ C,

where C does not depends on m.

Proof. We only need to obtain the bounds for ψ̂(m) = (ψ̂
(m)
1 , ψ̂

(m)
2 ). Let us

consider the problems

∇ · (k(x, t)∇v(m)(x, t)) = 0, x ∈ D,

v
(m)
2 (x, t) = v

(m)
1 (x, t), x ∈ ∂K (m)(t),

v
(m)
2 (x, t) = 0, x ∈ ∂D,

k2
∂v

(m)
2

∂n
(x, t)− k1

∂v
(m)
1

∂n
(x, t) = − σ̂ (x, t), x ∈ ∂K (m)(t),

(4.5)

and

∇ · (k(x, t)∇ f (m)(x, t)
) − b

(
x, f (m)(x, t)+ v(m)(x, t)+ �̂(x)

)
= ρ(m)(x, t), x ∈ D,

f (m)2 (x, t) = f (m)1 (x, t), x ∈ ∂K (m)(t),

f (m)2 (x, t) = 0, x ∈ ∂D,

k1
∂ f (m)1

∂n
(x, t)− k2

∂ f (m)2

∂n
(x, t) = 0, x ∈ ∂K (m)(t).

(4.6)

Using a variational formulation analogous to that in (4.3) we obtain solu-

tions (weak) v(m), f (m) ∈ H 1
0 (D) of the problems (4.5) and (4.6), respectively.

We observe that f (m) + v(m) satisfies (2.1) (in the weak sense), from the unique-

ness of the variational solution for this problem, we have ψ̂(m) = f (m) + v(m).

The Theorem follows from the lemmas below.

Lemma 4.2. Under hypotheses (i)– (iv) the solution v(m) ∈ H 1
0 (D) of (4.5)

has the additional regularity

v
(m)
1 (. , t) ∈ H 3/2(K (m)(t)), v(m)2 (. , t) ∈ H 3/2(D\K (m)(t)) ,
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14 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

for each m ≥ 0 and t ∈ [0, T ]. Furthermore

max
(
‖v(m)1 ‖L∞(0,T ;H3/2(K (m)(t))), ‖v(m)2 ‖L∞(0,T ;H3/2(D\K (m)(t)))

)
≤ C,

where C does not depends on m.

Lemma 4.3. Under hypotheses (i)– (iv) the solution f (m) ∈ H 1
0 (D) of (4.6)

belongs to C0(D) and, for each t ∈ [0, T ],

sup
m

sup
x∈D

| f (m)(x, t)| < +∞ .

Furthermore, f (m)1 (. , t) ∈ H 3/2(K (m)(t)), f (m)2 (. , t) ∈ H 3/2(D\K (m)(t)) and

there exists C > 0 such that

max
(
‖ f (m)1 ‖L∞(0,T ;H3/2(K (m)(t))), ‖ f (m)2 ‖L∞(0,T ;H3/2(D\K (m)(t)))

)
≤ C,

where C does not depends on m. �

Proof of Lemma 4.2. Let us consider m ≥ 0 and t ∈ [0, T ] fixed and define

v̂
(m)
1 = k1v

(m)
1 , v̂(m)2 = k2v

(m)
2 , then v̂ = (̂v1, v̂2) satisfies (in the weak sense)

�v̂(m)(x, t) = 0, x ∈ D,

µ2v̂
(m)
2 (x, t) = µ1v̂

(m)
1 (x, t), x ∈ ∂K (m)(t),

v̂
(m)
2 (x, t) = 0, x ∈ ∂D,

∂v̂
(m)
2

∂n
(x, t)− ∂v̂

(m)
1

∂n
(x, t) = − σ̂ (x, t), x ∈ ∂K (m)(t),

(4.7)

where µ2 = k−1
2 and µ1 = k−1

1 . Following [31], we seek a solution v̂ = (̂v1, v̂2)

in the form

v̂
(m)
1 = D(m)ζ (m) + µ1S(m)ϕ(m)

v̂
(m)
2 = D(m)ζ (m) + µ2S(m)ϕ(m) + D(m)

0 χ(m),
(4.8)
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for ζ (m)(. , t) ∈ H 1(∂K (m)(t)), ϕ(m)(. , t) ∈ L2(∂K (m)(t)) and χ(m)(. , t) ∈
H 1(∂D). Here

(S(m)ϕ(m))(x, t) =
∫
∂K (m)(t)

G(x − y)ϕ(m)(y, t)ds(y),

(D(m)ζ (m))(x, t) =
∫
∂K (m)(t)

∂G(x − y)
∂n(y)

ζ (m)(y, t)ds(y),

(D(m)
0 χ(m))(x, t) =

∫
∂D

∂G(x − y)
∂n(y)

χ(m)(y, t)ds(y).

