
Universidade Federal do Rio Grande do Sul

Instituto de Física

Programa de Pós-Graduação em Física

Spin-orbit interactions of light

(Interações spin-orbitais da luz)

Claire Marie Cisowski

Tese realizada sob a orientação do Prof. Dr. Ricardo Rego
Bordalo Correia, co-orientada pelo Prof. Dr. Jandir M.
Hickmann e apresentada ao Programa de Pós-Graduação do
Instituto de Física da Universidade Federal do Rio Grande
do Sul para a obtenção do Título de Doutor em Ciências, na
Área de Física Experimental.

Porto Alegre, RS, Brazil
May 2019

Funding Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).



ABSTRACT

In the past decades, technological advances in the field of Optics have allowed to
explore electromagnetic fields with rich scalar and vectorial properties. Their study have challen-
ged our understanding of one of a fundamental property of light, namely, angular momentum. In
particular, higher-order-Laguerre-Gauss modes have revealed a new type of angular momentum,
different from the spin angular momentum carried by homogeneously polarized beams, called
orbital angular momentum. This discovery led to passionate discussions regarding the definition
of the "spin"and "orbital"parts of light and whether those quantities are independent. Recent
studies have indicated that, under special circumstances, spin angular momentum can be conver-
ted into orbital angular momentum, shedding light on spin-orbit coupling of light. A general
theoretical framework to describe spin-orbit interactions of light is being developed, bringing in
a new perspective about the geometric and topological properties of light.

This thesis aims at providing an overview of our current understanding of spin-orbit
interactions of light and presents a few original studies to illustrate some of those aspects.

I will first discuss how the spin and orbital parts of light are defined, using both
the symmetric energy momentum-based method and the gauge-invariant canonical approach,
highlighting the differences and similarities of the two approaches. A brief practical description of
beams carrying spin and orbital angular momentum will also be provided. Spin-orbit interactions
of light will be introduced by studying how beams of light transform, both from an algebraic
and a geometric perspective. It will be shown that specific transformations cause the wave-
function to acquire a so-called "geometric phase". Geometric phases will be defined within the
mathematical framework of fibre bundle theory, which emphasises the role of the underlying
space properties and allows to draw some analogies between optical systems and other physical
systems. Spin-orbit interactions of light will be interpreted in terms of geometric phases. I
will review spin-orbit interactions driven by i) the evolution of the parameters describing the
optical system ii) the evolution of the states describing the optical system iii) the introduction of
correction terms in the equation of motion of the beam centroid.

Two original studies will then be presented. The first one evidences orbit-orbit inte-
ractions in a pair of complementary asymmetric beams, obtained upon wavefront division of
a cylindrical Laguerre-Gauss beam by a Fresnel Biprism. Both experimental and numerical
results reveal angular deviations from geometric expectations, dependent on the incident beam
topological charge. The second study is concerned with the transformation of the orbital angular
momentum content of an optical beam propagating in a vertical gradient of refractive index. Pre-
liminary results indicate the smooth inversion of the beam topological charge, accompanied by
astigmatic changes. In addition to these works, a few illustrative short studies will be presented
through this thesis, namely, spin-to-orbit conversion in an air nanoring on a metallic substrate, a
practical visualisation of the orthogonality condition in vector vortex beams and a study of the
interaction of a pair of vortex cores in a diffracting beam.



RESUMO

Nas décadas passadas, avanços tecnológicos na área da ótica permitiram estudos de
campos eletromagnéticos com grandes variações das propriedades escalares e vetoriais. Os
estudos destes campos desafiaram a nossa compreensão de uma das propriedades fundamentais
da luz, a saber, o momento angular. Modos Laguerre-Gauss de ordens superiores, em particular,
revelaram um novo tipo de momento angular, diferente do momento angular de spin carac-
terístico de feixes homogeneamente polarizados, chamado de momento angular orbital. Esta
descoberta levou a discussões sobre a definição das partes do momento angular orbital e de
spin da luz e sobre a independência destas quantidades. Estudos recentes indicaram que, em
determinadas circunstâncias, o momento angular de spin é convertido em momento angular
orbital, evidenciando o acoplamento spin-órbita da luz. Um quadro teórico geral está sendo
desenvolvido para descrever as interações spin-órbita da luz, trazendo uma nova perspectiva
sobre as propriedades geométricas e topológicas da luz.

Esta tese visa fornecer uma visão geral da nossa compreensão atual das interações
spin-orbitais da luz e apresenta alguns estudos originais para ilustrar alguns destes aspectos.

Primeiramente, irei discutir como o spin e a parte orbital da luz são definidos, usando
tanto o método baseado no momento simétrico quanto a abordagem da invariância canônica de
Gauge, destacando as diferenças e as semelhanças das duas abordagens. Uma breve descrição de
feixes carregando momento angular de spin e momento angular orbital também será fornecida.
Interações spin-orbitais da luz serão introduzidas estudando como os feixes de luz se transformam,
tanto de uma perspectiva algébrica quanto geométrica. Será mostrado que transformações
específicas fazem com que a função de onda adquira a chamada "fase geométrica". As fases
geométricas serão definidas dentro da estrutura matemática da teoria de fibras que enfatiza o
papel das propriedades do espaço subjacente e permite desenhar algumas analogias entre os
sistemas óticos e outros sistemas físicos. Interações spin-orbitais da luz serão interpretadas em
termos de fases geométricas. Serão revistas as interações spin-órbita causadas i) pela evolução
dos parâmetros que descrevem o sistema ótico, ii) pela evolução dos estados iii) e pela introdução
de termos de correção na equação de movimento da centroide de feixe.

Dois estudos originais serão apresentados. O primeiro evidencia interações órbita-
órbita em um par de feixes assimétricos complementares, obtido na divisão da frente de onda de
um feixe de Laguerre-Gauss cilíndrico por um Biprisma de Fresnel. Os resultados revelaram
desvios angulares dependentes da carga topológica quando comparado com as expectativas
geométricas. O segundo estudo está dedicado à transformação do momento angular orbital de um
feixe ótico propagando em um gradiente vertical de índice de refração. Resultados preliminares
indicam uma inversão da carga topológica do feixe propagado e mudanças astigmáticas. Além
desses trabalhos, alguns breves estudos serão apresentados, tais como conversão spin-órbita em
uma nano anel de ar em um substrato metálico, um estudo da condição de ortogonalidade em
modos vetoriais e um estudo da interação de um par de vórtices em um feixe difratado.



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Dr. Ricardo R. B.
Correia, for his continuous support and for giving me the chance to pursue a career in optics, he
has truly been an outstanding mentor. I will also be forever grateful to Prof. J. M. Hickmann for
introducing me to the world of structured light. I would like to thank J. R. Schoffen, Prof. Dr. C.
Bonatto, Prof. Dr. S. D. Prado and Prof. Dr. G. G. Martinez Pino for our insightful discussions
and for your support. I am also thankful to the committee members, for dedicating some of their
time and effort in evaluating this work.

To my high school teachers Mrs Canet for sharing your passion for physics and to Mrs
Such for pushing me to improve my English when all hope seemed lost, I am deeply grateful.

To my friends and colleagues from the laboratory, Vinicius, Amanda, Klester, Hem-
merson, Eliasibe, Janine, Guilherme, Magnus, Gabriel, Henrique, Wesley and Erico, for sharing
our experimental misadventures and celebrating our victories, I wish you a bright future in
academia and happiness in your lives, you have made those years exceptional. To Boris and
Marion, my friends from France, thank you for always being there for me despite the distance.

To my french family, for their love and encouragements, for travelling such a long
distance to visit me, sending care packages and for buying a lot of cheese when I visited them.
To my grandfathers, who would have been proud to see me going this far in academia. To my
new Brazilian family, who welcomed me with warmth. To my husband Henrique, this thesis
would not exist without you, I cannot say how fortunate I am to have you by my side.

4



CONTENTS

Momentum in electromagnetism, four-hundred years on 1

The spin and orbital parts of l ight , some fundamentals 4

1.1 Defining angular momentum through rotations 4

1.1.1 Field transformations and Noether’s theorem 4

1.1.2 The operator formalism 5

1.2 Alternative theoretical frameworks 6

1.2.1 Momentum issued from a symmetric energy-momentum tensor 7

1.2.2 The canonical spin and orbital densities, re-visited 8

1.2.3 Complementary remarks 11

1.3 Practical considerations 12

1.3.1 Beams with helical wavefronts and polarized light 12

1.3.2 The special case of inhomogeneously polarized beams 15

Spin-orbit interactions of l ight 18

2.1 Representation and transformation of light beams 18

2.1.1 Quantum states of light 18

2.1.2 Introduction to geometric phases 23

2.2 Angular momentum conversion, a geometric perspective 29

2.2.1 An optical counterpart for the Berry phase 29

2.2.2 State space transformations of light 33

2.2.3 Dynamical effects associated with the quantum fibre bundle 41

Invest igating orbit-orbit interactions upon symmetry breaking 46

3.1 Wavefront splitting based on a Fresnel Biprism 46

3.1.1 Motivation 46

3.1.2 Generation, characterization and splitting of a Laguerre-Gauss beam 47

3.1.3 Orbit-orbit interactions: experimental and numerical studies 54

3.1.4 Results and discussion 56

3.2 Astigmatism in a vertical gradient of refractive index 61

3.2.1 Motivation 61

3.2.2 Realisation and probing of a Vertical gradient of refractive index 62

3.2.3 Numerical ray tracing 65

3.2.4 Results and discussion 68



Conclusions 72

Bibl iography 74

Appendix 1: Interference between vector vortex beams. 91

Appendix 2: SAM to OAM conversion by a nanoring aperture. 92

Appendix: Splitt ing an optical vortex beam to study orbit-orbit inter-
act ions. 93

Appendix 4: Dynamics of a double optical vortex beam. 97



LIST OF FIGURES

1 Spin and Orbital angular momentum of a paraxial optical beam. . . . . . . . . 12
2 Wavefront, phase and intensity distributions of a Gaussian beam and beams with

helical wavefronts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Polarization distributions in the transverse plane of a. an homogeneously, ellipti-

cally polarized beam, b. a vector beam, c. a Poincaré beam. . . . . . . . . . . . 16
4 The Bloch sphere representation of a qubit system . . . . . . . . . . . . . . . . 20
5 The Poincaré sphere representation for polarization states . . . . . . . . . . . . 22
6 The Bloch sphere representation for OAM-carrying beams and inhomogeneously

polarized beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 Examples of trivial and non-trivial fibre bundles: a cylinder fibre bundle and a

Möbius strip fibre bundle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 Anholonomy of a fibre bundle issued from a deformable body constrained to

rotate at some point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9 Geometrical classical anholonomy acquired upon parallel transport of a unit

vector on a sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10 Classical topological anholonomy acquired upon parallel transport of a vector

on the surface of a Möbius strip. . . . . . . . . . . . . . . . . . . . . . . . . . 27
11 Rytov-Vladimirskii phase in a gradient index-medium. . . . . . . . . . . . . . 31
12 Rotation of the beam polarization state, driven by wavevector variations, repre-

sented on the Poincaré sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
13 Formation of an opened path on the Poincaré sphere. . . . . . . . . . . . . . . 35
14 Polarization transformations caused by a q-plate, represented on the Poincaré

sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
15 Evolution of individual wavevector component of a paraxial electromagnetic

field, when focused by a high aperture lens. . . . . . . . . . . . . . . . . . . . 41
16 Schematic spin splitting of the RH and LH circularly polarized components of

an electromagnetic beam propagating along an helical trajectory in a smooth
inhomogeneous media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

17 Schematic description of an electrically addressed reflective spatial light modu-
lator based on liquid crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

18 Formation of a fork diffraction hologram for LG beams of unit topological charge. 49
19 Generation of OAM-carrying beam from a reflection SLM. . . . . . . . . . . . 50
20 Intensity distributions of the first-order diffracted beams for a fork grating

dislocation of topological charge `= +1,+2,+3. . . . . . . . . . . . . . . . . 50
21 Far field Intensity distributions of a beam carrying OAM by a triangular slit and

a rectangular slit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



22 Intensity distributions near the focal plane of a tilted convex lens for incident
beams of different topological charges. . . . . . . . . . . . . . . . . . . . . . . 52

23 Interference pattern of a plane wave and a Gaussian beam embedded with a pair
of optical vortex cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

24 Schematic representation of wavefront splitting by a Fresnel Biprism . . . . . . 53
25 Experimental and numerical intensity distributions of complementary beams

parts, issued from an initial circular LG beam, split by a Fresnel biprism, at a
propagation distance z12 = 60cm. . . . . . . . . . . . . . . . . . . . . . . . . 57

26 Spatial evolution of modified LG beam with an asymmetric defect. . . . . . . . 58
27 Angular deviations of complementary beam parts of an initially symmetric LG

beam, split by a Fresnel Biprism. . . . . . . . . . . . . . . . . . . . . . . . . . 59
28 Experimental and analytical angular deviations for an incident circular LG beam

of topological charge `= −1. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
29 Interference pattern between each beam part, for a beam topological charge `= 1. 61
30 Beam reflection in a solution of distilled water and commercial ethanol. . . . . 63
31 Experimental setup for probing a vertical gradient of refractive index with an

optical vortex beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
32 The Bloch sphere representation of a qubit system . . . . . . . . . . . . . . . . 65
33 Ray trajectories in a binary solution of distilled water and ethanol for times

corresponding to a thin (t = 15 mn) and broader (t = 4 hours) mixing layer. . . 66
34 Ray trajectories in a binary solution of distilled water and ethanol for a series of

rays of different incidence height. . . . . . . . . . . . . . . . . . . . . . . . . 66
35 Translation of the focus plane in a binary solution of distilled water and ethanol

for a series of rays for different incidence height. . . . . . . . . . . . . . . . . 67
36 Intensity distributions of OAM-carrying beams, when exiting an inhomogeneous

binary solution of distilled water and ethanol. . . . . . . . . . . . . . . . . . . 68
37 Intensity distributions for an increasing propagation distance. . . . . . . . . . . 69
38 Intensity distributions near the focal plane of a tilted lens for a full inverted beam

and a full normal beam exiting a nonuniform solution of ethanol and distilled
water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

39 Intensity distribution at the exit of the cylindrical cell for a VGRIN and incidence
conditions leading to the formation of two consecutive TIR . . . . . . . . . . . 71

40 Intensity, phase and electric vector distribution at a propagation distance of 2µm
after a nano aperture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



LIST OF ABBREVIATIONS

CV
EOAM
HG
LG
LH
OAM
OHE
OV
PB
PBOE
RH
SAM
SHE
SLM
SOI
TIR
VGRIN

Cylindrical Vector
Extrinsic Orbital Angular Momentum
Hermite-Gaussian
Laguerre-Gaussian
Left-Handed
Orbital Angular Momentum
Orbital Hall Effect
Optical Vortex
Pancharatnam-Berry
Pancharatnam–Berry Optical Elements
Right-Handed
Spin Angular Momentum
Spin Hall Effect
Spatial Light Modulator
Spin Orbit Interactions
Total Internal Reflection
Vertical Gradient of Refractive Index



INTRODUCTION

MOMENTUM IN ELECTROMAGNETISM, FOUR-HUNDRED YEARS ON

In 1619, J. Kepler, in his work De cometis libelli tres, argued that light corpuscles can
exert pressure causing the tail of comets to point away from the sun [1]. This event marked the
beginning of four-hundred years of research dedicated to the momentum of light. Formulated
during the corpuscular and wave controversy, Kepler’s interpretation in terms of corpuscles was
challenged by many [2] until J. C. Maxwell established that light is an electromagnetic wave
[3]. J. H. Poynting [4], J. J. Thomson [5] and H. Poincaré [6] further developed Maxwell’s work
by adding the notions of energy fluxes and momentum densities, hereby evidencing that the
linear momentum of electromagnetic waves is at the origin of radiation pressure. Radiation
pressure being significantly weak, it is only in the early 1900s that the theory was validated by
the experimental works of P. Lebedev, E.F. Nichols and G.F. Hull [7, 8].

Shortly after the existence of the linear momentum of light was established, J. H.
Poynting, relying on mechanical analogies, argued that electromagnetic waves could also carry
angular momentum in an amount of σ~ per photon, with ~ being Plank’s constant and σ being the
photon’s helicity [9]. Helicity being the projection of the spin pseudo vector onto the momentum
vector, this momentum is known as Spin Angular Momentum (SAM). SAM can be associated
with the polarization state of light beams and was measured by R. Beth in 1936 [10]. In 1932, C.
Darwin, the grandson of the famous naturalist, speculated on the existence of another type of
electromagnetic angular momentum, independent of SAM [11]. However, it is only recently, in
the 1990s, that light was shed on the orbital angular momentum (OAM) of light, through the
works of E. Abramochkin and V. Volostnikov [12] and L. Allen et al. [13]. Their experimental
works showed that Laguerre-Gauss (LG) modes can be obtained from Hermitte-Gauss modes
and that beams possessing helical wavefronts, like LG beams, do carry OAM.

While experimental works in the field of micro-manipulation indicate that SAM and
OAM can manifest independently [14], it appears that both quantities can become coupled in the
non-paraxial regime [15] and in the paraxial regime under specific circumstances [16]. From a
macroscopic perspective, spin-orbit interactions (SOI) of light encompass interactions between
SAM, OAM and extrinsic orbital angular momentum (EOAM), the later being related to the
beam trajectory. Spin-orbit interactions of light is a recent research topic, a theoretical framework
is being developed, and some fundamental aspects such as the separation of angular momentum
into a spin and orbital part are being debated [17–19].

Throughout history, successive discoveries have disclosed new levels of complexity
regarding the momentum of light. SOI appear to be the most recent feature to explore.

This thesis aims at providing an overview of our current understanding of SOI of light
and presents two original experimental works dedicated to these phenomena.
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Prior to studying the interactions between SAM, OAM and EOAM, it is necessary to
define these quantities. This task is of paramount importance to establish a solid background to
our study and is particularly relevant since many aspects regarding the spin and orbital parts of
light are being actively discussed. Two main approaches have been proposed to define physically
meaningful SAM and OAM, thus, it is essential to establish under which circumstances these
approaches are equivalent, what are their limitations and what are the implications of choosing
one approach over the other. Given the richness of the subject, the first chapter of this thesis will
entirely be dedicated to answering these questions. A few practical aspects regarding beams
carrying SAM, OAM and EOAM will also be reviewed, intended to readers unfamiliar with
structured light.

Once SAM, OAM and EOAM have been defined, I will introduce SOI of light by
studying the transformation of light beams, both from an algebraic and a geometric perspective.
This will naturally lead to the introduction of geometric phases, which, as it will be demonstrated,
can be used to interpret SOI of light. In this thesis, I chose to highlight the geometric nature of
SOI of light by complementing the review of K. Bliokh et al. [16] with an overview of fibre
bundle theory, in order to provide some insight on the nature of geometric phases and clarify the
role of the connection and its curvature, both concepts being issued from the formalism of fibre
bundle theory and now encountered in the optics literature [20, 21]. This approach is particularly
interesting in order to draw analogies with other physical systems [22].

