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Abstract

Dendrograms are a way to represent relationships between organisms. Nowadays, these

are inferred based on the comparison of genes or protein sequences by taking into account

their differences and similarities. The genetic material of choice for the sequence alignments

(all the genes or sets of genes) results in distinct inferred dendrograms. In this work, we

evaluate differences between dendrograms reconstructed with different methodologies and

for different sets of organisms chosen at random from a much larger set. A statistical analy-

sis is performed to estimate fluctuations between the results obtained from the different

methodologies that allows us to validate a systematic approach, based on the comparison

of the organisms’ metabolic networks for inferring dendrograms. This has the advantage

that it allows the comparison of organisms very far away in the evolutionary tree even if they

have no known ortholog gene in common. Our results show that dendrograms built using

information from metabolic networks are similar to the standard sequence-based dendro-

grams and can be a complement to them.

Introduction

Dendrograms are a way to represent relationships among entities, such as species, proteins,

coding genes, exons, etc In our case, for a given dendrogram we will consider two types of

nodes: leaves (a node connected with another single node) represent species, either current or

extincted, and the rest of nodes (connected with more than one node) represent a common

ancestor of the nodes hanging from it.

These dendrograms can only be inferred based on data of currently living species or, in a

few cases, using fossil records. Currently, the most common methodology to construct (infer)
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such dendrograms is to infer the distance of two organisms to their common ancestor based

on the comparison (alignment and scoring) of their genetic sequences.

Alignments between sequences are not unique, as the scoring of the alignments can differ.

As a consequence, different dendrograms will be reconstructed for the same set of organisms

when applying different methodologies (e.g. distance matrix, maximum parsimony, maximum

likelihood, Bayesian inference,. . .) in the reconstruction. Even the same methodology may

result in different dendrograms depending on the material used to study, e.g. a single gene, a

set of genes, amino acid sequences or whole genomes. Therefore, it is important to obtain a

dendrogram and compare it to others. In other words, measurements to compare several den-

drograms and their fluctuations are relevant. An accepted such metric is the Robinson-Foulds

[1] also known as the symmetric difference metric on dendrograms, which evaluates the cost

needed to modify one dendrogram to obtain the other. For further information, see also [2–4].

Closely related species share many genes in common, while distant species share very few

traits. Traditionally, phylogenetic relationships among distant species have been computed

using the small subunit ribosomal RNA (16S) sequences in the comparisons [5]. Some works

have used other conserved sequences, such as a subset of genes [6] or a combination of these

[7]. In the last years it has been increasingly feasible to perform these studies using whole

genome alignments [8–12]. Studies have underlined the importance of considering only sets of

genes [13], but they have been mixed about the usefulness of filtering the genome sequences

that are compared [14]. Thus, which is the perfect set of sequences, if any, to obtain a dendro-

gram that includes very distant species is still a matter of debate [7].

Recently, a new approach based on the comparison of metabolic networks was proposed to

infer the distance between two organisms [15]. Metabolic networks are graphs where every

metabolite in an organism’s metabolome represents a node and pairs of nodes are connected

whenever a chemical reaction in the organism’s metabolism connects the two metabolites as

substrate-product. Metabolic networks’ properties have been extensively studied [16] and

present many characteristics in common (e.g. approximate scale-free distribution of their

node’s degrees, high clustering coefficient, small-world structure), which indicate a common

internal organization of the studied metabolisms.

A metabolic network is reconstructed using the information of all enzymes contained in an

organism. Therefore, it contains the information of a large subset of this organism’s genome.

Moreover, even organisms far away in the evolutionary tree will share important pathways;

also, many metabolites (nodes) are ubiquitous and will be present in all species. This explains

that differences and similarities can always be established between two given metabolisms. In

fact, is has been published that the comparison of metabolic networks represents a valuable

tool to infer phylogenetic relationships [15, 17, 18].

In this work, we systematically construct and compare dendrograms built from different

sets of organisms using different genes, proteins or networks. We present evidences that den-

drograms reconstructed using only information from metabolic networks are comparable to

more traditional gene-based dendrograms in terms of accuracy and comprehensiveness.