(4.9)

where G(x) = −1
4π |x| . The boundary conditions in (4.7) give us (see [6] for details) 0

−σ̂
0

 = A(m)

 ζ (m)

ϕ(m)

χ(m)

 ,
where

A(m) =



µ2

(
− 1

2 I + D(m)1

)
− µ1

(
1
2 I + D(m)1

) (
µ2

2 − µ2
1

)
S(m) µ2

(
γ
(m)
e (t)D(m)0

)

0 µ2

(
1
2 I + D(m)

∗
1

)
− µ1

(
− 1

2 I + D(m)
∗

1

)
γ
(m)
e (t)

 ∂D(m)0
∂n


(
γ
(m)
0 D(m)

)
µ2

(
γ
(m)
0 S(m)

) (
1
2 I + D(m)0,1

)



and

(D(m)
1 ζ (m))(x, t) = (p.v. D(m)ζ (m))(x, t), x ∈ ∂K (m)(t)

(D(m)
0,1 χ

(m))(x, t) = (p.v. D0χ
(m))(x, t), x ∈ ∂D.

For each m ∈ N and t ∈ [0, T ], the operators

S(m) : L2(∂K (m)(t)) → H 1(∂K (m)(t))(
1

2
I + D(m)

1

)
: H 1(∂K (m)(t)) → H 1(∂K (m)(t))(

−1

2
I + D(m)

1

)
: H 1(∂K (m)(t)) → H 1(∂K (m)(t))(

1

2
I + D(m)∗

1

)
: H 1(∂K (m)(t)) → L2(∂K (m)(t))(

−1

2
I + D(m)∗

1

)
: H 1(∂K (m)(t)) → L2(∂K (m)(t))
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16 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

(
1

2
I + D(m)

0,1

)
: H 1(∂D) → H 1(∂D)

are continuous [8] with operator norms depending only on K0, D. Observing

that

‖∇v(. , t)‖0,2,∂K (m)(t) + ‖(n · ∇v)(. , t) · n‖0,2,∂K (m)(t)

is an equivalent norm to ‖.‖1,2,∂D (see [32], Definition 1.9) and using the hypo-

thesis |x − y| > d , ∀x ∈ ∂K (m)(t), ∀y ∈ ∂D, a direct calculation gives us that

the following trace operators

γ (m)e (t)D(m)
0 : H 1(∂D) → H 1(∂K (m)(t)),

γ
(m)
0 (t)D(m) : H 1(∂K (m)(t)) → H 1(∂D)

γ
(m)
0 (t)S(m) : L2(∂K (m)(t)) → H 1(∂D)

γ (m)e (t)

(
∂D(m)

0

∂n

)
: H 1(∂D) → L2(∂K (m)(t)).

are bounded and compact, with operator norms depending only on K0, D and d.

The compactness follows from an analogous argument as in [7] (Theorems 1.6,

1.7 and 1.10) if we observe that the kernels are continuous.

Now it follows as in the paper by Torres and Welland [31] that A(m)−1
exist

and is a bounded operator on X (m) = H 1(∂K (m)(t))× L2(∂K (m)(t))× H 1(∂D)

to X (m). The operator norm ‖A(m)−1‖ depends only on d, K0, D. Then∥∥∥∥∥∥∥
ζ (m)(. , t)

ϕ(m)(. , t)

χ(m)(. , t)

∥∥∥∥∥∥∥
X (m)

≤ ‖A(m)−1‖ ‖σ̂ (. , t)‖0,2,∂K (m)(t)

≤ C‖A(m)−1‖(‖σ̂ (. , t)‖0,2,∂K (m)(t) + ‖�̂(. , t)‖3/2,2,D),

where X (m) is equipped with the product norm.

