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RESUMO 

 

Os roedores subterrâneos têm sido amplamente estudados, principalmente porque 

mostram muitas especializações (morfológicas, fisiológicas e comportamentais) 

relacionadas ao seu habitat. O gênero Ctenomys (tuco-tucos) é o mais diverso entre os 

roedores subterrâneos, com aproximadamente 70 espécies descritas. Estão amplamente 

distribuídas no Sul da América do Sul, e ocupam uma variedade de tipos de habitats 

(pastagens, estepes, desertos e dunas de areia). Os tuco-tucos também apresentam 

morfologia do crânio, corpo e cariótipos altamente diversificados. Este estudo utilizou a 

morfologia craniana e da mandíbula do gênero Ctenomys, para investigar aspectos 

evolutivos da espécie. Utilizamos aqui técnicas de morfometria geométrica e linear, 

aliadas a filogenia, o gene Runx2 e ecologia (densidade aparente do solo) de diferentes 

espécies do gênero para acessar tais resultados. Não encontramos mudanças significativas 

nos padrões de integração do crânio, porém houve alta varição da integração morfológica. 

Também foi revelado alto sinal filogenético com os módulos propostos. O gene Runx2 

aparentemente não parece estar ligado com o alongamento facial dos espécimes de tuco-

tucos. Porém não podemos descartar a possibilidade de que as substituições de glutaminas 

para prolinas possam alterar a funcionalidade proteica e, por extensão, a morfologia do 

crânio. Para a maioria das espécies investigadas, a correlação entre força da mordida e a 

densidade do solo não foi clara, e uma baixa correlação geral foi encontrada. As diferentes 

formas do crânio e mandíbula acessadas, geralmente foram associadas à força de mordida. 

As diferentes estratégias de escavação podem ser responsáveis pelo padrão encontrado na 

distribuição das espécies nas diferentes densidades de solo. Onde, em solos com maior 

densidade, ocorrem espécies com altas e baixas forças de mordida, enquanto em solos de 

menor densidade foram encontradas apenas espécies com forças de mordida baixas.  
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ABSTRACT 

 

Underground rodents have been extensively studied, mainly because they show 

many specializations (morphological, physiological and behavioral) related to their 

habitat. The genus Ctenomys (tuco-tucos) is the most diverse among subterranean 

rodents, with approximately 70 species described. They are widely distributed in southern 

South America, and occupy a variety of habitat types (pastures, steppes, deserts and sand 

dunes). The tuco-tucos also present morphology of the skull, body and highly diversified 

karyotypes. This study used the cranial and mandibular morphology of the genus 

Ctenomys to investigate evolutionary aspects of the species. We used here techniques of 

geometric and linear morphometry, together with phylogeny, the Runx2 gene and ecology 

(apparent density of soil) of different species of the genus to access such results. We did 

not find significant changes in the patterns of skull integration, but there was a high 

variation of the morphological integration. A high phylogenetic signal was also revealed 

with the proposed modules. The Runx2 gene apparently does not appear to be linked to 

the facial elongation of the tuco-tucos specimens. However, we can not rule out the 

possibility that glutamine-to-proline substitutions may alter protein functionality and, by 

extension, skull morphology. For most species investigated, the correlation between bite 

force and soil density was unclear, and a low overall correlation was found. The different 

skull and jaw forms accessed were generally associated with bite force. The different 

strategies of excavation can be responsible for the pattern found in the distribution of the 

species in the different soil densities. Where higher density soils occur with high and low 

bite forces, while in low density soils only species with low bite forces are found. 
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Capítulo I 

Introdução Geral 

 

Evolução morfológica 

A partir das ideias de Darwin, o entendimento de como morfologias complexas se 

desenvolvem e evoluem tem sido um dos assuntos fundamentais, mas pouco entendido 

em biologia evolutiva (Futuyma, 2002). Um organismo não é uma simples “impressão” 

do genoma, para compreender inteiramente a evolução necessitamos de informações 

sobre o genoma, que leva ao fenótipo via processos de desenvolvimento (Atchley e Hall, 

1991; Raff, 1996). A teoria da evolução possui grande destaque na ciência, ela mudou 

profundamente a visão de mundo e forneceu base para entender a diversidade de formas 

de vida que habitam nosso planeta (Trevisan et al., 2017). 

Em uma perspectiva de longo período de espaço/tempo a evolução biológica é a 

continuidade de organismos com alterações de linhagens distintas a partir de ancestrais 

comuns. A história da evolução biológica possui dois elementos principais: a ramificação 

das linhagens e as alterações dentro das linhagens. A princípio, espécies semelhantes 

tornam-se cada vez mais distintas, de maneira que transcorrido um determinado período 

de tempo, elas podem vir a apresentar significativas altercações, como por exemplo: 

genéticas e morfológicas (Futuyma, 2002). 

Os mecanismos de evolução podem ser divididos em microevolução e 

macroevolução. A microevolução tange às variações nas frequências genéticas 

intrapopulacionais, perante a atuação da seleção natural e da deriva aleatória (Ridley, 

2004). Contrapondo, a macroevolução tange à origem de novas espécies e divisões da 

hierarquia taxonômica acima do nível da espécie e, além disso, o início de adaptações 

complexas (e.g. morfologia) (Resnick & Ricklefs, 2009). 

Uma maneira de explorar a variação na forma dos organismos e por extensão a 

evolução morfológica seria através do conjunto de técnicas de morfometria geométrica. 

Esta abordagem é o método que estuda a forma das estruturas biológicas empregando 

marcos anatômicos (landmarks) (Rohlf & Marcus, 1993), dando origem também, aos 

resultados em relação ao seu tamanho e forma (Peres-Neto, 1995). Utilizando estes 

marcos anatômicos (homólogos) tem-se um maior conhecimento da morfologia. Eles 

permitem identificar as variações de forma entre as mesmas estruturas morfológicas dos 

indivíduos analisados por usar as coordenadas cartesianas. Sejam elas em duas (2D) ou 
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três (3D) dimensões desses marcos anatômicos (Rohlf, 1999). As análises de forma são 

todos os atributos de uma configuração de pontos que não se modificam por implicações 

de tamanho, posição e orientação (Bookstein, 1989). 

 

Integração morfológica 

Os estudos de Olson e Miller (1951; 1958) basearam-se na quantificação das 

correlações entre caracteres de estruturas de diferentes grupos e fontes paleontológicas, 

com posterior análise qualitativa dos resultados. Baseados em hipóteses de função e 

desenvolvimento compartilhados entre caracteres, eles procuraram explicar o 

agrupamento estatístico entre determinados caracteres. Esses autores deram o nome de 

integração morfológica a esta técnica. Os grupos de correlações em uma estrutura existem 

em vários níveis, sendo o maior deles o organismo como um todo. No outro extremo, a 

existência de partes que não compartilham vias de desenvolvimento ou função com 

nenhuma outra (Wagner et al., 2008). Estes grupos de correlação mais fortes são 

atualmente denominados módulos (Wagner; Altemberg, 1996; Wagner et al., 2007). 

Módulos são conjuntos de caracteres que podem ser: genes, proteínas ou 

elementos morfológicos altamente integrados entre si e pouco associados com os demais 

elementos. Em estudos empíricos de evolução morfológica eles são reconhecidos pela 

presença e correlações entre algumas partes de um organismo e ausência de correlação 

entre estas e outras partes do mesmo organismo (Berg, 1960). O arranjo modular pode 

ser considerado o resultado das relações funcionais entre caracteres de um determinado 

organismo (Falconer e Mackay, 1996). 

O crânio é uma estrutura de suma importância para estudos morfológicos devido 

à complexidade do seu crescimento e as múltiplas funções dos órgãos da cabeça, 

revelando informações fundamentais sobre os taxas (Cheverud, 1982). Além disso, 

padrões comuns de desenvolvimento do crânio foram encontrados entre grupos afastados 

fornecendo a oportunidade para conduzir estudos comparativos em um contexto evolutivo 

(Moore, 1981; Smith, 1997; Porto et al., 2009). Sendo assim, o crânio de mamíferos é 

uma das estruturas biológicas mais estudadas no contexto de análises de integração 

morfológica (e.g. Marroig & Cheverud 2001; Ackermann & Cheverud 2004; Goswami 

2006; Mitteroecker & Bookstein 2008; Porto et al. 2009; Koyabu et al. 2014). 

Inferir o padrão modular de estruturas morfológicas complexas, isto é, entender 

de que forma alguns caracteres compartilham correlações mais elevadas entre si do que 

em relação a outros caracteres apresenta papel fundamental no entendimento da evolução 
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morfológica das espécies. Isso porque esse padrão pode facilitar ou restringir mudanças 

evolutivas (Schluter, 1996; Marroig e Cheverud, 2005; Pavlicev et al., 2008). Pode ser 

utilizado como exemplo, o alongamento craniofacial que é um aspecto comum de 

crescimento pós-natal em mamíferos. Os bebês humanos, assim como a maioria dos 

outros mamíferos placentários juvenis, têm rostos pequenos em relação ao adulto e 

cabeças comparativamente arredondadas (Cardini e Polly, 2013). Ou seja, em geral os 

mamíferos apresentam dois grandes módulos ligados ao crânio: o rostro (face) e a caixa 

craniana com crescimento diferenciado. 

 

Gene RUNX 2 

Os genes Runx são reguladores chave da expressão gênica específica nas 

principais vias de desenvolvimento ósseo, possivelmente surgiram no início da evolução 

dos mamíferos (Coffman, 2003; Levanon et al., 2003; Rennert et al., 2003). Nos 

vertebrados existem diversos genes Runx, por exemplo, os mamíferos possuem três: 

Runx1, Runx2 e Runx3 (Lund & Lohuizen, 2002). É sugerido que o Runx2 possui 

importante papel na variação da morfologia dos mamíferos, dentre elas a craniofacial 

(Sears et al.,2007; Newton et al., 2017). O gene Runx2 abrange aproximadamente 220 

pares de base e contém oito exons (Ziros et al., 2008). Possui uma organização genômica 

semelhante aos outros genes Runx encontrados em mamíferos, o que indica preservação 

dos mesmos ao longo da evolução (Levanon et al., 1994; Zhang, et al., 1997; Ziros et al., 

2008). 

O Runx 2 contém vários domínios funcionais, dentre eles, um domínio repetitivo 

de glutamina (Q), alanina (A) (Ziros et al., 2008). Mudanças no comprimento, ou na 

proporção, de sequencias de glutaminas para alaninas dentro de Runx2 alteram sua 

atividade transcricional (Thirunavukkarasu et al., 1998; Pelassa et al., 2003). Fornecendo 

uma ligação direta entre a variação dentro deste domínio e o comprimento craniofacial 

(Sears et al.,2007). Tais repetições de codificação de proteínas foram descritas como 

“botões de ajuste evolucionário”, onde pequenas alterações podem ser associadas à rápida 

evolução morfológica (King et al., 1997; Kashi & King, 2006). Alguns estudos vêm 

comprovando esta hopótese (Sears et al.,2007; Williams et al., 2010; Pointer et al., 2012; 

Ritzman et al., 2017) revelando significativa correlação entre a repetição Q/A e o 

comprimento facial dentro de linhagens placentárias. 

Embora os fatores envolvidos na formação da morfologia do crânio em roedores 

sejam conhecidos (Borges et al., 2016; Maestri et al., 2016; Marcy et al., 2016; Kubiak et 
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al., 2018), a base genética causadora da morfologia do crânio permanece pouco 

compreendida. O fator de transcrição 2 relacionado ao Runt (Runx2) codifica uma 

proteína essencial para a diferenciação e maturação dos osteoblastos e ossificação 

intramembranosa e endocondral (Otto et al., 1997; Zhang et al., 2017; Jung et al., 2017). 

Quando o Runx2 é regulado positivamente, a proliferação de osteoblastos aumenta e o 

tecido ósseo é alongado, enquanto quando regulado negativamente, a proliferação de 

osteoblastos diminui e o desenvolvimento ósseo é truncado (Sears et al. 2007).  

Sabe-se que mutações no gene Runx2 estão associadas a doenças em humanos, 

como a displasia cleidocraniana (CCD) (OMIM: 119600) que pode ser causada por 

exemplo, por mutações não-sinônimas (Quack et al., 1999; Kim et al., 2006; Zhou et al., 

1999), deleções (Ott et al., 2010) e repetições em tandem em domínios funcionais da 

proteína (Mundlos et al., 1997). Considerando o último, repetições em tandem dentro de 

regiões codificantes de um gene podem promover a regulação fina da expressão gênica, 

especialmente quando se consideram elementos que regulam tal expressão, como no caso 

do Runx2, um fator de transcrição (Ziros et al., 2008).  

De fato, Sears et al. (2007) descobriram que o gene Runx2 está envolvido no 

alongamento e encurtamento do rostro de carnívoros, uma vez que o comprimento das 

repetições de glutamina (Q) e alanina (A), ou seja Q/A, apresenta uma forte correlação 

com o comprimento do rostro nas raças de cães. Sears et al. (2012) exploraram essa 

variação em vários táxons de vertebrados e descobriram que essa correlação vale para 

alguns táxons, e não entre vertebrados em geral. 

 

Roedores do gênero Ctenomys Blainville, 1826 

O grupo dos roedores é o mais bem sucedido (possui maior riqueza de espécies) 

entre os mamíferos. Estima-se que 40% das espécies de mamíferos vivos pertença a esse 

grupo, e se distribuem em todos os ambientes terrestres, exceto a Antártica (Lacher, 2016; 

Lacey et al., 2000). Entre os roedores terrestres, os que em algum momento da vida 

utilizam túneis ou escavações abaixo da superfície do solo para realizarem suas atividades 

essenciais, são denominados fossoriais (Lacey et al., 2000). Esses roedores administram 

grande parte de suas atividades vitais em galerias abaixo da superfície terrestre e são 

denominados de roedores subterrâneos (Lacey et al. 2000). Os roedores subterrâneos de 

diferentes famílias e gêneros distribuídos no mundo são marcados por suas convergências 

em estrutura e tamanho. Possuem semelhanças entre características corporais e hábitos 

de vida sugerindo uma evolução convergente na adaptação a este modo de vida (Lacey et 
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al., 2000), exibindo adaptações morfológicas para a atividade de escavação (Becerra et. 

al., 2011; Becerra et. al., 2014). 

