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Abstract

Default mode network (DMN) plays a central role in cognition and brain disorders. It has been shown that adverse envir-

onmental conditions impact neurodevelopment, but how these conditions impact in DMN maturation is still poorly under-

stood. This article reviews representative neuroimaging functional studies addressing the interactions between DMN

development and environmental factors, focusing on early life adversities, a critical period for brain changes. Studies focused

on this period of life offer a special challenge: to disentangle the neurodevelopmental connectivity changes from those related

to environmental conditions. We first summarized the literature on DMN maturation, providing an overview of both typical

and atypical development patterns in childhood and early adolescence. Afterward, we focused on DMN changes associated

with chronic exposure to environmental adversities during childhood. This summary suggests that changes in DMN devel-

opment could be a potential allostatic neural feature associated with an embodiment of environmental circumstances. Finally,

we discuss about some key methodological issues that should be considered in paradigms addressing environmental adver-

sities and open questions for future investigations.
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Introduction

The investigation on how environmental conditions
impact childhood development and, by extension,
burden the later adult life is of fundamental importance.
In fact, 13% of the world’s population lives in extreme
poverty, with 800 million people living under starving
conditions, among other adversities, such as the lack of
basic sanitation.1 Neurodevelopmental research has
begun to assess differential negative aspects of environ-
mental adversities that children live in poverty face,2,3 like
social disparity,4 low socioeconomic status,5 early life
stress,6 abuse, neglect,7 witnessing domestic violence or
other kinds of negative parental/relative conflicts,8–10 and
living in urban environments.11 These studies are related
to both acute and chronic exposure on lifespan. These
forms of adversity are also associated to many psychiatric
disorders, as, for example, those disorders related
to acute stress experiences as early life trauma due to
child abuse and child neglect or maltreatment and

posttraumatic stress disorders;12–16 socioeconomic
issues; anxiety and depression disorders;17,18 and
schizophrenia.19

It is of special interest to know when, how, and why
these environmental adversities could impact neurodeve-
lopment, especially during the different phases of child-
hood when brain changes are taking place.20 From this
perspective, neuroimaging proved to be a useful tool for
non-invasive in vivo structural and functional brain
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investigation. Association between environmental condi-
tions and brain structure and function was reported in
previous studies.2,16,21–26 However, only recently, few
investigations have explored the influence of these condi-
tions on brain functional connectivity and its develop-
mental trajectory.3,27,28 The analyses of large-scale
networks were demonstrated to be a useful framework
to comprehend the underlying complexity of multiple
brain subsystems not only in the study of cognitive func-
tions but also in mental disorders.29–30

Considering the multiple brain subnetworks, the inves-
tigation of the default mode network (DMN)31,32 is of
special interest given its pivotal role in neuroimaging stu-
dies and also in brain disorders.33,34 Atypical patterns of
DMN connectivity have been associated to a wide range
of psychiatric and developmental disorders such as post-
traumatic stress disorder,12 autism,35 and others.34,36

Findings based on clinical samples provided insightful
contributions to enhance the comprehension of DMN
functioning.

Beyond its attributed role in mental disorders, alter-
ations in DMN activity have also been associated to
enduring outcomes by growing up under stressful condi-
tions, according to retrospective reports in adult’s
research.3,15,37–38 However, the studies based on develop-
mental samples (i.e., with children and adolescent sam-
ples) are still scarce. These samples should be taken in
consideration given the changes occurring in this network
during development.27,39–41

In this review, we aim to provide an overview and
perspectives of studies on the association between envir-
onmental adversities and the DMN maturation. In order
to define the scope of this study, it is important to clarify
that (i) our main concern was to present representative
studies in this topic (and not a systematic review); (ii)
since the literature on DMN and psychiatric disorders
is massive, we will not focus on specific findings for
each condition. The emphasis on mental disorders may
bias the interpretation of environmental exposure42 on
DMN and also constrain the generalizability of the
findings.

We organized this review as it follows: First, we intro-
duce the DMN and present a brief description of its typ-
ical development from childhood to adolescence. Next,
we present findings describing how early adversities
may potentially impact on DMN development, structure,
and functioning. Finally, we present some perspectives
and discuss knowledge gaps regarding future research
efforts.