Having provided a general framework for SOI of light, two original studies dedicated
to interactions between OAM and EOAM will be presented. Orbit-orbit interactions have been
significantly less studied than their spin-orbit counterparts and present unique features notably
because, unlike spin angular momentum, the amount of orbital angular momentum carried by
a beam is not restricted to ±~. So far, orbit-orbit interactions have been studied mainly upon
symmetry breaking of a beam carrying OAM arising at the sharp interface between two media
[23], in a smooth inhomogeneous isotropic medium [21], and by considering a tilted observation
plane with respect to the beam propagation direction [24]. In this thesis, we propose, for the first
time, to investigate orbit-orbit interactions induced by symmetry breaking using a Fresnel biprism
and upon propagation in a vertical gradient of refractive index, respectively. Both experimental
and numerical results will be presented for each study.

Unlike experimental set-ups using a mask or a screen to break the symmetry of an
incident beam, a Fresnel biprism carries out wavefront division without losing information
contained in the screened beam part, as two complementary beam parts are available for analysis.
This opens new perspectives regarding the study of beams carrying orbital angular momentum,
notably, this configuration increases the precision of orbit-dependent deflection measurements.

Regarding orbit-orbit interactions in an inhomogeneous media, so far, beams carrying
OAM have mainly been studied in inhomogeneous media preserving a form of cylindrical
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symmetry. It is the first time, to my knowledge, that the transformation of OAM-carrying
beams in a vertical gradient of refractive index is investigated. Our study is based on a cost-
effective, versatile experimental set-up consisting of a binary solution of distilled water and
ethanol, allowing to explore different distributions of refractive index and opening the possibility
to introduce optically active particles for future experiments. While at sharp interfaces, total
internal reflection occurs abruptly, here, this phenomenon occurs smoothly, which is particularly
interesting to study topological inversion of OAM-carrying beams.
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CHAPTER 1

THE SPIN AND ORBITAL PARTS OF LIGHT, SOME FUNDAMENTALS

Behind the definition of photonic spin-orbit interactions lays a fundamental question,
of apparent simplicity, namely, what are the spin part and orbital part of light? This is question
deserves special attention and will be addressed in this chapter. It will be shown that despite
their straightforward derivation, the spin and orbital parts of light issued from Noether’s theorem
present some unexpected features challenging their interpretation as physical, observable quanti-
ties. Two main approaches are currently used to obtain physically meaningful quantities, one
defining a new angular momentum density, which is then split into new spin and orbital densities,
and the second one offering either to modify or to reinterpret Noether’s spin and orbital densities.
Both approaches will be reviewed. A few aspects of practical interest regarding light beams
carrying SAM and OAM will also be presented at the end of the chapter.

1 .1 DEFINING ANGULAR MOMENTUM THROUGH ROTATIONS

A natural approach for determining the spin and orbital part of light consists of studying
field transformations and seeking entities that rotate the directions of the vector field for the spin
part, and rotate the field spatial distribution for the orbit part. This is possible by examining
Noether’s theorem, as demonstrated in what follows.

1.1.1 Field transformations and Noether’s theorem

In 1918, E. Noether changed the face of algebra by establishing that the symmetries
of a physical system provide conservation laws for fundamental physical quantities [25]. For
instance, in point mechanics, the invariance of the action of the system under time translations,
spatial translations and spatial rotations provides a conservation law for energy, linear momentum
and angular momentum, respectively. Similarly, for free electromagnetic fields, assuming a
Minkowski space-time, space-time translations define a canonical energy-momentum tensor Θαβ

and rotations define a rank-3 angular momentum tensor Jαβγ , with α and β being spatiotemporal
coordinates. The energy-momentum tensor defines the familiar canonical 4-vector momentum
density Pα= Θ0α= (W,Pi), with W and Pi being the field energy density and canonical linear
momentum density, respectively, with i denoting spatial coordinates [26].

In the framework of wave optics, where light is described by a scalar wave, the
energy-momentum tensor is symmetric and angular momentum consists solely of orbital angular
momentum (OAM). Accounting for the vectorial nature of electromagnetic waves causes the
canonical energy-momentum tensor to become asymmetric [26], which appears inconsistent
with Einstein’s symmetric curvature tensor. The angular momentum tensor of a vector field
comprises a spin angular momentum (SAM) part in addition to the OAM part such that Jαβγ =
Sαβγ + Lαβγ , where the orbital part is obtained from the canonical energy momentum tensor
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Lαβγ = rαΘβγ − rβΘαγ and where the spin part reflects the vectorial nature of the field [26].
The SAM and OAM spatial densities S and L of a vector field are given by the pseudo-vectors
Si= (EijkSjk0)/2 and Li= (EijkLjk0)/2 with Eaij being the Levi-Civita pseudo-tensor. In what
follows, the index i is omitted for clarity. For fields of finite spatial extension, the angular
momentum densities can be spatially integrated to give macroscopic (total) SAM and OAM. The
canonical spin and orbital densities of a free electromagnetic field can be expressed as [27]:

S = E× A, and L = r× P = E · (r×∇)A (1.1)

Where ε0 =µ0 = c= 1 has been assumed for clarity and the spatial part of the canonical linear
momentum density is P = E · (∇)A. Here, A is the magnetic vector potential and E is the electric
field. The curl of the magnetic vector potential is equal to the magnetic field vector and defines
the transverse 1 component of A. The longitudinal component of A is unspecified and can be set
to zero using the Coulomb gauge. This is an important aspect and we shall come back to it later.

In equation (1.1), L and S have an explicitly dependence on A, indicating they are
gauge-dependent, i.e, non-observable. This feature, in addition to the fact that the canonical
energy momentum tensor is non-symmetrical, cause the canonical spin and orbital momentum
densities issued from Noether’s theorem to appear non-physical. Experimental works however,
have evidenced qualitatively different transfers of SAM and OAM from electromagnetic fields to
small trapped particles, OAM causing a particle to orbit about the beam axis and SAM causing
the particle to spin about its centre of mass [14]. Thus, a theoretical framework in which the
SAM and OAM densities correspond to separate, physical entities should, in principle, exist.

Difficulties to provide a theoretical framework for the spin and orbital parts of light
issued from Noether’s theorem go beyond the classical framework, as it will now be demonstrated.

1.1.2 The operator formalism

In the first quantization, dynamical variables acting on the classical electromagnetic
fields are expressed as operators acting on the photon wavefunction, represented in momentum
space 2 [28]. Following Noether’s theorem, momentum operators are defined as generators of
the Poincaré group and must obey the commutation relations proper to that group. The total
canonical angular momentum operator is written as [29]:

Ĵ = L̂ + Ŝ (1.2)

With L̂ and Ŝ being the canonical OAM and SAM operator, respectively, acting on the classical
field modes, and can be expressed as [29] 3:

L̂ = r̂× P̂, and (Ŝa)i,j =−iEaij (1.3)

1 The adjectives "transverse" and "longitudinal" are defined in relation to the mean wavevector.
2 The momentum-space representation avoids ambiguities related to the non-locality of the position operator in

the coordinate representation.
3 In reciprocal (Fourier) space.
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With Eijk being the Levi-Civita pseudo-tensor, r̂ being the position operator r̂ = i ∂k and P̂ being
the linear momentum operator with P̂ = k where k represents the wavevector [15] 4. Macroscopic
linear momentum and angular momentum are obtained from the expectation values of the
respective operators in the state associated with the field. The angular momentum operator Ĵ
generates rotations of the whole field in agreement with Maxwell’s transversality condition for
freely propagating beams ∇ · E =∇ · B = 0 and ∂tE =∇× B, i.e, the field Fourier-components
are orthogonal to the wavevector. The operators L̂ and Ŝ satisfy the SO(3) algebra and obey the
commutation relations of the Poincaré group. As expected, the operator Ŝ for a spin 1 particle
generates rotations of directions of the vector fields whereas L̂ generates rotations of the field
spatial distribution. However, in general, Ŝ and L̂ do not preserve the field transversality [29].

The transversality condition is nevertheless respected in the case of paraxial beams.
The paraxial approximation establishes that, for a beam propagating in the z direction with
complex amplitude U(r) = u(r) exp(ikz), the z-derivative of the complex envelope u(r), being
a slowly-varying function of z, is such that | ∂2u(r)

∂z2 |<<|k ∂u(r)
∂z |, |

∂2u(r)
∂x2 |, | ∂

2u(r)
∂y2 |. The paraxial

Helmholtz equation can be written as:

(∇2
⊥ + 2ik ∂

∂z
)u(r)≈0 (1.4)

With∇2
⊥ being the transverse part of the Laplacian. Remarkably, equation (1.4) is analogous to

the Schrödinger equation of a two-dimensional harmonic oscillator, the z coordinate replacing
the time variable [30]. In paraxial beams, L̂ and Ŝ yield OAM and SAM, respectively. A
circularly polarized, paraxial beam with a helical phase distribution, propagating in the z-
direction, carries both OAM and SAM and is an approximate eigenmode of the operators
P̂z, L̂z, Ŝz with eigenvalues k, ,̀ σ. Here, σ is the beam helicity and takes values ±1, it is a
pseudoscalar corresponding to the projection of the spin pseudovector upon the propagation
direction, the sign discriminating parallel from anti-parallel projections. ` is an integer accounting
for the number of twists the wave-front performs per unit wavelength [19, 31] 5.

The major issue encountered in the quantum description of SAM and OAM described
above is thus the non-respect of Maxwell’s transversality condition in the case of general fields.

1 .2 ALTERNATIVE THEORETICAL FRAMEWORKS

In the literature, two main approaches propose to define physically meaningful spin
and orbital parts of light. The first one redefines linear momentum, departing from a symmetric
energy momentum tensor and deduces a spin an orbital part from this new quantity. The second
approach directly modifies Noether’s canonical spin and orbital quantities.

4 Where ~=1 has been assumed
5 Fractional values of `do not correspond to eigenvalues, it is argued that they contain discontinuities destroying

the rotational symmetry [32]
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1.2.1 Momentum issued from a symmetric energy-momentum tensor

To obtain physically meaningful spin and orbital momentum densities, one approach
consists of constructing a symmetric energy–momentum tensor, hereby redefining a new linear
momentum density and new spin and orbital momentum densities. This approach, known as the
Belinfante-Rosenfeld approach, is largely taught [33, 34].

The symmetric energy–momentum tensor is constructed from the canonical energy-
momentum tensor according to Tα,β = Θα,β + ∂γKαβγ where Kαβγ is built from the spin tensor
Sαβγ [27]. This defines a 4-vector momentum density, different from the canonical one, which can
be expressed as Pα= T0α= (W,PPoy) where the field linear momentum is defined as PPoy =π.
Here, π is the well-known, gauge-invariant, Poynting vector π= (E × B) 6. In the following,
quantities issued from the symmetric energy–momentum tensor are labelled with the subscript

Poy. The new linear momentum and angular momentum densities can be expressed as:

PPoy = E× B and JPoy = r× PPoy = r× (E× B) (1.5)

With E and B being the electric field and the magnetic field vector, E(r, t) and B(r, t). r is the
particle position, defined in relation to the origin. An apparent issue with equation (1.5) is that,
for purely transverse plane waves, the linear momentum density PPoy is longitudinal, turning the
angular momentum density null. In reality, optical fields have a finite spatial extent, causing the
linear momentum density to acquire a transverse component and to have non null momentum
density, i.e, the wave can carry angular momentum.

Now let us examine how the separation into a spin and orbital part is carried out in this
case. Let be a monochromatic field of frequency ω propagating in the z-direction. The linear
momentum density, averaged over an oscillation period 2π/ω is PPoy = Re(E∗ × B). Using
Maxwell’s condition iωB =∇ × E, the total linear momentum of the field, averaged over an
oscillation period can be written as [35]:

PPoy,tot = 1
2iω

∫
d3r Im(E∗ × (∇× E)) (1.6)

The corresponding total angular momentum can be expressed as:

JPoy,tot = 1
2iω

∫
d3r Im(r× (E∗ × (∇× E))) (1.7)

For a field vanishing quickly at | r |→∞:

PPoy,tot = 1
2iω

∫
d3r

∑
j=x,y,z

E∗j∇Ej (1.8)

The total angular momentum of a field of finite spatial extension is, respectively:

JPoy,tot = 1
2iω

∫
d3r

∑
j=x,y,z

E∗j(r ×∇)Ej + 1
2iω

∫
d3r E∗ × E (1.9)

6 Once more, ε0 =µ0 =c=1 has been assumed
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Finally, the longitudinal component of the total angular momentum can be expressed as [35]:

JPoy,tot,z = 1
2iω

∫∫
dxdy r× (E∗ × (∇× E))

= 1
2iω

∫∫
dxdy

∑
j=x,y,z

E∗j
∂

∂φ
Ej + (E∗xEy − E∗yEx)−

∑
j=x,y,z

E∗j
∂

∂xj
(xEy − yEx)

(1.10)

For a paraxial, circularly polarized, helical beam propagating in the z-direction, OAM and
SAM are associated with the first and second term of equation (1.10) as the first term exhibits a
dependence on ` and the second on σ. In this approach, the OAM and SAM densities can be
thought as the angular momentum densities issued from an "orbit" part and a "spin" part of the
linear momentum density, PPoy,o and PPoy,s, according to JPoy,o(s) = r× PPoy,o(s).

The Poynting vector representing a directional energy flow, it is natural that, in this
framework, the spin and orbital parts of the linear momentum density are often interpreted in
terms of energy flows. The spin part of the linear momentum density arises from "the optical-
frequency rotation of the instant field vectors at every location in the beam cross section" [36]
and is related to the spatial distribution of the third Stokes parameter 7 while the orbit part arises
from the "rotational behaviour of the instant field distribution around the beam axis" and orbital
flow lines are orthogonal to the contours of constant phase [36].

In the nonparaxial limit, the clear separation between OAM and SAM in equation
(1.10) no longer holds, the first term depending on both ` and σ [35]. S. M. Barnett et. al.
proposed to re-establish a clear separation relying on optical and AM flux formulation [37].
However, K. Bliokh et al. [15], relying on the Fourier decomposition of the fields, argued that,
for non-paraxial fields, AM cannot be split into a spin part, related to polarization, and an orbital
part, related to the wave phase distribution, as spin-orbit coupling terms prevent this separation.

The symmetric energy-momentum-based approach is not the only approach that has
been proposed to obtain physically meaningful SAM and OAM densities in the paraxial limit.
Another approach proposes to further examine the canonical densities and will now be reviewed.

1.2.2 The canonical spin and orbital densities, re-visited

To address the gauge-invariance issue of E. Noether’s canonical SAM and OAM
densities, the vector potential can be decomposed as A = A‖ + A⊥ according to Helmholz’ de-
composition, with∇×A‖= 0 and∇·A⊥= 0. Gauge transformations only affect the longitudinal
part [38], therefore, gauge-invariant quantities can be obtained by using only the transverse part
of the vector potential to define the SAM and OAM densities [39]:

Sgic = E× A⊥ and Lgic =
∑
i

Ei(r×∇)Ai
⊥ (1.11)

This approach is equivalent to an another approach, which consists of choosing to use the
Coulomb gauge. The gic subscript labels gauge-invariant canonical quantities.

7 The spin flow was represented by a cell model in the transverse plane by A. Bekshaev et al. [36]
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While the gauge-invariance issue is apparently solved, the SAM and OAM densities in
equation (1.11) are now Lorentz-covariant, which also appears non-physical. However, it has
been argued that Lorentz-covariance may not be essential [40]. Indeed, in practice, measuring
momentum densities implies choosing a reference frame, where the probe performing the measure
is at rest. Also, the majority of optical applications involves monochromatic electromagnetic
waves, which also require to single out a reference frame to be well-defined. Note that the total
SAM and OAM obtained upon spatial integration of Sgic and Lgic are well-defined, separately
conserved, and can be calculated in any reference frame.

Let us further examine the corresponding spin and canonical densities. For a monochro-
matic field in the Coulomb gauge, A(r) =−iω−1E(r). The SAM, linear momentum and OAM
densities, averaged over an oscillation period, are defined as [27]

Sgic = 1
2ω Im(E∗ × E), Pgic = 1

2ω Im(E∗ · (∇)E), and Lgic = r× Pgic (1.12)

For a paraxial, circularly polarized, helical vortex beam propagating in the z-direction, both
the linear momentum density Pgic and OAM density Lgic have an azimuthal and a longitudinal
component [41]. The spin density is longitudinal and depends on the beam helicity [41]. The
OAM density is extrinsic and the spin density intrinsic. The adjectives extrinsic and intrinsic
indicate that a quantity is dependent, or independent, from the definition of the origin, respectively.
Note that a transverse, helicity independent SAM density has been reported in structured optical
fields, such as evanescent waves or focused beams [41].

The total linear momentum, OAM and SAM of a paraxial beam, are obtained by spatial
integration of the respective densities over the beam transverse cross-section. Upon spatial
integration, we find that the total OAM has become intrinsic and longitudinal. The total linear
momentum, OAM and SAM of the field can be expressed as Pgic,tot∝kav, Lgic,tot∝ (̀kav/k)
and Sgic,tot∝σ(kav/k) with kav∝k~z being the mean wavevector. The subscript av labels mean
quantities. Consequently, for paraxials fields, we recover the correspondence of helicity and the
beam topological charge with SAM and OAM, respectively.

Intrinsic OAM, as defined above, corresponds to the amount of OAM calculated with
respect to the field centroid. A transverse, macroscopic, extrinsic orbital angular momentum
(EOAM) can be imparted to the beam by considering a shift of the beam centroid 8 in the
transverse plane. In this case, EOAM is expressed as Ltot,ext = rav × Ptot where rav is the beam
mean position [41]. EOAM is determined by the beam position and direction of propagation,
which is why EOAM is related to the beam trajectory.

Similar results are obtained within the symmetric energy-momentum tensor approach,
namely, intrinsic, longitudinal SAM and intrinsic, longitudinal OAM for paraxial beams. Also,

8 The field centroid may be defined considering coordinates weighted with either the energy density, the
energy-flux density, or the photon-number density. All coincide for paraxial monochromatic beams [41].
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IOAM can be introduced in a similar way that the one described directly above.

Like in the symmetric energy-tensor approach, the proportionality of the longitudinal
components of total SAM and OAM to the polarization helicity and the vortex charge, respec-
tively, is valid in the paraxial approximation only. In non-paraxial beams, the OAM term presents
and additional helicity-dependent term [15].

From a quantum perspective, S. J. Van Enk and G. Nienhuis applied the second
quantization, where the fields are represented by quantum operators acting on the photons
Fock states, on Sgic and Lgic [29]. They obtained operators consistent with the transversality
condition, however, the operators possess commutation relations different from the SO(3) algebra,
indicating that they do not correspond to genuine SAM and OAM operators. The eigenvalues
of Ŝgic,z and L̂gic,z are, in general, continuous but become approximately integers multiples of
~ for paraxial fields [31]. In the first quantization, K. Bliokh et al. added spin-orbit correction
terms to the gauge-dependent canonical operators Ŝ and L̂ [15]. The so-obtained operators are in
agreement with the transversality condition, however, they also do not satisfy the SO(3) algebra
and present the same commutation relations as the ones of S. J. Van Enk and G. Nienhuis.

The gauge-invariant canonical and the symmetric energy-momentum tensor approach
appear to be equivalent regarding various aspects. The symmetric energy-momentum tensor
being built from the spin tensor, it is natural that, in the scalar approximation, PPoy = Pgic. Also,
generally, the macroscopic quantities JPoy,tot and Jgic,tot differ by surface terms at infinity and
are equal for fields vanishing at infinity, which is often the case experimentally [17].