 

 

Distribuição de roedores subterrâneos pelo planeta. Diferentes mapas indicam as 

diferentes regiões zoogeográficas. Apenas gêneros selecionados representando diversas 

famílias e subfamílias de roedores subterrâneos são representados: Geomys (Geomyidae), 

Aplodontia (Aplodontidae), Arvicola (Muridae - Arvicolinae), Spalax (Muridae - 

Spalacinae), Ellobius (Muridae - Arvicolinae), Myospalax (Muridae - Myospalacinae), 

Rhizomys e Tachyoryctes (Muridae -Rhizomyinae), Fukomys (Bathyergidae), Clyomys 

(Echimyidae), Ctenomys (Octodontidae), Geoxus (Muridae - Sigmodontinae), 

Spalacopus (Octodontidae). De acordo com Begall et al., (2007). 

 

Pertencente à família Ctenomyidae, o gênero Ctenomys (subordem 

Hystricognathi) é o mais diversificado entre os gêneros de roedores subterrâneos (Lacey 

et al., 2000). Encontrados exclusivamente na Região Neotropical, atualmente são 

descritas aproximadamente 70 espécies (Bidau, 2015; Freitas, 2016). Está presente em 

registros fósseis em formações do Terciário (Plioceno Superior) na Argentina, indicando 

sua origem neste ponto há mais de três milhões de anos (Reig et al., 1990; Verzi, 2008). 

Apresenta ampla distribuição na região Neotropical (Reig et al. 1990) com registros desde 

o Sul do Peru até a Terra do Fogo na Argentina. Por toda extensão da distribuição, o 

gênero pode ser encontrado em altitude desde o nível do mar até mais de 3700 metros, 

nos Andes peruanos (Pearson et al., 1968; Cook et al., 1990; Reig et al., 1990). Tais 

estimativas recentes têm sido consideradas como evidência de uma especiação em 

explosão em Ctenomys, dada a estruturação filogenética encontrada em muitos estudos 

independentes (Lessa & Cook, 1998; D’Elía et al., 1999; Slamovits et al., 2001; Castillo 
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et al., 2005; Parada et al., 2011; Freitas et al., 2012; Gardner et al., 2014). Também 

apresenta morfologia do crânio e do corpo altamente diversificada, e números 

cromossômicos de 2n = 10 em Ctenomys steinbachi à 2n = 70 em Ctenomys dorbyigni 

(Anderson, 1987; Reig et al., 1990).  

Geralmente são encontrados em habitats como desertos, campos naturais, dunas 

costeiras, montanhas e ambientes florestais (Lacey et al., 2000). Devido ao seu hábito 

subterrâneo os tuco-tucos desenvolveram adaptações morfológicas. Como corpo robusto 

e cilíndrico, redução da cauda, redução dos pavilhões auditivos, maior desenvolvimento 

da musculatura (principalmente dos membros anteriores) e das unhas e abertura bucal 

atrás dos incisivos que ficam expostos para fora da boca (Nevo, 1979; Reig et al., 1990; 

Nowak, 1999). Alimentam-se preferencialmente de gramíneas (são herbívoros) e na 

maioria dos casos são generalistas. Causam influência direta na distribuição de plantas e 

na modificação das condições do solo, através do revolvimento e aeração da região onde 

habitam (Zenuto & Busch 1995; Rosi et al. 2000; Del Valle et al. 2001). Os espécimes do 

gênero costumam distribuir-se em manchas devido a sua alta territorialidade e possuem 

baixa dispersão (Busch et al. 2000). 

Levando em consideração o que foi exposto anteriormente esta Tese analisou as 

seguintes hipóteses: 1) As espécies do gênero Ctenomys que habitam os solos mais 

compactos ou densos possuem a força da mordida mais forte, o que deve refletir-se na 

forma do crânio e da mandíbula dos indivíduos; enquanto as espécies que vivem em solos 

mais macios teriam uma força de mordida menor. 2) A presença de dois (rostro, caixa 

craniana) e três (rostro, caixa craniana e base crânio) módulos no crânio de espécies do 

gênero Ctenomys. 3) A correlação entre a relação Q/A de um domínio funcional da 

proteína Runx2 e a morfologia individual do crânio de representantes de um gênero 

Ctenomys e suas as suas implicações evolutivas. Avaliando se o gene Runx2 está 

diretamente envolvido em diferenças na forma do crânio dentro do gênero. 

 

Objetivos 

Este estudo avaliou o grau de integração/independência morfológica de distintos 

módulos no crânio de espécies do gênero Ctenomys. Inicialmente testamos como a dureza 

do solo afeta a força de mordida, bem como a forma e tamanho dos crânios e mandíbulas 

de tuco-tucos. Também foram testadas hipóteses modulares, após isso, avaliamos qual a 

magnitude de integração morfológica que está presente entre os módulos cranianos das 

diferentes espécies. Compararamos as taxas de magnitude das diferentes espécies e 



 

17 
 

analisamos as suas consequências evolutivas. E por fim, analisamos a associação entre a 

relação Q/A de um domínio funcional da proteína Runx2 e a morfologia individual do 

crânio de representantes do gênero Ctenomys. 

 

Objetivo específico 

- Verificar como a densidade do solo afeta a força da mordida, bem como a forma 

e o tamanho do crânio e mandíbula de tuco-tucos. 

- Avaliar e comparar os padrões de integração morfológica em espécies 

morfologicamente diversas, analisando as implicações evolutivas desses padrões e 

magnitudes de integração para a evolução da morfologia das espécies. 

- Explorar a associação entre a relação Q/A de um domínio funcional da proteína 

Runx2 e a morfologia individual do crânio de representantes do gênero Ctenomys, 

avaliando se o gene Runx2 está diretamente envolvido em diferenças na forma do crânio 

dentro do gênero. 
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Abstract 

For rodents that live underground, digging in highly compacted soils requires a higher 

energy expenditure than digging in poorly compacted soils. We tested how soil hardness 

affects the bite force as well as the shape and size of the skulls and mandibles of tuco-

tucos. Our hypothesis is that species that inhabit harder soils would show a stronger bite 

force, which should be reflected in the shape of the skull and mandible; while species 

living in softer soils should have a weaker bite force. We used 24 species of the genus 

Ctenomys to measure bite force (through the incisor strength formula) and quantify the 

shape and size of the skull and mandible. Information on soil bulk density in the regions 

occupied by each species was obtained from the literature. We used a combination of 

geometric morphometric and comparative methods to test our hypothesis. A phylogenetic 

linear regression (PGLS) between bite force (N) and centroid size was used to account 

for the dependence of bite force on size. We employed a series of two-block partial least-

squares analyses to uncover the covariation between bite force and the shape of the skull 

and mandible. Finally, we ran five independent PGLS analyses to assess the influence of 

bulk density on bite force, skull shape, and mandible shape, taking into account 

phylogenetic non-independence. Species with higher bite forces tend to inhabit more-

compact soils. However, for most species, the relationship between bite force and soil 

bulk density was unclear, resulting in a low overall correlation. Nonetheless, differences 

in skull and mandible shapes were generally associated with bite force (r= 0.60). In denser 

soils, species with high and low bite forces occur; whereas in lower density soils we found 

only species with weak bite forces. Differences in the excavation strategies among species 

may be responsible for this pattern. 

 

Keywords 
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Functional morphology, geometric morphometrics, morphological evolution, 

phylogenetic comparative methods, rodent skull, soil hardness, subterranean niche, tuco-

tucos. 

 

Introduction 

Knowledge of the factors that guide morphological diversification is of great 

interest for evolutionary biology (Wainwright, 2007; Diniz-Filho et al., 2009). The 

morphological variation among species is influenced mainly by two factors, ecology (e.g. 

environmental variables, biotic interactions) and evolutionary history (Viguier, 2002; 

Caumul & Polly, 2005; Wiens & Graham, 2005). The ecomorphological concept assumes 

that a correlation exists between the morphology and the ecology of organisms; that is, 

the mechanical demands imposed by ecological traits can be reflected in morphological 

changes in the system involved (Huey et al., 2003). Mammals possess a variety of body 

forms, which are often considered to be specific adaptations for specific environments 

and particular ways of life (Hildebrand, 1985; Biewener, 2003). Simultaneously, the 

history of lineages contributes to maintain phylogenetically close species with similar 

niche characteristics. This phylogenetic niche conservatism is accentuated in small-range 

mammals living in the tropics (Cooper et al., 2011). 

Subterranean rodents have been extensively studied, particularly because they 

show many specializations (morphological, physiological and behavioral) related to their 

habitat (Nevo, 1999; Begall et al., 2007). The genus Ctenomys (tuco-tucos) is the most 

diverse among subterranean rodents (Lacey et al., 2000). The approximately 70 described 

species (Gardner et al., 2014; Bidau, 2015) are widely distributed across southern South 

America. They occupy a wide range of habitat types, especially in open areas including 

grasslands, steppes, deserts and sand dunes (Redford & Eisenberg, 1992; Bidau, 2006). 
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A few species occur in forest regions (Gardner et al., 2014). These open environments 

differ widely in the hardness and compaction of the soil, as well as in the amount of 

resources available. These soil features may influence some aspects of the biology of 

subterranean rodents (e.g. burrow-system characteristics and excavation strategies) 

(Reichman et al., 1982; Heth, 1989; Rosi et al., 2000; Becerra et al., 2011; Becerra et al., 

2014; Lovy et al., 2015). 

Species of Ctenomys possess a range of morphological adaptations for digging, 

which evolved over the last 15 million years after the group separated from its sister 

family Octodontidae (Lessa et al., 2008). The tuco-tucos, as well as some other 

subterranean rodents, use their mandibles and incisors to excavate the soil and to sever 

roots (Hildebrand, 1985; Nevo, 1999). The excavation process involves a high 

physiological cost, which increases in more-compact soils (Luna & Antinucci, 2006). The 

upper incisors of subterranean species are more similar to a chisel than are the incisors of 

species that inhabit the surface. Excavation using chisel-like teeth is described by some 

authors as executed primarily by the upper incisors, which break up the soil, while the 

lower incisors mainly move the soil (Hildebrand, 1998). By acting as a tool, applying a 

strong force in a restricted area, the incisors are closely involved in the excavation process 

(Hildebrand, 1998; Stein, 2000), helping to break up the substrate and open the way by 

cutting roots, tubers and the soft parts of plants (Stein, 2000). However, the differences 

in excavation strategies among species, and the degree to which each species is affected 

by the soil that it inhabits, remain largely unexplored (Hildebrand, 1998; Stein, 2000). 

In view of the empirical association between soil features and the morphology of 

subterranean species (Mora et al., 2003; Lessa et al., 2008), we tested how soil hardness 

affects the bite force as well as the shape and size of the skulls and mandibles of tuco-

tucos. The incisor section modulus, a geometrical parameter proportional to bending 
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strength, may be useful for prediction of bite force when direct measurements are not 

available (Freeman & Lemen, 2008), and was the index used in this study. Our hypothesis 

is that species that inhabit harder soils would show a stronger bite force, which should be 

reflected in the shape of the skull and mandible of individuals; while species living in 

softer soils would have a weaker bite force. 

 

Materials and methods 

Sample 

 We measured the bite force of 167 individuals belonging to 24 species of the genus 

Ctenomys (Appendix S1), deposited in the Recent mammal collection of the Field 

Museum of Natural History, Chicago, Illinois, USA, and in the Departamento de 

Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Only adult 

specimens were considered: juveniles were identified by their small skulls and were 

excluded. Additionally, we measured the shape and size of the skull and mandible of 

1,122 adult specimens for the same 24 species (Appendix S1). These are deposited in the 

following museums and scientific collections: Departamento de Genética, Universidade 

Federal do Rio Grande do Sul, Porto Alegre, Brazil (UFRGS); Museo Nacional de 

História Natural y Antropología, Montevideo, Uruguay (MUNHINA); Museo Argentino 

de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina (MACN); 

Museo de La Plata, La Plata, Argentina (MLP); Museo de Ciencias Naturales “Lorenzo 

Scaglia”, Mar del Plata, Argentina (MMP); Museum of Vertebrate Zoology, University 

of California, Berkeley, USA (MVZ); American Museum of Natural History, New York, 

USA (AMNH); and Field Museum of Natural History, Chicago, USA (FMNH). 
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Bite force 

The bite force was measured for each individual by the method proposed by 

Freeman & Lemen (2008). We measured the length and width of the inferior incisor 

(anterior-posterior length and medial-lateral width, respectively), both taken at the base 

of the incisor. After taking the measurements, we applied the following formula: (Zi 

=((anterior-posterior length)2 × (medial-lateral width)) / 6), where Zi is the index of 

incisor strength. This measure is highly correlated with direct measurements of bite force 

when measured in vivo, with a correlation coefficient of 0.96 (Freeman & Lemen, 2008). 

Bite-force values were transformed to Newtons (N), using the regression equation of 

Freeman & Lemen (2008). See Appendix S2 for bite-force values for each species. We 

then calculated an arithmetic mean of N values for all individuals in each species, and 

used the mean values for the species in the subsequent analyses. 

 

Geometric morphometrics 

Images of each skull in the dorsal, ventral and lateral views, and of the lateral view 

of the mandible were taken with a digital camera with 3.1 megapixels (2048 × 1536) 

resolution, in macro function and without flash or zoom. On each image, 29 landmarks 

(Appendix S3) were digitalized in the dorsal view (Fig. 1a), 30 in the ventral view (Fig. 

1b), and 21 in the lateral view of the skull (Fig. 1c) (Fernandes et al., 2009); and 13 were 

digitalized on the mandible (Fig. 1d) (Fornel et al., 2010). The anatomical landmarks 

were digitized using the TPSDig2 software version 2.17 (Rohlf, 2015). The resulting 

matrices of coordinates were superimposed through a Generalized Procrustes Analysis 

procedure (GPA), which removes the effects of scale, orientation, and position. The size 

of each skull (Appendix S2) was assessed as the square root of the sum of the squares of 

the distance from each landmark to the centroid of the configuration (Bookstein, 1991), 
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using only the ventral view. We assumed that sexual dimorphism is negligible for the 

present purposes, because interspecific differences are usually greater than the reported 

sexual dimorphism in both the size and shape of the skull. The means of shape and size 

were calculated for all individuals of each species, and used in the subsequent statistical 

analyses. 

 

Soil compaction 

The bulk density (http://soilgrids.org) was chosen as a measurement of soil 

compaction because it has a direct relationship to soil hardness, as more-compact soils 

have greater density (Freddi et al., 2007; Reinert et al., 2008; Gubiani et al., 2014). Hengl 

et al. (2014) constructed the soil bulk density variable (kg/m³) by compiling previously 

published soil profile data and environmental layers, at 1-km resolution, and using 

regression-kriging interpolation at non-sampled locations. The depth at which soil bulk 

density was compiled by Hengl et al. (2014) ranged from 0 to 200 cm. We accessed the 

information on bulk density for each species using the geographical ranges available from 

the International Union for Conservation of Nature and Natural Resources (IUCN, 2008). 