Default Mode Network

The DMN is a group of functionally connected brain
regions that exhibit higher levels of activity during rest
than during performance of externally oriented cognitive

tasks.32,33,43 Moreover, functional connectivity studies
showed that the activity of these regions is negatively
correlated with the activity of cognitive-control net-
works.44–46 Consequently, DMN has been be involved
in a variety of high-level functions, such as attention
and inhibitory control,40,47,48 social cognition,49 episodic
memory,50 and self-related processes.51 There is still a
great debate regarding the assignment of these func-
tions53–54 although most of them could be interpreted
as dimensions of internally focused thoughts.43

Altered DMN connectivity related to deficits on those
assigned cognitive functions34 has been described in psy-
chiatric and neurological disorders, such as in psy-
choses,55–57 mood disorders,58–60 bipolar disorder,61

attention deficit/hyperactivity disorder (ADHD),62–65

autism,35,66 schizophrenia,44,67 and bipolar disorder.68

One potential biological underpinning of DMN
deregulations is identified as its orchestrated functioning
with cognitive control regions.34,45,48,69 The DMN activ-
ity is typically suppressed during demanding cognitive
tasks directed toward external environment and goal-
directed activity45 and vice-versa. The unbalance between
the activity of DMN and cognitive control network (i.e.,
a disruption in the functional connectivity between
regions from these two networks) was related to autism
disorder35,66 and to ADHD.63–64,70 Besides that, DMN
hyperconnectivity was identified in mood disorders such
depression58,59,71 and schizophrenia.72,57 Sato et al.73 and
Castellanos et al.74 reported a decreased functional con-
nectivity between anterior cingulate cortex and DMN
regions in adults with ADHD. As mentioned in the
Introduction section, the literature of DMN and psychi-
atric disorders is massive, and we decided to focus on
other issues in this review.

Although the DMN is well-established in adults,33 the
maturation trajectory from childhood to adulthood is still
not fully understood. Its maturation occurs mainly in the
postnatal period (as it occurs in many other large-scale
networks); therefore, it could be potentially influenced by
environmental factors during childhood. Actually, only
23% of the functional connectivity within DMN was
found heritable.10 Many studies have suggested that
environmental conditions are related to brain struc-
ture.2,16,22,23,25,75,76 However, there are few investigations
exploring their associations with changes in functional
connectivity.

Age-Effect in the DMN: From Childhood to
Adolescence

In the adult brain, DMN nodes consist mainly of the
ventral medial prefrontal cortex (vMPFC), dorsal
medial prefrontal cortex (dMPFC), lateral temporal
cortex (LTC), inferior parietal lobule (IPL), posterior cin-
gulate cortex/retrosplenial (PCC/Rsp), and hippocampal
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formation (HFþ), which are densely functionally con-
nected to each other within the DMN.33 This network
undergoes a gradual developmental change on matur-
ation.47 Gao et al.77 and Fransson et al.78 were the first
researchers to report the postnatal DMN. The authors
describe that full-term babies presented a ‘‘proto-default
network,’’ with a resting-state functional connectivity
between the medial and lateral parietal cortex but no sig-
nificant functional connectivity between the medial pre-
frontal and the temporal cortices.

Gao et al.,77 in a longitudinal study with infants from
birth to the second year of life, found similar results to
the ones previously described. They report that from
birth to 2 weeks old, the DMN presents few connected
regions, with additional regions being connected through
the following 2 years toward the pattern found in adults
(including MPFC, PCC/Rsp, IPL, LTC, and hippocam-
pal regions). They highlight that until the 2 years old, the
strongest connection across all brain regions was between
PCC and MPFC. Both Gao et al.77 and Fransson et al.78

described a sparse and fragmented connectivity between
DMN regions (i.e., weaker internal connectivity). This
network immaturity persists until the 7 to 9 years old,
at least.47 They speculate that these network changes
may be associated to the emerging self-consciousness
and self-referential activity, one of most attributed func-
tions to DMN.