The work is organized as follows: In the Materials and Methods section, we explain in detail

how we obtained and processed our data to reconstruct the dendrograms, how the sequence

alignments were performed and the scoring systems and methods we used to obtain the dis-

tance matrices and, lastly, how to evaluate the distances among dendrograms. We also explain

the graph-theoretical aspects used in the network comparison, how the “network” dendro-

grams were constructed and how the dendrograms’ differences were evaluated. In the Results
and Discussion section we explain the statistical analysis performed and discuss our results.

We also included an appendix with mathematical details on how the Pagerank algorithm is
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used to determine the relative importance of every metabolite in an organism based on their

connections to the rest of the metabolic network.

Materials and methods

Dataset used to build the dendrograms

We retrieved from the KEGG database [19] a large set of organisms’ genes, and we identified

those associated with enzymes. For each enzyme in a given organism, we identified all the

chemical reactions associated with that enzyme, such that, for each organism we were able to

build a list of all identified chemical reactions potentially present in its metabolism. Moreover,

for each gene we obtained their corresponding nucleic acid and amino acid sequences. Details

on the procedures used to obtain information from KEGG can be found in [20].

Separately, for each prokaryotic organism in our dataset, we searched the NCBI database

for its 16S rRNA subunit sequence using an automatized script including the terms Genus
species[Orgn] AND 16S ribosomal RNA[Titl] NOT partial sequence
[Titl], where Genus species was the binomial nomenclature of each organism in the

dataset obtained from KEGG. In this way, only complete sequences were considered and par-

tial ones discarded.

Our original data set built with KEGG’s information comprised 4803 organisms. From

these, the metabolic networks of 3972 organisms were completed, whereby NCBI searches

retrieved 16S rRNA subunit sequences for 1537 of them. The intersection of all these sets

resulted in a dataset with 1506 prokaryote organisms for which we had complete information,

i.e. we had all sequences for their enzymes, the complete list of chemical reactions and 16S

rRNA nucleotide sequences.

Definition and construction of dendrograms

Our analysis is based on three categories of dendrograms, referred to as gene-based dendro-
grams, network dendrograms, and random dendrograms. Gene-based dendrograms are those

constructed with sequence alignments. We compute three different gene-based dendrograms,

the difference between them coming from the sequence (or sequences) used in the alignments:

either a large set of proteins (amino acid sequences); a single protein from this set; or the 16S

rRNA subunit nucleic-acid sequences. Metabolic network dendrograms are those constructed

via comparison of metabolic networks reconstructed from the list of chemical reactions that is

obtained from the annotation of the organism’s genome. Finally, random dendrograms are

constructed by linking the organisms in a set at random.

Given a set of N organisms the first step in our proposed dendrogram reconstruction is the

evaluation of a symmetric N × N distance matrix (D), where each element element Dij is a mea-

sure of the distance between organism i and j. The evaluation of this matrix follows different

methodologies that are described in the following subsections. Here we explain the reconstruc-

tion of the dendrogram once the D matrix is calculated, following the same procedure as in

[15].

The matrix D can be viewed as a complete weighted graph G = (V, E, w). The set of nodes V
stands for all the organisms in the dataset. Each pair of different organisms are linked by an

edge in E. A non-negative function w : E! Rþ
0

associates a weight to each edge, according

to the distance between the organisms connected by that edge. Once this weighted graph is gen-

erated, we apply Kruskal algorithm to obtain a minimum spanning tree. A spanning tree is an

acyclic and connected subgraph G0 = (V0E0, w0) of G such that V0 = V and E0 � E. The edges in

E0 have the same weights as the corresponding ones in E. Among all the spanning trees of a
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given graph G, a minimum spanning tree is a spanning tree such that the sum of the weights

associated to their edges is minimum respect to all the admissible spanning trees of G. Further

information on trees and graphs can be found in [21]. From this minimum spanning tree a den-
drogram is obtained that represents the relationships among the given set of N organisms. The

lengths of the branches in the dendrogram are proportional to the distances in the matrix D.