For C. minutus and C. ibicuiensis, the distribution ranges were generated in ArcGIS 10.0 

software, based on occurrence records available in the articles by Galiano et al. (2014) 

and Freitas et al. (2012), respectively. This was necessary because the information 

available from the IUCN for C. minutus was incorrect (see Galiano et al., 2014 for 

details), and no information was available for the recently described C. ibicuiensis. The 

bulk density was extracted in ArcGIS 10.0 software for each pixel within the range of 

each species. Next, we calculated the mean densities of the pixels (mean density of soil) 

included in the distribution of each species, and used the mean density for each species 

in the subsequent analysis. 



 

25 
 

 

Statistical analyses 

Phylogenetic relationships among species were based on the dated phylogenetic 

hypothesis presented by Freitas et al. (2012), pruned to cover the 24 species in our sample 

(Fig. 2). Details of the phylogenetic construction were described by Freitas et al. (2012). 

We used a phylogenetic generalized least-squares regression between bite force (log-

transformed) and centroid size (log-transformed) to account for the dependence of bite 

force on size. Variables were log-transformed to assure normality and a linear relationship 

between variables. The phylogenetic covariance matrix used as the error term was based 

on the Brownian expectation (Grafen, 1989). We expected larger-bodied species to have 

stronger bites (e.g. Freeman & Lemen, 2008; Nogueira et al., 2009). To estimate bite 

force independently of size, we used the residuals of this regression as a bite-force 

estimate in all subsequent analyses. 

We employed a series of two-block partial least-squares analyses (2B-PLS) to find 

the maximum covariation between bite force and the shape of the skull (in dorsal, ventral 

and lateral views) and the mandible (Rohlf & Corti, 2000). The significance of this 

covariation was assessed through 10,000 permutations in MorphoJ 1.06d (Klingenberg, 

2011). We then used the PLS shape vectors as new shape variables (because they covary 

with bite force) to assess the correlation between them and the bulk density, through a 

phylogenetic generalized least-squares (PGLS) approach as described above.  

We ran five independent PGLS analyses to assess the effect of bulk density on 

bite force (size-corrected), skull shape (PLS shape vectors of dorsal, ventral, and lateral 

views) and mandible shape (PLS shape vector), taking into account phylogenetic non-

independence (Grafen, 1989). The PGLS regressions were performed in the R software 

(R Core Team, 2015), with the geomorph package (Adams & Otarola-Castillo, 2013). 
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Results 

Most of the variation in bite-force data was explained by the variation in size: bite 

force is positively correlated with centroid size (F1,22 = 155.4; r² = 0.87; P <0.0001) (Fig. 

3). Ctenomys lewisi, C. pearsoni, C. steinbachi and C. torquatus showed a stronger bite 

force than expected for their size. Others including C. colburni, C. ibicuiensis, C. 

magellanicus, C. maulinus, C. mendocinus, C. opimus and C. tuconax showed a weaker 

bite than expected for their size, deviating from the allometric prediction downward (Fig. 

3). 

We found a weaker, although positive relationship between bite force and bulk 

density (r²= 0.23; Fig. 4a) and between bite force (size-corrected) and bulk density 

(r²=0.10; Table 1; Fig. 4b). Some species, such as C. lewisi and C. steinbachi, with a 

stronger bite force, were associated with harder soils; while C. magellanicus, C. maulinus 

and C. colburni, with a weaker bite force, were associated with softer soils. However, 

most of the species showed less clear patterns of bite force in relation to bulk density. In 

general, lower values of bulk density were associated with low bite forces, but higher 

values of bulk density could be associated with both high and low values of bite force. 

The PLS shape vectors derived for the dorsal and lateral views of the skull each 

showed a higher correlation with the residual bite force than would be expected based on 

chance (dorsal: r = 0.64; P = 0.03; lateral: r = 0.76; P = 0.003) (Figs 5a and 7a, 

respectively). However, the ventral views of the skull and the mandible did not show a 

significant correlation with the residual bite force (ventral: r = 0.60; P = 0.07; mandible: 

r = 0.65; P = 0.055), despite their relatively high correlations (Figs 6a and 8a, 

respectively). 
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The PGLS analysis showed a significant association between the PLS shape 

vectors of the dorsal, ventral and lateral views of the skull, and the bulk density of the soil 

(Table 1). However, the PLS shape vector of the mandible and the residual bite force did 

not show an association with bulk density (Table 1). 

The shape changes described by the PLS shape vector derived from the skull data 

showed that negative values of residual bite force are associated with a lateral narrowing 

and lengthy rostrum (Figs 5b and 6b), a lateral narrowing of the zygomatic arch, and a 

perceptible expansion of the braincase (Fig. 7b). At the opposite end of the same shape 

vector, positive values of residual bite force are associated with a wider skull, especially 

in the rostrum (Figs 5c and 6c); a relative increase in the skull height (Fig. 7c); a more 

robust zygomatic arch, particularly in the anterior portion; and a wider interparietal 

region, as revealed by the convex lateral profile of the occipital (Fig. 7c). Regarding the 

mandible, negative values of residual bite force were associated with a smaller body of 

the mandible and a depressed coronoid process (Fig. 8b). Structures of the mandible 

associated with positive values of residual bite force included a larger condyloid process, 

a bigger body of the mandible, and a high coronoid process (Fig. 8c). 

 

Discussion 

For subterranean rodents, digging in harder soils necessitates a greater energy 

expenditure than digging in less-compacted soils, as found for C. talarum by Luna & 

Antinuchi (2006). In turn, increases in bite force are also probably necessary to couple 

with harder soils. Our study provided evidence that this relationship may affect rodents 

at a macroevolutionary level, where different species have different bite forces depending 

on the hardness of the soil that they occupy. Species with stronger bite forces (e.g. C. 

conoveri, C. lewisi and C. steinbachi) tend to inhabit more-compact soils. However, for 
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most species, the relationship between bite force and bulk density was unclear, resulting 

in a low overall correlation. 

The skull of subterranean rodents is generally more massive and robust than that 

of surface dwellers (Stein, 2000). The skull projections tend to be compressed to facilitate 

movement in the burrows (Nevo, 1979). These changes facilitate the process of 

excavation in a variety of soils, which may be hard or soft (Stein, 2000). The different 

ways used to dig (chisel teeth and raising the head) (Hildebrand, 1998) are reflected in 

the different cranial morphologies (Lessa & Thaeler, 1989). In this study, we found a 

covariation between bite force and skull shape: species with a wider skull and a more-

robust mandible have a stronger bite force than species with an elongated and less wide 

skull and mandible, in agreement with other studies of mammals (Van Valkenburgh & 

Ruff, 1987; Christiansen & Adolfssen, 2005; Nogueira et al., 2009). 

An important factor that restricts the shape and mechanics of the body is its size 

(Schmidt-Nielsen, 1984). Ctenomys conoveri inhabits a region with very compacted soil, 

although its skull and mandible are less robust according to the PLS analysis. However, 

the stronger bite force of C. conoveri can be explained by its larger body size, which 

generates sufficient force to dig in harder soil. This suggests that, during the course of 

evolution, C. conoveri did not change the shape of its skull and mandible to adapt to the 

more-compact soil, but might have changed its body size. Because variation in size is 

sometimes considered a more labile feature than shape, it is also more susceptible than 

shape to environmental changes (Thorpe, 1976; Patton & Brylski, 1987; Cardini & Elton, 

2009). The cost of burrowing also increases with body size (Vleck, 1981) which generates 

a trade-off between size increasing and metabolic economy in burrowing. This may be a 

constraint for species of Ctenomys to become larger, which may explain why just C. 

conoveri evolved to a discrepant size compared to others. 
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In contrast, C. lewisi and C. steinbachi, which also live in more-compacted soils 

and have intermediate body sizes, have robust skulls, which probably reflects an 

adaptation to the compact soils. The shape of the skull and mandible may have changed 

to increase their bite force in order to facilitate the process of excavation. According to 

Lacey et al. (2000), the genus Ctenomys includes species that are widely distributed in 

South America, exploiting different types of habitats and different types of soil. This 

ecological diversity, involving distinct functional requirements, may have driven the 

differentiation in skull morphology and led to a high rate of speciation in the genus (Mora 

et al., 2003). 

Species with both high and low bite forces proved to be present in harder soils, 

while only species with low bite forces are present in soft soils. This pattern is likely due 

to the different characteristics of each environment. Environments with lower bulk 

density (such as sand dunes) have less biomass than higher-density soils (sand fields), as 

soil density is positively related to the amount of biomass available (food source) (Malizia 

et al., 1991; Cutrera et al., 2010; see the results of Galiano et al., 2014; Kubiak et al., 

2015). The greater availability of food is likely a key factor in the choice of habitat, 

leading species with lower bite forces to inhabit locations with higher soil bulk density. 

To make this possible, the species can modify their excavation strategies (Hildebrand, 

1998; Vassallo, 1998; Stein, 2000; Becerra et al., 2011, 2014) and / or change the shape 

and size of their burrow systems (Reichman et al., 1982; Heth, 1989; Rosi et al., 2000; 

Lovy et al., 2015) in order to access larger amounts of food in smaller home ranges. 

In summary, the 24 species of the genus Ctenomys studied here showed variations 

in their skull shape associated with bite force. Studies on the association between bite 

force and environmental features are expanding knowledge of the interactions between 

morphology and the environments where these species occur (Becerra et al., 2011, 2013, 
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2014; Vassallo et al., 2015; Verzi et al., 2010). Becerra et al. (2014) suggested that, 

probably, intraspecific differences in the bite force of C. australis could be explained 

mainly by differences in muscle development. This evidence of muscle development in 

the region of the skull and mandible is likely to contribute to understanding of the bite 

forces of members of the genus Ctenomys and other mammals. Studies of the digging 

behavior of different species would also be important, providing essential information to 

better understand the correlation between bite force and the environment. 
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Tables 

Table 1 Phylogenetic regressions between residual bite forces and the shapes of the skull 

and mandible, with the soil bulk density of the 24 species of Ctenomys found in the 

Neotropical region. 

 F R² P 

Residual bite force    

Bulk 2.51 0.10 0.41 

    

Dorsal PLS shape vector    

Bulk 11.04 0.33 0.001 

    

Ventral PLS shape vector    

Bulk 9.45 0.30 0.001 

    

Lateral PLS shape vector    

Bulk 8.30 0.27 0.001 

    

Mandible PLS shape vector    

Bulk 0.086 0.003 0.874 
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Figure Legends 

 

 

Figure 1 Landmarks used to capture shape from the dorsal, ventral and lateral views of 

the skull and left side of the mandible, as showed in Ctenomys flamarioni. 
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Figure 2 Phylogenetic relationships among species in the genus Ctenomys, based on 

molecular data (Freitas et al., 2012). The original tree was edited to exclude species not 

investigated here. 
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Figure 3 Regression analysis between the bite force (N = Newtons) and the centroid size 

(log) of 24 species of Ctenomys. The dashed lines represent 95% confidence intervals for 

the predicted line of the phylogenetic generalized least-squares regression. 

 

 

Figure 4 Regression of bite force (residuals of bite force on centroid size) on soil bulk 

density for 24 species of Ctenomys. 
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Figure 5 (a) First pair of vectors of a two-block partial least-squares analysis for the 

association between bite force (residuals of bite force on centroid size) and skull shape in 

dorsal view for 24 species of Ctenomys. Representation of conformational changes 

associated with (b) negative and (c) positive vectors of PLS (dashed gray lines correspond 

to the mean shape, and solid black lines correspond to the shape associated with positive 

and negative scores). 

 



 

43 
 

 

Figure 6 (a) First pair of vectors of a two-block partial least-squares analysis for the 

association between bite force (residuals of bite force on centroid size) and skull shape in 

ventral view for 24 species of Ctenomys. Representation of conformational changes 

associated with (b) negative and (c) positive vectors of PLS (dashed gray lines correspond 

to the mean shape, and solid black lines correspond to the shape associated with positive 

and negative scores). 
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Figure 7 (a) First pair of vectors of a two-block partial least-squares analysis for the 

association between bite force (residuals of bite force on centroid size) and skull shape in 

lateral view for 24 species of Ctenomys. Representation of conformational changes 

associated with (b) negative and (c) positive vectors of PLS (dashed gray lines correspond 

to the mean shape, and solid black lines correspond to the shape associated with positive 

and negative scores). 
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Figure 8 (a) First pair of vectors of a two-block partial least-squares analysis for the 

association between bite force (residuals of bite force on centroid size) and skull shape in 

mandible view for 24 species of Ctenomys. Representation of conformational changes 

associated with (b) negative and (c) positive vectors of PLS (dashed gray lines correspond 

to the mean shape, and solid black lines correspond to the shape associated with positive 

and negative scores). 
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The role of soil features in shaping the bite force and related skull and mandible 

morphology in the subterranean rodents of genus Ctenomys (Hystricognathi: 

Ctenomyidae) 

 

Leandro R. Borges, Renan Maestri, Bruno B. Kubiak, Daniel Galiano, Rodrigo Fornel, 

Thales R. O. Freitas 

 

Appendix S1 

List of species of Ctenomys and sample size used to investigate the skull and 

mandible shape, and the number of individuals used to measure the incisor strength 

index (bite force). 

Species Number of individuals 

 Dorsal Ventral Lateral Mandible Bite force 

C. colburni  31 31 30 21 10 

C. conoveri  4 4 4 4 1 

C. flamarioni 47 47 47 22 13 

C. frater  11 11 11 9 11 

C. fulvus 22 22 22 20 7 

C. ibicuiensis 16 16 16 16 10 

C. lami 96 96 89 66 16 
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C. latro 8 8 8 7 5 

C. leucodon 9 9 9 10 3 

C. lewisi 13 13 13 13 2 

C. magellanicus  23 23 23 19 10 

C. maulinus 36 36 36 31 6 

C. mendocinus  23 23 23 14 6 

C. minutus 210 210 210 111 15 

C. opimus 79 78 78 58 10 

C. pearsoni 81 78 77 60 3 

C. porteousi 35 35 35 24 5 

C. rionegrensis 2 2 2 6 3 

C. sericeus 2 2 2 2 2 

C. steinbachi 12 12 12 15 3 

C. talarum 83 83 83 52 1 

C. torquatus 237 225 223 126 15 

C. tuconax 17 17 17 14 8 

C. tucumanus 25 23 23 12 2 

Total 1,122 1,104 1,093 732 167 
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Appendix S2 

The 24 species of the genus Ctenomys studied, their bite forces (N = Newtons), 

centroid size values, and bulk density values. 