From 3 to 5 years, changes were described in relation
to the hemispheric dominance in the DMN subsystems.79

A decreased right hemispheric dominance (between the
medial temporal lobe and dMPFC) is observed at age
3, becoming more bilateral at age 5. The stronger inter-
actions between dMPFC and temporal lobe in 5-year-
olds support the development of social cognition, pos-
sibly as an outcome of environmental adaptation and
other complex mental abilities. The network is still primi-
tive in its functional structure when compared to adults.80

According to Fair et al.,47 DMN regions are still spar-
sely functionally connected until 7 to 9 years old, in which
the connections between vMPFC, PCC, and parietal
regions are minimal.47 This study highlights that the typ-
ical maturation of DMN may reflect a reduction in short-
range connections strength and an increasing strength of
long-range connectivity between its anterior and poster-
ior regions. Besides, in the early adolescence (13–14 years
old), the increasing connectivity within DMN is still an
ongoing process.41,81

From 7 to 15 years old, Sato et al.41 showed the
strengthening of functional connectivity between anter-
ior–posterior regions (predominantly between the anter-
ior and vMPFC/lateral parietal and Rsp cortices),
highlighting that the anterior MPFC is especially sensi-
tive to the maturation process. In a longitudinal study
with early adolescents (10–13 aged), Sherman et al.81

found robust connections between MPFC and posterior

parietal cortex, and an increased anticorrelation between
DMN and central executive networks over development.
Both studies described higher hierarchical DMN func-
tional organization and integration between the posterior
and anterior modules over development, toward a similar
pattern of adults. These changes are accompanied by the
developments in social and cognitive domains such as
social learning, usually associated with increasingly sen-
sitive to social cues and peers relationships, from family
to society.82 Finally, at age 21, it is expected that DMN is
fully integrated.83

In summary, these findings suggest that DMN under-
goes developmental changes on maturation, reflecting a
long-term trajectory from childhood to adulthood.
However, the complex interplay between environmental
demands and DMN maturation and how these could be
related to an atypical or aberrant development pattern
remains unclear.65

Environmental Adversities During
Childhood and the DMN

It is established that the early onset of mental disorders
can be related to atypical neurodevelopment processes,84

which in turn have been impacted by the exposure to
environmental conditions.14,85,89 Many studies focused
on DMN alterations in adult populations within mental
disorders and also in cognitive function.34,86–90 However,
few studies explored the potential enduring effects of
adverse situations in childhood on the DMN.2,27,28,91

Structural findings have described the impact of early
childhood negative environmental experiences on the
brain, including affected areas which might be relevant
for DMN functioning.2,9,24,25,76,92–94 For example, low
family income is correlated with a decreased volume of
the left hippocampus, bilateral IPL, insula cortex, inferior
frontal gyrus, right occipital, and MPFC.25 These regions
are involved in the DMN network functioning and
related to various language and executive functions.76

Recently, some studies investigated the associations
between adverse environmental factors, such as low
socioeconomic status, poverty and other similar material
deprivations, and changes in the functional connectivity
involving DMN regions.3,28,95 Adults who experienced
chronic poverty in childhood exhibited reduced DMN
regions connectivity, as well as higher cortisol levels in
anticipation of social stress.3

On the other hand, the interplay between adversities
and neurodevelopment does not seem to be univocal. In
other words, adversities may result in distinct direction of
brain connectivity changes. Family environment adversi-
ties, such as exposure to parental aggressive behavior/
conflict, were associated with hyperconnectivity between
the core DMN regions (PCC/anterior MPFC) and the
amygdala in children aged 6 to 12 months.28 In this
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context, the author interpreted DMN connectivity alter-
ations as a mediator between higher conflict and higher
negative emotionality, suggesting resilience or adequate
coping with adverse experiences.38,96 In a longitudinal
study following 65 children from birth to the first year
of life, higher levels of income and maternal education
were associated with higher within-network connectiv-
ity.27 Similarly, supportive and warmth parental practices
have been suggested as a protective buffer against dis-
turbances in the DMN development of children97 and
adolescents.98 Nevertheless, it is still unknown whether
the increased or decreased connectivity might be related
to impairment or compensatory mechanism in the net-
work in face of environmental demands.