The major difference between the two approaches is that locally, the densities SPoy,z

and Sgic,z remain dramatically different and cannot be both simultaneously correct. E. Leader
argued that the correct density could be determined experimentally by using tiny probe particles
and showed that numerical results seem to favour the Sgic,z version [42]. In another work,
E. Leader pointed out that, for a paraxial, circularly polarized optical vortex beam, the cycle
averaged density JPoy,z per photon does not give ~( `+ σ) while Jgic,z does [17]. Of course,
integrating over the beam cross section results in ~( `+σ) per photon for JPoy,z. In an unpublished
work of 2012, X. B. Chen and X. S. Chen [43] argued that the experiment of D. P. Ghai et al.
[44], in which ` and σz dependent shifts are observed in the diffraction fringes issued from
single slit diffraction of beams with a phase singularity, does favour the Jgic version. Some
works such as the one of V. Garcés-Chávez et. al. [14] evidenced that rotations issued from
SAM and OAM transfer to a trapped particle in a "Bessel" beam are in agreement with the
symmetric energy-momentum version. However, others studies claim that it is the interaction of
Sgic that is witnessed in AM transfer to trapped particles [41]. E. Leader argued that it would
be incorrect to interpret the results of V. Garcés-Chávez et. al. in favour of the symmetric
energy-momentum expression as the same functional dependence applies to the gauge-invariant
canonical counterparts. E. Leader also added that this equivalence holds as long as the beam
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complex amplitude follows a simple power law behaviour |u |2∝ρ−β, with ρ being the radial
distance to the beam axis [17]. As for linear momentum, measurements of the optical forces
in evanescent waves exerted on ultra-sensitive nano-cantilevers seem to indicate that it is the
canonical version that produces radiation pressure [45]. Other arguments in favour of the gauge-
invariant canonical version can be found in the review of K. Bliokh and F. Nori [41]. The
canonical momentum density also seems to appear in quantum weak measurements [46, 47].
Finally, the canonical version allows to account for superluminal momentum |P |/W>c, with
W being the energy density, witnessed in super-momentum transfer per photon, as observed near
optical-vortex cores [48].

1.2.3 Complementary remarks

Separate conservation of SAM and OAM should entail the existence of continuity
equations describing the local transport of SAM and OAM [29]. This aspect is often left untreated,
therefore no consensus has, to my knowledge, yet been reached on that subject.

Continuity equations for SAM and OAM have been proposed for complex fields [37,
49, 50], which are valid for monochromatic fields with time-independent complex amplitudes.

R. P. Cameron et al. have proposed continuity equation for SAM in the dual-
symmetrized spin representation [51]. It is true that Maxwell’s equations for free electromagnetic
field presents a dual-symmetry, in a sense that the electric and magnetic fields are treated on the
same footing. In the dual-symmetric representation, P, L and S can be written as the sum of an
electric and a magnetic contribution. Practical applications however, often involve light-matter
interactions, generally revealing the electric component only. For this reason, electric-biased
description, also known as "standard" description is also commonly used.

K. Bliokh et al. provided continuity equations in the standard representation for SAM
and OAM relying on spin-orbit corrected tensors S̃αβγ = Sαβγ −∆αβγ and L̃αβγ = Lαβγ + ∆αβγ

such that ∂γS̃αβγ = ∂γLαβγ = 0 [27]. The corresponding SAM and OAM densities coincide
with the canonical densities S and L and the respective fluxes introduce SOI-correction terms
describing nonparaxial beams. In the dual-symmetric representation, the spin-orbit correction
terms are modified and the spin conservation law coincide with the one of R. P. Cameron et
al.. In the same work, K. Bliokh et al. showed that Maxwell’s equations allow conservations of
SAM and OAM in both the standard and dual-symmetric representation, i.e, the ‘electric’ and
‘magnetic’ parts of the spin and orbital AM densities are separately-conserved.

K. Bliokh et al. [27] also showed that, for nonparaxial monochromatic beams, the ratio
of spin and orbital AM fluxes to the energy flux is given by σcos θ0/k and ( `+ σ(1− cos θ0))/k
respectively such that the total AM is equal to (σ + )̀/k. The separation into a spin and orbital
part is nontrivial because of the spin-to-orbital AM conversion term σ(1− cos θ0)/k.
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As a final note on the spin and orbit part of light, presented from a theoretical per-
spective, it should be emphasised that in all of the above only freely propagating beams have
been considered, very few works have treated optical SAM and OAM in matter [52]. It was also
assumed that the beams are axially-symmetric.

Now that we have discussed how the spin and orbital parts of light can be defined, a
few practical aspects regarding beams carrying SAM, OAM and EOAM can be reviewed. For
a clearer description, only paraxial beams will be considered. Readers familiar with beams
carrying SAM and OAM may skip this section and continue to Chapter 2.

1.3 PRACTICAL CONSIDERATIONS

1.3.1 Beams with helical wavefronts and polarized light

In both the symmetric energy-momentum energy tensor and the gauge-invariant canon-
ical approaches, total AM can be separated into a SAM and OAM in paraxial beams.

A paraxial, circularly polarized beam carries longitudinal, intrinsic, SAM, as illustrated
on figure (1.a). Each photon carries SAM in an amount of σ~, with σ=±1 being the beam
helicity, the projection of the spin upon the propagation direction. The sign discriminates beams
of opposite polarization handedness. A paraxial beam with an helical phase distribution carries
longitudinal, intrinsic OAM (IOAM), as illustrated on figure (1.b). In this case, each photon
carries OAM in an amount of ~̀, with ` being an integer accounting for the number of twists
the wave-front performs per unit wavelength. Finally, EOAM can be imparted to the beam by
considering a transverse shift of the beam centroid, as illustrated on figure (1.c) [16].

Figure 1 – Angular momentum in a paraxial optical beams. a. A circularly polarized beam carries longitudinal,
intrinsic, SAM. b. A paraxial beam with a helical wavefront caries longitudinal, intrinsic OAM. c. A transverse
displacement of beam centroid r0 produces a transverse, extrinsic OAM. Figure adapted from the work of K. Y.
Bliokh et al. [16]

A paraxial, circularly polarized, helical beam with a transverse displacement of its
centroid with respect to the origin carries SAM, IOAM and EOAM simultaneously. In paraxial
beams, SAM, IOAM and EOAM are associated with the beam polarization state, its phase
distribution and its trajectory, respectively.

Let us now further describe polarized beams and beams with helical phase distribution.
The latter being less known then the former, it will benefit from a more elaborated description.
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Polarization characterises electromagnetic oscillations upon propagation. The adjec-
tives "Elliptical", "Linear" and "Circular" refer to the projection of the electric field vector locus
in the transverse plane. Fully polarized light beams often refer to paraxial light beams that are
homogeneously polarized, meaning that the photons in the beam transverse plane are in the
same polarization state. Birefringent elements such as waveplates are useful tools to control the
beam polarization state. In short, when entering a birefringent medium, the electric field can
be decomposed into two components, one aligned with the material fast axis, for which light
encounters a lower index of refraction and travels faster than the other component, aligned with
the material slow axis. A birefringent element introduces a retardation, or phase shift, between
the polarization components along the fast and slow axis, causing the wave polarization state
to change. In addition to retarders, polarizers can also act on the polarization state, behaving
like optical filters or absorbers, only letting light in a specific polarization state pass through.
Homogeneously polarized light has been extensively studied and has found applications in
various areas such as imaging, sensing and communications [53].

The adjective "helical" in "helical beam" refers to the beam helical wavefront, i.e.,
equiphase point surface. Helical beams are described by scalar fields, which complex amplitude
can be written, in Cartesian coordinates, as [54]

u(x, y) = Re(x, y) + iIm(x, y) (1.13)

Helical beams generally possess a central scalar singularity, also known as optical vortex due to
its mathematical similarity with superfluid vortices [55]. Scalar singularities are located where
the complex scalar field is null, i.e., where both its real part and its imaginary part are null, or, in
other words, where the amplitude is null and the phase undefined. In cylindrical coordinates, the
complex amplitude presents a characteristic azimuthal phase dependence [54]:

u(r,φ) = r`exp(i `φ) (1.14)

Where φ is the azimuthal angle. Around the singularity, the phase circulates by 2 π̀ in one
complete circuit, with ` being the vortex topological charge. The vortex topological charge
corresponds to the scalar product of the vortex order with its sign, the latter distinguishing
clockwise from counter-clockwise phase circulation. The net topological charge in a bounded
region is a conserved quantity provided no charge enters nor leave the region [54]. Figure (2)
illustrates different wavefronts, phase and intensity distributions, namely, the ones of a plane
wave and of two helical beams carrying optical vortices of different topological charge.

It is the helical phase distribution around the singularity that carries IOAM, not the
singularity itself. Vortices of unit topological charge embedded in non-diffracting beam form
threads in the 3D representation, i.e, singular points in the 2D representation. The angle formed
by the zeroes of the field real and imaginary parts determines the vortex type, which can be
canonical in the case of a right angle or non-canonical for a general angle. Unlike canonical
vortices, the phase increment around non-canonical vortices is not linearly proportional to the
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azimuthal angle and the intensity pattern presents a radial asymmetry [54, 56].

Figure 2 – Wavefront (a, b, c), phase (left column) and intensity (right column) distributions (d) of a Gaussian beam
and of an helical beam carrying an optical vortex of topological charge `=+1 and `=+2.

Vortices of topological charge | ` |>1 tend to be unstable upon propagation, and decay
into first-order vortices, which sign can differ from the original vortex. Non-integer topological
are also unstable as they do not represent eigenmodes of the paraxial wave equation [57]. Their
stability can be improved by mode superposition [58]. Optical fields can carry several optical
vortices, such is the case of fields issued from random scattering or multiple (at least three)
beam interference [59–61]. Historically, it is in this type of beams that phase singularities were
studied for the first time [62]. In this case, the field total OAM issued from multiple singularities
generally cancels out. Superposing paraxial optical vortex beams can produce knots in the line
that follows the phase singularity in 3D [63]. Additional information about optical vortices can
be found in the works of I. Freund, F. S. Roux and in the book of D. L. Andrews and M. Babiker
[54, 56, 64].

Helical beams encompass modes that are exact and orthogonal solution of the parax-
ial wave equation such as high-order ( ` 6= 0) Laguerre-Gaussian (LG), Hermite-Gaussian and
Ince–Gaussian modes. Bessel beams, and Mathieu beams also present an helical wavefront [65].
LG modes, in particular, are easy to obtain. They were first produced by converting higher-order
HG modes in laser cavities [66, 67]. Mode conversion is achieved by introducing a phase shift
between orthogonal modes of the same order and has been performed using pairs of cylindrical
lenses or in stressed fibres [68, 69]. Helical beams can also be obtained by direct wavefront
shaping using spiral phase plates [70]. Spiral phase plates possess an azimuthal refractive index
gradient imparting a space-variant phase retardation upon transmission and are designed for a
specific wavelength. In the optical domain, pure modes can be difficult to obtain using a spiral
phase plate due to manufacturing challenges.

In practice, helical beams are often generated using Holography. Holograms are
complex far-field diffraction patterns obtained by interfering a reference wave with the wave one
wishes to generate. They can be dynamically displayed on Spatial light modulators (SLM). A
blazed grating modulated with a helical phase form a fork hologram, which dislocation indicates
the phase singularity [71]. A fork hologram generates, in its first diffraction order, a beam
carrying a topological charge matching the one of the hologram when the incident beam is
normal and centred on the hologram bifurcation [72]. Helical beams with dominant radial order

14



p = 0 can be obtained from phase holograms [73], however, for a better definition of p, holograms
of intensity and phase are required [74, 75].

As it will be discussed in the next chapter, devices relying on spin to orbit conversion
are ideal methods to perform wavefront shaping. Finally, direct emission of photons carrying
OAM has also been reported using nanoscale chromophores [76].

Helical wavefronts can be characterized using a Shack-Hartmann wavefront sensor
[77], by examining intensity distributions issued from interference [78], diffraction [44, 79, 80],
free propagation of partially blocked fields [81], distortions induced from an astigmatic lens
[82]. Also, fork diffraction gratings can be used in reverse to identify single OAM modes [44].
Mode sorters relying on transforming the azimuthal position of the input beam into a transverse
position in the output beam have also been proposed [83]. Finally, quantum Zeno interrogators
have been proposed as non-destructive filters to measure OAM modes [84].

The recent interest in beams carrying OAM is due to their wide range of applications
[85]. To cite a few, they have been used in the field of micro-manipulation [86], nano-fabrication
[87, 88] and imaging [89–92]. They are also promising information carriers as mutually orthog-
onal states can be multiplexed and the OAM states are defined in an unbounded Hilbert space
[93]. Practical limitations however exist due to the carrier beam’s finite radius and the aperture
of the transmission and receiving optics, indeed, the beam OAM distribution and its azimuthal
span are related by an uncertainty condition [94]. Finally, OAM-carrying beams also present
interesting properties when propagating in non-linear media [95–97] and have been used as
annular waveguides [98].

Recently, a new category of optical beams possessing inhomogeneous polarization and
phase distributions, has received significant interest, namely, inhomogeneously polarized beams.

1.3.2 The special case of inhomogeneously polarized beams

Beams with inhomogeneous polarization distribution encompass full-Poincaré beams
[99] and cylindrical vector beams [100]. As illustrated on figure (3), cylindrical vector beams
present a spatial distribution of linearly polarized photons of varying orientation, whereas
full-Poincaré beams exhibit a polarization distribution where circular, elliptical and linear
polarization states coexist. Inhomogeneous polarization distributions can be encountered in the
beam transverse plane of paraxial beams and in the full three-dimensional spatial distribution of
non-paraxial beams [101, 102].

Non paraxial inhomogeneously polarized beams can contain polarization singularities
such as CT lines, along which the field is circularly polarized and where the orientation of the
ellipse of vibration of the field vector is undetermined. On LT lines the polarization state is
linear, i.e, the handedness of the elliptical vibration is undetermined. Finally, along D lines the
magnitude of the field vector vanishes.
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Figure 3 – Examples of polarization distributions in the transverse plane of a a. Homogeneously, elliptically
polarized beam, b. Vector beam, c. Poincaré beam. The red and blue colour distinguish right handed from left
handed polarized states.

In paraxial fields, similar structures are present in the transverse plane, on C lines the
transverse field is circular while on L the transverse fields are linear. Polarization singularities
are not related to significant features of angular momentum [103]. The number of lines where
the semimajor axes of the ellipses are radially orientated originating from C-point define the
category of the C-points which include "lemons", "stars" and "monstars" [104] 9. Polarization
singularities are unstable under perturbations such as external fields [106] or inhomogeneities
[107]. Optical vortices unfolding through a birefringent crystal can create complicated networks
of C lines and L surfaces, evidencing the existence of interplay between optical vortices, C lines
and L surfaces [108].

Cylindrical vector (CV) beams can be generated inside a laser cavity by inserting
axial birefringent or axial dichroic components [109, 110]. CV beams can also be obtained
with intracavity interferometric methods combining Hermite Gauss modes [111]. In free space,
devices with spatially variant polarization properties [112] or capable of rotating an incident
polarization state [113] can produce CV beams from homogeneously polarized beams. CV beams
have also been generated in multimode fibers by exciting TE01 and TM01 modes without exciting
the HE11 fundamental mode by using misalignment methods [114] or by pre-determining the
exciting mode phase or polarization [115].

The recent interest in CV beams can partially be attributed to their remarkable focusing
properties. Indeed, radially polarized CV beams can be more tightly focused than homogeneously
polarized beams [116] and present a strong longitudinal component. This lead to applications
in high resolution imaging [117] optical trapping [118] and laser machining [119]. Radially
polarized beams are also excellent candidates for surface plasmon excitation in axially symmetric
geometries [120].

An excellent review of CV beams, presenting some fundamental and practical aspects,
can be found in the work of Q. Zhan [100].
9 Please refer to the book of D. Andrews for a complete description [105].
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To sum up Chapter 1, it has been shown that defining the spin and orbital part of light is
not a straightforward task and that two main approaches are competing to define the spin
and orbital angular momentum densities. Both approaches however reach similar qualitative
results. Notably, in the paraxial approximation, total AM can be divided into SAM, IOAM and
EOAM, which can be associated with polarization, phase distribution and the beam trajectory,
respectively. In the non-paraxial approximation, the appearance of spin-orbit coupling terms
turns the separation of AM into a spin and orbit part difficult. A few practical aspects regarding
paraxial beams carrying SAM and IOAM have been reviewed, inhomogeneously polarized
beams have also been introduced.

Now that SAM, OAM and EOAM have been defined for paraxial beams, their mutual
interactions can be studied. This will be the subject of interest of Chapter 2.
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CHAPTER 2

SPIN-ORBIT INTERACTIONS OF LIGHT

From a macroscopic perspective, spin-orbit interactions (SOI) of light encompass
mutual conversions between SAM, OAM and EOAM, as defined in paraxial beams. To describe
how these conversions take place, I will adopt a semi-classical approach. First, I will describe a
light beam in terms of its quantum states and study their transformations from both an algebraic
and a geometric perspective. This will allow to introduce the concept of geometric phase. It will
be shown that specific variations of the wavevector or (and) the state of the beam, lead, according
to Maxwell’s equations, to a distribution of geometric phase associated with macroscopic SOI
of light. Continuing with a geometric interpretation of SOI of light, it will be shown that the
curvature of the quantum fibre bundle associated with the geometric phase causes dynamical
effects, leading to spin, or orbital, -dependent trajectory changes.

2.1 REPRESENTATION AND TRANSFORMATION OF LIGHT BEAMS

In order to describe SOI of light, I will first consider a beam of light as a quantum
system and study how the corresponding quantum states transform, both from an algebraic
and a geometric perspective. Unlike the algebraic approach, the geometric representation is
limited to the description of simple systems but provides a more intuitive understanding of
the evolution of the physical system. The concept of geometric phase will then be introduced,
within the mathematical framework of fibre bundle theory. Fibre bundle theory is an elegant
mathematical framework which provides a unified background to study physical systems, ranging
from classical and molecular dynamics, quantum dynamics, solid states physics and optics [22].

2.1.1 Quantum states of light

Let us first recall a few fundamental concepts of quantum mechanics. In quantum
theory, a physical system is described in terms of its quantum states. From an algebraic
perspective, a pure quantum state is represented by a column vector denoted by a ket |ψ〉.
According to the superposition principle, a linear combination of pure quantum states yields
another pure quantum state of the system in the following manner:

|ψ〉=
∑

n
cn |ψn〉 (2.1)

Where |ψn〉 constitute an orthonormal basis set and cn are complex numbers. Operators act
as linear functions on quantum states. Hermitian operators Â†=Â are particularly important
in physics as they are related to observables. Their eigenvalues λn are real and obey the
eigenvalue equation Â |λn〉=λn |λn〉 where |λn〉 are orthonormal eigenstates. When measured,
the observable associated with Â yields one of the real eigenvalues of Â. For a non-degenerate
normalized state |ψ〉=∑n cn |λn〉, the probability of the outcome λn of a measurement is |cn |2.
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The mean value of the observable A found from measurements on an ensemble identically
prepared system is the expectation value of the corresponding operator <Â>. Naturally, this is
an extremely simplified description of quantum systems, but it will suffice for what follows, a
detailed description of quantum systems can be found in the book of S. M. Barnett [121]. Also,
in what follows, when possible, only pure quantum states will be considered for clarity, mixed
quantum states also exist and should be treated with special considerations.