Gene-based dendrogram construction

Gene-based dendrograms are based on pairwise alignment of nucleotides or amino acid

sequences, i.e. the matrix distance D for the organisms present in a set is evaluated from the

result obtained from sequence alignments done using the Needleman-Wunsch algorithm [22]

with affine gap penalty. The algorithm inserts gaps in the sequences to create the alignment

that maximizes some score S. In the scoring of an alignment the opening of a gap subtracts 10

points from S and every extension of the gap subtracts 0.5 points. In the nucleotide alignments

every match of nucleotides adds 5 points and a mismatch subtracts 4 points, while for the

alignment of amino acid sequences, different standard matrices are used (BLOSUM and

PAM). Given the alignment score S we define the parameter P as:

P ¼ 1 �
S
M

ð1Þ

were M is the maximum score possible (the score which would be obtained with no mis-

matches and no gaps in the alignment). The smaller P is, the closer the two sequences are. Typ-

ically, P is a value between 0 and 1 but, for very bad alignments, a P larger than 1 is possible,

meaning that gaps and mismatches in the alignment subtracted more points than matches

added.

In the comparison of two organisms 1� i, j� N, if each organism has only one sequence to

be compared, the distance Dij between both of them is just the result for P in (1) obtained from

the alignment of this sequence. If one or both organisms in a comparison have more than one

sequence corresponding to the same gene we match each sequence from the organism with

the least number of sequences to its best alignment with sequences from the other organism.

Then, we set the distance Dij as the average �P for the values of P obtained from each possible

alignment.

Three different gene-based dendrograms were constructed for each set of organisms, called

DRIBO, DENZS and D1ENZ:

• DRIBO is a dendrogram constructed using the rRNA sequences for the 16S ribosomal

subunit.

• DENZS is a dendrogram constructed using the amino acid sequences of all proteins associ-

ated to all EC numbers common to all organisms in a set. (The average number of common

EC numbers among all organisms in a set, for the organisms sets we worked with, was

40.15 ± 20.73.)

• D1ENZ is a dendrogram constructed using the amino acid sequences associated to a single

EC number taken at random from all EC numbers common to all the organisms in the set.

Network dendrogram construction

For the construction of dendrograms based on networks, the matrix distance D is obtained

from the comparison of the metabolic networks of each pair of organisms in the set following

[15]. In this previous work, a parameter (z) is defined as the result of the comparison of two
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networks. This parameter depends on weighted averages over different sets of metabolites

(common or not to each pair of organisms), where the weights of the metabolites are evaluated

according to their connectivity degree. In present work, we will test an array of parameters,

including this z, to establish the one that produces dendrograms that are closer to the ones pro-

duced by the other methodologies.

Given two arbitrary organisms 1� i, j� N, we consider the metabolic networks of each

one of these organisms as weighted graphs. In these graphs, nodes stand for metabolites and

edges between a pair of nodes indicate the presence of a chemical reaction in the correspond-

ing organism’s metabolism linking the two metabolites as substrate and product.

A successful approach to measure the importance of a node in a network can be obtained

using the Pagerank algorithm [23]. This was inspired by the eigenvalue problem on sciento-

metrics and successfully used in the former versions of the Google browser and afterwards,

Pagerank has been extensively used in network theory for different purposes. For instance, in

computational biology it has been used to determine which are the key species in a food web

that can cause the collapse of the entire system [24] or to improve outcome prediction for can-

cer patients [25]. In our work, Pagerank is used to assign weights to the edges of the graph that

results of the union of the metabolic networks of all organisms in a set. For further details,

please refer to the S1 File.

From the metabolic network of organisms i and j, let us define the sets of edges Aij, Bij and

Cij, where Aij is the set of edges present in organism i but not in j, Bij is the set of edges present

in organism j but not in i, and Cij is the set of edges present simultaneously in both networks

of organisms i and j.
Given these three sets, Aij, Bij, and Cij let us define the following parameters:

aij ¼
X

l�Aij

wl ð2Þ

bij ¼
X

l�Bij

wl ð3Þ

gij ¼
X

l�Cij

wl ð4Þ

where the sums are made for the weights wl, given by the Pagerank, of all edges l in each set.

Details of the evaluation of weights are discussed in the S1 File. Defined as such, the parame-

ters αij and βij represent measures of the differences between the networks i and j in respect to

each other, while the parameter γij is a measurement of the similarity between them (Fig 1).

Different network dendrograms were constructed for each set of organisms, based on dif-

ferent choices of parameters for the distance matrix D:

• DS1 is obtained when the distance matrix is given by Dij = |ni − nj| where ni is the number of

nodes in each network.

• DS2 is obtained if Dij = |ei − ej|, where ei is the number of links in each network.