Resilience

We have shown that exposure to environmental adversi-
ties is related to neurophysiological costs of adaptation to
these environmental demands, specifically the potential
neural embodiment in DMN. In this case, embodiment
refers to the way in which an organism biologically
incorporates the world around it, including societal and
ecological situations.99

When children are chronically exposed to environmen-
tal adversities, their allostatic responses can be excessively
required through development. This may lead to a load
with potentially negative health outcomes through the
physiological wear and tear, the so-called allostatic
load.100–102 Allostatic process is a mechanism to establish
a new (allostatic) accommodation when facing a chal-
lenge,103 which results in adaptive shifts in a broad range
of physiological systems matching the internal functioning
to the environmental demands.104 Specifically considering
the neural systems, some of these adaptive shifts corres-
pond to structural and functional changes in subcortical
and cortical brain regions, such as connectivity changes
between the amygdala, hypothalamic–pituitary–adrenal
(HPA) axis, and DMN connectivity during develop-
ment.3,28 Graham et al.28 reported that familiar inter-
actions are associated to DMN functional connectivity in
children (6–12 months of age). Children exposed to paren-
tal aggressive behavior/conflict showed stronger connect-
ivity between the core DMN regions (PCC/anterior
MPFC) and amygdala, which were identified as a mediator
between higher conflict and higher negative emotionality.
In adults, Philip et al.38 described analogous findings.
Those who were exposed to a chronic stressful childhood
had similar increased connectivity between MPFC and
amygdala and a decreased connectivity within the DMN.
These changes could represent a response to the environ-
mental challenges, once they could preserve their mental
health and cope adequately.

Eventually, this load potentially increases the risk of
developing physical and mental illnesses when the

threshold of an individual is exceeded, as we have briefly
described in disorders in which DMN is involved. In
other words, their allostatic overload could lead to cog-
nitive dysfunctions.

However, despite facing severe adversities in life, such
as deprivation or many types of threats, some individuals
are still able to maintain good mental and physical
health, the so-called resilients.96 According to Lupien
et al.,105 the nature of the stress response elicited in this
situations (negative or positive) relates more to the per-
ception and interpretation than to the physical conse-
quences. In this context, we conjecture that the
investigation of DMN developing in individuals under
these circumstances might be helpful to comprehend
how overload and threshold are modulated and related
to the resilience capacity.

According to Patriat et al.,106 environmental chal-
lenges are processed by DMN through its mediation of
information flow between subcortical and cortical
regions. The DMN might integrate salient external or
internal information with the current affective individual
experience and perception.107,108 Such an attribution of
meaning to personal experiences has been called self-
referential activity,109 an important cognitive function.
This function is expected to emerge after the first 12
months of life.77 Through self-referential activity, individ-
uals label their experiences as negative or positive (produ-
cing allostatic overload when they are excessively
negative) according to their perceived social standing.37

Empirical findings suggest that parental relationships
modulate these perception, as they have been related to
DMN development37,97,98,114 and since the parents pro-
vide the earliest affective experiences of the children.

Perspectives

Although it is still not possible to disentangle whether
abnormal DMN connectivity is the cause or the outcome
of many mental disorders, the few available studies sup-
port that stress and environmental adversities are import-
ant factors to be considered in the DMN maturation. In
this context, it is necessary to achieve a more in-depth
understanding of how adverse environmental factors
could affect DMN development. The first and most
direct association is to account adversities acting as risk
factors to the typical DMN connectivity and by exten-
sion, playing an important role in mental disorders; the
second is to investigate the correlation between resilience
and DMN. Regarding future studies, it is recommended
some cautionary considerations when framing the envir-
onmental adversities.

First, there is a clear challenge in objectively defining
what a stressful or an adverse environmental experience
is. One possibility is to take into account the biological
evidences related to physiological stress responses
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through HPA-axis activity114 and their possible associ-
ations with structural or functional brain alter-
ations.3,6,116–111 Previous findings in adults have shown
that the effects of chronic exposure to stress in MPFC, an
important DMN node, are associated with impairments
in long-range connectivity across the brain.112

Recent empirical findings investigate the possible
neurochemical underpinnings of DMN activity, espe-
cially focusing on neurotransmitters such as serotonin,115

glutamate, and gamma-aminobutyric acid116–118 and
exposure to stress conditions.119 The potential association
between these neurotransmitters and the DMN is still an
open question. One point of particular relevance is to
understand the mechanisms driving DMN neurochemical
modulation in typical development in children and ado-
lescents and the effects of the exposure to adverse life
experiences.