The simplest quantum system is the two-state quantum system, also known as qubit.
In this case, a pure state is defined within a two-dimensional complex Hilbert space as [122]:

|ψ〉=c1 |0〉+ c2 |1〉=c1

1
0

+ c2

0
1

=
c1

c2

 (2.2)

Where c1, c2 are complex numbers and where the vectors |0〉 , |1〉 are orthogonal base states.

Equation (2.2) can be used to represents pure states of systems of non-relativistic spin
1
2 particles, in which case |0〉 and |1〉 correspond to the eigenstates of the operator σz, associated
with eigenvalues +1 and −1. Here, σz is one of the three 2× 2 Pauli matrices, the later being
related to the spin angular momentum operator of the particle via Ŝ= ~

2σ. If |ψ〉 is normalized
then |c1 |2 and |c2 |2 give the probability of obtaining +~

2 and −~
2 , respectively, when measuring

the spin component along the z direction. States having a spin in an arbitrary direction a will
be expressed in terms of the two eigenstates of σ · a, the projection of the spin operator in
the direction of a, with eigenvalues +1 and −1. The average spin direction corresponds to the
expectation value of the Pauli operator. For an optical beam, i.e., a system of spin 1

2 particles,
polarization is defined by Λ=<σ>/<σ0> where <σ0> corresponds to the beam intensity and
σ0 is the 2× 2 unity matrix. Altogether, the quantities <σi=0,1,2,3> form the Stokes parameters.

From a geometric perspective, quantum states are represented as projective rays within
the Hilbert spaceH. In this representation, two states ψ∈H and ψ′∈H differing by λ∈C such
that ψ=λψ share the same representation. This can be understood by having the transformation
ψ→λψ leaving the expectation values of all observables invariant. The state space, also known
as projective Hilbert spaceHP , is the set of all projective rays. The projective Hilbert space of a
finite Hilbert space H=Cn+1 is the complex projective group CPn [123].

The subset of normalized states vectors inH is of particular interest. In the state space
representation, two normalized state vectors ψ and ψ′ , related by ψ′ =λψ, are represented by the
same state when λ corresponds to the action of the unitary group U(1) which preserves the norm
of the vector. In other words, ψ and ψ′ only differ by an overall phase factor. The projective
Hilbert space CPn of normalized states vectors is diffeomorphic to S2n+1/S1 1. Consequently,
for 2-state systems, the state space of normalized vectors can be visualized as a sphere of unit
radius S2 also known as "Bloch sphere", as introduced by F. Bloch in 1946 [124].

1 A detailed description of projective spaces can be found in the work of Lyre [123]
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From an algebraic perspective, the Bloch sphere is obtained from the parametrization
of the amplitude coefficients c1 and c2 of a pure, normalized state of a two-state system such that:

|ψ〉=cos(θ/2) |0〉+ exp(iϕ)sin(θ/2) |1〉 (2.3)

Where 0≥θ≥π and 0≥ϕ≥2π are real, arbitrary parameters. This corresponds to the
parametrization of a sphere in terms of a polar and a azimuthal angle. A pure state of a
two-state system is represented by a point on the surface of the Bloch sphere (see figure (4)).
Mutually orthogonal states, such as |0〉 and |1〉, correspond to diametrically opposite points on
the sphere. The half angle in equation (2.3) is a consequence of having orthogonal states being
separated by θ=180◦, not 90◦, on the Bloch sphere.

Figure 4 – The Bloch sphere representation of a qubit system. A pure state ψ is represented by a point of polar
angle θ and azimuthal angle ϕ on the surface of the Bloch sphere.

In two-states systems, a unitary operator acting on ψ corresponds to a 2× 2 unitary
matrix U of the group U(2) and can be written as [121]:

Û=exp(iα1̂ + iβa · σ̂) (2.4)

Where α and β are real, a is a unit vector and σ̂ is the vector operator formed by the three Pauli
matrices. Equation (2.4) can also be expressed as Û=exp(iα)(cos(β)1 + i sin(β)a · σ) where
it appears that α only introduces an arbitrary phase that does not affect the state vector. From
a geometric perspective, the vector a corresponds to an axis passing through the center of the
Bloch sphere and 2β describes a rotation of the vector representing ψ about that axis.

In physics, pure states typically transform via a temporal evolution, according to the
following linear Schrödinger equation:

i~ ∂

∂t
|ψ(t)〉=Ĥ |ψ(t)〉 (2.5)

Where Ĥ is the Hamiltonian of the system. The formal solution to equation (2.5) is |ψ(t)〉=
Û(t) |ψ(0)〉 where Û is a unitary operator, transforming a pure state into a pure state. If the
Hamiltonian is time-independent then Û(t)=exp(−iHt/~) and the transformation described in
equation (2.4) is recovered provided H∝ a · σ. Equation (2.4) can also describe a sequence of
transformations induced by external elements [121].

20



So far, we have examined a system of non-relativistic spin 1
2 particles, let us now

examine systems of relativistic spin-1 particles, i.e., photons. Polarized light can be assimilated
to a qubit system based on the following observations. In classical physics, the polarization of a
monochromatic, paraxial, plane wave propagating in the z-direction is, by convention, defined
by the locus of the electric field in the transverse plane. The electric field can be written as the
real part of the following 2-component complex electric field vector:Ex(t)

Ey(t)

=
a

b

 exp(iω0t) (2.6)

Where a and b are complex coefficients and where ω0 is the frequency of the electromagnetic wave.
The two-vector (a, b) is known as the Jones vector and a=|E0x |exp(iφx) and b=|E0x |exp(iφy).
If the electric field oscillates in the x(y)-direction, the wave is said to be linearly polarized in x (y).
When normalized by |E0 |, the Jones vector corresponding to linearly polarized beams in x and
y becomes ( 1

0 ) and ( 0
1 ), respectively, which appears to be analogous to the qubit basis vectors

|0〉 , |1〉. The normalized Jones vectors representing left circular and right circular polarized light
are 1√

2 ( 1
−i ) and 1√

2 ( 1
i ), respectively. Still in analogy to qubit systems, an overall phase factor

does not affect the polarization of a normalized the Jones vector, i.e., Jones vectors differing only
by a global phase are "equivalent". Finally, a superposition of Jones vector yields a Jones vector
describing another allowed polarization state.

Assuming fully polarized light, polarization transformations are implemented by 2× 2
matrices, known as Jones matrices, acting on the normalized Jones vector 2.

From a geometric perspective, the polarization states of homogeneous electromagnetic
waves are represented on the Poincaré sphere (see figure 5). On the surface of the Poincaré
sphere, each point represents a polarization state, up to an overall phase factor. In analogy to the
Bloch sphere representation, two polarization are defined as orthogonal when they lie on opposite
sides on the sphere [121]. By convention, the north pole represents right handed (RH) circularly
polarized light and the south pole represents left handed (LH) circularly polarized light, and its
equatorial plane represents linearly polarized states. Linearly polarized states correspond to a
superposition of equal intensities of LH and RH circularly polarized states. Along the equator,
the orientation of the linear polarization state varies accordingly to the relative phase between
the LH and RH constituents. The hemisphere surfaces represent elliptically polarized states.

Instead of the Jones vector, the Stokes parameters S1, S2, S3 can also be used to map
the polarization of a fully polarized electromagnetic wave on the Poincaré sphere 3 [121].

A single x (or y) polarized photon can be associated with the qubit state |0〉 (|1〉),
turning the Bloch sphere and Poincare spheres equivalent. However, note that both spheres have
a different physical interpretation. As highlighted by S. Barnett [121], for two-level quantum

2 The transformation of coherent, partially polarized or unpolarized light is treated using Mueller matrices.
3 The Stoke parameter S0 describes the beam intensity.
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systems of spin 1
2 particles, points on the Bloch sphere represent directions of spin in three

dimensional space, i.e, each point on the Bloch sphere is an eigenstate of some (spin) angular
momentum operator. Theoretically, spin-1 particles like photons, can have a spin of 1, 0, or
−1, however, the transversality condition forbids the zero spin outcome, only the 1 and −1 spin
states are allowed. In sum, contrary to the Bloch sphere, only two points on the Poincare sphere
represent eigenstates of some spin angular momentum operator, namely, the poles, representing
RH and LH circularly polarized light, respectively.

Figure 5 – The Poincaré sphere representation for polarization states. The poles represent right-handed circularly
polarized (RHCP) states and left-handed circularly polarized (LHCP) states, respectively. The equator consists of
linearly polarized states (LP) of varying orientation and the hemispheres represent elliptically polarized (EP) states.

A sphere analogous to the Bloch sphere has also been proposed to represent orbital
angular momentum (OAM) states (see figure 6.a) [125]. In this geometric representation, the
poles account for optical vortex modes of opposite, unit topological charge, describing Higher
order Laguerre Gauss beams of radial index 0 and azimuthal index `=±1. Equally weighted
superposition of LG1,0 and LG−1,0 modes, i.e , HG modes, are located at the equator 4. The
relative phase between the LG modes determines the orientation of the HG mode. The mode
order of a LG`

p mode, where ` is the azimuthal index and p is the radial index, and an HGnm

mode is N=2p+| `|=n + m, respectively [126].

Note that the Bloch sphere representation is limited to two-state systems. OAM
states can be described by higher order systems, which require higher-order representations
[125, 127, 128]. In this case, an algebraic description is preferred.

Similarly, a Bloch sphere has been proposed to represent monochromatic, paraxial,
inhomogeneously polarized light beams (see figure 6.b) [129]. In this case, the poles represent
circularly polarized vortex beams, which carry both SAM and OAM. The equator represents
vector beams which are inhomogeneously linearly polarized and the hemisphere represent
elliptically polarized vector vortex beams. For `=0 the Poincaré representation is recovered.
For `≥1 two Bloch sphere, one where the poles represent circularly polarized beams with same
handedness and another representing circularly polarized beams of opposite handedness are used
to describe inhomogeneously polarized beams. Note that a SO(3) sphere representation, less

4 HG modes do not carry OAM
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known than the one described above but very promising as it allows to represent more general
modes, has also be proposed to represent more vector modes [130, 131].

Figure 6 – a. The Bloch sphere representation of OAM states. The poles represent LG beams of opposite unit
topological charge and the equator represents HG modes. b. One of the two possible Bloch sphere representation
for inhomogeneously polarized beams. The poles represent circularly polarized optical vortex beams of opposite
unit topological charge and the equator represents vector beams, from left to right: radially polarized vector beams,
a general vector beam and an azimuthally polarized vector beam.

In all of the above, paraxial fields propagating a in a fixed direction were considered.
The electric field therefore essentially lies in the wave transverse plane (2D field).

In the last decades, macroscopic SOI of light have been increasingly interpreted in
terms of geometric phases, which are acquired by the wave function upon specific transformations
of the beam parameters or (and) its inner states. For this reason, prior to reviewing major SOI
phenomena, one final concept, namely, the one of geometric phase, needs to be introduced.

2.1.2 Introduction to geometric phases

The concept of geometric phase was anticipated as early as 1956 [132] but it is M.
Berry, in 1984, who gave a complete description of the phenomenon by showing that a quantum
system undergoing a cyclic evolution acquires a so-called geometric phase, which can be seen
as a "memory" of the evolution of the system [133]. M. Berry’s work was soon generalized to
other systems [134–136] and was given a mathematical interpretation by Simon, in 1983, who
identified a geometric phase as the anholonomy 5 of a fibre bundle [137].

Fibre bundle theory is an elegant mathematical framework which underlines the
geometrical and topological nature of geometric phases. It not only applicable to Optical systems
but also to a large variety of physical systems such as classical and molecular dynamics, quantum
dynamics and solid state physics. A few technical terms issued from fibre bundle theory are
now frequently used in the context of Optics, such as the connection and its curvature. For
these reasons, I will introduce geometric phases within the fibre bundle formalism. Due to the
complexity of the topic, an informal description will be used. A more rigorous description of

5 The term holonomy is also often used, however, it does not emphasize the non-integrability property of a given
constrain. M. Berry commented on this terminology as "a reversal of usage I consider a barbarism." [132].
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fibre bundle theory can be found in the works of E. Malek [138], A. Wilczek and F. Shapere [22],
T. D. Stanescu [139] and N. Mukunda and R. Simon [140].

In mathematics, a smooth fibre bundle consists of the following elements
(E,Π,B,F,G). E and B are two differentiable manifolds called the total space and the base

space, respectively. Π:E→B is the projection, a map relating the total space to the base space.
The inverse image of a point p in the base space defines a differentiable manifold called a fibre

Fp=Π−1(p). G is a group of diffeomorphisms of F called the structure group. In physics,
particularly relevant fibre bundles include vector fibre bundles, whose fibre is a vector space and
G acts as a linear map, and principal bundles, whose fibre is the structure group G [138]. Fibre
bundles can be "trivial" or "non-trivial". A trivial fibre bundle is globally diffeomorphic to B×F
whereas a non-trivial fibre bundle only locally appear like a product of two manifolds (see figure
(7)). Non-trivial fibre bundles are defined using several local products {Uα × F}, with {Uα}
being open coverings of B, i.e, small neighbourhoods of p.

Figure 7 – Examples of trivial and non-trivial fibre bundles: a. A cylinder fibre bundle and b. A Möbius strip fibre
bundle. Both fibre bundles possess a circle base space B=S1 and fibres consisting of line segments (0,1). The
cylinder fibre bundle is trivial: its total space E can be written as B× F. The Möbius strip is non-trivial, the twist
prevents B× F to be defined globally.

Continuing with some terminology, a section is a continuous map σ :B→E which can
be viewed as the "inverse" of the projection map. The pair (Uα,φα) withφα=Π−1(Uα)→Uα×F
is called a local trivialization of E over Uα. Local trivializations are "glued" together by
continuous maps called transition functions such that tα,β :Uα ∩ Uβ→G [138].

Returning to the definition of geometric phase as the anholonomy of a fibre bundle,
the concept of anholonomy can be introduced rather intuitively by considering an example of S.
Ganguli, namely, a deformable body constrained to rotate about some point [141].

In this case, the base space B is defined by parametrizing all possible body shapes
with coordinates. A point p∈B thus labels a specific shape. For each shape, the orientation
of the object is specified using three orthogonal axes fixed to the object. The axis are mapped
via a 3×3 rotation matrix to a frame in which the body is constrained to rotate. The set of
all orientations presents a one to one correspondence with the points of the Lie group SO(3).
Considering all possible shapes, the total space of all configurations E is a principal SO(3) fibre
bundle. Locally, choosing a set of axis for p is subject to gauge freedom and corresponds to
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choosing a section of E. Globally, the section cannot always be chosen continuously, in which
case gauge transformations are used to relate different gauges.

If the body undergoes a cycle of deformations, successive deformations trace a closed
path γ in the base space B. This path is lifted to form a path in the total space E, which projects
back to γ. This lift is specified by the connection on the principal fibre bundle, which assigns
to each tangent vector indicating the direction of an infinitesimal displacement on γ for each
p∈B, an element of the Lie algebra g in a linear fashion. In other words, the connection relates
each infinitesimal displacement (shape change) in B to an infinitesimal displacement in the
fibre coordinate Lie group G, i.e., an infinitesimal rotation (see figure 8). At the end of a cycle
of deformation, the body recovers its initial shape but does not necessarily recovers its initial
orientation, i.e., a net rotation (translation of the fibre coordinate) is observed. Generally, the
initial and final points of the lifted path lies in the same fibre and are related by an element of G:
the anholonomy of the connection around the loop γ. This result is independent of the choice of
gauge. The net rotation is calculated via a path-ordered integration of all infinitesimal rotations.

Figure 8 – The path corresponding to a cycle of deformations is lifted to a path in the total space of the fibre bundle,
which can be projected back to the base space. While in the base space the closed path starts and end at the same
point p, the lifted path ends on the same fibre above p but does not return to its initial point. The translation in the
fibre defines an anholonomy, i.e., net rotation. Figure adapted from the work of S. Ganguli [141]

From a practical perspective, the anholonomy described above allows cats falling from
an upside down position, to rotate and land on their paws after a sequence of deformations 6.

Anholonomies of connections giving a rule to parallel-transport vectors tangent to the
base space are particularly relevant in physics. Continuing from a classical perspective, we shall
now distinguish anholonomies issued from parallel transport of vectors on a curved space from
anholonomies issued from parallel transport on a space with non-trivial topology.

Let be an orthogonal triad r, e, e′ =r× e, as illustrated on figure (9), with the vectors
e and e′ forming a basis to define the complex unit vector ψ=(e + ie′)/

√
2. The connection

defines the parallel transport law determining how vectors tangent to the sphere of unit radius
vector r are moved to other points on the sphere. For the unit vector e, parallel transport implies

6 Rigorously, the cat should be considered as a pair of rolling cylinders, a more detailed description can be found
in the work of R. Montgomery [142].
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that, upon varying the unit radius vector r, e · r=0 and the orthogonal triad containing e and
r does not twist. For ψ, this is equivalent to requiring Imψ∗ · ψ=0≡Imψ∗ · dψ=0 with dψ
being a variation of ψ resulting from a variation dr. After a cyclic variation of the parameter r
driving the evolution of ψ on the sphere surface, the vector ψ has traced a closed path on the
sphere surface like the one illustrated on figure (10). While r recovers its initial orientation, ψ
may not. The net rotation corresponds to the anholonomy of the connection around the circuit C.

The net rotation angle α(C) ofψ is determined by choosing a local basis of unit vectors
u(r),v(r). The choice of local basis is subject to gauge freedom. This basis defines a complex
unit vector n(r)≡(u(r) + iv(r))/

√
2 at each position on the sphere such that ψ=exp(−iα)n.

The net rotation corresponds to the line integral of the connection [22]

α(C)=
∮

dα=Im
∮

n∗ × dn=Im
∫∫

∂S=C
dn∗ · dn (2.7)

This result is independent of the choice of gauge. Stokes’ theorem has been applied to obtain the
last term of equation (2.7), allowing the anholonomy to be expressed as an integral over the area
on the sphere bounded by the circuit C followed by ψ. For arbitrary parameters X1,X2 labelling
the position on the sphere we can write [22]:

α(C)=Im
∫∫

∂S=C
dX1dX2( ∂1n∗ · ∂2n− ∂2n∗ · ∂1n) (2.8)

If u(r) and v(r) lie along the parallel of latitude θ and meridian of longitude φ at r=
(sinθcosφ,−cosθsinφ, sinθ) and for X1=θ and X2=φ, the integrand reduces to dθdφsinθ.
In other words, α(C) is equal to the solid angle subtended by C at the sphere center.

Figure 9 – Geometrical anholonomy (net rotation α) of the complex unit vector ψ, represented by a black arrow,
formed upon parallel transport on the sphere of unit radius r, following a path represented in red in the order 1,2,3,4.

The anholonomy described by equation (2.7) is path dependent and does not depend
on the time the vector took to follow that path. Circuits subtended by the same solid angle Ω(C)
will yield the same geometric phase 7.