• DNET1 is obtained if Dij ¼
ntot
gij

, where ntot is the number of common metabolites in networks

i and j.

• DNET2 is obtained if Dij = αij + βij, where αij and βij are defined in (2) and (3).

• DNET3 is obtained if Dij ¼
aijþbij
gij

, where αij, βij and γij are defined in (2)–(4).
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• DNET4 is obtained if Dij = zij, with zij calculated varying the procedure presented in [15]. In

[15], parameters α, β and γ were evaluated following the same principles as in present work,

but the sums in (2)–(4) were made over nodes and not over links and the weights of the

nodes were related to their connectivity. Finally, the parameter zij is the equivalent to the

parameter used in DNET3 above, but using nodes and not links in the evaluation.

Note that DS1 and DS2 are two different ways of comparing the difference in size of two

given networks, while the other dendrograms in this list take into account different measure-

ments of the importance of the links and/or nodes which are either common to both networks

or particular to only one of them. Additionally to these dendrograms, we also consider den-

drograms build linking the different species at random, termed RAND in Table 1 and

DRAND in Tables 2 and 3 and Figs 2 and 3. These random dendrograms are produced by gen-

erating a symmetrical distance matrix whose elements are uniformly distributed random

numbers.

Dendrogram comparisons

Since different methods have been proposed for generating dendrograms from the same set of

organisms, a measure is needed to compare them. Robinson-Foulds metric, introduced in [1],

allows to measure similarity among two dendrograms. This metric has been widely used since

it is not limited to binary trees and is based on counting elementary operations which

Fig 1. Network dendrogram construction parameters. Schematic representation of A, B and C sets and their parameters of the

network dendrogram construction.

https://doi.org/10.1371/journal.pone.0221631.g001
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transform one dendrogram into another. The lower the difference between two dendrograms

is, the more similar the two dendrograms are. A more detailed description can be found in the

S1 File. Several algorithms have been described to efficiently compute this metric [2, 3], but in

this work we have considered the implementation in the Python library DendroPy [26].

Two ensembles were constructed by randomly choosing organisms from the 1506 organ-

isms set for which there was complete information. The first ensemble contains 10 sets of

organisms, each set containing 20 organisms. The second ensemble contains 10 sets of 30

organisms. S2 File contains the organisms in each set in each ensemble. In the additional files,

each organism is identified by its KEGG code (usually a 3 letter code).

Table 1. Comparison of DENZS dendrograms built using different scoring matrices for the first ensemble (10 sets of 20 organisms in each set).

DENDROGRAMS BLO 55 BLO 62 BLO 90 PAM 60 PAM 120 PAM 250 RAND

BLO 45 0.055 ± 0.025 0.524 ± 0.038 1.219 ± 0.071 2.082 ± 0.137 1.146 ± 0.104 0.462 ± 0.113 15.237 ± 0.463

BLO 55 0.516 ± 0.036 1.210 ± 0.068 2.064 ± 0.136 1.135 ± 0.108 0.480 ± 0.114 15.246 ± 0.462

BLO 62 0.721 ± 0.062 1.581 ± 0.123 0.662 ± 0.098 0.805 ± 0.133 15.733 ± 0.493

BLO 90 0.897 ± 0.080 0.305 ± 0.075 1.479 ± 0.152 16.383 ± 0.536

PAM 60 1.021 ± 0.084 2.344 ± 0.183 17.213 ± 0.596

PAM 120 1.368 ± 0.150 16.318 ± 0.554

PAM 250 15.088 ± 0.480

RAND

https://doi.org/10.1371/journal.pone.0221631.t001

Table 2. Comparison of different gene-based and network dendrograms for the first ensemble (10 sets of 20 organisms in each set).