Species Bite force (N) Centroid size Bulk 

C. colburni 31.110 1145.230 817.246 

C. conoveri 119.574 2180.731 1402.253 

C. flamarioni 50.067 1414.423 1136.629 

C. frater  49.339 1318.873 1284.703 

C. fulvus 53.481 1390.287 1050.736 

C. ibicuiensis 44.198 1362.757 1299.183 

C. lami 50.735 1348.546 1330.713 

C. latro 31.462 1088.543 1323.690 

C. leucodon 58.871 1457.072 1182.808 

C. lewisi 78.442 1495.157 1285.868 

C. magellanicus  50.333 1511.954 735.268 

C. maulinus 44.031 1347.953 810.094 

C. mendocinus  34.634 1205.162 1114.029 

C. minutus 47.981 1331.976 1295.128 

C. opimus 51.447 1516.330 1004.323 

C. pearsoni 59.043 1393.174 1162.099 
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C. porteousi 41.932 1255.464 1181.590 

C. rionegrensis 44.290 1287.136 1165.072 

C. sericeus 29.063 1065.172 636.168 

C. steinbachi 82.228 1606.174 1348.102 

C. talarum 38.493 1154.095 1127.047 

C. torquatos 53.663 1352.479 1183.490 

C. tuconax 55.319 1532.604 1316.181 

C. tucumanus 41.694 1260.650 1324.646 

 

Appendix S3 

Definition of landmarks with numbers and locations for each view of the cranium 

and mandible of Ctenomys (shown in Fig. 1 in the main text). 

 

Dorsal view of the cranium: 1. anterior tip of the suture between premaxillas; 2-

3.anterolateral extremity of incisor alveolus; 4. anterior extremity of suture between 

nasals; 5-6. anteriormost point of suture between nasal and premaxilla; 7-8. anteriormost 

point of root of zygomatic arch; 9. suture between nasals and frontals; 10-11. anterolateral 

extremity of lacrimal bone; 12-13. narrowest point between frontals; 14-15. tip of 

extremity of superior jugal process; 16-17. anterolateral extremity of suture between 

frontal and squamosal; 18-19. lateral extremity of suture between jugal and squamosal; 

20-21. tip of posterior process of jugal; 22. suture between frontals and parietals; 23-24. 

anterolateral extremity of suture between parietal and squamosal; 25-26. anterior tip of 
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external auditory meatus; 27-28. point of maximum curvature on mastoid apophysis; 29. 

posteriormost point of occipital along midsagittal plane.  

Ventral view of the cranium: 1. anterior tip of suture between premaxillas; 2-3. 

anterolateral extremity of incisor alveolus; 4-5. lateral edge of incisive foramen in suture 

between premaxilla and maxilla; 6-7. anteriormost point of root of zygomatic arch; 8-9. 

anteriormost point of orbit in inferior zygomatic root; 10-11. anteriormost point of 

premolar alveolus; 12-13. posterior extremity of III molar alveolus; 14. posterior 

extremity of suture between palatines; 15-16. anteriormost point of intersection between 

jugal and squamosal; 17-18. posteriormost point of pterygoid; 19-20. anterior extremity 

of tympanic bulla; 21-22. anterior tip of external auditory meatus; 23-24. posterior 

extremity of mastoid apophysis; 25-26. posterior extremity of paraoccipital apophysis; 

27. anteriormost point of foramen magnum; 28-29. posterior extremity of occipital 

condyle in foramen magnum; 30. posteriormost point of foramen magnum along 

midsagittal plane. 

Lateral view of the cranium: 1. anteriormost point of premaxilla; 2. posteriormost 

point of incisor alveolus; 3. inferiormost point of incisor alveolus; 4. anterior tip of nasal; 

5. anteriormost point of suture between nasal and premaxilla; 6. suture between 

premaxilla, maxilla and frontal in superior zygomatic root; 7. inferiormost point of suture 

between lacrimal and maxilla; 8. inferiormost point of infraorbital foramen in inferior 

zygomatic root; 9. inferiormost point of suture between premaxilla and maxilla; 10. 

anteriormost point of premolar alveolus; 11. extremity of superior jugal process; 12. 

extremity of inferior jugal process; 13. tip of posterior jugal process; 14. medial point of 

suture between parietal and squamosal; 15. superior extremity of lambdoidal crest; 16. 

posterior extremity of postglenoid fossa; 17. inferior extremity in suture between 

pterygoid and tympanic bulla; 18. inferior extremity of mastoid apophysis; 19. 
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anteriormost margin of paraoccipital apophysis; 20. posteriormost margin of paraoccipital 

apophysis; 21. posterior extremity of intersection between occipital and tympanic bulla.  

Lateral view of the mandible: 1. upper extremity of anterior border of incisor 

alveolus; 2. extremity of diastema invagination; 3. anterior edge of premolar alveolus; 4. 

intersection between molar alveolus and coronoid process; 5. tip of coronoid process; 6. 

maximum of curvature between coronoid and condylar processes; 7. anterior edge of 

articular surface of condylar process; 8. tip of postcondyloid process; 9. maximum 

curvature between condylar and angular processes; 10. tip of angular process; 11. 

intersection between mandibular body and masseteric crest; 12. posterior extremity of 

mandibular symphysis; 13. posterior extremity border of incisor alveolus. 
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Evolutionary patterns of morphological integration in the skull in the subterranean 

rodents of genus Ctenomys (Hystricognathi: Ctenomyidae) 
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do Sul, Porto Alegre, RS, Brazil 
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Abstract 

Studies on morphological integration use the mammalian skull as a standard system, 

considering the heterogeneity of species that the genus Ctenomys presents, we used this 

study to understand the morphological variations of the genus to a greater extent. We 

evaluated here the patterns of variation of cranial modules among 16 species of rodents 

of the genus Ctenomys and the morphological evolution of these species. We also 

evaluated how these modules are correlated evolutionarily through tests of phylogenetic 

signals. We use here a combination of geometric and comparative morphometric 
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methods. The morphological integration between the proposed modules was evaluated 

through the Coefficient Ratio (CR). The matrices were adjusted according to 

repeatability, thus removing sampling bias in the calculation of correlations between 

matrices. Phenotype matrices of variance/covariance (V/CV) were generated, based on 

the coordinates of the anatomical landmarks, to measure patterns of morphological 

integration of each structure in each species. We evaluated the magnitude of 

morphological integration between the elements of each structure using the MorphoJ 

software, where we accessed the values of the variance of the eigenvalues (vote). To 

evaluate the correlation between form and CR values, we performed a series of linear 

regressions, the same was done for the values of the voting log to investigate the 

correlation between form and magnitude of integration. Finally, we use a series of 

analyzes to investigate phylogenetic relationships. Our results do not demonstrate 

significant changes between magnitude and cranial integration patterns, and 

morphological integration varied considerably among the tuco-tucos. We found a high 

phylogenetic sign between the phylogenetic relationships and the proposed modules for 

the skull. 

ADDITIONAL KEYWORDS: Tuco-tucos, rodents, modularity. 

 

Introduction 

Morphological integration is the predisposition that some peculiarities that 

organisms have to diversify in their totality, in a structured configuration, in a determined 

structure of the organism, or in the organism as a whole (Olson & Miller, 1958; 

Klingenberg, 2014). There is a tendency for morphological integration to occur in certain 

structures of the specimens, depending on their degree of integration (e.g., whether they 

are dependent or independent), thus being called modules. (Klingenberg, 2013). Modules 
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can be defined as the set of characteristics that can be genes, proteins, and metabolic 

pathways or morphological elements, that have great integration between them, and little 

association with other characteristics (Berg, 1960). Modularity is a generalized feature of 

biological systems that explains both the integration of the organism or structures into a 

unit and the autonomy between the organism's characteristics (Goswami, 2007; Santana 

& Lofgren, 2013). The inference of modular patterns in morphological structures plays a 

fundamental role in understanding their evolution. That is because this pattern can 

facilitate or restrict evolutionary changes (Schluter, 1996; Marlig & Cheverud, 2005; 

Pavlicev et al., 2008). 

Integration patterns and magnitudes are two aspects of morphological integration 

and should be analyzed simultaneously (Marroig & Cheverud, 2001; Porto et al., 2009). 

The patterns correspond to the characters of a certain organism that may be correlated or 

covary with certain morphological elements of that organism (Marroig & Cheverud, 

2001; Porto et al., 2009). The magnitude of integration corresponds to the degree or 

strength of the associations between the set of characters (Marroig & Cheverud, 2001; 

Porto et al., 2009). Changes in patterns and magnitudes of integration may alter the way 

populations respond to a selection process (Marroig et al., 2009). 

The difference in size can be considered important, contributing to the pattern and 

degree of correlation between attributes (Zelditch, 1988; Marroig et al., 2004). There is 

great variation in size in most organisms, and this variation can be determined by various 

genetic and ecological factors (e.g., feed, competition, Patton & Brylski, 1987, Maestri et 

al., 2016, Borges et al., 2017). The size variation may be an integration factor, the larger 

the variation in size, the larger the correlations tend to be in and between organic 

structures as a whole, including the correlations within and between the modules (Shirai 

& Marroig, 2010). Higher associations in the skull are especially interconnected to the 
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evolutionary responses along the axis of variation of size, although the selection does not 

only mean variation in size (Marroig et al., 2009). 

Some studies on morphological integration use the mammalian skull as a standard 

system (Willmore et al., 2006; Cardini & Polly, 2013, Alvarez et al., 2015, McIntosh & 

Cox, 2016), demonstrating that they are good models for such studies. The genus 

Ctenomys is the most diversified genus of the fossorial rodents (Lacey et al., 2000). Found 

exclusively in the Neotropical Region, approximately 70 species are currently described 

(Bidau, 2015; Freitas, 2016). There are fossil records in Tertiary (Upper Pliocene) 

formations in Argentina, indicating their origin at this point more than three million years 

ago (Reig et al., 1990; Verzi, 2008). The tuco-tucos, in general, are similar to each other 

and show morphological adaptations related to their habit of life (Reig et al., 1990). 

Considering the heterogeneity of species that genus Ctenomys presents (Bidau, 

2015; Freitas, 2016), we perform the present study in order to understand the 

morphological variations of the genus to a greater extent. Here, we evaluated the patterns 

of variation of cranial modules among 16 species of Ctenomys and the morphological 

evolution in their crania. Initially, we tested two and three modular hypotheses. Next, we 

evaluate the magnitude of the overall integration in the skull. And finally, in order to shed 

light on the developmental differences between these species, we evaluate how these 

modules are correlated evolutionarily through tests of phylogenetic signals. 

 

Materials and methods 

 

Sample 

We measured the shape and size of the skull of 1,171 adult individuals of 16 

species of Ctenomys (Table 1). Only adult specimens were considered: juveniles were 
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identified based on centroid size (Appendix II) and small skulls were excluded (Borges 

et al., 2017). These are deposited in the following museums and scientific collections: 

Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 

Brazil (UFRGS); National Museum of Natural History and Anthropology, Montevideo, 

Uruguay (MUNHINA); Argentine Museum of Natural Sciences "Bernardino Rivadavia", 

Buenos Aires, Argentina (MACN); Museum of La Plata, La Plata, Argentina (MLP); 

Museum of Natural Sciences "Lorenzo Scaglia", Mar del Plata, Argentina (MMP); 

Museum of Vertebrate Zoology, University of California, Berkeley, USA (MVZ); 

American Museum of Natural History, New York, USA (AMNH); and Field Museum of 

Natural History, Chicago, USA (FMNH). 

 

Geometric morphometrics 

The photos of each skull in the ventral view were recorded with a digital camera 

of 3.1 megapixels (2048 x 1536), in macro function and without flash or zoom. In each 

image, 30 landmarks (Appendix I) were digitized (Figure 1a; Fernandes et al., 2009). The 

anatomical landmarks were digitized twice to quantify and minimize measurement errors 

(Klingenberg et al., 1998), using TPSDig2 software version 2.17 (Rohlf, 2015). The 

resulting coordinate matrices were overlapped by a Generalized Procrustes Analysis 

(GPA) procedure, which removes the effects of scale, orientation, and position. The size 

of each skull was considered as the square root of the sum of the squares of the distance 

of each reference to the centroid of the configuration (i.e., centroid size; CS; Bookstein, 

1991), using only the ventral view. To remove the effect between form, gender and 

locality, a MANOVA was performed with the R software (R Core Team, 2018). 
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Matrix estimation, comparison and repeatability 

In order to measure patterns of morphological integration of each species (i.e., the 

structure of covariation), phenotypic matrices of variance/covariance (V/CV) were 

generated, based on the two-dimensional coordinates of the anatomical landmarks. These 

matrices were estimated using the General Linear Model (GLM) routine of Systat 11 

(SYSTAT Inc., Richmond, CA). In order to compare the patterns of morphological 

integration beteween the species, we used the random skewers method (Cheverud, 1996), 

which compares the evolutionary responses of the matrices to randomly generated vectors 

(Marroig; Cheverud, 2001, Cheverud, Marroig 2007, Porto et al., 2009, Shirai and 

Marroig, 2010). We use the MATLAB R2011b software to perform the routines. 

As an additional step, the matrix correlations were adjusted according to the 

repeatability (following Porto et al, 2009), thus removing bias from sampling in 

calculating correlations between matrices. Therefore, when comparing a pair of matrices, 

the maximum correlation between them was not 1 as expected, but a lower value than that 

(Cheverud, 1995, 1996). We use the MATLAB R2011b software to calculate 

repeatability for each especies and correct the matrix correlation values  

 

Modular hypotheses 

To evaluate the strength of the association between the two (Cardini & Polly, 

2013; Figure1b) and three proposed modules (Alvarez et al., 2015; Figure1c), a 

covariance ratio (CR) was used that measures the association between the two or three 

groups of variables, being the measure of integration between parts we used here (Adams, 

2016). We also used the RV coefficient (Appendix II), but we chose to show only the CR 

results, as pearson correlation between the two coefficients yielded high values (r = 0.974, 

for two modules; r = 0.972, for three modules; see Adams, 2016). The tests were 
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performed in R software (R Core Team, 2018), with the geomorph package (Adams & 

Otarola-Castillo, 2013). 

 

Magnitude of overall integration 

We evaluated the magnitude of morphological integration between the elements 

of each structure using eigenvalues of the V/CV matrix. We thus adapted the method of 

variance of the eigenvalues, which is usually based on correlation matrix (V(λ) log; 

Cheverud et al., 1983) for the V/CV matrix. We then tested the relationsheep between CR 

of the proposed modules and the magnitude of morphological integration (vote) through 

a linear regression, using Past software (Hammer et al., 2001). 