The covariant derivative described in equation (2.8) corresponds to the curvature
of the connection, which better illustrates the relation of the connection with the underlying
space properties. In the case described above, the connection is non flat, reflecting the fact
that the underlying space is curved. Because the connection reflects the geometric properties

7 A discussion on circuits yielding the same geometric phase can be found in the work of J. W. Zwanziger [143].
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of the underlying space, the associated net rotation acquired by ψ is a geometric anholonomy.
Connections with a non-zero curvature describe non-trivial fibre bundles [123].

In their review, A. Shapere and F. Wilczek evidence how anholonomies are related to
the spatial properties by showing how, in general relativity, the anholonomy observed when an
initial frame is parallel transported around a closed loop in space-time fails to coincide with the
final frame, is related to the local curvature of spacetime, i.e, to the Riemann tensor [22].

An example of net rotation acquired upon parallel transport on a sphere can be observed
in the Pantheon in Paris, where a Foucault pendulum is installed. After following a closed path on
the surface of an imaginary sphere, formed as the Earth performs one revolution, the pendulum
oscillation direction is rotated with respect to its initial oscillation direction [144]. Note, however,
that if the pendulum were located at a lower latitude, following a path on the equator of the
imaginary sphere, no net rotation would be observed. Indeed, this special path is a geodesic.
Geodesics are formed at the intersection of a plane passing by the sphere center and the sphere
surface. Geometric phases cannot be acquired along a single geodesic. The path formed along
a parallel and the path illustrated on figure (9) consists of a concatenation of several geodesics
and are associated a non-zero solid angle at the sphere center leading to the formation of an
anholonomy.

Let us now consider a fibre bundle which underlying space is flat but possess non-
trivial topological features. Let be a vector, tangent to the surface of a Möbius strip, transported
along the strip surface, as illustrated on figure (10)).

Figure 10 – Topological anholonomy (net rotation α) of the complex unit vector ψ, represented by a black arrow,
formed upon parallel transport on the surface a Möbius strip, following a path represented in red.

After one circuit, the vector direction is inverted, and recovers its initial direction
afters another circuit, i.e, two discrete anholonomies are possible, depending on the number of
turns [123]. In this case the anholonomy is of topological nature, reflecting the properties of the
underlying space and the fibre bundle is also non-trivial.

In sum, anholonomies are determined by the line integral of the connection along
the path traced in the base space. It is from the connection, which gives a rule to relate each
infinitesimal displacement in the fibre bundle base space to a displacement in the corresponding
fibre coordinate, that the anholonomy acquires its geometric or topological nature, as the
connection reflects the geometric properties of the underlying space.

So far, we have studied classical geometric phases. We shall now consider physical
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quantum systems. In analogy to parallel transport of the unit vector ψ on the sphere of unit
radius described on figure (9), parallel transport of a state |ψ〉 can be carried out by considering
that the Hamiltonian of the system depends on some parameters X which vary adiabatically.

In the parameter space, at each position X=(X1,X2, ...), a quantum state |ψ〉 is
represented, modulo a phase factor. Adiabaticity is a sufficient but not necessary condition to
ensure that when tracing a circuit in the parameter space, a state, initially in an eigenstate of
Ĥ(X(t)), remains in an eigenstate of Ĥ(X(t)) during the whole evolution. In other words, at
each position X, a unique state, solution of the non-degenerate eigenstate equation Ĥ(X) |ψn,X〉=
En(X) |ψn,X〉, is assigned, in relation to which the phase of the quantum state can be defined
[133]. This is analogous to choosing n(r) in the classical case. The initial state |ψn,X〉 (0) and a
later state exp(iγn(t)) |ψn,X〉 (t) will only differ by a phase factor, i.e, a complex number of unit
modulus which is also an element of the unitary group U(1). The total phase γ acquired upon
a cyclic, adiabatic evolution of X can be evaluated by using

∣∣∣ψ′
n,X

〉
(t)=eiγn(t) |ψn,X〉 (t) in the

time-dependent Schrödinger equation and projecting into
∣∣∣ψ′

n,X

〉
(t) such that [123]:

d
dtγn(t)=i 〈ψn,X|∇Xψn,X〉

d
dtX(t)− 1

~
En (2.9)

After integrating over t, γn comprises a dynamic and a geometric contribution [123]:

γn,d(t)=−1
~

∫
En(t)dt γn,g(C)=i

∮
C
〈ψn,X|∇Xψn,X〉 dX (2.10)

This is the result obtained by Berry for a cyclic, adiabatic, evolution of non-degenerate, pure
quantum states [133]. The geometric phase corresponds to the line integral of the connection
along the path formed in the parameter space. A normalized eigenstate ensures that γ(C) is real.

In Berry’s approach, X parametrized a part of the projective Hilbert space correspond-
ing to the nth eigenstate of the family of Hamiltonians H(X)[22]. Parallel transport can be
achieved using the parameters X to label the state, not the Hamiltonian, in the projective Hilbert
space accounting for all quantum states. This refers to state spaces such as the ones described at
the beginning of this chapter. This is the approach Aharonov and Anandan undertook to provide
a more general interpretation of the geometric phase without having to rely on the adiabatic
condition [145]. In this case, the geometric phase depends on the path traced in the state space.

In the state space, states differing by an overall phase share the same representation. A
fibre-bundle structure allows to track the geometric phase acquired upon the state transformation.
The quantum bundle consists of a principal U(1)-fibre bundle over the projective Hilbert Space.
In this representation, two Hilbert space vectors differing by a phase belong to the same fibre.
The horizontal lift of a closed curve in the projective Hilbert space such that |φ(0)〉=|φ(T)〉 and
|ϕ〉=exp(ig(t)) |φ〉 yields, according the condition given by the connection 〈ϕ|ϕ̇〉=0, where
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˙|ϕ〉 represents a vector tangent to the corresponding curve, upon temporal integration 8[123]:

γ=g(T)− g(0)=i
∮ T

0

〈
φ
∣∣∣φ̇〉 dt (2.11)

This anholonomy corresponds to Berry’s geometric phase. The phase is independent of the rate
at which the evolution has occurred and origins from the curvature of the quantum bundle.

The notion of geometric phase was subsequently extended to non-cyclic evolutions
by J. Samuel and R. Bhandari [134]. Geometric phases were also evidenced in the context of
mixed states [135, 147] and F. Wilczek and A. Zee investigated geometric phases issued from
the adiabatic transport of a degenerate set of quantum states [136].

For degenerate quantum states, the system does not need to return to the original
eigenstate via the same degenerate state while retaining the same state space. The accumulated
phase factor of an N-fold degenerate level is described by a U(N) matrix. In this case, the
connection is "non-Abelian" and path ordering is necessary when integrating over infinitesimal
phase changes, as the integrands for the geometric phase in equation (2.10) does not commute
with itself at different points on the circuit. Also, note that, in this case, it is generally not
possible to use Stoke’s theorem to express the anholonomy in terms of a simple gauge invariant
quantity such as the solid angle subtended by the circuit [143].

Now that the concept of geometric phase has been introduced for general quantum
systems, optical systems can be studied and the role of geometric phase in SOI of light described.

2.2 ANGULAR MOMENTUM CONVERSION , A GEOMETRIC PERSPECTIVE

In the above, it was shown that geometric phases only depend on the path traced on the
space describing the transformation, i.e., parameter space or state space. In what follows I will
demonstrate how geometric phases and their respective fibre bundle are involved in SOI of light.
Following Berry’s approach, geometric phases issued from path traced in the parameter space of
light will first be studied, followed by a more general description of geometric phases issued
from paths formed in the state space describing the fundamental properties of light. Dynamical
effects attributed to the connection of the corresponding fibre bundle will be reviewed last.

2.2.1 An optical counterpart for the Berry phase

Historically, Berry’s findings were first applied to describe the behaviour of a spin 1
2

particle in an eigenstate of a magnetic field B of constant magnitude in a direction a with spin
eigenvalue s as the direction of the magnetic field is adiabatically cycled [133]. The parameter
space under consideration is a sphere forming the space of directions of the magnetic field.
The Hamiltonian of the system can be written as a function of a · σ, which, from a geometric
perspective, can be associated with a rotation transformation of the type of equation (2.4). The

8 Further demonstrations and discussions can be found in the work of A. Bohm [146] and Lyre [123].
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geometric phase associated with this evolution corresponds to the line integral of the connection
A determining the parallel transport rule along the circuit C traced in the parameter space and
is equal to −sΩ(C). Where Ω(C) is the solid angle subtended at the sphere center a=0 and s
is the spin component along B. Here and in what follows the solid angle is taken positive for a
clockwise path and negative for a counter-clockwise path.

From a physical perspective, the connection in this case plays the role of a magnetic
vector potential acting in real space and its curvature is analogous to a magnetic field originating
from a magnetic monopole 9 of strength "−s" located at the origin of the parameter space,
where a=0. From a mathematical perspective, a monopole is the result of a degeneracy of the
eigenvalues of a Hermitian 2× 2 matrix [143].

A vector potential is not only a convenient mathematical tool to define the electric and
magnetic fields in classical physics but also leads to physical effects, namely the apparition of a
phase factor, in quantum physics. A collection of papers giving examples of geometric phases
found in physical quantum systems is presented in the book of A. Shapere and F. Wilczek [22].

The optical counterpart of the system described above is obtained by considering a
circularly polarized light beam, of spin eigenvalue ±1 along the propagation direction, and
adiabatically varying the beam wavevector k. This was realized by R. Y Chiao and Y. S. Wu
[148] and by A. Tomita and R. Y. Chiao [149] for a light beam in a linearly polarized state, i.e.,
a superposition of left and right handed circular states, propagating in a helical monomode fibre.
The left and right circularly polarized components acquire a spin-dependent geometric phase
−sΩ(C), determined by the solid angle subtended by the circuit C in the parameter space, i.e., in
the sphere of directions. The phase difference between the two circularly polarized states leads
to a rotation of the linearly polarized state orientation while maintaining the beam eccentricity.
This evolution can be described as a product of rotations in the parameter space [150].

The experiments of R. Y. Chiao and Y. S. Wu and A. Tomita and R. Y. Chiao followed
from the discoveries by V. V. Vladimirskii and S. M. Rytov. S. M. Rytov investigated how the
vectorial nature of electromagnetic waves could be accounted for when light is refracted in an
inhomogeneous media. He showed, using a semi-classical formalism, that the transport law
for the directions e and h of the electric and magnetic fields, respectively, consists of a parallel
transport law of the orthogonal triad e, h, k, where k is the ray direction [151]. V. V. Vladimirskii
showed that S. M. Rytov’s law is nonintegrable, i.e., leads to the apparition of a geometric phase,
and he showed that the rotation angle observed when polarized light wave follows a curved
trajectory in a inhomogeneous media is related to the solid angle formed in the parameter space
[152] 10. For these reasons, the spin-dependent geometric phase acquired upon variations of the

9 The magnetic monopole, called Hopf fibre bundle by mathematicians, is an interesting case study, which
brings discussions about the discontinuity of the gauge potential and the quantization of Berry’s curvature [22].

10 This analysis cannot be directly applied to the experiments of R. Y. Chiao and Y. S. Wu and A. Tomita and R.
Y Chiao, which featured thin monomode fibres. Geometrical optics are not suited to describe such problem but
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beam wavevector direction is also known as Rytov-Vladimirskii phase.

Let us consider the triad w, v and k, where w, v form local basis defining the 2-
dimensional electric vector e of a paraxial field. Maxwell’s tranversality condition for free
electromagnetic fields couples the field electric vector to the beam wavevector k. Variations of
the beam wavevector thus lead to the parallel transport of the 2-dimensional vector e, tangent
to the sphere of directions (k-sphere). The anholonomy caused by parallel transport of e has
a classical origin in the sense that it arises from the coupling between the wavevector and its
polarization, defined in the beam transverse plane, according to Maxwell’s equations [153].

Adiabatic, cyclic variations of the beam mean wavevector can be obtained upon
propagation in a gradient-index medium, as described in the work of K. Bliokh [20]. In this case,
the phase acquired by the field electric vector, tangent to the local mean wavevector direction
k, is determined using the local basis v,w in the tangent plane (see figure (11) a.). The author
consider the evolution of the polarization vector along a curved beam trajectory. Figure (11 b.)
illustrates this evolution in momentum space 11. A connection, defining the parallel transport of
the transverse electric vector e upon adiabatic variations of the momentum vector on the unit
k-sphere, is defined, yielding, upon line integration, the geometric phase associated with the
rotation of the electric field vector.

Figure 11 – a. Rotation of the beam polarization vector e defined in the plane transverse to the local wavevector
as the beam follows a helical trajectory b. As the beam follows a helical trajectory, the beam wavevector traces a
closed path on the parameter space (k-sphere). The solid angle associated with the closed path in parameter space is
equal to α. Figure adapted from the work of K. Y. Bliokh [20]

The connection can also be interpreted as a gauge field and its curvature as the field
strength, playing the role of an effective ’magnetic field’ issued from a monopole located at the
origin of the momentum space, with helicity playing the role of the monopole charge [20]. This
interpretation has dynamical consequences that we shall further discuss at the end of this chapter.

In 2006, K. Bliokh introduced the connection associated with the eigenvalue ,̀ which
gives a rule to parallel transport the structure of a monochromatic, paraxial beam propagating

rather "the full Maxwell equations, either in a modal analysis or, when recast as a Schrodinger-type spinor
equation, to enable immediate application of the spin-1 geometric phase formula" [132]

11 The projection on a unit sphere is possible as the polarization only depends on the direction of the momentum
vector k/k [20].
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in a smoothly inhomogeneous isotropic medium along a curved trajectory [21]. Neglecting
diffraction effects, he derived the connection driving the parallel transport of a field carrying
both SAM and OAM. He found that, in addition to the spin-related Abelian connection, a second
connection, related to the beam topological charge ,̀ could be identified. The total geometric
phase

∮
C A′dk, for a cyclic evolution of the beam wavevector forming a closed path in the

k-sphere, is equal to −(s + )̀Ω where Ω is the solid angle subtended by the circuit C. K. Bliokh
concluded that, similarly to the parallel transport of the polarization vector, the so-called orbital
Berry phase causes the rotation of the field transverse intensity distribution. This phenomenon
should entail the rotation of a Hermite-Gaussian mode, i.e., a combination of Laguerre Gauss
modes, upon propagation following a helical trajectory [21].

As a side note, when it comes to polarization and image rotation, one distinguishes
pure rotators from pseudo-rotators. Following the definition of E. J. Galvez et al. [154], a pure
rotator "rotates by an amount that is independent of the orientation of the input" whereas the
rotation, for pseudo-rotator does depend on the input orientation.

Continuing with wavevector variations, a geometric phase can also be attributed to
abrupt (non-adiabatic) variations of the beam wavevector. Such variations are typically caused
upon reflections such as mirror reflections or total internal reflections. A RH circularly polarized
paraxial beam, propagating along the z-direction, reflected by a perfect electric mirror at normal
incidence, sees both its Ex and Ey field components undergo a π phase shift. The wavevector
propagation direction is reverted and the spin pseudo-vector conserved. The helicity (projection
of the spin pseudo-vector upon the propagation direction), is inverted and the beam becomes
LH circularly polarized [155]. To study the geometric phase introduced by mirror reflection, M.
Kitano et al. introduced modified k vectors k̃=(−1)i ki, according to which the photon helicity
is conserved [156]. In this case, points on the k̃-sphere describing successive reflections are
connected by geodesics to form a closed path, which can be associated with a geometric phase
similar to the adiabatic case. Optical systems featuring an even (odd) number of reflections where
the input and the output beams are parallel (anti-parallel) can be considered as pure rotators
[157]. In the case of polarization rotation, the beam ellipticity must be conserved. Therefore,
when designing a polarization rotator, care must be taken for the s and p polarization components
of light, the component perpendicular and parallel to the plane of incidence, respectively, not to
acquire different phase shifts, which would modify the beam ellipticity.

A beam carrying OAM can be rotated using an image rotator such as a Dove prism, or
any optical element carrying out a phase-shifting operation. This transformation will also be
associated with a geometric phase traced on the parameter space [157, 158].

So far, I have described evolutions of the beam mean wavevector in the parameter
space, which maintain the weight of the corresponding mode superposition, i.e., the mode
ellipticity for polarization and the overall phase distribution for OAM modes. A geometric
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phase was associated with the closed path formed in parameter space, which can be s or `
dependent. This introduces a phase difference between the RH and LG circularly polarized
states and between Laguerre-Gauss modes of topological charge `=+1 and `=−1, leading to
the rotation of the linearly polarized beam and of the Hermite-Gauss profile, respectively.

Such transformation can also be described in the corresponding state space, i.e., the
Poincaré sphere and Bloch sphere for polarization and for OAM. For an elliptically polarized
beam following a helical trajectory, such that the phase difference between the circular polar-
ization components cause the polarization ellipse to undergo a full rotation, the polarization
transformation will form a closed path on the Poincaré sphere as illustrated on figure (12) [20].

Figure 12 – Variations of the beam Stokes vector S tracing a closed path on the Poincaré sphere due to the
introduction of a phase difference between orthogonal polarization states as the beam follows an helical trajectory.
In this case, the solid angle formed in the state space is equal to 2α, where α is the rotation of the electric vector
after one cycle, as illustrated on figure (11). Figure adapted from the work of K. Bliokh [20]

Alternatively, mode rotation can be achieved without varying the beam mean wavevec-
tor by using optical elements slowly transforming the beam polarization state, such as optically
active materials or half waveplates. These elements are examples of pure and pseudo rota-
tors, respectively. Of course, optical elements can achieve more general transformations than
simply rotating the beam polarization state. In what follows, geometric phases acquired upon
general state transformations, described within the state space, will be presented. Their role
in SOI of light will also be evidenced. At first, the beam mean wavevector is assumed to be
fixed. More complex transformations, combining variations of the beam wavevector and general
transformations of the beam polarization state will also be described.

2.2.2 State space transformations of light

In 1956, S. Pancharatnam studied geometric phases associated with transformations
of polarization states of light. On the Poincaré sphere, a closed path can be associated with a
geometric phase, called Pancharatnam-Berry phase, equal to −1

2sΩ(C), where s=±1 and where
Ω(C) is the solid angle subtended at the sphere center [159]. The 1

2 factor is due to the difference
in representation of orthogonality condition in the Poincaré sphere and in real space. Naturally, a
different geometric phase will be attributed to closed path forming different solid angles.
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A closed path can be formed on the Poincaré sphere by making an optical beam
go through a succession of optical elements transforming the polarization state via unitary
transformations, bringing a point A, representing the initial polarization state, to other points on
the sphere and back to A along a concatenations of geodesics.