Considering the nature of child development, it is
important to reinforce the crucial role of longitudinal
studies, which might provide more detailed inferences
on maturation. This is necessary to evaluate how expos-
ure levels of adversity change across development. It is
also important to take in account that there are some
limitations of DMN studies in children. It is well-estab-
lished that head motion may bias inferences on age-
effect.119 Motion artifacts weaken DMN long-range con-
nections and strength short-range connections in visual
regions.120 Both situations require methodological pro-
cedures to minimize errors, such as report and account
motion in the comparison between individuals or between
groups,119 and volume censoring technique (scrubbing) to
identify scans more affected by motion.120

It is also necessary to take into account the functional–
anatomic heterogeneity,69,121,122 since the maturation of
DMN is not homogeneous.41,65 Individual variability and
heterogeneity of functional networks are crucial points to
be considered. On the other hand, evidences of environ-
ment-gene interactions have identified regularities in neu-
rodevelopmental trajectories of individuals among
diverse populations.10,60,123–125

Furthermore, most studies are based on time-station-
ary patterns of functional while time-varying connectivity
analyses might be a valuable methodological tool.125–127

Indeed, there are evidences that temporal instability
exhibited by the functional connectome allows the
switch between multiple configurations within a scanning
session.128 Specifically, Chang et al.128 recommend the
study of temporal dynamics between DMN regions, rein-
forcing that the majority of studies have only tested sta-
tionary relationships between resting-state networks,
including the study of the variability of the strength of
the anticorrelation between DMN and executive control
networks. Calhoun et al.128 proposed the term ‘‘chron-
nectome’’ to describe these metrics that enable us to have
a dynamic view of coupling of time-varying levels of

correlated activity between spatial and temporal proper-
ties of brain regions.

Since the functional connectivity expresses complex
and multivariate features, the use of machine learning
methods would be a promising approach. A rising
number of studies have used this approach combined
with functional connectivity.129–132 For example,
Dosenbach et al.130 trained a machine-learning model
to make predictions about individuals’ brain maturity
across development, achieving an accuracy of 91%.

Second, the evaluation of environmental exposure
effects on DMN maturation is important to account for
possible variables as confounders or covariates in studies,
such as (i) the time when environmental adversities expos-
ure occurs and their duration; (ii) sex differences, since
they might be potentially related to differences in percep-
tion of stressful events in puberty and adolescence.133 In a
study with 900 children from 0 to 5 years old, Duncan,
Brooks-Gunn, and Klebanov134 found that living in pov-
erty for relatively short periods is less detrimental than
longer ones through development. This finding suggests
that chronicity effects may lead to different outcomes.
Therefore, it is also important to consider that beyond
the functional DMN analysis, greater accuracy will be
provided about the environmental exposure if researchers
also investigate their relationships to behavioral
aspects.39

Conclusion

In summary, considering that environmental factors have
been strongly associated with many psychiatric disorders,
further investigation of their relationship with DMN
developmental trajectories is of pivotal importance. To
set up these paradigms of investigation, it is fundamental
to define more accurately the environmental adversities.
The better comprehension of these environmental influ-
ences on the DMN development should improve mental
health knowledge, supporting more adequate decisions in
interventions in the social/environmental policies and
educational and parental practices.
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78. Fransson P, Skiöld B, Engström M, et al. Spontaneous

brain activity in the newborn brain during natural slee-

p—an fMRI study in infants born at full term. Pediatr

Res 2009; 66(3): 301–305.
79. Xiao Y, Zhai H, Friederici AD, Jia F. The development of

the intrinsic functional connectivity of default network sub-

systems from age 3 to 5. Brain Imaging Behav 2015; 10(1):

50–59. doi:10.1007/s11682-015-9362-z.