 

Shape analyzes 

In order to evaluate the association between shape and CR values, we performed 

a series of linear regressions. Tthe same was done for the logarithmized values of the 

logarythmzed V(λ) log, to investigate the correlation between shape and magnitude of 

integration. The significance of this covariation was assessed through 10000 permutations 

in MorphoJ 1.06d (Klingenberg, 2011). 

 

Phylogenetic relationships 

To access the relationships between similarities of the phenotypic matrices 

(V/CV) and phylogeny (Freitas et al., 2012) we used Principal Coordinate Analysis 

(PCoA), also known as metric MDS (MDS: multidimensional sizing; as opposed to MDS 

not metric; Gower, 1966). The tests were performed in R software (R Core Team, 2018), 

with the geomorf package (Adams & Otarola-Castillo, 2013). 
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The phylogenetic signal was estimated between phenotypic matrices (V/CV) and 

phylogeny using Kmult (Adams, 2014). This statistic represents a generalization of the 

univariate K multivariate statistic proposed by Blomberg et al., (2003). The tests were 

performed in the R (R Core Team, 2018) software, with the geomorph package (Adams 

& Otarola-Castillo, 2013), based on 10000 random permutations. 

The phylogenetic relationships between the proposed modules were based on the 

phylogenetic hypothesis presented by Freitas et al. (2012), adapted for our sample of 16 

species. Details of the phylogenetic construction have been described by Freitas et al. 

(2012). In order to access the phylogenetic signal, the Kmult statistical test was used 

(Blomberg et al., 2003, see Adams, 2014). The tests were performed in R (R Core Team, 

2018) software, with the phytools package (Revell, 2012). 

 

Results 

The species C. boliviensis (CR = 1.002; Table 1) and C. tucumanus (CR = 0.974) 

presented a strong association between the two proposed modules, C. magellanicus 

(0.922) also presented a strong association, but it was not significant. C. minutus (CR = 

0.662), C. pearsoni (CR = 0.667) and C. lami (CR = 0.668) revealed significant 

independence between the modules. The species C. tucumanus (CR = 0.971) presented a 

strong association between the three proposed modules, C. boliviensis (CR = 1.029, p = 

0.085) also presented, but it was not significant. However, C. lami (CR = 0.587), C. 

pearsoni (CR = 0.608) and C. torquatus (CR = 0.598) revealed significant independence 

between the three modules. As for the CR values for the corrected skull size between the 

two proposed modules, C. porteousi (CR = 0.831) and C. tucumanus (CR = 0.817) 

presented strong and significant C. magellanicus (CR = 0.833) association. The proposed 

modules for C. minutus (CR = 0.619), C. pearsoni (CR = 0.632), C. lami (CR = 0.641), 
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C. talarum (CR = 0.662), C. torquatus (OR = 0.693) revealed significant independence. 

For the values revealed with the skull size corrected between the three modules, C. 

tucumanos (CR = 0.814) showed a strong and significant association. The species C. lami 

(CR = 0.543), C. minutus (CR = 0.535) and C. torquatus (CR = 0.552) presented 

significant independence between the three modules. 

All comparisons between matrices were significant (p <0.001). The matrix 

correlation patterns (V/CV) of the skull were similar among the species tested (Table 3). 

The highest value was for the correlation of the C. minutus and C. torquatus matrices 

(0.879), and the lowest crude correlation value was found between C. magellanicus and 

C. porteousi (0.396). The mean of all gross correlations between cranial correlation 

matrices was 0.712. With the adjustment of the correlations for repeatability, the values 

increased, on average, 5.8%. The highest value continued for the correlation between C. 

minutus and C. torquatus (0.908), as well as the lower value for C. magellanicus and C. 

porteousi (0.451). The mean of all correlations increased to 0.770. Correlation patterns 

were found to be different among the species tested for the skull with corrected size (Table 

3). All comparisons between matrices (V/CV) were significant (p <0.001). The highest 

value was for the correlation of the C. haigi and C. torquatus matrices (0.863) and the 

lowest gross correlation value was found between C. magellanicus and C. tucumanus 

(0.317). The mean of all gross correlations among cranial correlation matrices was 0.675. 

By adjusting the correlations for repeatability, values increased by an average of 8%. The 

highest value continued for the correlation between C. haigi and C. torquatus (0.910), as 

well as the lower value for C. magellanicus and C. tucumanus (0.396). The mean of all 

correlations increased to 0.755. The magnitudes of morphological integration were 

relatively high (Table 4), with a higher value for C. tucumanos (V(λ) log = -7,604) and a 

lower value for C. torquatus (V(λ) log = -9,211). 
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We found a strong and significant association between the two (r = 0.864, r² = 

0.746, t = 6.418, p = 0.0001, Table 5) and three (r = 0.807, r² = 0.651, t = 5.112, p = 

0.0002) proposed skull modules and V(λ) log. As to the corrected skull size, it was 

revealed a strong and significant association between the two (r = 0.773, r² = 0.598, t = 

4.567, p = 0.0004) and three (r = 0.720, r² = 0.519, 3,886, p = 0.002) proposed skull 

modules and V(λ) log. 

The shape vectors showed a weak and significant association for CR 2 cs values 

(Appendix V; R2 = 0.15; p = 0.04). For the shape vectors and values of CR 2 (Appendix 

III; R2 = 0.08, p = 0.2), CR 3 (Appendix IV; R2 = 0.06, p = 0.3), CR 3 cs (Appendix VI; 

R2 = 0.10, p = 0.1) there was no significant association. As for shape vectors and 

magnitude patterns (Appendix VII; R2 = 0.07, p = 0.3), there was also no significant 

association. 

It was explained 64.82% (PcoA 1 = 48.75% and PcoA 2 = 16.07%) of the 

association between the magnitudes of morphological integration and phylogenetic 

relationships through the two axes of PcoA (Figure 2). However, the two axes of PcoA 

for corrected skull size (Figure 3) accounted for 75.49% (PcoA 1 = 66.08% and PcoA 2 

= 9.41%) of the association between magnitudes of morphological integration and 

phylogenetic relationships. Kmult revealed weak and non-significant (K = 0.296, p = 

0.367) between matrices (V/CV) and phylogenetic relationships. For the corrected skull 

size test, it was also low and not significant (K = 0.37592; p =: 0.274). For the association 

between phylogenetic relationships and all proposed modules, the Kmult test proved to be 

strong and significant (two modules: K = 1.453, p = 0.001, Appendix VIII, three modules: 

K = 1.873, p = 0.001, Appendix IX; of the skull corrected with two modules K = 0.869, 

p = 0.01 Appendix X, three modules K = 0.811, p = 0.01, Appendix XI). 
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Discussion 

Morphological integration varied considerably among the Tuco-tucos, following 

the variation between the groups of mammals (Porto et al., 2009). Our results do not 

demonstrate significant changes between the patterns and cranial integration in 16 studied 

species of the genus Ctenomys. The cranial modules showed high CR values for some 

species, suggesting relatively high levels of integration between skull and face and skull 

base, cranial box and face (Klingenberg, 2009, Drake & Klingenberg, 2010, Alvarez et 

al., 2015). In this paper, we propose the conservation of developmental mechanisms 

(Drake & Klingenberg 2010; Alvarez et al., 2015), coinciding with the theory of 

morphological integration (Berg, 1960, Cheverud, 1984, Wagner & Altenberg, 1996). 

The matrix correlations were similar, and the magnitudes of integration evolved 

fast (Porto et al., 2009; Shirai & Marroig, 2010). With this, modularity can also evolve 

considerably. After correcting the variation (isometric and allometric) of the skull size, 

the values of integration magnitude reduced, as well as the CR values, evidencing the 

influence of size and modular patterns. Allometry can be considered important in the 

growth process that includes the integration of different modules into a functional 

structure, such as the mammalian skull (Huxley & Teissier, 1936). Therefore, size 

variation can be considered as a general integration factor (Shirai & Marroig, 2010). 

Allometry, as a result of proportional changes in certain structures of a given organism 

concerning size, may facilitate the rapid origin of differences between closely related 

species (Bininda-Emonds et al., 2003; Sánchez-Villagra, 2010; Porto et al., 2009; Cardini 

& Polly, 2013). A large part of the integration magnitude between the morphological 

elements can be attributed to the variation in size, the higher the influence of the size 

variation, the more restricted the responses to natural selection (Porto et al., 2013). 
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However, it may facilitate the evolutionary response along the lines of least evolutionary 

resistance (Marroig & Cheverud, 2005; Marroig et al., 2010). 

The species diversity of the genus Ctenomys (Bidau, 2015; Freitas, 2016) offers a 

unique opportunity to study the diversification of the genus on a large scale, by macro 

and microevolutionary mechanisms (Becerra et al., 2014, Borges et al., 2017, Kubiak et 

al., 2018). The covariance between structures determines the influence that the selection 

of a characteristic produces correlated responses in other characteristics (Cheverud, 1982; 

Wagner et al., 2007; Hallgrímsson et al., 2009). As proposed by Olson and Miller (1958), 

organisms can be integrated to function as a whole. However, this integration is not 

uniform throughout the organism (Klingenberg, 2009). In this study, we found a 

covariation between the morphological integration between two proposed modules for 

the skull with the corrected size and the shape of the skull. However, we did not find the 

same pattern for the other modules and the magnitude patterns. 

When we evaluated the correlation between integration magnitudes and 

phylogenetic relationships, a moderate association was revealed between them. After 

removing the effect of skull size, these patterns became even more evident when this 

association became strong. That indicates that there may be an association between these 

patterns. Porto et al., (2013), when removing the variation of size, found that the 

modularity patterns became more evident and modules not detected, became consistent. 

The values of Kmult smaller than 1 can show adaptive evolution since these values would 

indicate that distantly related species are converging in some values of characteristics 

(Álvarez et al., 2015). Although not significant we found Kmult values low. What suggests 

that genetic drift and natural selection fluctuated over time are not enterely responsible 

for the possible correlation between magnitude patterns and phylogeny. We found a high 

phylogenetic signal between the phylogenetic relationships and the proposed modules for 
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the skull; they have the same magnitude of modularity. Torquatus group (see Parada et 

al., 2011 for more details) seems to have created a break in the general integration and to 

have generated another degree of modularity. The C. boliviensis species belonging to the 

Boliviensis group, the most basal group in the phylogeny revealed a greater integration 

of the cranium, remained high even with the removal of the cranial size effect. Such 

findings demonstrate the possibility that there was also evolution of the modularity of the 

skulls along with the evolution of the group.  

Our study was of great importance for understanding the mechanisms of 

integration and modularity in rodents of the genus Ctenomys. Our results shed light on 

this subject hitherto not addressed to the group. Future works may address how the 

environment and phylogenetic relationships interfere with the development of integration 

and the modularity of the skull. 
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Tables and figures 

 

Table 1. Number of individuals per species, morphological integration between two (CR 

2) and three (CR 3) modules proposed for the skull, morphological integration between 

two (CR 2 cs) and three (CR 3 cs) modules proposed for the skull with the corrected size, 

for 16 species of the genus Ctenomys found in the Neotropical region. 

Species N CR 2 CR 3 CR 2 cs CR 3 cs 

C. australis 51 0.859 0.765 0.763 0.608 

C. boliviensis 60 1.002   1.029* 0.746 0.687 

C. colburni 31 0.860 0.864 0.778 0.716 

C. flamarioni 47 0.812 0.707 0.782 0.674 
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C. haigi 77 0.870 0.796 0.765 0.692 

C. lami 96 0.668 0.587 0.641 0.543 

C. magellanicus 23   0.922* 0.872 0.833 0.776 

C. maulinus 34 0.865 0.897 0.770 0.791 

C. mendocinus 22 0.808 0.795 0.796 0.781 

C. minutus 210 0.662 0.612 0.619 0.535 

C. opimus 78 0.812 0.766 0.693 0.661 

C. pearsoni 78 0.667 0.608 0.632 0.555 

C. porteousi 33 0.868 0.694 0.831 0.646 

C. talarum 83 0.733 0.675 0.662 0.617 

C. torquatus 225 0.738 0.598 0.692 0.552 

C. tucumanus 23 0.974 0.971 0.817 0.814 

*p > 0.05. 

 

Table 2. Matrix of similarity between matrices of (V/CV), for 16 species of the genus 

Ctenomys. The observed gross correlations are on the lower diagonal and the adjusted 

ones are on the upper diagonal. Repeatability is bold in diagonal. 

Sp C.aus C.bol C.col C.fla C.hai C.lam C.mag C.mau C.men C.min C.opi C.pea C.por C.tal C.tor C.tuc 

C.aus 0.927 0.735 0.775 0.746 0.869 0.768 0.719 0.713 0.713 0.791 0.822 0.763 0.652 0.875 0.845 0.605 

C.bol 0.688 0.945 0.650 0.726 0.796 0.641 0.593 0.711 0.667 0.733 0.832 0.641 0.594 0.774 0.726 0.760 

C.col 0.698 0.591 0.876 0.646 0.838 0.749 0.601 0.670 0.687 0.787 0.775 0.693 0.653 0.754 0.818 0.585 

C.fla 0.684 0.673 0.576 0.909 0.766 0.740 0.667 0.685 0.622 0.790 0.781 0.736 0.695 0.806 0.821 0.691 

C.hai 0.812 0.751 0.761 0.708 0.942 0.767 0.692 0.730 0.758 0.846 0.868 0.773 0.729 0.844 0.897 0.645 

C.lam 0.718 0.605 0.681 0.685 0.723 0.944 0.652 0.663 0.691 0.826 0.779 0.777 0.639 0.855 0.846 0.574 

C.mag 0.647 0.539 0.525 0.595 0.628 0.592 0.873 0.618 0.682 0.694 0.712 0.632 0.451 0.712 0.715 0.568 

C.mag 0.638 0.643 0.583 0.607 0.659 0.599 0.537 0.864 0.678 0.793 0.806 0.751 0.575 0.784 0.782 0.707 

C.men 0.635 0.600 0.595 0.549 0.681 0.621 0.590 0.583 0.857 0.768 0.785 0.691 0.582 0.769 0.772 0.592 

C.min 0.750 0.702 0.726 0.742 0.809 0.791 0.639 0.726 0.701 0.970 0.879 0.822 0.747 0.877 0.908 0.679 

C.opi 0.758 0.774 0.694 0.713 0.807 0.725 0.637 0.717 0.696 0.829 0.917 0.817 0.700 0.886 0.878 0.753 
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C.pea 0.705 0.598 0.622 0.673 0.720 0.724 0.567 0.670 0.614 0.777 0.751 0.921 0.720 0.826 0.854 0.589 

C.por 0.590 0.543 0.575 0.622 0.665 0.583 0.396 0.502 0.506 0.691 0.630 0.649 0.883 0.767 0.769 0.507 

C.tal 0.769 0.686 0.644 0.702 0.748 0.758 0.608 0.665 0.650 0.789 0.775 0.724 0.658 0.833 0.872 0.752 

C.tor 0.799 0.694 0.752 0.769 0.855 0.807 0.657 0.714 0.703 0.879 0.826 0.806 0.710 0.782 0.966 0.667 

C.tuc 0.536 0.680 0.504 0.606 0.576 0.513 0.489 0.605 0.505 0.615 0.663 0.520 0.438 0.632 0.603 0.846 

p < 0.001. 