In the case a state A does not return to its original state on the Poincaré sphere, i.e.,
for an open path, a rule is needed to compare the initial and final state. This rule was given
by S. Pancharatnam, who provided a criterion to determine the total (geometric+dynamical)
phase carried by a beam of light, without the overall phase ambiguity. He defined two light
waves in different polarization states as "in phase" when their superposition yields a maximum
intensity [160]. From a quantum perspective, the intensity resulting from the superposition of
two monochromatic waves in polarization state |ψ1〉 and |ψ2〉, respectively, is given by [134]:

||ψ1〉+ |ψ2〉|2=〈ψ1|ψ1〉+ 〈ψ2|ψ2〉+ 2Re(〈ψ1|ψ2〉) (2.12)

Which modulus is maximum when 〈ψ1|ψ2〉 is real and positive. In the polar form, 〈ψ1|ψ2〉
becomes ρexp(iα) with ρ>0 and where α is the phase difference between the two waves. The
interference pattern of two polarized waves allows to measure the relative phase difference
between the two waves, except when the two polarization states are orthogonal. Two waves in
orthogonal polarization states do not interfere as the phase difference is undefined [161]. Optics
being the playground of quantum mechanics, note that a classical system can be described by a
quantum system, in virtue of coherence and orthogonality between degrees of freedom of light
[162]. In terms of geometric phases of light, both classical and quantum perspective have been
explored, as discussed in the work of N. Mukunda et al. [163] and C. E. R. Souza, et al. [131].

Pancharatnam’s criterion implies the existence of a "Pancharatnam connection", which
provides a rule to compare phases between any states, provided they are not orthogonal. J.
Samuel and R. Bhandari argued that this connection can be seen as a generalization of Berry’s
connection, which only relates neighbour states and that, in the case the two states |1〉 and |2〉
being neighbouring rays, the Pancharatnam connection reduces to the usual bundle connection
[134]. Using the Pancharatnam connection, J. Samuel and R. Bhandari studied how to associate
a geometric phase to an open path on the Poincaré sphere, when the initial and final states are
not orthogonal. They found that, assuming no dynamical phase is involved, the phase difference
between the initial state A and the final state B, is the geometric phase given by half of the solid
angle enclosed by the path taking A to B, then B back to A along a geodesic [134].

On the Poincaré sphere, an opened path can be formed when a circularly polarized
beam is transmitted by a retarder, i.e., a birefringent linear waveplate of retardation δ, which fast
axis forms an angle β with the x axis, as illustrated on figure(13). From an algebraic perspective,
the action of the wave plate on the polarization state is represented by a 2 × 2 unitary matrix
U(β). From a geometric perspective, a waveplate brings, on the Poincaré sphere, the point
A, representing the initial polarization state, via a rotation about a fixed axis passing through
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the sphere center and a point Q of azimuth 2β on the equator, to another polarization state,
represented by a point P, through the angle δ. This transformation is illustrated on figure (14)
for a half-wave plate (δ=π) for a waveplate orientation axis of β=0 (path A,B,C,D,P) and of β
(path A, B′ , C′ , D′ , P) [164].

Figure 13 – An opened path on the Poincaré sphere, issued from polarization transformations of a circularly
polarized beam transmitted by a retarder, here a half-waveplate of optical axis orientations β. On the Poincaré
sphere, such polarization transformation can be described by a rotation around the axis denoted by Q on the figure.

As stated above, a closed path can be formed if we interfere the final state B with a ref-
erence state, linearly polarized along x. The relative phase between these two waves is the phase
of the complex number 〈x|U(β) |x〉. From a geometric perspective, interfering the two waves
consists of bringing P back to A along the shorter geodesic on the Poincaré sphere. This transfor-
mation is analogous to the action of a polarizer, blocking the state orthogonal to A [165]. Indeed,
in equation (2.12), α can be seen as the phase difference between a wave in an initial state |ψ2〉
which has passed through on optical element letting only |ψ〉2 pass, with a reference wave in state
|ψ2〉. Generally, the phase acquired by a system undergoing several projections bringing an initial
state |ψ1〉 back to itself consists of the phase of 〈ψ1|ψn〉 〈ψn|ψn−1〉 ... 〈ψ3|ψ2〉 〈ψ2|ψ1〉[165].
The relative phase difference between the wave in the final state P and the reference wave
in a polarization state A, if the dynamical phase cancels out, consists of the geometric phase
associated with the so-formed closed path.

The difference between retarders, such as waveplates (or media with optical activity)
and polarizers, is that the former introduces unitary transformations of the polarization state
while the later causes non-unitary transformations. Ideal absorbing polarizers do not introduce
geometric phase, i.e., they project one polarization state onto another following a geodesic 12.

As a small digression, note that, in the above, polarization operators have been de-
scribed in terms of rotation operators exp(−iδ/2p · σ). In a review of J. Lages et al., such
rotation operators appear as a special case of the SL(2,C) group operator exp((γp1−iδp2)·σ/2)
where γ and δ are real and p1,p2 are unit vectors associated with the two polarization states in

12 Total reflection based polarizers or realistic polarizers, such as dichroic polarizers can introduce non-trivial
geometric phases [166]
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consideration. Another particular case of this general operator is the boost operator exp(γ/2p ·σ)
[166]. Consequently, geometric phases issued from boost transformation have also been studied,
evidencing non-trivial SAM to OAM conversion [167, 168].

Coming back to our study of an open path on the Poincaré sphere, a very interesting
case, described by J. Samuel and R. Bhandari, is what happens to the geometric phase when
interfering nearly orthogonal states. In the parameter space spanned by δ and β, as the waveplate
retardation and its fast axis orientation get close to the δ=180◦,β=45◦ point, the shortest
geodesic curve linking A to P switches abruptly. This corresponds to a sweeping of area equal
to 2π on the Poincaré sphere, causing an abrupt phase change of |π | in real space [165]. In the
parameter space, the singular point (δ=180◦,β=45◦) corresponds to where 〈x|U |x〉=0. In the
case of two-states systems, the singularity is a point, around which the total phase change for
a circuit enclosing the singular point is ±2π (singularity strength ±1), which corresponds to
a real phase shift of ±π as the state space is a sphere. N-state systems evolving under SU(N)
transformations can feature singularities of higher strength.

Appendix 1 presents a short numerical study on the orthogonality condition in inho-
mogeneously polarized paraxial optical beams. The study is carried out by accompanying the
visibility of the corresponding interference fringes. As expected, orthogonal states, defined in
agreement with the state geometric representation illustrated on figure (6), do not interfere.

It is possible to dynamically track the phase difference between two waves by recording
changes in the interference pattern as the phase, the geometric phase in our interest, of one
beam is varied through optical elements. If the fast axis of the half waveplate rotates at a
uniform angular velocity, the waveplate will impose a linear phase shift in time, i.e., a frequency
shift equal to twice the angular frequency of the half waveplate rotation. This effect has been
experimentally demonstrated by B. A. Garetz and S. Arnold [169].

Through polarization transformations, a gradient of Pancharatnam-Berry (PB) phases
can be used to impart a helical phase distribution to a beam of light. This was notably achieved
by Z. Bomzon et al. in 2001, who, inspired by the work of R. Bhandari [165], produced
a space-variant PB phase distribution using a metallic subwavelength grating [170]. Due to
manufacturing limitations, the device only operated in the mid-infrared regime. In 2006, L.
Marrucci et al. proposed to generate a spatial gradient of Pancharatnam-Berry phases using an
anisotropic inhomogeneous media. They developed an optical element which could operate in
the visible regime, namely a "q-plate", using patterned liquid crystal cells [171].

A q-plate is a slab of birefringent material of uniform phase retardation δ, behaving
like a half-wave plate. What allows a q-plate to impart a gradient of geometric phase is its
optical axis, varying linearly with the azimuthal coordinate in the transverse plane. Together,
the local polarization transformations form several geodesics sharing the same initial and final
states, associated with a varying solid angle, as illustrated on figure (14) for two optical axis
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orientations of the q-plate. The plate possess a central directional singularity, of topological
charge q, indicating the number of rotations that the optical axis performs in a path circling the
singularity. If we define the plate azimuthally varying optical axis as β=β0 + qϕ, where β0 is a
reference angle, the phase gradient is such that an helical wavefront is imparted, with a central
phase singularity of topological charge `=2σq [172].

Figure 14 – Polarization transformations for two different optical axis orientations β in the transverse plane of a
q-plate of retardation δ, represented on the Poincaré sphere. a. A solid angle, i.e., a Pancharatnam Berry phase, can
be associated with a pair of geodesic corresponding the polarization transformation for two different optical axis
and the same retardation b. Simplistic representation of a q-plate, of azimuthally varying optical axis and uniform
retardation. Two optical axis of different orientation separated by an angle β, corresponding to the polarization
transformations represented in a. are emphasized.

Assuming a z-propagating beam and a q-plate which rotational symmetry axis is the
z-axis, the z-component of the total AM is conserved, i.e., there is no net transfer of angular
momentum to matter, and SAM is efficiently converted into IOAM. This corresponds to SOI of
light, interpreted in terms of a gradient of PB phases.

The development of metasurfaces has allowed to create highly compact space-variant
PB elements for SAM to IOAM conversion. Optical elements manipulating the beam polarization
to introduce a space-variant Pancharatnam–Berry phase are also known as Pancharatnam–Berry
optical elements (PBOE). A large variety of PBOE elements exist and cannot be all reviewed
here, and excellent description of PBOE elements, which also discuss more general applications
for PB phase can be found in the review of E. J. Galvez [173].

Appendix 2 presents a short numerical study on SAM to IOAM conversion based on
a PB phase gradient produced by a circular air nanoslit embedded in thin metal film on a glass
substrate, which acts as an optical retarder with variable orientation axis. Our results are in
agreement with the work of P. Chimento et al. [174].

Instead of using birefringent elements to modify the beam polarization state, total
internal reflection (TIR) can also be used to create a gradient of PB phases. Upon TIR, the
components of the electric fields lying in the plane parallel and perpendicular to the plane
of incidence, known as p and s components, can acquire different phase shifts, causing a
transformation of the beam polarization state.
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In 2012, M. Mansuripur et al. studied SOI of light in retro-reflective elements involving
two reflections [175]. In this work, numerical simulations show that a circularly polarized beam
undergoing two consecutive reflections in a perfect electric conductor cone of 90◦ apex angle
retains its helicity, reverses its SAM and picks up twice as much IOAM to conserve total angular
momentum along the cone symmetry axis. The same cone made of transparent material can
be designed to impart different mixture of SAM and OAM. The reason the beam acquires a
gradient of PB phase is the twist in the s-p orientation around the cone, which is similar to the
rotation of the birefringent axis in q-plate. This was notably experimentally verified in 2016 by
N. Radwell et al, who confirmed that retro-reflection from a glass cone of apex angle 90◦ does
generate a gradient of PB phase leading to SAM to IOAM conversion. Interestingly, the authors
also showed that using linearly polarized light as the incident beam lead to the formation of a
beam with inhomogeneous polarization distribution, carrying polarization singularities [176].

Another device based on TIR to obtain a gradient of PB phases was realized by F.
Bouchard et al. in 2014, using a pair of Fresnel rhombs of revolution, i.e., two hollow axicons
glued together [177]. Fresnel rhombs rely on two successive TIR to introduce a π/2 phase
difference between orthogonal polarization components. An incident linearly polarized beam,
oriented at 45◦ will thus become circularly polarized. A combination of two Fresnel rhomb
therefore behaves as a half-wave plate and, similarly to the case of the cone, the cylindrical
geometry will lead to the generation of a gradient of PB phases. This entails SAM to IOAM
conversion, the amount of IOAM acquired being | `|=2. This is yet another example of SOI
of light. If instead of a circularly polarized beam, a linearly polarized beam is incident upon
the glued axicons, a vector beam, i.e., a beam which transverse distribution consist of linearly
polarized light with varying orientation, is generated [177].

So far we have considered only geometric phases issued from polarization state
transformations, described on the Poincaré sphere. In 1993, S. J. Van Enk proposed that a
geometric phase could also arise from cyclic mode transformations of paraxial optical beams
carrying orbital angular momentum [178]. This type of geometric phases was measured by E.
J. Galvez et al. in 2003 for first-order modes, in the visible [179]. In this paper, OAM modes
were transformed using pairs of cylindrical lenses. A π/2 mode converter based on a pair
cylindrical lens can convert a LG0,1 mode into a HG1,0 mode and vice versa, while a π mode
converter based on a pair of cylindrical lens can convert a LG0,1 mode to a LG0,−1 mode and vice
versa. Consequently, the π/2 and the π cylindrical lens mode converters are analogous to the
quarter-wave and half-wave plates used to transform polarization states. By using a succession of
two π mode converters, a LG0,1 beam of unit topological charge can be brought along a closed
path on the Bloch sphere of OAM states of unit topological charge. Similarly to the PB geometric
phase, the geometric phase described by transformation of the OAM mode is proportional to
minus half the solid angle subtended at the center of the Bloch sphere representing OAM states.
Transformations of higher-than-one modes have, to my knowledge, yet to be investigated. In this
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case, an algebraic description is preferable.

Similarly to the case of a rotating waveplate, if the π-mode converter rotates the OAM
mode at a uniform angular velocity, the mode converter will impose a linear phase shift in time,
i.e., a frequency shift. This was notably evidenced by J. Courtial et al. in 1998 [158].

Regarding beams with inhomogeneous polarization distribution, G. Milione et al.
argued that higher-order PB phases could also be generated from transformations carried out on
the higher order Poincaré spheres. The authors argued that a circularly polarized optical vortex
beams could be carried along a geodesic from north to the south pole of the sphere and back,
using half wave plates in combination with cylindrical lens mode converter [180].

A Matrix formulation accounting for both SAM and OAM general transformations
have been proposed by L. Allen, J. Courtial and M. J. Padgett in 1999 [181].

In all of the above, only transformations of paraxial beams have been considered. In
an unpublished work dated from March 2019, K. Y. Bliokh, M. A. Alonso and M. R. Dennis
proposed to study geometric phases in generic non-paraxial beams [182]. They also emphasised
the role of polarization singularities in PB geometric phases in paraxial beams. The authors first
define the geometric phase as the difference between the total phase and the dynamical phase for
general vector fields. Then, for two-dimensional fields, the authors distinguish paths enclosing
the C point polarization singularity in real space, i.e., enclosing the S3 axis on the Poincaré
sphere, from the ones which do not. Path that do not enclose the singularity will have a uniquely
defined PB phase, equal to half of the solid angle on the Poincaré sphere. However, if the closed
path encloses a C-point, the singularity causes the geometric phase to experience a ±π jump in
real space. This complements the observations of R. Bhandari [165]. K. Y. Bliokh, M. A. Alonso
and M. R. Dennis propose a modified expression for the geometric phase to evidence the role
of the singularity. This formulation allows to account for the presence of several polarization
singularities in inhomogeneously polarized field when examining the PB phase.

Regarding three-dimensional fields, K. Y. Bliokh, M. A. Alonso and M. R. Dennis
argue that such field should exhibit properties corresponding to spin-1 waves with three compo-
nent wavefunctions [182]. So far, very few studies have explored geometric phases in general
three-level and spin-1 quantum systems [183, 184]. As pointed out by the authors, attempts to
unify the PB phase and the Rytov-Vladimirskii phase are sparse [185] and have mostly relied on
the geometric Majorana sphere representation developed by Hannay [186, 187] or have relied on
a Coriolis effect interpretation for waves carrying SAM [188]. However, neither approach clearly
identifies the geometric and dynamical phase acquired along a given spatial contour in a generic
3D complex vector field. The authors further argue that while the Majorana sphere does unify
the redirectionng phase and the PB phases, it does not incorporate the notion of normalization of
the polarization ellipse. K. Y. Bliokh, M. A. Alonso and M. R. Dennis therefore propose to solve
this issue using a so-called "Poincarana sphere" describing 3D polarized fields. The author then
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characterize the geometric associated with a path on the Poincarana sphere, taking into account
polarization singularities in 3D polarized fields [182].

Continuing with recent investigations on geometric phases of light, a work of 2018 by
A. Karnieli and A. Arie proposed to obtain an adiabatic geometric phase for light via nonlinear
interactions. Instead of considering light polarization through its two complex amplitudes at
two orthogonal directions, they consider an additional degree of freedom, which they call "the
spectral polarization". In this case, one would consider the complex amplitudes at two different
optical frequencies, coupled by the medium nonlinearity [189].

Prior to studying the dynamical consequences associated with the connection and its
curvature, I would like to highlight a few more works concerned with non-trivial transformations
of light combining both wavevector variations and polarization transformations.

In 2016, L. B. Ma et al. numerically studied the evolution of linearly polarized light in
asymmetric micro-cavities [190]. The authors first studied the geometric phase acquired in a
Möbius strip geometry, leading to mode rotation. This configuration is particularly interesting
as the electric field evolution is lead by the geometry topological properties. Variations of this
geometry allow the passage from an adiabatic to a non-adiabatic transport of the electric field, as
evidenced by J. Kreismann and M. Hentschel in a numerical study from 2018 [191]. L. B. Ma et
al. then designed a cone-shaped microtube resonator and added anisotropy effects. In this case,
the combined effect of the wavevector evolution and anisotropy cause the electric field vector to
change in orientation and eccentricity.

In 2011, K. Bliokh et al. [192] studied the transformation of a paraxial field to a non-
paraxial field. The author consider variations of the individual wavevectors constituting the field
Fourier spectrum. A paraxial, circularly polarized, helical, monochromatic electromagnetic field
of topological charge ` propagating in the z direction is focused by a high-numerical aperture
lens. Initially, the beam carries a total angular momentum of σ + ` along the longitudinal (z)
direction. The non-paraxial beam obtained upon focusing can be seen as a Fourier-spectrum,
made of circularly polarized plane waves, which wavevectors form a cone with an opening
angle θ in the k-sphere representation. A geometric phase can be attributed to the azimuthal
distribution of wavevector in the beam spectrum. In short, the conical k distribution can be
seen as the result of a rotation, imposed by the lens, of the wavevector of the incident beam
in the meridional plane, as illustrated on figure (15). This evolution features rotations of the
local polarization vector, issued from parallel transport on the k-sphere from the north pole θ=0
(incident field) to θ 6=0 (focused field) where θ corresponds to the lens aperture angle.

40



Figure 15 – Evolution of individual wavevector component of a paraxial electromagnetic field, when focused by a
high aperture lens. The beam electric field acquires a non-negligible longitudinal component upon focusing, turning
the beam non-paraxial. Figure adapted from the work of K. Bliokh et al.[192].

This transformation preserves the beam total angular momentum along the beam axis
of symmetry (z). Upon focusing, SAM to IOAM conversion occur. The total SAM and IAOM
along the longitudinal direction can be written as [192]

<Lz>= `+ σΦB, and <Sz>=σ(1− ΦB) with Φ=(1− cosθ) (2.13)

The σΦB component in <Lz> corresponds to the part of SAM that has been converted into
IOAM. In equation (2.13), cos(θ) characterizes the field directional spread. The Berry phase
associated with the azimuthal distribution of partial rays with a fixed polar angle θ is γ(θ)=
2πΦB=

∮
C(1− cos(θ))dφ=2π(1− cos(θ)), which is related to a circuit on the k-sphere. For

an aperture angle θ=π/2, SAM is fully converted to IOAM. SAM to IOAM conversion can be
evidenced by studying the corresponding optical forces exerted on a small particle [193].

In the same work, non-paraxial beams obtained from strong scattering by a small
particle is also studied [192]. The authors examine spherical redirectioning of partial plane
waves and demonstrate SAM to OAM conversion. However, the geometric transformation used
to obtain the scattered field is not entirely equivalent to the transformation describing focusing,
as it involve projections rather than parallel transport [192].