80. de Bie H, Boersma M, Adriaanse S, et al. Resting-state

networks in awake five-to eight-year old children. Hum

Brain Mapp 2012; 33(5): 1189–1201. doi:10.1002/

hbm.21280.
81. Sherman LE, Rudie JD, Pfeifer JH, Masten CL, McNealy

K, Dapretto M. Development of the default mode and cen-

tral executive networks across early adolescence: a longitu-

dinal study. Dev Cogn Neurosci 2014; 10: 148–159.

doi:10.1016/j.dcn.2014.08.002.
82. Nelson EE, Leibenluft E, McClure EB, Pine DS. The social

re-orientation of adolescence: a neuroscience perspective on

the process and its relation to psychopathology. Psychol

Med 2005; 35(2): 163–174.

83. Washington SD, VanMeter JW. Anterior-posterior

connectivity within the default mode network

increases during maturation. Int J Med Biol Front 2015;

21(2): 207.
84. Meredith RM. Sensitive and critical periods during

neurotypical and aberrant neurodevelopment: a framework

for neurodevelopmental disorders. Neurosci Biobehav Rev

2015; 50: 180–188. doi:http://dx.doi.org/10.1016/

j.neubiorev.2014.12.001.

8 Chronic Stress



85. Kessler RC, Avenevoli S, Costello EJ, et al. Prevalence,

persistence, and sociodemographic correlates of DSM-IV

disorders in the National Comorbidity Survey Replication

Adolescent Supplement. Arch Gen Psychiatry 2012; 69(4):

372–380. doi:10.1001/archgenpsychiatry.2011.160.

86. Manza P, Zhang S, Hu S, Chao HH, Leung HC, Chiang-

shan RL. The effects of age on resting state functional

connectivity of the basal ganglia from young to middle

adulthood. Neuroimage 2015; 107: 311–322.

87. Newton AT, Morgan VL, Rogers BP, Gore JC.

Modulation of steady state functional connectivity in the

default mode and working memory networks by cognitive

load. Hum Brain Mapp 2011; 32(10): 1649–1659.

doi:10.1002/hbm.21138.

88. Sambataro F, Murty VP, Callicott JH, et al. Age-related

alterations in default mode network: impact on working

memory performance. Neurobiol Aging 2010; 31(5):

839–852. doi:10.1016/j.neurobiolaging.2008.05.022.

89. Sheng T, Gheytanchi A, Aziz-Zadeh L. Default network

deactivations are correlated with psychopathic personality

traits. PloS One 2010; 5(9): e12611. doi:10.1371/

journal.pone.0012611.

90. Zhou J, Yao N, Fairchild G, et al. Disrupted default mode

network connectivity in male adolescents with conduct dis-

order. Brain Imaging Behav 2016; 10(4): 995–1003.

doi:10.1007/s11682-015-9465-6.
91. Tomalski P, Moore DG, Ribeiro H, et al. Socioeconomic

status and functional brain development–associations in

early infancy. Dev Sci 2013; 16(5): 676–687. doi:10.1111/

desc.12079.
92. Brito NH, Noble KG. Socioeconomic status and struc-

tural brain development. Front Neurosci 2014; 8: 276.
93. McLaughlin KA, Sheridan MA, Lambert HK. Childhood

adversity and neural development: deprivation and threat

as distinct dimensions of early experience. Neurosci

Biobehav Rev 2014; 47: 578–591. doi:10.1016/

j.neubiorev.2014.10.012.

94. Tottenham N. The importance of early experiences for

neuro-affective development. The Neurobiology of

Childhood. Berlin/Heidelberg, Germany: Springer, 2013,

pp.109–129. ?doi:10.1007/7854_2013_254.

95. Gee DG, Gabard-Durnam LJ, Flannery J, et al. Early

developmental emergence of human amygdala-prefrontal

connectivity after maternal deprivation. Proc Natl Acad

Sci 2013; 110(39): 15638–15643. doi:10.1073/

pnas.1307893110.
96. Chen E, Miller GE. ‘‘Shift-and-persist’’ strategies: why

low socioeconomic status isn’t always bad for health.

Perspect Psychol Sci 2012; 7(2): 135–158. doi:10.1177/

1745691612436694.
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