 

Table 3. Matrix of similarity between matrices of (V/CV), with corrected skull size, for 

16 species of the genus Ctenomys. The observed gross correlations are on the lower 

diagonal and the adjusted ones are on the upper diagonal. Repeatability is in bold 

diagonal. 

Sp C.aus C.bol C.col C.fla C.hai C.lam C.mag C.mau C.men C.min C.opi C.pea C.por C.tal C.tor C.tuc 

C.aus 0.912 0.747 0.742 0.688 0.820 0.765 0.655 0.687 0.680 0.773 0.812 0.794 0.633 0.860 0.839 0.559 

C.bol 0.676 0.899 0.678 0.726 0.788 0.757 0.580 0.702 0.679 0.786 0.812 0.772 0.721 0.880 0.787 0.584 

C.col 0.650 0.589 0.842 0.616 0.796 0.721 0.612 0.666 0.692 0.771 0.770 0.723 0.686 0.754 0.809 0.435 

C.fla 0.622 0.653 0.535 0.898 0.743 0.709 0.669 0.633 0.572 0.767 0.752 0.712 0.710 0.771 0.790 0.464 

C.hai 0.756 0.721 0.704 0.679 0.931 0.786 0.660 0.732 0.733 0.859 0.861 0.853 0.814 0.903 0.910 0.523 

C.lam 0.709 0.696 0.641 0.652 0.736 0.941 0.626 0.613 0.645 0.795 0.740 0.763 0.686 0.878 0.838 0.491 

C.mag 0.583 0.512 0.523 0.591 0.594 0.566 0.868 0.573 0.658 0.667 0.695 0.669 0.562 0.721 0.676 0.396 

C.mag 0.604 0.612 0.562 0.552 0.650 0.547 0.492 0.847 0.600 0.722 0.716 0.728 0.677 0.759 0.741 0.463 

C.men 0.598 0.592 0.584 0.498 0.650 0.575 0.564 0.508 0.846 0.717 0.718 0.682 0.593 0.751 0.734 0.469 

C.min 0.726 0.733 0.696 0.714 0.815 0.758 0.611 0.653 0.648 0.967 0.866 0.828 0.810 0.880 0.887 0.560 

C.opi 0.740 0.736 0.675 0.680 0.793 0.686 0.618 0.629 0.630 0.813 0.912 0.840 0.730 0.872 0.868 0.573 

C.pea 0.727 0.702 0.636 0.646 0.788 0.709 0.598 0.642 0.601 0.780 0.769 0.919 0.765 0.849 0.868 0.515 

C.por 0.563 0.637 0.586 0.627 0.732 0.620 0.488 0.581 0.508 0.742 0.650 0.683 0.868 0.829 0.805 0.483 

C.tal 0.715 0.726 0.601 0.635 0.757 0.741 0.584 0.608 0.601 0.752 0.724 0.708 0.672 0.756 0.895 0.675 

C.tor 0.787 0.733 0.729 0.735 0.863 0.798 0.618 0.670 0.663 0.857 0.814 0.818 0.737 0.764 0.965 0.571 

C.tuc 0.459 0.475 0.342 0.377 0.433 0.409 0.317 0.366 0.370 0.473 0.470 0.423 0.387 0.504 0.482 0.737 

p < 0.001. 

 

Table 4. Magnitude of general morphological integration V (λ) log, for 16 species of the 

genus Ctenomys found in the Neotropical region. 
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Espécie V (λ) log 

C. australis -8.640 

C. boliviensis -8.063 

C. colburni -8.449 

C. flamarioni -8.754 

C. haigi -8.483 

C. lami -9.041 

C. magellanicus -8.379 

C. maulinus -8.652 

C. mendocinus -8.515 

C. minutus -9.020 

C. opimus -9.078 

C. pearsoni -9.028 

C. porteousi -8.237 

C. talarum -9.096 

C. torquatus -9.211 

C. tucumanus -7.604 

 

Table 5. Association between morphological integration between two (CR 2) and three 

(CR 3) modules proposed for the skull, and morphological integration between two (CR 

2 cs) and three (CR 3 cs) modules proposed for the skull with the size corrected and 

magnitude of morphological integration (vote log), for 16 species of the genus Ctenomys 

found in the Neotropical region. 

 r r2 t p 

CR 2 x V (λ) log 0.864 0.746 6.418 0.0001 
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CR 3 x V (λ) log 0.807 0.651 5.112 0.0002 

CR 2 cs x V (λ) log 0.773 0.598 4.567 0.0004 

CR 3 cs x V (λ) log 0.720 0.519 3.886 0.002 

 

 

Figure 1: Landmarks used to capture the ventral view of the skull (a) as shown in 

Ctenomys flamarioni. Two (b) and three (c) proposed modules for the skull of the 16 

species of the genus Ctenomys found in the Neotropical region. 
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Figure 2. Principal coordinate analysis (PCoA) between phenotypic matrices (V/CV) and 

phylogenetic relationships among 16 species of the genus Ctenomys. Based on molecular 

data (Freitas et al., 2012), the original tree was edited to exclude species not investigated 

here. The percentage of variation explained by PCOA1 and PCOA2 is indicated on the 

axis. 

 

 

Figure 3. Principal coordinate analysis (PCoA) between phenotypic matrices (V/CV) and 

phylogenetic relationships among 16 species of the genus Ctenomys, for the skull with 

corrected size. Based on molecular data (Freitas et al., 2012), the original tree was edited 
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to exclude species not investigated here. The percentage of variation explained by PCOA1 

and PCOA2 is indicated on the axis. 

 

Supplementary material 

 

Appendix I 

 

Definition of landmarks with numbers and locations for ventral view of the skull of the 

genus Ctenomys (shown in Fig. 1a). 

1. anterior tip of suture between premaxillas; 2-3. anterolateral extremity of 

incisor alveolus; 4-5. lateral edge of incisive foramen in suture between premaxilla and 

maxilla; 6-7. anteriormost point of root of zygomatic arch; 8-9. anteriormost point of orbit 

in inferior zygomatic root;10-11. anteriormost point of premolar alveolus; 12-13. 

posterior extremity of III molar alveolus; 14. posterior extremity of suture between 

palatines; 15-16. anteriormost point of intersection between jugal and squamosal; 17-18. 

posteriormost point of pterygoid; 19-20. anterior extremity of tympanic bulla; 21-22. 

anterior tip of external auditory meatus; 23-24. posterior extremity of mastoid apophysis; 

25-26. posterior extremity of paraoccipital apophysis; 27. anteriormost point of foramen 

magnum; 28-29. posterior extremity of occipital condyle in foramen magnum; 30. 

posteriormost point of foramen magnum along midsagittal plane. 

 

Appendix II 

 

Number of individuals per species (N), centroid size (CS), morphological 

integration between two (RV 2) and three (RV 3) proposed modules for the skull, 

morphological integration between two (RV 2 cs) and three (RV 3 cs) modules proposed 
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for the skull with corrected size, for 16 species of the genus Ctenomys found in the 

Neotropical region. 

Species N CS RV 2 RV 3 RV 2 cs RV 3 cs 

C. australis 51 1597,322 0,531 0,384 0,404 0,242 

C. boliviensis 60 1648,801 0,831 0,791 0,339 0,273 

C. colburni 31 1145,232 0,616 0,526 0,468 0,363 

C. flamarioni 47 1414,423 0,513 0,362 0,494 0,342 

C. haigi 77 1287,431 0,599 0,472 0,422 0,304 

C. lami 96 1348,546 0,288 0,207 0,261 0,175 

C. magellanicus 23 1511,954 0,599 0,485 0,500 0,412 

C. maulinus 34 1347,953 0,573 0,520 0,519 0,390 

C. mendocinus 22 1205,162 0,496 0,437 0,467 0,401 

C. minutus 210 1331,976 0,294 0,230 0,245 0,173 

C. opimus 78 1516,331 0,487 0,410 0,329 0,273 

C. pearsoni 78 1393,174 0,231 0,261 0,300 0,221 

C. porteousi 33 1255,464 0,586 0,353 0,507 0,306 

C. talarum 83 1154,095 0,396 0,306 0,336 0,239 

C. torquatus 225 1352,479 0,371 0,233 0,298 0,181 

C. tucumanus 23 1260,651 0,863 0,780 0,605 0,526 
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Appendix III 

 

Regression analysis between skull shape and morphological integration between 

two proposed skull modules (CR 2) for 16 Ctenomys species. Representation of 

conformational changes associated with (b) negative and (c) positive vectors (dashed 

lines correspond to the mean shape, and solid black lines correspond to the form 

associated with positive and negative scores). 

 

 

 

 

 



 

82 
 

Appendix IV 

 

Regression analysis between skull shape and morphological integration between 

three proposed skull modules (CR 3) for 16 Ctenomys species. Representation of 

conformational changes associated with (b) negative and (c) positive vectors (dashed 

lines correspond to the mean shape, and solid black lines correspond to the form 

associated with positive and negative scores). 
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Appendix V 

 

 

 

Regression analysis between skull shape and morphological integration between 

two modules proposed for the skull with the corrected size (CR 2 cs) for 16 Ctenomys 

species. Representation of conformational changes associated with (b) negative and (c) 

positive vectors (dashed lines correspond to the mean shape, and solid black lines 

correspond to the form associated with positive and negative scores). 
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Appendix VI

 

Regression analysis between skull shape and morphological integration between 

three modules proposed for the skull with the corrected size (CR 3 cs) for 16 Ctenomys 

species. Representation of conformational changes associated with (b) negative and (c) 

positive vectors (dashed lines correspond to the mean shape, and solid black lines 

correspond to the form associated with positive and negative scores). 
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Appendix VII 

 

Regression analysis between skull shape and magnitude of morphological 

integration accessed through variance of the eigenvalues log (vote log) for 16 Ctenomys 

species. Representation of conformational changes associated with (b) negative and (c) 

positive vectors (dashed lines correspond to the mean shape, and solid black lines 

correspond to the form associated with positive and negative scores). 
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Appendix VIII 

 

Correlation between the two proposed modules for the skull and phylogenetic 

relationships among 16 species of the genus Ctenomys, based on molecular data (Freitas 

et al., 2012). The original tree was edited to exclude species not investigated here. 
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Appendix IX 

 

Correlation between the three proposed modules for the skull and the phylogenetic 

relationships among 16 species of the genus Ctenomys, based on molecular data (Freitas 

et al., 2012). The original tree was edited to exclude species not investigated here. 
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Appendix X 

 

Correlation between the two proposed modules for the skull with corrected size 

and phylogenetic relationships among 16 species of the genus Ctenomys, based on 

molecular data (Freitas et al., 2012). The original tree was edited to exclude species not 

investigated here. 
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Appendix XI 

 

Correlation between the three proposed modules for the skull with corrected size 

and phylogenetic relationships among 16 species of the genus Ctenomys, based on 

molecular data (Freitas et al., 2012). The original tree was edited to exclude species not 

investigated here. 
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Capítulo IV 

Manuscrito em preparação: PNAS 

 

Searching for genetic basis of skull morphology in subterranean rodents: a case 

study in tuco-tucos (Hystricognathi: Ctenomyidae). 

 

Borges, L. R.1, Leipnitz, L. T. 1, Bragatte, M. 1, Maestri, R. 1, Ribas, L. E. J. 1, Fornel, R. 

2, Vieira, G.F. 1, Freitas, T. R. O. 1 

 

1 - Instituto de Biociências da Universidade Federal do Rio Grande do Sul, Av. Bento 

Gonçalves 9500, 91501-970 Porto Alegre, Brazil. 

2 - Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do 

Sul, Porto Alegre, RS, Brazil. 

 

Abstract: Skull morphology in rodents is very diverse and defined by a combination of 

environmental, genetic and demographic factors. Though possible environmental factors 

that may select for skull shape are well known, the genetic basis of adaption for skull 

shape in rodents remains poorly understood. The ratio of repetitions of glutamines and 

alanines (Q/A ratio) in the "coiled coil" domain of Runt related transcription factor 2 

(Runx2), a transcription factor involved in osteoblast differentiation and several other 

pathways in bone development, has been correlated with facial length in several dog 

breeds and some vertebrate genera and may act as an “evolutionary tuning knob”, 

generating morphological diversity by inducing fine regulation of gene expression. Here 

we test whether such correlation holds true within Ctenomys – a genus of subterranean 

rodents, which presents high species, karyotype, genetic and morphological diversity, and 

occupies a wide range of habitats. Results show that the Runx2 “coiled coil” domain is 
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mostly conserved between highly divergent species of Ctenomys, presenting few non-

synonymous amino acid substitutions within the glutamine repetitions, which change 

glutamines into prolines. In addition, sequences from Ctenomys from Midwest and 

Northern Brazil are identical to predicted sequences of Octodontidae, a family of 

subterranean rodents, sister to Ctenomyidae. Therefore, the Q/A ratio does not appear to 

account for differences in facial length between individuals within species or between 

species, though we cannot rule out the possibility that the Q to P substitutions may alter 

protein functionality and, by extension, skull morphology, through enhanced or inhibited 

activity of proteins that Runx2 regulates. 

Keywords: Runx2, Ctenomys, tuco-tuco, adaption, development 

 

SIGNIFICANT 

The tuco-tucos present morphology of the skull, body and highly diversified karyotypes. 

We explored here the correlation between the Q/A ratio of a functional domain of the 

Runx2 protein and the individual skull morphology of specimens of the genus Ctenomys, 

to evaluate whether the Runx2 gene is directly involved differences in skull shape within 

the genus. We also found a mutation in the Q/A domain of the protein previously 

unknown in the literature and its potential effects on the structure, function, and 

interaction of proteins. The Runx2 gene apparently does not appear to be linked to the 

facial elongation of the tuco-tucus specimens. But we can not rule out the possibility that 

glutamine-to-proline substitutions may alter protein functionality and, by extension, skull 

morphology. 
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Introduction 

 

Tuco tucos (genus Ctenomys) are the members of a species-rich genus of 

subterranean rodents with approximately 70 species described, distributed throughout the 

Southern half of South America (1, 2), and with a minimum estimated time of origin 

around 3.5 million years (myr), given the oldest fossil record known for the genus (3). 