The transformation of a paraxial beam into a non-paraxial beam therefore evidences
SOI of light, as SAM is converted into IOAM. The geometric phase associated with this
transformation is related to the distribution of local wavevectors in the parameter space. It would
be interesting to further examine this transformation in terms of the Poincarana sphere.

Now that the role of geometric phases in SOI of light has been described, I will briefly
discuss how the curvature of the connection of the fibre bundle associated with the geometric
phase can also cause dynamical effects, namely, spin or orbital-dependent trajectory changes.

2.2.3 Dynamical effects associated with the quantum fibre bundle

In 1879, 18 years before the discovery of the electron and its spin, E. Hall noted
that applying a magnetic field perpendicularly to an electrical conductor carrying an electric
current leads to the apparition of a voltage difference across an electrical conductor [194].
This effect, known as Hall effect, describes charge-dependent trajectory deviations of electrons
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attributed to the Lorentz force. A few years later, E. Hall noted that the effect could be amplified
in ferromagnetic materials, where the voltage difference can be attributed to spin-dependent
deflections of the electrons [195]. This phenomenon can interpreted in terms of the Berry phase
and the Berry curvature in momentum-space, which introduce an anomalous contribution to
the wave-packet group velocity, as described in the review of N. Nagaosa et al. [196]. These
spin-dependent deflections are similarly observed in nonmagnetic materials, indicating that the
corresponding Spin Hall effect exists without the necessity of applying a magnetic field. Further
investigations have revealed a complete family of electronic Hall effects such as quantum Hall
effects and the valley Hall effect [197].

The spin Hall effect (SHE) of light was predicted in 1992 by V. S. Liberman and B.
Y. Zel’dovich [198], and was theoretically described by K. Bliokh and Y. Bliokh [199] and M.
Onoda, S. Murakami and N. Nagaosa [200]. Optical Hall effects appear as a consequence of
SOI of light and are deeply involved in angular momentum conservation processes.

SHE of light can be witnessed in a gradient-index media, in which case it is also known
as optical Magnus effect [201]. This phenomenon is fully described in a review from 2008, K. Y.
Bliokh, A. Niv and E. Hasman, in which the dynamic effect of Berry’s curvature on the beam
centroid is evidenced [20]. Assuming a smooth inhomogeneous medium, the authors examine
the propagation of vector waves following an helical trajectory and derive the Lagrangian of the
system, evidencing a "spin-orbit coupling Lagrangian" contribution. The coupling Lagrangian is
considered as "the Coriolis term in a wave-accompanying non-inertial coordinate frame" and is
expressed in terms of the Berry connection determining the parallel transport of the transverse
electric field on the unit k-sphere. The Euler-Lagrange equations then gives the equations
of motion (ray equation) describing the evolution of the centroid of a polarized wave packet
in an inhomogeneous medium, which are the first order approximation of geometrical optics.
The equations of motions comprise a “force” equation ∂tk and a velocity equation ∂tr. The
author evidence a spin-dependent correction term in the velocity equation, which is absent in the
zero-order approximation, forming a so-called "anomalous velocity equation". This contribution
entails a polarization-dependent transverse deflection of the ray trajectory, orthogonal to both the
wave momentum and the medium inhomogeneity gradient. Consequently, a linearly polarized
beam propagating in an inhomogeneous medium along a helical trajectory, i.e., a superposition
of RH and LH circularly polarised components, will experience beam splitting between its RH
circularly polarized beam and a LH circularly polarized components, as illustrated on figure (16).
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Figure 16 – Schematic spin splitting of an electromagnetic beam propagating along an helical trajectory in a smooth
inhomogeneous media. Figure adapted from the work of K. Bliokh [20].

The anomalous velocity equation can be written in terms of the curvature of the
Berry potential vector, which yields a "Lorentz force" originating from a topological (magnetic)
monopole located at the origin of the parameter space (k-sphere). In a spherically symmetric
medium, the spin-orbit term in the equations of motion also allows the wave total angular
momentum to be conserved, as variations in the direction of SAM caused by refraction are
compensated by the ray transverse shift, which changes the beam OAM.

In a theoretical study from 2006, K. Bliokh introduced Hall effects related to the
"Orbital" Berry connection, manifesting as -̀dependent trajectory changes, when studying an
OAM-carrying beam propagating in a smoothly inhomogeneous isotropic medium [21]. He
showed that, similarly to the curvature of the spin Berry connection, the curvature associated
with the orbital Berry connection introduces a correction term in the velocity equation in real
space. In the same paper, it is showed that, in an inhomogeneous media, the velocity equation
exhibits both spin and orbital-dependent corrections, giving rise to spin and ` dependent ray
deflections. Hall deflections are generally small, of magnitude proportional to the wavelength but
can grow with the ray length and are perpendicular to the medium inhomogeneity ∆n. Unlike
the helicity, the topological charge ` is not bounded to |1|, thus, the orbital Hall effect (OHE)
can be of higher magnitude than the SHE. In an inhomogeneous media, the orbital Hall effect
manifests as deflections, or splitting of singularity lines for a superposition of optical vortices.

Optical Hall effects can also manifest at the sharp interface between two media of
different refractive indices. In this case, the trajectory change cannot be directly interpreted in
terms of the Berry phase, as it is a non-adiabatic case. A complete description of optical Hall
effects at sharp interfaces was provided by V. G. Fedoseyev in 2011 [23] and in a review of K.
Y. Bliokh, I. V. Shadrivov and Y. S. Kivshar from 2009 [202]. By considering a beam of finite
spatial extend as a superposition of plane waves propagating at slightly different angles, it appears
that each individual wave experiences different Snell and Fresnel equations, which describe the
reflection and transmission laws. Consequently, the output beam experiences displacements
from its geometric expectation, within and across the propagation plane, which describe the
Goos-Hänchen (GH) [203] and transverse Imbert-Ferodov (IF) shifts [204, 205], respectively.
From a geometric perspective, it can be argued that it is the geometric phase gradient formed
in the k-space as the different wavevector components of the beam rotate to satisfy Maxwell’s
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transversality condition, which entails the real-space spin Hall shift of the beam centroid in real
space [206, 207]. In this process, the amount of SAM in the normal direction change and is
compensated by the beam shift which creates a nonzero EOAM. The spatial shift induced by
the gradient of geometric phase can be accompanied by a transverse angular (momentum) shift,
which increases with the propagation distance, i.e., it is a diffraction phenomenon [208].

V. G. Fedoseyev theoretically predicted vortex-dependent transverse shifts of the cen-
troid at a sharp optical interface [23], the underlying phenomenon being orbit-orbit interactions.
As the intrinsic OAM component in the normal direction changes at the interface, total angular
momentum is conserved due to the apparition fo a transverse shift introducing EOAM [209–211].
This shift is accompanied by significant transverse deformation of the beam profiles [212–214].

Spin Hall effect of light is difficult to observe as the corresponding displacements
occur on the wavelength scale. For this reason, techniques such as quantum weak measurement
technology [215] are preferable to measure SHE. Also, SHE can be amplified via multiple
reflections, as it is the case in a cylinder glass [20, 216]. For further information about SHE
please refer to the review of from 2017 [197].

So far we have described Hall effects due to geometric phases described in the k-space
of parameters. In a paper from 2015, Z. Ling et al. have proposed a SHE due to a gradient of PB
phase in a dielectric-based metamaterial [217]. In this case, the authors argue that the magnitude
of the SHE is significantly bigger than the one observed at a sharp interface as the shift occurs in
momentum space (∆k), then entails a real space shift ∆r.

Optical Hall effects can also be introduced by breaking the axial symmetry of a beam
when considering the beam distribution in a tilted plane with respect to the beam propagation
direction. This effect has been described by A. Aiello et al. in 2009 [24]. Indeed, a beam
carrying SAM or IOAM, sees, in a tilted cross section, its angular spectrum components acquire
different effective polarization/orbital ‘rotations’ in the parameter space, leading to the apparition
of a gradient of Rytov-Vladimirskii geometric phases phase causing a so-called "geometric Hall
effects". It has been argued that the geometric SHE can be interpreted in terms of the relativistic
Hall effect for relativistic objects [168, 218, 219]. The geometric Hall effect has recently been
used to investigate Hall effects in inhomogeneously polarized beams [220], in which case the
SHE is attributed to a varying Pancharatnam-Berry geometric phase.

In non-paraxial beams, the geometric phase gradient in the k space described by each
plane waves constituents causes enhanced Hall effects [15]. Optical Hall effects of light have also
been investigated in plasmon mediated light-matter interaction [188, 221, 222], and in various
systems, such as in a left-handed material [223], and dipole radiation [224], to cite a few.

44



To sum up Chapter 2, it has been shown that specific transformations of light beams, lead by
variations of the mean beam wavevector or (and) caused by variations described in the beam
state space, such as the Poincaré sphere or Bloch sphere for OAM modes, can be associated with
geometric phases of different nature, obtained from the transport law of the scalar or vector
field. This transport laws are embedded in Maxwell’s equations, which define the transversality
condition between the beam local wavevector and the electric field. Geometric phases are
examples of anholonomies of the connection of a specific fibre bundle, and are related to the
underlying spatial and topological properties of the system. Macroscopic SOI of light can be
interpreted in terms of geometric phases. The curvature of the connection associated with the
corresponding fibre bundle has dynamical effects on the beam centroid equation of motion,
leading to spin or orbit deflections, i.e., partial SAM or IOAM to EOAM conversion.

Now that a theoretical framework for SOI of light has been established, two original
case studies will be presented, both are concerned with orbit-orbit interactions in asymmetric
optical beams. In the first case, an azimuthally symmetric beam undergoes wavefront splitting
when incident upon a Fresnel Biprism. In the second case, an azimuthally symmetric beam
propagates in a medium with a vertical gradient of refractive index.
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CHAPTER 3

INVESTIGATING ORBIT-ORBIT INTERACTIONS UPON SYMMETRY
BREAKING

The study of orbit-orbit interactions is quite recent in comparison to the study of
spin-orbit interactions. May it be in the form of IOAM to IOAM conversion or IOAM to EOAM
conversion, the study of orbit-orbit interactions is fundamental to improve our understanding
of the scalar properties of light. A simple approach to disclose orbit-orbit interactions of light
is to break the symmetry of an initial azimuthally symmetric beam of light. In what follows,
two original studies dedicated to orbit-orbit interactions of light are presented, the first one
performs symmetry breaking in a freely propagating beam based on a Fresnel biprism, the
second one performs symmetry breaking by imposing a vertical gradient of refractive index to a
beam propagating in a solution of distilled water and ethanol. In both cases, experimental and
numerical results are presented.

3.1 WAVEFRONT SPLITTING BASED ON A FRESNEL B IPRISM

3.1.1 Motivation

Optical Hall effects have mainly been explored at sharp interfaces [209] and in smooth
inhomogeneous media [20], in which case they manifest as spin or orbit-dependent transverse
spatial shifts and transverse angular shifts [208]. Hall effects can also occur in freely propagating
beams, an example being the geometric Hall effect, which is based on symmetry breaking,
when observing a beam in a tilted plane with respect to the beam propagation direction [24].
Continuing with Hall effects observed in freely propagating beams, in 2010, K. Bliokh et al.
reported optical spin and orbit-dependent transverse shifts in azimuthally truncated non-paraxial
fields upon asymmetric focusing [15]. Other studies from 2014 and 2015 have taken interest in
the apparition of spin Hall effects upon symmetry breaking of an incident, freely propagating,
azimuthally symmetric CV beam [225, 226].

Few works have been dedicated to orbital Hall effects (OHEs) upon symmetry breaking
for a freely propagating beam. In March 2017, A. Bekshaev et al. studied the behaviour of beams
carrying optical vortices upon edge diffraction [227]. They evidenced some spectacular effects
such as optical vortex (OV) migration in the transverse plane upon propagation, OV restoration
and the asymmetric penetration of light energy into the screened region upon propagation, which
was interpreted in terms of energy flows. This study showed that initial OV cores that are not
‘screened’ experience transverse trajectory shifts, also, an initial beam with topological charge `
is decomposed into a set of secondary single-charged vortices. Upon diffraction, the OV cores
move along intricate spiral-like trajectories. Various topological reactions accompanying the OV
cores migrations were reported, such as the apparition of new OVs or OVs annihilation.
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In a second paper published in July 2017, A. Bekshaev continued his study on freely-
propagating paraxial, edge-diffracted beams, this time investigating Hall effects [228]. In this
case, the incident beam was circularly polarized and polarisation-dependent angular deviations,
parallel to the screen edge, were reported 1. In the same work, A. Y. Bekshaev argued that,
in this case, orbital Hall effects in scalar diffracted beams can be evidenced similarly to SHE
effects by considering the trajectory of the beam centre of gravity. He considered an incident
Laguerre-Gaussian beam with radial index zero and topological charge ` and, in an analytical
study, anticipated angular deviations of the diffracted beam trajectory parallel to the screen edge
and proportional to the incident OV topological charge. The author considered several screening
situations, ranging from weak diffraction perturbation to severe screening.

It is in this context that, in 2017, we decided to experimentally investigate OHE in
an asymetric OV beam. Contrary to the edge-diffraction method where the information of the
blocked beam is lost, we rely on a Fresnel-Biprism configuration, allowing to split the wave
front of a beam incident on the Fresnel Biprism along the vertical direction. Two complementary
beam parts of variable proportions are obtained, each having its own propagation direction. We
analyse the behaviour of each beam part upon propagation. This work lead to a publication,
attached in Appendix 3.

Orbit-orbit interactions of light were investigated both using an experimental and a
numerical approach. Both are described in what follow.

3.1.2 Generation, characterization and splitting of a Laguerre-Gauss beam

Our light source is a GaN Fabry-Perot laser diode of wavelength 405 nm and typical
power 6 mW, coupled to a monomode fibre. A linear polariser, placed after the fibre collimator,
ensures that the so-obtained freely propagating beam is homogeneously polarized. A telescope is
used to expand and collimate our beam. A collimated Gaussian beam of waist radius w0=430µm
at half of its maximum intensity is obtained 2.

OAM is imparted to our Gaussian beam by using a phase-only spatial light modulator
(SLM) (Cambridge Correlators, SDE1280) operating in reflective mode. The SLM relies on
nematic liquid crystals to spatially modulate the incident beam in two dimensions. Liquid crystals
are birefringent rod-like molecules, which have properties that correspond to both liquid and
solid states of matter. An excellent review on phase-only liquid crystal on silicon devices can be
found in the work of Z. Zhang, Z. You and D. Chu. [229]. Our SLM is electrically addressed.
The addressing circuit is placed on top of a silicon backplane, which is mirror coated to improve
the diffraction efficiency of the SLM. The pixels array possesses a resolution of 1280 × 720,
pixel pitch 9.5µm, pixel 0.5′′ diagonal active area and response time 10ms± 5ms. The response

1 The author employs a paraxial description despite the paraxiality violation of the configuration as the paraxial
approach provides "good qualitative and, in many cases, satisfactory quantitative description".

2 The beam waist is measured with a CCD camera.
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time is generally limited by the response time of the liquid crystal. A layer of liquid crystals
is placed above the pixel array, on top of which a transparent glass substrate is positioned, as
illustrated on figure (17. a.).

In the absence of electric potential, the liquid crystals are horizontally aligned, this
corresponds to the off-state illustrated on (17. b). When an electric field is applied across the
liquid crystal layer i.e., on-state, controlled pixel by pixel, the liquid crystals reorient themselves.
SLMs based on liquid crystals are sensitive to polarization state of the incident beam. For the
SLM not to modify the beam polarization state, the incident beam must be aligned with the
crystal orientation in the off-state. If the polarization direction of the incident beam is not aligned
with the direction of the liquid crystal molecules, the polarization state of the reflected beam will
be modified in relation to the incident state.

Figure 17 – a. Schematic description (simplified) of an electrically addressed reflective spatial light modulator
based on liquid crystals. b. Orientation of the liquid crystals for an on and off state. Figure adapted from the work
of Z. Zhang, Z. You and D. Chu [229]

Other SLMs rely on optical addressing schemes, in which case a liquid crystal display
is used to project a pattern onto a photoconductive element [230]. It is difficult to achieve a
precise linear phase control with optically addressed SLMs, however, electrically addressed
SLMs may also present non exact pixel to pixel data mapping due to the sampling of the
video data. Transmissive SLMs also exist, they are typically smaller and less complex than
their reflective counterparts but have slower response time and lower zero-order diffraction
efficiency. A good comparison between transmissive and reflective SLMs and between optically
and electrically addressed SLMs can be found in the work of J. Harriman et al. [230].

Also, note that there are alternatives to liquid crystal based SLMs, such as magneto-
optic based SLMs [231], deformable mirrors [232], which are excellent for incoherent light, and
multiple quantum wells [233], ideal for fast optical switching.

Previous calibrations indicated that our SLM can produce relative phase difference
up to 3π/2 rad for a wavelength of 405 nm, for an incident linear polarization oriented at 45◦.
The fact the SLM does not reach a full 2π phase modulation reduces its diffraction efficiency
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[234, 235]. To improve the diffraction efficiency in a given order and overcome the phase
modulation limitation of our SLM, a blazed phase grating can be used when designing the
diffraction grid [236]. In our case, the diffraction efficiency is satisfactory for our experiments.

Using the principle of holography, it is possible to impart OAM to the beam reflected
by the SLM. A computer-generated hologram is displayed on the SLM, allowing to dynamical
control the reflected wave phase distribution. According to the principle of holography, the
hologram displayed on the SLM corresponds to the interference pattern between a reference
wave and the wave one wishes to generate. In order to spatially separate the desired beam, a small
tilt angle is imparted to the reference wave, hereby forming a diffraction grid. When illuminated
by the reference wave, the hologram will generate the desired wave in the chosen diffraction
order. For OAM generation, we assume that the incident beam consists of a plane wave and the
desired beam consists of a Laguerre Gaussian beam. The electric field of the reference field EG,
tilted by a small angle θ, and the desired field ELG read [237]:

EG(x, y, z)=uG exp(i(kz− kθx)) ELG(r,φ, z)=uLG exp(i `φ+ ikz) (3.1)

Where ` is the topological charge of the LG beam, which exhibits the characteristic azimuthal
phase factor, where φ is the azimuthal angle. The intensity of the interference pattern is [237]:

I(r,φ, z0)=|ELG|2+|EG|2+ELGE∗G + E∗LGEG

=ILG + IG + 2uLG uGcos( `φ+ kθx)
(3.2)

This forms a characteristic "fork"-shaped holographic grating, with spacing 2π/kθ in the x axis.
The formation principle of the fork hologram is illustrated on figure (18). Our diffraction grating
is generated via a Matlab routine, and displayed as an a 8-bit image, which corresponds to a
range [0-255] of grey levels, scaled to the SLM phase retardation. The fork diffraction hologram
obtained for an LG beam of topological charges `=−1 is given on figure (18). The line density,
spacing, and blazing are adjusted to optimise the spatial resolution and intensity of the first-order
diffracted beam.