As observed in [31], the operator norms of the operators in (4.9) and its ap-

propriate inverses depend only on the Lipschitz character of the domain, so that

Comp. Appl. Math., Vol. 25, N. 1, 2006



LUCIANO BEDIN and MARK THOMPSON 17

there exist L1 = L1(∂K0) > 0, L2 = L2(∂D, ∂K0) > 0, such that, ∀t ∈ [0, T ],

‖v̂1
(m)(. , t)‖3/2,2,K (t)

≤ L1 max
(‖ζ (m)(. , t)‖1,2,∂K (m)(t), ‖ϕ(m)(. , t)‖0,2,∂K (m)(t)

)
‖v̂2

(m)(. , t)‖3/2,2,D\K (m)(t)

≤ L2 max
(‖ζ (m)(. , t)‖1,2,∂K (m)(t), ‖ϕ(m)(. , t)‖0,2,∂K (m)(t), ‖χ(m)(. , t)‖1,2,∂D

)
.

Hence, using hypothesis (iv), we have established that

max
(
‖v(m)1 ‖L∞(0,T ;H3/2(K (t))), ‖v(m)2 ‖L∞(0,T ;H3/2(D\K (t)))

)
≤ C,

where C does not depends on m. �

Proof of Lemma 4.3. Let us consider m ≥ 0 and t ∈ [0, T ] fixed. The

variational solution f (m) of (4.6) satisfies

−k1

∫
K (m)(t)

(∇ψ̂(m) · ∇ f (m))(x, t)dx − k2

∫
D\K (m)(t)

(∇ψ̂(m) · ∇ f (m))(x, t)dx

=
∫

D
(ρ(m)ψ̂ (m))(x, t)dx + k2r−2

D

∫
D\K (m)(t)

sinh (ψ̂(m)(x, t)+ �̂(x))ψ̂(m)(x, t)dx.

Then the Young’s inequality gives us that

k1

2

∫
K (m)(t)

|∇ f (m)(x, t)|2dx + k2

2

∫
D\K (m)(t)

|∇ f (m)(x, t)|2dx

≤ −
∫

D
(ρ(m)ψ̂(m))(x, t)dx − k2r−2

D

∫
D\K (m)(t)

sinh (ψ̂(m)(x, t)+ �̂(x))ψ̂(m)(x, t)dx.

Using a similar calculation as in Lemma 4.1, the bound established there for

‖ψ̂(m)(. , t)‖1,2,D and hypothesis (iii), we have ‖ f (m)(. , t)‖1,2,D ≤ C , where C

does not depends on m and t . Observing that D is a C2-domain, standard elliptic

estimates (see Chapter 14, Theorem 2.1 in [21]) show us that f (m)(. , t) ∈ C0(D).

Let us define

R(m)(t) = sup
x∈D

| f (m)(x, t)| , then ∃R(t) = sup
m

R(m)(t) < +∞ .

In effect, let us suppose that R(t) = +∞, then there exist a subsequence f (mk )

related with (u(mk ), ν(mk )), ψ̂(mk ), such that R(mk )(t) → +∞ with k → +∞.
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18 WEAK SOLUTIONS FOR THE ELECTROPHORETIC MOTION

Let us choose x(mk ) ∈ D such that f (mk )(x(mk )) = R(mk )(t), then there exists

δ(mk ) > 0 such that

| f (mk )(x(mk ), t)− f (mk )(x, t)| < 2−mk if x ∈ B(x(mk ), δ(mk )) ∩ D .

Recalling that f (mk )|∂D = 0, if we take k → ∞ we have, by the bound

‖ f (mk )(. , t)‖0,2,D ≤ C , δ(mk ) → 0. In this case ‖∇ f (mk )(. , t)‖0,2,D → +∞,

which contradicts the bound ‖ f (mk )(. , t)‖1,2,D ≤ C .