Such recent estimates of origin have been considered as evidence of a burst speciation in 

Ctenomys, given the phylogenetic structuring found in many independent studies (4, 5, 6, 

7, 8, 9, 10, 11). The genus also presents highly diverse skull and body morphology, (12, 

13, 14,15, 16), and karyotypes ranging from 2n = 10 in Ctenomys steinbachi and 2n = 70 

in Ctenomys dorbyigni (17, 18).  

Though factors involved in shaping skull morphology in rodents are well known 

(15, 19, 20), the causative genetic basis of skull morphology in rodents remains poorly 

understood. Runt-related transcription factor 2 (Runx2) codifies a protein essential to 

osteoblast differentiation and maturation, and intramembranous and endochondral 

ossification (21, 22, 23). When Runx2 is upregulated, proliferation of osteoblasts 

increases and bone tissue is elongated, while when downregulated, proliferation of 

osteoblasts decreases and bone development is truncated (24). Mutations in the Runx2 

gene are associated with diseases in humans, such as cleidocranial dysplasia (CCD) 

(OMIM: 119600), which can be caused by, for example, non-synonymous mutations (25, 

26, 27) deletions (28) and tandem repeats in functional domains of the protein (30). 

Considering the latter, tandem repeats inside coding regions of a gene can promote 

fine regulation of gene expression, especially when considering elements that regulate 

such expression, as in the case of Runx2, a transcription factor (29). In fact, Sears (24) 

have found that the Runx2 gene is involved in the elongation and shortening of the rostrum 
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of carnivores, since the length of glutamine (Q) and alanine (A) repeats presents a strong 

correlation with rostrum length in dog breeds. Pointer (31) explored this variation in 

several vertebrate taxa and found that this correlation holds true for a few taxa, not across 

vertebrates in general.  

In this paper we explore the correlation between the Q/A ratio of a functional 

domain of the Runx2 protein and individual skull morphology from representatives of a 

genus of subterranean rodents (tuco-tucos, Ctenomys) to assess whether the Runx2 gene 

is directly involved in differences in skull shape within the genus. We also describe a 

mutation within the Q/A domain of the protein previously unknown in literature and its 

potential effects on protein structure, function and interaction. 

 

Results 

Runx2 sequencing and Q/A ratio analysis – We have successfully amplified and 

sequenced 174bp of the Runx2 gene, corresponding to the glutamine/alanine rich domain 

of the Runx2 protein. The fragment is highly conserved across the individuals sequenced, 

varying in presence and number of prolines (P) that interrupt the poly-Q sequence 

(Appendix I). Sequences from individuals representative of species from Midwest and 

Northern Brazil are identical, with a single proline interrupting the glutamine/alanine rich 

sequence, while sequences from individuals representative of species from Southern 

Brazil diverge in number of prolines, which vary from two to three, but are consistent in 

number of prolines within species (Table 1). All chromatograms were inspected manually 

to confirm the identity of the prolines as natural polymorphisms and not as sequencing 

errors. 

Comparative analyses - There were significant differences between the specimens 

with one proline (P1), two prolines (P2) and three prolines (P3) relative to the linear 
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measurements Nose/Oc-Pat (ANOVA: d.f.= 20.9; F= 5.85; p= 0.01; Figure 1), Nose/CBL 

(ANOVA: d.f.= 20.49; F= 12.28; p= 0.0003; Figure 2), Face/Oc-Pat (ANOVA: d.f.= 

20.16; F= 7.71; p= 0.003; Figure 3) and Face/CBL (ANOVA: d.f.= 20.3; F= 9.48; p= 

0.001, Figure 4). Tukey’s pairwise comparison confirmed the difference between the 

linear measurements and some of the revealed prolines groups (see Table 2). The PCA 

plot (Figure 5) revealed a distribution showing no differences between the P1, P2 and P3 

groups of the genus Ctenomys. The PC1 score explained 80% of the correlation; PC 2= 

12%; PC 3= 7% and PC 4= 0.01%. 

The secondary structure analyses - (Figure 6) indicates that prolines probably 

interfere in the conformation of the region that impact gene expression of genes regulated 

by Runx2, disrupting an alpha helix by the insertion of coil portions in the middle of 

structure. A more profound analyses over the general structure of Runx2 was not possible 

because no templates with acceptable identity were found, for either the Runx2 gene or 

the highly conserved region of 128 amino acids, known as runt homology domain.  

Hierarchical clustering analyses – the clustering (Appendix II) using measures of 

the face and nose does not reflect the geographic distribution of the sampled individuals. 

 

Discussion 

Our study does not show explicit correlation between the length of the skull of 

rodents of the genus Ctenomys and the gene Runx2. Our results corroborate with Pointer 

(31), where there is no significant correlation between the face length of non-carnivorous 

placental mammals and the Runx2 gene. Because it is a pleitropic gene, Runx2 is linked 

to other functionalities and may be expressed in several different tissues in different 

organisms and in different stages of embryonic development (e.g. early development of 

the thymus and hypertrophic chondrocytes) in addition to the cranium (32, 33, 34, 35). 
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Such possiblities for differential expression of Runx2 in time and space are a likely 

explanation for the lack of correlation between the length of the skull and the Runx2 gene. 

While most of the 128 amino acid runt activation domain is conserved across all 

individuals sequenced, we find previously undocumented alterations within the Q/A 

region, as mutated nucleotides cause non-synonymous amino acid substitutions, from 

glutamines (Q) to prolines (P) within the poly-Q region. Such amino acid alterations are 

correlated with geographic and phylogenetic structuring found within species groups of 

the genus Ctenomys in previous studies (8, 11): species that cluster within the boliviensis 

species group – e.g. C. sp. xingu, C. sp. central, C. nattereri and C. bicolor; Mato Grosso 

(MT) state – all present a single P amino acid within the Q region, while the other species 

studied, which cluster within the torquatus – e.g. C. torquatus, C. ibicuiensis, C. lami and 

C. minutus; Rio Grande do Sul (RS) state – and mendocinus – C. flamarioni; RS state – 

species groups present two (C. lami, C. minutus and C.  flamarioni) and three (C. 

torquatus and C. ibicuiensis) Ps substituting Qs. Interestingly enough, the boliviensis 

species group is one of the first species groups to have originated from a common ancestor 

for the genus, and present the same number of prolines shown in Runx2 sequences 

predicted for specimens of Octodon degus, a species representative of the family 

Octodontidae, which is a sister family to Ctenomyidae. 

The averages cluster analyses further evidence a geographic/phylogenetic pattern 

of structure, as species from MT state are separated from those from RS state when 

heavily weighting prolines as causative of individual clustering (one, two and three 

prolines weighting 1, 2 and 3 respectively); reducing the weight given for each proline, 

however, failed to recover the complete phylogenetic structuring expected, based on the 

available phylogenetic data, separating only the individuals whose species presented three 

prolines (e.g. C. torquatus and C. ibicuiensis). Furthermore, when considering the 
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morphological measures only, no visible pattern of structuring is found, neither by species 

or species groups. 

Though pure phylogenetic structuring does not explain the proline pattern found 

in species from the RS state in Brazil, as two and three prolines occur within the torquatus 

species group, that pattern may be explained by environmental pressures because C. 

ibicuiensis and C. torquatus, which present three prolines each, are located in the Pampa 

biome (central, southwestern, western and northwestern RS, and Uruguay) while C. lami, 

C. minutus and C. flamarioni inhabit areas within the coastal plains (southeastern, eastern 

and northeastern RS); both regions are highly differentiated in both biotic and abiotic 

factors (36, 37, 38). Alternatively, the torquatus and mendocinus species groups, though 

monophyletic and highly differentiated, are sister groups within the Ctenomys phylogeny, 

sharing a most recent common ancestor (MRCA) (11); this common recent origin might 

explain why two prolines are found within both species groups, considering a 

demographic hypothesis for the Q/A repeat patterns. 

When correlation between the number of prolines and the length of the skull was 

evaluated, significant differences were found, suggesting that variation in proline number 

may influence the shape of the skulls in Ctenomys by altering the functionality of the 

Runx2 gene (29, 39, 40, 41). However, we can not confirm that the substitutions of Qs 

for Ps directly influence in the length of the skulls in the specific case of Tuco-tucos, as 

skull length does not appear to scale with the increase in number of prolines. 

 

Conclusions 

All things considered, the body of evidence we present argues that Runx2 is not 

likely to be a determining factor in skull morphology in the genus Ctenomys as is the case 

in many dog breeds (24) and some vertebrate genus (31), but we cannot rule out that the 
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Runx2 gene may contribute to the overall regulation of body development, cranium 

included, since the Runx2 gene is highly regulated by other transcription factors and has 

different specific expressions (32, 33, 42). Although Runx2 does not seem to be the major 

factor involved in skull size in Ctenomys, investigating candidate development genes such 

as Runx2 opens the way to new research possibilities concerning genes regarding facial 

growth/stretching, such as the investigation of Hox genes. We also note the discovery of 

a new, widespread, mutation within the Q/A repeat region, which may be responsible for 

altering the functionality of the Q/A domain of the Runx2 protein, likely inhibiting 

activity because the mutations interrupt the an alpha helix within the protein’s domain. 

Developing structure models for the Runx2 protein is detrimental to further investigate 

the effect of the novel mutations found and detect to what extent they alter protein 

function in Ctenomys and consequently body development. 

 

Material and Methods 

Sample information and DNA extraction - Liver tissues of 36 specimens of 

Ctenomys (Table 1, Appendix III), representative of seven species and two lineages were 

selected for DNA extraction based on three criteria: i) tissue samples must be well 

preserved in order to extract genomic DNA with good quality, ii) all tissue samples came 

from specimens with a preserved skull, to allow for morphological and molecular 

comparisons as defined in Pointer (31) and iii) all individuals selected were males, in 

order to block for possible sexual dimorphism effects on skull shape. All individuals are 

housed at Laboratório de Citogenética e Evolução under individual collection numbers. 

A detailed description of the individuals, species, species groups analyzed sensu (8), and 

individual collection numbers is shown in Appendix I. Five additional predicted 

sequences from Octodon degus derived from genomic projects (GenBank Accession 
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numbers: XM012515902, XM012515909, XM012515909, XM012515918 and 

XM012515919) were used as outgroups. We have extracted DNA from all specimens 

using the CTAB DNA extraction protocol (43) with modifications. We tested all DNA 

extractions for quality in 1.5% agarose gels and quantified the extractions using 

NanoDrop (ThermoFisher Scientific). We diluted working solutions to 50ng/ul of DNA 

from purified extractions for posterior analysis. 

Runx2 amplification, sequencing and molecular analysis - We have sequenced 36 

individuals for a fragment of the Runx2 gene, which translates into the poly 

glutamine/alanine domain of the protein Runx2. We have amplified DNA fragments 

through a nested PCR with two sets of primers: an external set (Sears_EXT-F: 5'-TTG 

TGA TGC GTA TTC CCG TA-3'; Sears_EXT-R: 5'-ACS GAG CAC AGG AAG 

TTG GG-3') and an internal set (Sears_INT-F: 5'-ATC CGA GCA CCA GCC GGC 

GGC GCT TCA G-3'; Sears_INT-R: 5'-GTG GTC VGC GAT GAT CTC SAC-3') 

(24) as described by Pointer (31): in the external PCR, we used 100ng (2.0ul) of purified 

genomic DNA, 24.0ul of sterile water, 4.0 ul of 10x PCR Buffer, 3.2ul of 50nM MgCl2 

as a PCR cofactor, 0.8ul of 10nm deoxynucleotide tri phosphate (dNTP), 0.8ul of 10mM 

PCR primers - forward and reverse - 2.0ul of DMSO and 0.4ul of 5U/ul Taq Polymerase 

(Ludwig Biotec), totaling a 40ul PCR reaction. In the internal (nested) PCR we used the 

same mix concentrations and volumes as in the external PCR, except for water (27.5ul) 

and genomic DNA (substituted for 0.5ul of the external PCR product) for amplifying the 

fragment of interest. Bands approximately 200bp long were extracted from agarose gels, 

purified and sequenced abroad (Macrogen Inc.). We inspected chromatograms manually 

using Chromas Lite (Technelysium Inc.). We aligned all sequences using the MUSCLE 

algorithm (44) implemented in MEGA 7 (45). 
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Skull morphology measures - We have measured each cranium (Figure 7) for 

facial length (Face), defined as the measure from the anteroventral margin of the orbit at 

the lacrimal foramen to the anterior margin of the premaxilla and nasal length (Nose), 

defined as the measure from the anteroventral margin of the orbit at the lacrimal foramen 

to the anterolateral margin of the nasal bone, and two proxy measures of skull size: cranial 

base length (Oc-Pat), defined as the distance from lateral-most point of the occipital 

condyle to the caudal margin of the palate, and condylobasal or total cranial length (CBL), 

defined as the distance from the lateral-most point of the occipital condyle to the anterior-

most premaxilla, as in Sears (24), using a digital caliper; we then standardize the measures 

of Face and Nose by dividing those metrics by the Oc-Pat and CBL measures for each 

cranium, as in Pointer (31). 

Comparative analyses - the number of amino acid substitutions from glutamine 

(Q) to proline (P) (P1 = Ctenomys bicolor, Ctenomys nattereri, Ctenomys sp. central and 

Ctenomys sp. xingu specimens with one proline, P2 = Ctenomys flamarioni, Ctenomys 

lami and Ctenomys minutus specimens with two prolines, P3 = Ctenomys ibicuiensis and 

Ctenomys torquatus specimens with three prolines; was compared to linear measurements 

of the skull proposed by Sears (24), used here in rodents of the genus Ctenomys, through 

an ANOVA; a principal component analysis (PCA) was carried out among the three 

different groups of prolines (P1, P2 and P3) and linear measurements of the rodent skull 

of the genus Ctenomys, using software Past (46). 

Secondary structure prediction –  we further analyzed the influence of secondary 

structures in protein level, since, as a rule, protein structure is more conserved than 

sequences (47). We translated DNA sequences from fragments of the Runx2 gene into an 

amino acid sequences by the Expasy translate tool (48). We selected representative 

specimens based on the number of proline, Ctenomys nattereri (P1), Ctenomys minutus 
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(P2), Ctenomys torquatus (P3) and use as standard sequence the Mus musculus, a 

specimen which does not show insertion of prolines. The sequence was retrieved from 

UniProt (Universal Protein Source) database (ID: Q08775). The secondary structure was 

predicted by the Psipred online server (49). 