DENDROGRAMS D1ENZ DRIBO DS1 DS2 DNET1 DNET2 DNET3 DNET4 DRAND

DENZS 3.796 ± 1.471 4.631 ± 1.706 13.062 ± 0.402 13.036 ± 0.380 5.345 ± 1.348 5.612 ± 1.076 8.432 ± 1.345 7.189 ± 1.427 15.156 ± 0.417

D1ENZ 4.918 ± 1.964 12.022 ± 1.742 11.999 ± 1.872 5.687 ± 1.991 5.698 ± 1.642 7.936 ± 2.592 6.782 ± 1.888 14.200 ± 1.933

DRIBO 9.883 ± 1.430 9.848 ± 1.493 4.910 ± 0.678 5.497 ± 0.874 5.931 ± 1.612 5.504 ± 1.110 12.091 ± 1.532

DS1 3.147 ± 1.209 9.673 ± 1.901 9.987 ± 1.878 6.762 ± 1.771 8.455 ± 1.494 9.150 ± 0.480

DS2 9.614 ± 1.753 9.902 ± 1.365 6.656 ± 1.682 8.362 ± 1.408 9.148 ± 0.423

DNET1 3.968 ± 0.513 3.929 ± 0.635 4.361 ± 1.307 12.254 ± 1.293

DNET2 5.982 ± 1.165 5.379 ± 0.963 12.728 ± 1.127

DNET3 3.953 ± 0.888 9.938 ± 1.085

DNET4 11.050 ± 1.109

https://doi.org/10.1371/journal.pone.0221631.t002

Table 3. Comparison of different gene-based and network dendrograms for the second ensemble (10 sets of 30 organisms in each set).

DENDROGRAMS D1ENZ DRIBO DS1 DS2 DNET1 DNET2 DNET3 DNET4 DRAND

DENZS 4.482 ± 1.040 6.635 ± 1.524 18.157 ± 0.709 18.202 ± 0.747 7.925 ± 2.445 8.458 ± 0.700 12.380 ± 1.701 10.129 ± 1.827 22.456 ± 0.835

D1ENZ 6.625 ± 1.752 17.028 ± 2.314 17.028 ± 2.379 8.333 ± 2.739 8.735 ± 0.874 11.728 ± 2.983 9.750 ± 2.659 21.295 ± 2.334

DRIBO 14.118 ± 1.629 14.140 ± 1.641 7.532 ± 1.480 8.392 ± 1.509 8.859 ± 2.307 7.123 ± 1.825 18.479 ± 1.452

DS1 5.046 ± 1.076 13.342 ± 2.805 15.033 ± 1.702 8.645 ± 1.449 11.584 ± 1.408 12.970 ± 0.897

DS2 13.328 ± 2.625 15.078 ± 1.717 8.700 ± 1.317 11.622 ± 1.253 13.028 ± 0.917

DNET1 6.347 ± 2.633 6.035 ± 1.762 5.976 ± 1.099 18.153 ± 2.231

DNET2 9.536 ± 2.679 8.036 ± 2.136 19.841 ± 1.785

DNET3 5.391 ± 1.401 14.121 ± 0.940

DNET4 16.337 ± 0.933

https://doi.org/10.1371/journal.pone.0221631.t003
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The procedure adopted is the following: given an ensemble, for each organisms’ set in the

ensemble, the different distance matrices are calculated and gene-based and network dendro-

grams are constructed. So, for each set, 9 distance matrices (3 gene-based and 6 based on

networks) are evaluated and the corresponding 9 dendrograms are constructed. Each dendro-

gram is compared to the rest of dendrograms using the Robinson-Foulds metric, totaling 36

comparisons (as there are 36 possible combinations of 9 elements two by two). This is repeated

for each set in the ensemble and the resulting comparisons are averaged over all sets.

Note that the distance parameter in each methodology has arbitrary units. For comparing

the dendrograms, we rescale the distances in the dendrograms such that the biggest distance is

always 1. Also note that distances do not have a direct correspondence to any real unit, only

the relative distance has a meaning. Therefore, a rescaling of the numbers in a dendrogram

should not result in any bias in the comparisons.

Fig 4 illustrates the workflow adopted: we have picked at random the sets of organisms to

build up both ensembles, then we have compared their sequences and we have built dendro-

grams using Kruskal algorithm. Then we have compared the different dendrograms using

Robinson-Foulds metric.

Results and discussion

We have worked with two ensembles of organism information, all constructed by randomly

selecting these from the 1506 organisms dataset for which we had complete information

Fig 2. Cluster of dendrograms built with different methodologies for the first ensemble of organisms. Ward’s minimum

variance method was used for the agglomerative hierarchical clustering using Euclidean distances. P-values are shown in green for

approximately unbiased (AU) and in red for bootstrap probability (BP).

https://doi.org/10.1371/journal.pone.0221631.g002
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(sequence information of the enzymes and their 16S rRNA and the complete list of chemical

reactions, see the aforementioned dataset subsection). The first ensemble contained ten organ-

isms sets with twenty organisms in each set while the second ensemble contained ten organ-

isms sets with thirty organisms in each set.