If we set h(m) = b(x, f (m) + v(m) + �̂) + ρ(m) we have h(m)(. , t) ∈ L2(D),

for all t ∈ [0, T ] and m ≥ 0. Extending h(m) to be zero outside of D and setting

g(m) = G ∗ h(m) we have �g(m)(. , t) = h(m)(. , t) a.e. in D and g(m)(. , t) ∈
H 2(D); if

g(m)1 (. , t) = g(m)(. , t)|K (m)(t), g(m)2 (. , t) = g(m)(. , t)|D\K (m)(t) ,

we have

g(m)1 (. , t)|∂K (m)(t) ∈ H 1(∂K (m)(t)), g(m)2 (. , t)|∂D ∈ H 1(∂D)

(see the proof of Theorem B in [20]), while
∂g(m)1
∂n (. , t) − ∂g(m)2

∂n (. , t) = 0 a.e.

in ∂K (m)(t). Hence the solution f (m) of (4.6) can be written as (see [6])

(
f̂ (m)1 , f̂ (m)2

)
=
(

g(m)1 , g(m)2

)
+ H (m)A(m)−1

 g(m)1 |∂K (t)

0

g(m)2 |∂D

 ,
where

H (m) =
[

D(m) µ1S(m) 0

D(m) µ2S D(m)
0

]
and f̂ (m)1 = k1 f (m)1 , f̂ (m)2 = k2 f (m)2 . The operators inH (m) were defined in (4.9)

and A(m) was defined in Lemma 4.2. The uniform estimate in the H 3/2-norm

follows in a similar way as in Lemma 4.2 if we get uniform H 3/2-bounds for

g(m)(. , t) and H 1-bounds for g(m)1 (. , t)|∂K (t), g(m)2 (. , t)|∂D . From the contin-

uous imbedding H 2(D) ⊂ H 3/2(D) and by the boundedness of the operator

F : L2(D) → H 2(D), where Fh(m)(. , t) = G ∗ h(m)(. , t) = g(m)(. , t) (see the

proof of Theorem 1 in [32]) we have the bounds

‖g(m)(. , t)‖3/2,2,D

≤ λ(‖ID\K (m)(t)k2r−2
D sinh ( f (m) + v(m) + �̂)(. , t)‖0,2,D + ‖ρ(m)(. , t)‖0,2,D).
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where λ depends only on D. A direct calculation and the above estimate give us

‖g(m)1 (. , t)‖1,2,∂K (t) ≤ λ′‖ρ(m)(. , t)‖0,2,D‖g(m)2 (. , t)‖1,2,∂D

≤ λ′′(‖ID\K (m)(t)k2r−2
D sinh ( f (m) + v(m) + �̂)(. , t)‖0,2,D + ‖ρ(m)(. , t)‖0,2,D)

where λ′ = λ′(K0, λ), λ′′ = λ′′(D, λ). Hence we need only obtain an uniform

estimate for

‖ID\K (m)(t)k2r−2
D sinh ( f (m) + v(m) + �̂)(. , t)‖0,2,D\K (m)(t) .

We observe that

sinh ( f (m) + v(m) + �̂) = sinh ( f (m) + v(m)) cosh (�̂)

+ cosh ( f (m) + v(m)) sinh (�̂).

The result follows using the fact that � ∈ L∞(D), recalling that by Lemma 4.3

we have sup
m

‖ f (m)(. , t)‖C0(D) < +∞ and from the estimate

‖ cosh (v(m)2 )(. , t)‖0,2,D\K (m)(t) ≤ C exp
(

C‖v(m)2 (. , t)‖3/2,2,D\K (m)(t)

)
≤ C,

(4.10)

(see [6] and Lemma 4.2). �

Corollary 4.1.
∫ T

0 ‖F(m)(. , t)‖2
0,2,Ddt ≤ C, where C does not depends on m.

As remarked in the preceding section the solution of (3.4) is constructed as

a limit of a sequence of the appropriate approximation solutions and depends

on the respective convergence of the force term F(m) to F in L2((0, T ) × D)3.

Below we show in detailed manner how to do this. We begin with a technical

lemma.

Lemma 4.4. Let us assume hypothesis (i)– (v) and consider ψ(m), ψ the solu-

tions of (2.1) related with (K (m)(t), ρ(m), σ (m)) and (K (t), ρ, σ ), respectively.