Hierarchical clustering analyses – looking for correlations among different 

species of Ctenomys in relation to studied dimension (Face and Nose measurements) 

obtained by the standardization of Oc-Pat and CBL for each skull. We used the Pvclust 

an R package for assessing the uncertainty in hierarchical cluster analysis with p-values 

(50). The parameters used in the analyzes were the agglomerative method used in 

hierarchical clustering as average or UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean), the approach to evaluate the distances was the matrix of dissimilarity 

based on correlation, the procedure for computing covariances in the presence of missing 

values was pairwise complete observations and reinforcement for each branch was 

achieved by operating bootstrap analysis with 10,000 replicates. 
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Tables and Figures 

 

Table 1. List of individuals sequenced and measured as in Pointer et al. (2012) 

used in this study. Left to right: species name, individuals per species, number of 

glutamines (Q), number of alanines (A), number of prolines (P), Runx2 Q/A ratios 

considering the prolines, Runx2 Q/A ratios not considering prolines, and face length 

measurements (in cm). 

Species Individuals Q A P Q/A Q/A Nose/ Nose/ Face/ Face/ 

 (+P) (-P) Oc-Pat CBL Oc-Pat CBL 

C. bicolor PB_40_01 16 4 1 4 4.25 0.369 0.318 0.309 0.267 

C. bicolor PB_41_02 16 4 1 4 4.25 0.356 0.321 0.304 0.274 

C. bicolor PB_42_03 16 4 1 4 4.25 0.362 0.295 0.336 0.274 

C. flamarioni TR 30 15 4 2 4.25 3.75 0.391 0.324 0.354 0.293 

C. flamarioni TR 45 15 4 2 4.25 3.75 0.395 0.33 0.359 0.299 

C. flamarioni TR 65 15 4 2 4.25 3.75 0.356 0.316 0.323 0.287 

C. flamarioni TR 203 15 4 2 4.25 3.75 0.355 0.315 0.335 0.298 

C. ibicuiensis TR 1068 14 4 3 4.25 3.5 0.362 0.318 0.319 0.28 
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C. ibicuiensis TR 1069 14 4 3 4.25 3.5 0.34 0.295 0.318 0.276 

C. ibicuiensis TR 1070 14 4 3 4.25 3.5 0.355 0.311 0.323 0.283 

C. lami TR 344 15 4 2 4.25 3.75 0.383 0.321 0.347 0.291 

C. lami TR 202 15 4 2 4.25 3.75 0.379 0.318 0.347 0.291 

C. minutus TR 05 15 4 2 4.25 3.75 0.371 0.317 0.319 0.273 

C. minutus TR 35 15 4 2 4.25 3.75 0.348 0.321 0.315 0.291 

C. minutus TR 38 15 4 2 4.25 3.75 0.375 0.319 0.331 0.282 

C. minutus TR 41 15 4 2 4.25 3.75 0.371 0.311 0.333 0.28 

C. minutus TR 46 15 4 2 4.25 3.75 0.354 0.304 0.317 0.272 

C. nattereri CA_06_01 16 4 1 4 4.25 0.359 0.309 0.311 0.267 

C. nattereri CA_07_02 16 4 1 4 4.25 0.326 0.278 0.303 0.258 

C. nattereri CA_08_03 16 4 1 4 4.25 0.336 0.288 0.292 0.251 

C. nattereri CA_09_04 16 4 1 4 4.25 0.352 0.307 0.3 0.262 

C. nattereri SP_77_04 16 4 1 4 4.25 0.332 0.305 0.275 0.252 

C. nattereri SP_78_05 16 4 1 4 4.25 0.358 0.317 0.301 0.267 

C. sp. central NM_84_04 16 4 1 4 4.25 0.369 0.31 0.314 0.264 

C. sp. xingu NO_50_11 16 4 1 4 4.25 0.319 0.273 0.286 0.245 

C. sp. xingu NU1_31_01 16 4 1 4 4.25 0.318 0.282 0.301 0.267 

C. sp. xingu NU1_32_02 16 4 1 4 4.25 0.333 0.288 0.316 0.274 

C. sp. xingu NU1_33_03 16 4 1 4 4.25 0.369 0.326 0.328 0.291 

C. sp. xingu NU2_56_05 16 4 1 4 4.25 0.386 0.336 0.345 0.3 

C. sp. xingu FN_67_03 16 4 1 4 4.25 0.351 0.3 0.32 0.274 

C. torquatus TR 906 14 4 3 4.25 3.5 0.353 0.303 0.341 0.293 

C. torquatus TR 910 14 4 3 4.25 3.5 0.324 0.298 0.298 0.274 

C. torquatus TR 947 14 4 3 4.25 3.5 0.365 0.298 0.34 0.277 

C. torquatus TR 951 14 4 3 4.25 3.5 0.343 0.293 0.307 0.261 

C. torquatus TR 956 14 4 3 4.25 3.5 0.368 0.304 0.329 0.272 

C. torquatus TR 960 14 4 3 4.25 3.5 0.349 0.294 0.307 0.258 
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 Table 2. Tukey pairwise among the linear measurements Nose/Oc-Pat, Nose/CBL, 

Face/Oc-Pat and Face/CBL relative to the specimens with one proline (P1), two prolines 

(P2) and three prolines (P3) of the genus Ctenomys found in the Neotropical region. 

Tukey pairwise Nose/Oc-Pat between P1, P2 and P3 

 P1 P2 P3 

P1  0.01* 0.982 

P2 4.338  0.04* 

P3 0.254 3.545  

Tukey pairwise Nose/CBL between P1, P2 and P3 

 P1 P2 P3 

P1  0.02* 0.947 

P2 3.891  0.03* 

P3 0.443 3.801  

Tukey pairwise Face/Oc-Pat between P1, P2 and P3 

 P1 P2 P3 

P1  0.001* 0.234 

P2 5.641  0.145 

P3 2.351 2.736  

Tukey pairwise Face/CBL between P1, P2 and P3 

 P1 P2 P3 

P1  0.001* 0.352 

P2 5.777  0.076 

P3 1.980 3.199  

*p<0.05. 
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Figures 1. Variation of linear measures Nose/OcPat, specimens with one proline (P1), 

two prolines (P2) and three prolines (P3) of the genus Ctenomys found in the Neotropical 

region. 

 

 

Figure 2. Variation of linear measures Nose/CBL, specimens with one proline (P1), two 

prolines (P2) and three prolines (P3) of the genus Ctenomys found in the Neotropical 

region. 
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Figure 3. Variation of linear measures Face/OcPat, specimens with one proline (P1), two 

prolines (P2) and three prolines (P3) of the genus Ctenomys found in the Neotropical 

region. 

 

 

Figure 4. Variation of linear measures Face/CBL, specimens with one proline (P1), two 

prolines (P2) and three prolines (P3) of the genus Ctenomys found in the Neotropical 

region. 
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Figure 5. First two axes of principal component analysis (PCA) of the prolines groups 

(P1= black; P2= green and P3= yellow) and linear measurements of the rodent skull of 

the genus Ctenomys found in the Neotropical region. 
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Figure 6. Secondary structure analysis with Psipred tool showing the presumable 

influence of prolines in the sequence, disrupting an alpha helix by the insertion of coil 

portions in the middle of the structure. 
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Figure 7. Ctenomys lami skull in lateral and ventral views. Nose = anteroventral margin 

of orbit at lacrimal foramen to anterolateral margin of nasal bone; Face = anteroventral 

margin of orbit at lacrimal foramen to anterior premaxilla; CBL = distance from lateral-

most point of occipital condyle to anterior premaxilla; Oc-Pat = distance from lateral-

most point of occipital condyle to caudal margin of palate. 
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Supplementary material 

 

Appendix I 

 

Amino acid alignment of Runx2 showing the Q/A region with flanking sequence 

of the 36 specimens of the genus Ctenomys, found in the Neotropical region. Below are 

the 5 additional predicted sequences of Octodon degus derived from genomic projects 

used as external groups. 
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Appendix II 

 

Hierarchical clustering analyses looking for correlations among different species 

of Ctenomys in relation to studied dimension (Face and Nose measurements) obtained by 

the standardization of Oc-Pat and CBL for each skull. 
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Appendix III 

List of individuals used in this study, their populations, species and species groups 

(sensu Parada et al., 2011 in the case of Ctenomys), collection numbers and GenBank 

accession numbers. 

Individual Population Species Species group Collection 

No. 

Accession No. 

CA_06_01 Cáceres - MT C. nattereri boliviensis TR1429  

CA_07_02 Cáceres - MT C. nattereri boliviensis TR1430  

CA_08_03 Cáceres - MT C. nattereri boliviensis TR1431  

CA_09_04 Cáceres - MT C. nattereri boliviensis TR1432  

SP_77_04 Sapezal - MT C. nattereri boliviensis TR1871  

SP_78_05 Sapezal - MT C. nattereri boliviensis TR1872  

NO_50_11 Nova Olimpia - MT C. sp. xingu boliviensis TR1449  

NU1_31_01 Nova Ubiratã 1 - MT C. sp. xingu boliviensis TR1453  

NU1_32_02 Nova Ubiratã 1 - MT C. sp. xingu boliviensis TR1454  

NU1_33_03 Nova Ubiratã 1 - MT C. sp. xingu boliviensis TR1455  

NU2_56_05 Nova Ubiratã 2 - MT C. sp. xingu boliviensis TR1475  

FN_67_03 Feliz Natal - MT C. sp. xingu boliviensis TR1834  

NM_84_04 Nova Mutum - MT C. sp. central boliviensis TR1878  

PB_40_01 Pimenta Bueno - RO C. bicolor boliviensis TR1819  

PB_41_02 Pimenta Bueno - RO C. bicolor boliviensis TR1820  

PB_42_03 Pimenta Bueno - RO C. bicolor boliviensis TR1821  

TR906 Torquato Severo - RS C. torquatus torquatus TR906  

TR910 Torquato Severo - RS C. torquatus torquatus TR910  

TR1403 Dom Pedrito - RS C. torquatus torquatus TR1403  

TR1068 Manuel Viana - RS C. ibicuiensis torquatus TR1068  

TR1069 Manuel Viana - RS C. ibicuiensis torquatus TR1069  

TR1070 Manuel Viana - RS C. ibicuiensis torquatus TR1070  

TR344 Fazenda dos Freitas - RS C. lami torquatus TR344  
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TR202 Coxilha das Lombas -RS C. lami torquatus TR202  

TR30 Cidreira - RS C. flamarioni mendocinus TR30  

TR45 Praia do Barco - RS C. flamarioni mendocinus TR45  

TR65 Faz Caçapava e Taim - RS C. flamarioni mendocinus TR65  

TR203 Solidão - RS C. flamarioni mendocinus TR203  

TR 05 Jaguaruna C. minutus torquatus TR 05  

TR 35 Tramandai - RS C. minutus torquatus TR 35  

TR 38 Tramandai - RS C. minutus torquatus TR 38  

TR 41 Praia do Barco - RS C. minutus torquatus TR 41  

TR 46 Praia do Barco - RS C. minutus torquatus TR 46  

O. degus 

mRNA 1 - O. degus 

- - XM012515902 

O. degus 

mRNA 2 - O. degus 

- - XM012515909 

O. degus 

mRNA 4 

- O. degus - - XM012515913 

O. degus 

mRNA 5 

- O. degus - - XM012515918 

O. degus 

mRNA 6 

- O. degus - - XM012515919 

M. musculus 

mRNA 4 

- M. musculus - - NM001271627 
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Considerações finais 

A realização desse estudo foi importante para a avaliação de aspectos 

morfólógicos evolutivos de espécies do gênero Ctenomys. Ele forneceu evidencias de que 

houveram alterações (e.g. diferenças nos padrões e modularidade) ao longo do tempo, na 

morfologia das espécias aqui testadas. Logo, proporcionando novos resultados que são de 

fundamental importância para melhor compreensão do gênero. 

Quando foi verificada a correlação entre a morfologia do crânio e mandíbula, foi 

revelado que espécies com maior força de mordida geralmente habitam solos com maior 

densidade. A relação entre a força de mordida e a densidade do solo não mostrou-se clara, 

e houve baixa correlação geral para a maioria das espécies. A força de mordida 

geralmente foi associada com a forma do crânio (r=0,60). Também verificamos a 

ocorrência de espécies com força de mordida alta e baixa em solos mais densos e em solos 

com menor desidade apenas espécies com baixa força de mordida. A varição dos métodos 

de escavação (e.g. cinzel, membros posteriores e anteriores) (Hildebrand, 1985; 

Hildebrand, 1998, Stein, 2000), podem estar envolvidas com esse padrão. 

Ao avaliarmos e compararmos os padrões e magnitudes de integração morfológica 

em espécies morfologicamente diversas do gênero Ctenomys, decobrimos que não 

houveram mudanças significativas. A integração morfológica variou bastante entre os 

tuco-tucos, seguindo o padrão já encontrado para mamíferos (Porto et al., 2009). Boa 

parte da magnitude de integração pode ser atribuída a variação do tamanho. Quando 

investigamos a covariação dos valores de CR e a forma do crânio encontramos correlacão 

significativa apenas com dois módulos propostos para o crânio com o tamanho corrigido. 

As relações filogenéticas correlacionadas com os padrões de modularidade demonstram 

que possivelmente em conjunto com a evolução do grupo, também houve evolução da 

modularidade dos crânios. 

E por fim, quando foi explorada a relação entre o gene Runx 2 e o comprimento 

do crânio, não encontramos correlação entre ambos, resultado semelhante ao de Pointer 

(et. al., 2012). Também encontramos alterações nas repetições do gene, onde Glutaminas 

foram alteradas para Prolinas. O que possivelmente pode alterar a funcionalidade das 

proteínas desregulando a funcionalidade do gene (Mundlos et al., 1997; Otto et al., 2002; 

Hansen et al., 2011; Jaruga et al., 2016). Porém, não podemos afirmar que a substituição 

de Glutaminas por Prolinas tenha atuado interferindo no comprimento do crânio. 

Em síntese, está tese possui grande significância para melhor entendimento da 

morfologia do gênero Ctenomys. Este trabalho remete a novas perspectivas, onde: 1) 
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Verificar como o desenvolvimento muscular do crânio pode intervir na força de mordida 

e métodos de escavação, bem como, os diferentes métodos de escavação podem vir a 

intervir na força de mordida e morfologia; 2) Estudos futuros podem investigar como o 

ambiente e as relações filogenéticas interferem na mordularidade do crânio; 3) A avalição 

de outros genes relacionados ao crescimento/alongamento facial (e.g. genes Hox). 
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Manuscrito publicado no periódico Journal of Zoology 
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