Fig 3. Cluster of dendrograms built with different methodologies for the second ensemble of organisms. Ward’s

minimum variance method was used for the agglomerative hierarchical clustering using Euclidean distances. P-values are

shown in green for approximately unbiased (AU) and in red for bootstrap probability (BP).

https://doi.org/10.1371/journal.pone.0221631.g003

Fig 4. Workflow for evaluating and comparing dendrograms. A) We first obtain dendrogram for a given organism set. B) We

compare the difference between dendrograms for many sets. Bacteria cartoons from https://pixabay.com/.

https://doi.org/10.1371/journal.pone.0221631.g004

Large scale evaluation of network-based and pairwise sequence-alignment-based methods

PLOS ONE | https://doi.org/10.1371/journal.pone.0221631 September 5, 2019 9 / 13

https://doi.org/10.1371/journal.pone.0221631.g003
https://pixabay.com/
https://doi.org/10.1371/journal.pone.0221631.g004
https://doi.org/10.1371/journal.pone.0221631


For each set in a given ensemble, we constructed 3 gene-sequence-based dendrograms

(denoted by DRIBO that includes information of 16S rRNA, DENZS that includes information

of all the enzymes in common among the species of the dendrogram and D1ENZ that includes

information of one randomly-chosen enzyme in common among the species of the dendro-

gram), 6 network-based dendrograms (denoted by DS1 that includes information of the

nodes, DS2 that includes information of the links and DNET1, DNET2, DNET3 and DNET4

that include information of the metabolic network) and 100 random dendrograms (DRAND).

Then we compared each dendrogram with the rest by calculating the symmetric differences

among them, i.e. the Robinson-Foulds metric. We evaluated the average and standard devia-

tion for every pair of dendrograms for each organisms set in each ensemble, so that all compar-

isons were covered.

We were interested in comparing dendrograms built using very different types of informa-

tion. For this, we have used the randomly-generated dendrograms (DRAND) as the worst-case

example to which dissimilarity was expected to be maximal and have used a set of examples of

different dendrograms that use the same information as the best-case examples among which

dissimilarity was expected to be minimal. We have used DRIBO as a common standard for

sequence alignment as 16S rRNA is universally present, rarely subjected to horizontal gene

transfer and have broad coverage of taxa between domain and species. D1ENZ and DENZS

have been used considered as examples of enzyme sequence data use, while DS1 and DS2 as

examples of use of network properties. Finally, DNET1, DNET2, DNET3 and DNET4 have

been considered as examples of use of metabolic network data).

We wanted to compare our dendrograms built with enzyme sequences information with

well-known distances of amino acid substitutions. Thus, we compared the DENZS, a dendro-

gram constructed using amino acids sequences from all enzymes common to the organisms

considered, built using different scoring matrices, such as BLOSUM and PAM matrices. BLO-

SUM matrices are amino acids substitution matrices based on observed alignments [27]. BLO-

SUM45 is used for distantly-related proteins and BLOSUM62 for midrange-related proteins.

On the other hand, PAM amino acids substitution matrices’ observations are extrapolated

from comparisons of closely related proteins, as they look for point accepted mutations (PAM)

[28]. These consist on the replacement of a single amino acid in the protein sequence with

another single amino acid. For instance, PAM250 matrix was calculated based on 1572

observed mutations in 71 families of proteins with alignments that were more than 85% identi-

cal [29]. Unsurprisingly, Table 1 shows small distances between DENZS dendrograms built

with different substitution matrices and, thus, the resulting dendrograms are very similar. This

is due to the fact that PAM and BLOSUM matrices have equivalences, for instance, PAM250

retrieves very similar results as BLOSUM45 [29] and, thus, dendrograms built with equivalent

substitution matrices will be similar. From this diversity of DENZS dendrograms, we chose to

use for the following comparison only the DENZS built with the BLOSUM55 matrix.

The results of the dissimilarity averages are in Tables 1–3 with the standard deviation

depicted as uncertainty. The smaller the value in an element in one of these tables is, the more

similar the corresponding dendrograms are. In S3 File, we provide all 9 dendrograms obtained

for each set of each ensemble.