Then, ‖ψ(m)(. , t)− ψ(. , t)‖1,2,D → 0, with m → +∞, for each t ∈ [0, T ].
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Proof. Let us set ηm = ψ(m) − ψ . The variational formulation for ψ,ψ(m)

gives us

− k1

∫
K (m)(t)

(∇ψ̂(m) · ∇ηm)(x, t)dx

− k2

∫
D\K (m)(t)

(∇ψ̂(m) · ∇ηm)(x, t)dx +
∫
∂K (m)(t)

(̂σγ0ηm)(x, t)ds

=
∫

D
(ρmηm)(x, t)dx + k2r−2

D

∫
D\K (m)(t)

sinh (ψ̂(m)(x, t) + �̂(x, t))ηm(x, t)dx

and

− k1

∫
K (t)

(∇ψ̂ · ∇ηm)(x, t)dx

− k2

∫
D\K (t)

(∇ψ̂ · ∇ηm)(x, t)dx +
∫
∂K (t)

(̂σγ0ηm)(x, t)ds

=
∫

D
(ρηm)(x, t)dx + k2r−2

D

∫
D\K (t)

sinh (ψ̂(x, t)+ �̂(x, t))ηm(x, t)dx.

If we define A(m)(t) = K (m)(t) ∩ K (t), B(m)(t) = D\(K (t) ∪ K (m)(t)) we

have, after subtracting the above expressions,

− k1

∫
A(m)(t)

|∇ηm(x, t)|2dx − k2

∫
B(m)(t)

|∇ηm(x, t)|2dx +
∫
∂K (m)(t)

(̂σγ0ηm)(x, t)ds

−
∫
∂K (t)

(̂σγ0ηm)(x, t)ds =
∫

D
(ρ(m) − ρ)(x, t)ηm(x, t)dx

+ k2r−2
D

∫
B(m)(t)

2 cosh
(ηm

2
+ ψ̂ + �̂

)
(x, t) sinh

(
ηm(x, t)

2

)
ηm(x, t)dx

− k1

∫
K (t)\A(m)(t)

|∇ψ̂(x, t)||∇ηm(x, t)|dx

− k2

∫
K (m)(t)\A(m)(t)

|∇ψ̂(x, t)||∇ηm(x, t)|dx

+ k1

∫
K (m)(t)\A(m)(t)

|∇ψ̂(m)(x, t)||∇ηm(x, t)|dx

+ k2

∫
K (t)\A(m)(t)

|∇ψ̂(m)(x, t)||∇ηm(x, t)|dx

− k2r−2
D

∫
K (m)(t)\A(m)(t)

sinh (ψ̂(x, t)+ �̂(x, t))ηm(x, t)dx

+ k2r−2
D

∫
K (t)\A(m)(t)

sinh (ψ(m)(x, t)+ �̂(x, t))ηm(x, t)dx.
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Using Young’s and Hölder’s inequalities and positiveness of the second inte-

gral on the right side, we have

k1

∫
A(m)(t)

|∇ηm(x, t)|2dx + k2

∫
B(m)(t)

|∇ηm(x, t)|2dx

≤
∣∣∣∣∫
∂K (m)(t)

(̂σ (m)γ0ηm)(x, t)ds −
∫
∂K (t)

(̂σγ0ηm)(x, t)ds

∣∣∣∣
+ |D|1/2‖(ρ(m) − ρ)(. , t)‖0,∞,D‖ηm(. , t)‖0,2,D

+ k1|K (t)\A(m)(t)|1/6‖(∇ψ̂)(. , t)‖0,3,K (t)‖∇ηm(. , t)‖0,2,K (t)

+ k2|K (m)(t)\A(m)(t)|1/6‖∇ψ̂(. , t)‖0,3,K (m)(t)‖∇ηm(. , t)‖0,2,K (m)(t)

+ k1|K (m)(t)\A(m)(t)|1/6‖∇ψ̂(m)(. , t)‖0,3,K (m)(t)‖∇ηm(. , t)‖0,2,K (m)(t)

+ k2|K (t)\A(m)(t)|1/6‖∇ψ̂(m)(. , t)‖0,3,K (t)‖∇ηm(. , t)‖0,2,K (t)

+ k2r−2
D |K (m)(t)\A(m)(t)|1/4‖ sinh (ψ̂ + �̂)(. , t)‖0,2,B(m)(t)‖ηm(. , t)‖0,4,B(m)(t)

+ k2r−2
D |K (t)\A(m)(t)|1/4‖ sinh (ψ̂(m) + �̂)(. , t)‖0,2,Bm (t)‖ηm(. , t)‖0,4,Bm (t).

Now, following [11],

sup
t∈(0,T )

(|M (m)(t)− M(t)| + |Ṁ (m)(t)− Ṁ(t)|)

≤ CT |ν(m)p u(m) − νpu|L∞(0,T ;L2(D))n → 0,
(4.11)

with m → +∞, since ν(m)p u(m) converges to νpu in C([0, T ]; L2(D))3. Hence

|K (m)(t)\A(m)(t)|, |K (t)\A(m)(t)| → 0, m → +∞. We observe that, by the

Theorem 4.1 and the Sobolev imbedding H 1/2(K (m)(t)) ⊂ L3(K (m)(t)),

‖∇ψ(m)
1 (. , t)‖0,3,K (m)(t) ≤ C‖∇ψ(m)

1 (. , t)‖1/2,2,K (m)(t)

≤ ‖ψ(m)
1 (. , t)‖3/2,2,K (m)(t)

≤ C,

where C does not depend on m. Similarly, using the Sobolev embedding

H 1(D) ⊂ L4(D), Lemma 4.1 and hypothesis (iii) and (iv) we see that uniform

bounds to ‖ηm‖0,2,D, ‖ηm‖0,4,D are available. From hypothesis (v), ‖(ρ(m) −
ρ)(. , t)‖0,∞,D → 0. Theorem 4.1 and similar argument as in (4.10) give us that

‖ sinh (ψ(m) + �̂)(. , t)‖0,2,B(m)(t) ≤ C exp (C‖ψ(m)(. , t)‖3/2,2,B(m)(t))

≤ C,
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where C does not depend on m.

Using the rigidness of the particle we have∫
∂K (m)(t)

(̂σ (m)γ0ηm)(x, t)ds(x)−
∫
∂K (t)

(̂σγ0ηm)(x, t)ds(x)

=
∫
∂K0

σ̂ (m)(M (m)(t)y, t)γ0(ηm(M
(m)(t)y, t)− ηm(M(t)y), t)ds(y)

+
∫
∂K0

γ0ηm(M(t)y, t)(̂σ (m)(M (m)(t)y, t)− σ̂ (M(t)y), t)ds(y).

(4.12)

Now, we introduce, for each m, the usual C∞
0 -regularization {η(h)m } for ηm such

that ‖(η(h)m − ηm)(. , t)‖1,1,D → 0 when h → 0. Observing that

‖γ0η
(h)
m (M (m)(t)y, t)− γ0η

(h)
m (M(t)y, t)‖0,2,∂K0 → 0 with m → +∞

the first integral in (4.12) tends to zero with m → +∞, as can be seen using

the usual trace theorem. Analogously we have the same result for the second

integral in (4.12), recalling that σ̂ = 4πe
T σ +

(
k1
∂�̂1
∂n − k2

∂�̂2
∂n

)
, the hypothesis

(iv) and regularity �̂(. , t) ∈ H 3/2(D). �

Theorem 4.2. Let us consider ϕ(m) ∈ H 1((0, T ) × D)3 such that ϕ(m) → ϕ

strongly in C([0, T ]; L2(D))3 and ϕ ∈ H 1((0, T )× D)3. Then

lim
m→+∞

∫ t

0

∫
D
(F(m) · ϕ(m))(x, τ )dxdτ =

∫ t

0

∫
D
(F · ϕ)(x, τ )dxdτ,

for all t ∈ (0, T ).

Proof. Recalling that F(m) = �
4πe (ρ

(m)
2 + r−2

D k2 sinh (ψ(m)
2 ))(∇ψ(m)

2 )ID\K (m)(t),

we can write

F(m) · ϕm − F · ϕ = C1 ID\K (m)(t)(ϕ
(m) − ϕ) · ∇ψ(m) sinh (ψ(m))

+ C1ϕ · (ID\K (t)∇ψ sinh (ψ)

− ID\K (m)(t)∇ψ(m) sinh (ψ(m)))

+ C2 ID\K (m)(t)ρ
(m)(ϕ(m) − ϕ) · ∇ψ(m)

+ C2ϕ ·
(

ID\K (t)ρ∇ψ − ID\K (m)(t)ρ
(m)∇ψ(m)

)
,

(4.13)

where C1 = k2r−2
D �

4πe and C2 = �
4πe .
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In what follows we shall estimate the integral of each term above.∫ t