In order to visualize the comparison of results, dendrograms were built from the tables

using pvclust R package [30] using Ward.D2 clustering method and Euclidean distance on the

Robinson-Foulds values for each dendrogram pair. Two different methods of significance are

shown: approximately unbiased p-value (AU, in green) and bootstrap probability value (BP, in

red). AU p-value is computed by multiscale bootstrap resampling and is generally a better

approximation to unbiased p-value than BP value that is computed by normal bootstrap

resampling [30].
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Results for the first ensemble with ten sets of twenty organisms each (Table 2 and Fig 2)

were similar to the ones for the second ensemble with ten sets of thirty organisms each

(Table 3 and Fig 3). In Tables 2 and 3, DRAND dendrograms can be seen to have the greatest

dissimilarity values to the rest of the dendrograms, leaving the smallest values to dendrograms

built using similar type of information. This can be seen in Figs 2 and 3, where DS1 and DS2,

D1ENZ and DENZS and the different DNETs, cluster together. DRIBO, constructed using

16S rRNA sequences and used as our common standard, clusters with DNET1 and DNET2 on

the first ensemble and with DNET2 in the second ensemble. In fact, in the second ensemble

DNET2 cluster with DRIBO before clustering with the rest of the DNETs dendrograms. In

both ensembles dendrograms built using metabolic network (DNET1, DNET2, DNET3 and

DNET4) and enzymes (D1ENZ and DENZS) information are closer to DRIBO than dendro-

grams built using information on number of nodes (DS1) or links (DS2) or randomly built

(DRAND). In fact, in both ensembles DRAND, DS1 and DS2 are an outgroup of the

sequence-based and metabolic network dendrograms (Figs 2 and 3).

The proximity of DNETs dendrograms to DRIBO and their distance to DRAND supports

our claim that the use of metabolic network information can complement the established den-

drograms built using sequence data. DNETs dendrograms are closer than D1ENZ and DENZS

to DRIBO in one ensemble, but not in the other. Thus, our results show that gene sequence-

and metabolic-network-based dendrograms are equally distant from the 16S rRNA standard

DRIBO. Also, expectedly, values in Tables 2 and 3 are higher than in Table 1 where the only dif-

ference in the construction of the dendrograms was the scoring matrices used in the alignments.

Conclusions

Building dendrograms is an approximation to capture distances and relationships among dif-

ferent species. Present work targets the potential of using the species’ metabolic topologies to

find distances as a complementary method to pair-wise sequence comparison of enzymes. The

results of the two ensembles suggest that, in some cases, network comparison might be even

better than amino acid sequence alignment of enzymes to infer relationships between organ-

isms. On the other hand, considering networks’ size as a distance between organisms is a very

poor way to capture the relationship among organisms, as can be seen with the results for den-

drograms DS1 (number of nodes in the network) and DS2 (number of links), that are closer to

DRAND than to gene-based dendrograms.

The last decade has provided researchers with loads of sequences from a wide variety of

organisms, promoting the development of new tools and the renewal of old ones. Hereby, we

have shown the possibility to incorporate topological information in these studies, as well as to

compare dendrograms built with very different methodologies and to study their ability to

capture the relationship among species comparing them with the alignment of the 16S subunit

of ribosomal RNA. This shows the potential of network studies to explain and complement

sequence alignment methodologies and contributes to build methodologies in which distances

and relationships among species may be calculated considering very different sources of infor-

mation, such as a recent work where metabolic networks and evolution have been shown to

give very interesting insights into one another [31].

Supporting information

S1 File. The Pagerank algorithm. A brief explanation of the Pagerank algorithm used in pres-

ent work.

(PDF)
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S2 File. Ensembles of organisms. The file ensembles.txt contains the organisms

(referred to by their KEGG code) in each set in each ensemble used in this work.

(TXT)

S3 File. Dendrograms of each ensemble. The file trees.txt contains all dendrograms

generated for each set in each ensemble in newick format.

(TXT)

Acknowledgments

We thank Salvador Capella-Gutiérrez for helpful discussions on the topic.

Author Contributions

Conceptualization: Pedro Fernández de Córdoba, Javier F. Urchueguı́a.
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