0

∫
D

ID\K (m)(τ )
((ϕm − ϕ) · ∇ψ(m) sinh (ψ(m)))(x, τ )dxdτ

≤ ‖ϕ(m) − ϕ‖C([0,T ];L2(D))3∫ t

0
‖∇ψ(m)(. , τ )‖0,3,D\K (m)(τ )

‖ sinh (ψ(m))(. , τ )‖0,6,D\K (m)(τ )
dτ

≤ C‖ϕ(m) − ϕ‖(C[0,T ];L2(D))3 → 0,

with m → +∞. Here we have used the Hölder’s inequality, the embeddings

H 1/2(D) ⊂ L3(D) and H 1/2(D) ⊂ H 3/2(D), Theorem 4.1 jointly with a similar

estimate as in (4.10) and the convergence ‖ϕ(m) − ϕ‖(C([0,T ];L2(D)))3 → 0.∫ t

0

∫
D

(
ϕ ·
(

ID\K (τ )∇ψ sinh (ψ)− I
D\K (m)(τ )

∇ψ(m) sinh (ψ(m))
))
(x, τ )dxdτ

≤
∫ t

0

[∫
B(m)(τ )

|ϕ(x, τ ) · (∇ψ sinh (ψ)− ∇ψ(m) sinh (ψ(m)))(x, τ )|dx

+
∫

K (m)(τ )\K (τ )
|ϕ(x, τ ) · (∇ψ(x, τ ) sinh (ψ(x, τ ))|dx

+
∫

K (τ )\K (m)(τ )
|ϕ(x, τ ) · (∇ψ(m)(x, τ )) sinh (ψ(m))(x, τ )|dx

]
dτ.

(4.14)

Writing

∇ψ sinh (ψ)− ∇ψ(m) sinh (ψ(m))

= sinh (ψ)(∇ψ − ∇ψ(m))+ ∇ψ(m)(sinh (ψ)− sinh (ψ(m)))

we have∫ t

0

∫
B(m)(τ )

ϕ(x, τ ) · (∇ψ sinh (ψ)− ∇ψ(m) sinh (ψ(m)))(x, τ )dxdτ

≤
∫ t

0
‖ sinh (ψ(. , τ ))‖0,4,B(m)(τ )‖ϕ(. , τ )‖0,4,B(m)(τ )

‖(∇ψ − ∇ψ(m))(. , τ )‖0,2,B(m)(τ )dτ

+
∫ t

0
‖ϕ(. , τ )‖0,6,B(m)(. ,τ )‖∇ψ(m)(. , τ )‖0,3,B(m)(τ )

‖(sinh (ψ)− sinh (ψ(m)))(. , τ )‖0,2,B(m)(τ )dτ.

(4.15)
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Now, observing that if

ψ(m) − ψ ≥ 0, cosh2(ψ(m) + θ(ψ − ψ(m))) ≤ cosh2(ψ) and if

ψ(m) − ψ < 0, cosh2(ψ(m) + θ(ψ − ψ(m))) ≤ cosh2 (ψ − ψ(m)) ,

we have, by Schwarz’s inequality

‖(sinh (ψ)− sinh (ψ(m)))(. , t)‖2
0,2,B(m)(t)

=
∫

B(m)(t)

(∫ 1

0
(ψ − ψ(m))(x, t) cosh(ψ(m)(x, t)+ θ(ψ − ψ(m))(x, t))dθ

)2

dx

≤
∫

B(m)(t)

∫ 1

0
(ψ − ψ(m))2(x, t) cosh2(ψ(m)(x, t)+ θ(ψ − ψ(m))(x, t))dθdx

≤ C‖(ψ − ψ(m))(. , t)‖2
0,4,D → 0,

where we have used a similar estimate as in (4.10), Theorem 4.1 and Lemma

4.4. Hence the dominated convergence theorem, Theorem 4.1 and Lemma 4.4

gives us that the terms in (4.15) tends to zero with m → +∞. Passing the

terms in (4.14) to the limit m → +∞, using (4.11) and Theorem 4.1 we obtain

the desired result for the second term in (4.13). The convergence of the others

terms in (4.13) to zero follows from a completely similar way, using hypothesis

(iii), (iv) and (v), Theorem 4.1 and Lemma 4.4. �
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