Figure 18 – Formation principle of a fork diffraction hologram for LG beams of topological charges `=−1. The
fork diffraction grating corresponds to the interference pattern between a tilted wave of planar wavefront and a
helical beam of topological charge `=−1, which phase evolution has been converted in gray intensity levels.
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The diffracted beam diffracted in the n-order will carry an optical vortex of topological
charge qn, where q is the topological charge of the phase singularity embedded in the hologram,
given by the difference in the number of diffraction lines on each side of the fork (upper and lower
part in figure (18)). As highlighted by A. Bekshaev and S. Sviridova [238], ideally, a Gaussian
beam incident on the SLM normal to the hologram plane and well centred on the hologram fork
bifurcation produces a LG beam. In reality, a Kummer beam or hypergeometric Gaussian beam
is often obtained, which corresponds to a superposition of LG modes with different radial indices
[72]. Figure (19) illustrates how a fork diffraction grating, displayed on a reflection based phase
only SLM can produce OAM-carrying beams from a Gaussian beam.

Figure 19 – Generation of OAM-carrying beam from a reflection SLM. The incident beam of topological `=0 is
diffracted by the fork hologram grid displayed on the SLM, generating a beam of topological charge `=q, where q
corresponds to the topological charge of the fork dislocation, here q=−1, in its first diffraction order.

The desired diffracted order can be spatially filtered using a screen placed after the
SLM. A second linear polarizer is placed on the path of the selected diffracted beam to counter
any spatial polarisation inhomogeneities, possibly introduced by the SLM.

The experimental intensity distributions of OAM-carrying beams generated in the first
diffraction order of the diffraction grid, for a fork dislocation of topological charge +1,+2,+3
are presented on figure (20). As expected, the radius of the principal intensity ring increases with
the beam topological charge. The ring intensity radius of pure LG modes of radial order 0 scales
with the magnitude of the beam topological charge as 1̀/2 [56].

Figure 20 – Intensity distributions of the first-order diffracted beams for a fork grating dislocation of topological
charge `=+1,+2,+3.
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Note that, on figure (20), non-zero radial modes are also observed, appearing as
additional concentric rings. This is due to the fact that we are using a phase-only SLM [239].
Our SLM can generate LG-like beams up to a topological charge of magnitude `=|5|.

Several methods can be used to determine the topological charge of the first-order
diffracted beam. An excellent review can be found in the book of D. Andrews and M. Babiker
[56]. We have explored a few, which are listed bellow.

The triangular slit diffraction method, introduced by J. Hickmann et al. [240], consists
of centring a cylindrically symmetric beam with unknown central topological charge on a small
triangular slit aperture and examine the intensity distribution of the far field diffraction pattern.
The far field distribution pattern results from the interference between edge waves and reveals the
incident beam topological charge by counting the number of external points of the so-obtained
triangular lattice. Changing the sign of the incident beam topological charge will cause the
diffraction lattice to be mirrored. A square aperture has also been proposed, which is capable of
measuring higher order topological charges than the triangular slit aperture but cannot distinguish
between topological charge of opposite sign [241]. A few examples of far field diffraction
patterns issued from a triangular slit and a square slit are given on figure (21).

Figure 21 – Far field Intensity distributions of a beam carrying OAM by a triangular slit (2 first rows) and a
rectangular slit, (third row) for incident beams of different topological charges .̀ The blue arrows indicates intensity
minima related to the beam topological charge. The far field of the triangular aperture is mirrored when the beam
topological charge is inverted.

A single cylindrical lens or a tilted convex lens can also be used to determine the
topological charge of a LG beam [82, 242]. The intensity distribution near the lens focal plane
consists of the decomposition of the incident Laguerre Gaussian-like beam into an Hermite-
Gaussian-like mode, the number of bright lobes observed corresponding to `+ 1 and the tilt
of the pattern discriminating positive from negative topological charges. A few examples of

51



intensity patterns obtained by the passage of an OAM-carrying beam through a tilted convex
lens are given on figure (22).

Figure 22 – Intensity distributions near the focal plane of a tilted convex lens, for incident beams of topological
charges `=+1,+2,−1,−1,.

Interferometry can be used to determine the beam topological charge and is particularly
interesting to determine the position of the OV core. When interfering our Laguerre-Gaussian-
like beam with a beam with a planar wavefront, we recover the "fork" interference pattern, where
the dislocation indicates the position of the vortex core. The topological charge is given by
the difference between the number of fringes above and under the fork. An example of such
interference pattern is provided in figure (23), where this technique was used to determine the
position and topological charge of a pair of OV cores embedded in a Gaussian beam.

Figure 23 – Interference pattern of a plane wave and a Gaussian beam embedded with a pair of optical vortex
cores of topological charge `=−1 (left) and `=+1 (right), as evidenced by the fork dislocations. (For a separation
distance of 35 pixels between the OV cores, on the SLM). The red circles indicate the location of each fork.

In the case of edge diffraction or symmetry breaking, it is possible to determine the
sign of the beam topological charge by observing in which direction the intensity penetrates the
dark region in the far field [227]. Further details regarding the origin of this phenomena will be
provided when discussing our results.
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Note that the all of the methods described above give access to the average value of
OAM carried by the beam, i.e., they are not indicated to perform a modal decomposition.

Now that I have described how an OV can be embedded in a Gaussian beam and how
to characterize the mean OAM content of the beam, I will describe how the symmetry of the
beam can be broken using a Fresnel biprism.

The Fresnel biprism was introduced in the 19th century by A. Fresnel, who proposed
to join two thin prisms at their base [243]. The purpose of this device was to demonstrate the
wave nature of light and corroborate Young’s findings. At the time, some objections were raised
regarding the origin of the fringes observed in Young’s double slit experiment [244]. It was
argued that the fringes could possibly not be attributed to interference between the two waves
but rather arise due to "complicated modification of the light by the edges of the slits" [245].
Fresnel’s biprism allows to observe interference fringes without edge effects.

When illuminated by a plane wave, a Fresnel’s biprism performs wavefront splitting.
For a configuration as illustrated on figure (24 a.), the part of the beam incident on the right part
of the Fresnel biprism, defined in relation to the Biprism apex, is refracted to the left (L) whereas
the beam part incident on the left part of the biprism is refracted to the right (R).

Figure 24 – Wavefront splitting by a Fresnel Biprism. a. An incident beam, delimited by two rays (in green), is
incident on a Fresnel biprism. A ray located on the left side of the biprism’s apex is refracted to the right whereas a
beam located on the right side of the biprism’s apex is refracted to the left. The biprism is mounted on a translation
stage such that the relative position between the incident beam and the biprism apex (red dotted line) is varied. A
CCD camera, positioned on a translation stage, can image both beam parts. b. An incident azimuthally symmetric
beam (1) is split into two variable beam parts, depending on the relative position between the incident beam and the
biprism apex (red doted line). The beam part refracted to the left and to the right, as defined in a., correspond to the
intensity distribution (2) and (3), respectively.

The two beam parts interfere in a region near the biprism exit. The resulting interfer-
ence pattern can be seen as the result of the interference between two virtual sources, in analogy
to Young’s double slit experiment. A Fresnel biprism can be seen as a truncated refractive axicon
[246], the later being known notably for its capacity of generating Bessel-like beams [247].

Beyond the interference region, the two beam parts are spatially separated. We consider
a biprism of diffraction angle β=6.46 mrad and mounted on a millimetric stage such that the
incident symmetric beam can be split into two complementary parts of variable width. The
position of the biprism apex is denoted by a variable a and varies from −w0 to w0, where w0

is the waist radius of the incident beam. Consequently, for a=0, the biprism splits the incident
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beam in half. Figure (24 b.) illustrates the splitting of an incident azimuthally symmetric beam (1)
into two beam parts, depending on the relative positioning of the biprism apex a and the incident
beam. The beam parts reflected to the left and to the right, as defined in (24 a.), correspond to
the schematic intensity distribution denoted (2) and (3), respectively.

A CCD Camera of resolution 1296 × 964 and pixel size 3.75µm is placed at 600
mm after the biprism and is fixed on a millimetric stage such that it can record the intensity
distribution of both complementary diffracted beam parts. Care is taken not to saturate the image.
The recorded image is a 16-bit grayscale image, saved in a PNG format.

3.1.3 Orbit-orbit interactions: experimental and numerical studies

We aim at studying orbit-orbit interactions of light upon beam splitting by a Fresnel
Biprism. To do so, we measure angular deviations induced by symmetry breaking, for each
position of the biprism, i.e., for a specific beam splitting. For a position a, the CCD camera
records the intensity distribution of the beam part refracted in the right direction, as defined on
figure (24), as the beam topological charge is varied from `=0 to `=±5 on the SLM. The CCD
camera is then translated to record the beam part refracted in the left direction, and records a
second series of images, as the beam topological charge is varied from `=0 to `=±5 on the
SLM. The process is repeated for various positions of the biprism a.

The intensity distributions are imported in Matlab and a black mask is numerically
added to the image, such that the intensity distribution from higher radial modes can be discarded.
A program then exports the coordinates of the center of gravity for each image by weighting the
grayscale distribution over the image. The analytical expression for the center of gravity of each
beam part in the transverse plane can be defined as:

gR,(L)( ,̀ a)= 1
P

∫
r |u2,R(L)( ,̀ a)|2dxdy (3.3)

Where r is the transverse radius vector, P corresponds to P=
∫
|u2,R(L)( ,̀a)|2dxdy and u2,R(L)( ,̀ a)

is the amplitude associated with the right (or left) beam part, for a position of the biprism a
and incident topological charge .̀ According to the work of A. Bekshaev, in edge diffraction,
symmetry breaking of an incident cylindrically symmetric Laguerre Gauss beam with zero radial
order should introduce angular deviations of the refracted beam, with respect to its geometric
expectations, parallel to the screen edge and dependent on the incident beam topological charge
[228]. Considering that the apex angle of our biprism is small, similar angular deviations are
expected in our configuration. In this case, the angular deviations for each beam part occur along
the y direction and can be written as:

θy=atan[(gR(L)( ,̀ a)− gR(L)( `=0, a))/z12] (3.4)

Where gR(L)( `=0, a) is the center of gravity of a Gaussian beam, which corresponds to the
geometric expectation of the beam centroid in the absence of OAM. In equation (3.4), z12

corresponds to the propagation distance of the respective beam part, from the biprism exit plane.
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By numerically extracting the center of gravity of each beam part and using equation
(3.4), the experimental angular deviations for topological charges ranging from `=−5 to `=+5
can be plotted as a function of the relative position between the incident beam and the biprism
apex a. Our results are showed in figure (27) and will be further discussed in what follows.

The error of the measurement method described above for angular deviations induced
by symmetry breaking is evaluated by considering a beam entirely refracted in one direction and
comparing the center of gravity obtained for beams of topological charge ranging from `=0 to

`=±5. The error, converted in angular deviations is 0.03 mrad.

Our experimental study is complemented with a numerical model. Let be a monochro-
matic, paraxial Laguerre-Gauss of azimuthal order ` and radial order 0, propagating in the
z-direction. In the biprism exit plane (z12=0), the field complex amplitude can be written as

u1( ,̀ a)=LG0`( )̀FB(a) (3.5)

Where FB(a) accounts for the action of the biprism, namely

FB(a)=exp(−ik(β/2)sgn(x − a))(x − a) (3.6)

Therefore, at the biprism exit plane, the beam is separated into two parts, determined by the
relative position of the incidence beam and the biprism apex position a, and each part has a
distinct propagation direction, forming an angle |β/2| with the z-axis.

The total electric field complex amplitude at the biprism exit plane, denoted by the
subscript 1, can thus be written as a sum of two electric fields propagating in different propagation
directions, i.e. u1=u1,R( ,̀ a) + u2,L( ,̀ a).

The electric complex field at a propagation distance z12, denoted by the subscript 2, is
obtained by applying the Rayleigh-Sommerfeld diffraction formula on the respective beam parts:

u2,R(L)( ,̀ a)=
∫∫

u1,R(L)( ,̀ a)(z12/(iλ r2
12))exp(+ik r12)dx1dx2 (3.7)

The Rayleigh-Sommerfeld diffraction formula was introduced as an alternative to Kirchoff’s
diffraction theory. A detailed analytical description of the Rayleigh-Sommerfeld Diffraction
formula and a comparison between the Rayleigh-Sommerfeld and the Kirchoff diffraction
theories can be found in the book of J. W. Goodman [248]. Both the Rayleigh-Sommerfeld and
the Kirchoff diffraction theory are concerned with scalar waves, and yield satisfactory results as
long as the diffracting apertures is large in comparison to the wavelength and that the diffraction
field under consideration is not too close to the aperture 3.

Numerically, the Rayleigh-Sommerfeld diffraction integral can be calculated by either
angular spectrum method (ASM) or direct integration method [250, 251]. The former uses a
Fourier transform to compute the light field in the spatial-frequency domain whereas the latter
computes the diffraction integral in the spatial domain using numerical integration, which can be

3 Note that vectorial generalizations of diffraction do exist [249]
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treated as a linear convolution and relied on a fast Fourier Transform and an inverse fast Fourier
Transform. We adopt the ASM method, which is suited for far field calculations and allows to
calculate the diffracted field u2(x, y) from the incident field u1(x, y) as [251]:

u2(x, y)=F−1(F(u1(x, y))×H(kx,ky)) (3.8)

WhereH(kx, ky) is the spatial frequency transfer function and F and F−1 refer to the Fourier
transform and inverse Fourier transform, respectively. We define a 4096× 4096 pixels grid and
the sampling of the spatial and the frequency domains are optimised to avoids aliasing as well
as large computational loads, as described in the book of T. Poon and J. Liu[251]. The transfer
function is defined as follows;

H[p, q]=exp(−ik0z

√√√√1− (p∆kx)2

k2
0
− (q∆qy)2

k2
0

) (3.9)

Where δkx(ky) is the sampling period in the frequency domain and p, q is the indices of the
samples in the spatial domain.

The intensity distribution in the z12 plane is then calculated from the so-obtained
electric field and is plotted as a greyscale image.

The coordinates of the beam centre of gravity of each beam part are then extracted
using the same algorithm as the one described above to analyse our experimental intensity
distributions. However, this time, no mask is applied, as our computed LG beam already has a
radial order 0. The beam angular deviations from the `=0 LG beam for various a are calculated
using equation (3.4). Our results are then plotted (see figure (27)) in order to compare our
numerical and experimental results.

3.1.4 Results and discussion

For a position a=0 of the biprism, i.e., when the incident is split in two complementary
half beams, the intensity distributions issued from both the experimental and numerical evidence,
at a propagation distance of 60 cm after the biprism, the migration of a part of the intensity
profile beyond the screened region and the recession of part of the beam intensity profile into
the non-screened region, as illustrated on figure (25) for an incident beam of topological charge
±5. This phenomena is observable in each beam part. If the beam topological charge is inverted,
the recessing region becomes the migrating region and vice versa, as illustrated on figure (25).
Also, the presence or absence of higher radial orders does not alters this result, at least from a
qualitative perspective.

The rotation of the field transverse profile near the nominal propagation axis has been
studied in detail in edge-diffracted LG beam by A. Bekshaev et al. in 2014 [252]. In this work,
A. Bekshaev et al. show that as the propagation distance increases, the beam transverse intensity
profile further rotates, enters the screened region and stabilises in the far field, where the beam
intensity distribution is perpendicular to the screen edge. This observation is valid for severe or

56



partial screening of the incident beam. A. Bekshaev et al. interpreted their findings in terms of
transverse energy circulation, by arguing that, introducing symmetry breaking cause the initially
“hidden” vortex form of transverse energy circulation can be converted into a form of asymmetry
transverse energy circulation. This study is based on irradiance moments.

Figure 25 – Experimental (left row) and numerical (right row) intensity distributions of complementary beams
parts, issued from an initial circular LG beam of topological charge `=−5 and `=+5, split by a Fresnel biprism, at
a propagation distance z12=60cm. The arrows indicate the rotation direction of the intensity pattern and the dotted
red line indicates the initial beam central axis.

Alternatively, the rotation of the field transverse profile can be understood in terms of
the Gouy phase of the beam. In a paper from 2006, J. Hamazaki et al. studied the behaviour of a
focused p=0, `=±10 LG beam while introducing an asymmetric defect (using a dark sector)
[253]. As illustrated on figure (26), the authors experimentally show that the defect rotates upon
propagation, in opposite directions for opposite topological charges, while intensity distributions,
equidistant and in opposite direction of the focal plane form vertically mirrored images. While
the later effect is observed in `=0 beams, the rotation is not. This behaviour can be attributed to
the Gouy phase. The Gouy phase of a LG`

p can be expressed as:

ΦGouy(z)=(2p+| |̀+1)arctan(z/zR) (3.10)

Where zR is the Rayleigh length. Upon propagation, the intensity profile of an OAM-carrying
beam rotates by an angle:

∆θ=sng( )̀arctan(z/zR) (3.11)

This also explains why the intensity distribution ceases to rotate in the far field in the study of A.
Bekshaev et al., as for z→±∞, ΦG→±π/2.
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Figure 26 – Spatial evolution of modified LG beam with an asymmetric defect, figure from the work of [253]. Here,
m is the LG beam topological charge and p its radial order and z indicates the distance before (negative) and after
(positive) the focus plane (z=0).

In a complementary numerical study, J. Hamazaki et al. showed the evolution of the
intensity distribution from z=−∞ to z=+∞ (z= being the focal plane) [253]. They evidenced
that the defect rotates at a constant rate for all ` in a LG beam of radial index p=0 but that the
phenomena is pronounced for larger | |̀, because of the radial dependence for LG modes.

The authors also investigated a LG beam with radial order p=5 and topological charge

`=+10. They find that, while from −∞ to +∞, all rings undergo a full π rotation (two times
π/2 on each side of the focus plane), the rotation rate of the individual rings is not the same. For
a rotation angle 0<|ϕrot|<π/2, the inner rings rotate faster than the outer rings. This process
reverses in the π/2<|ϕrot|<π part of the evolution [253]. Similar results have been obtained by
S. M. Baumann et al. [254].

Interestingly, the Gouy phase shift has also been interpreted as the manifestation of a
general Berry phase [255, 256].

Also note the presence of fringes in both the numerical and experimental intensity
distribution on figure (25). I. Zeylikovich and A. Nikitin [257] argued that such fringes naturally
appear in the diffraction from a gaussian beam and are the result from the interference between
the helical wave created by an optical vortex near the cusp of a caustic formed in the shadow
region of the straight edge and the cylindrical wave diffracted at the straight edge.

As illustrated on figure (27), both experimental and numerical results evidence angular,
θy of equation (3.4), deviations from the geometric expectation, parallel to the biprism apex
line. For a fixed value of a, the angular deviation scales with | |̀+1. The angular deviations
of the complementary beam parts are correlated, which increases the sensitivity of the Fresnel-
biprism-based configuration to calculate angular deviations in comparison to edge diffracted
beams.
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Figure 27 – Angular deviations of complementary beam parts of an initially symmetric LG beam, split by a Fresnel
Biprism, in function of the relative position a between the incident beam and the Fresnel biprism apex. The blue
line emphasizes the correlation between the right and left split beams for `=−4.

If the diffracted beam almost retains its circular symmetry, such is the case for a=−0.8
and a=+0.8 for the Left and the Right beam parts, respectively, angular deviations are small.
Angular deviations increase as the beam asymmetry increases. However, the maximum value for
angular deviations does not corresponds to a=0, i.e., for two half beam parts. Take the left beam
part for instance, for `=−4, the angular deviation is maximum for a≈0.45 for experimental
results and for a=0.5 for numerical results. Now for `=−1, these maxima are reached for
a≈0.05 for experimental results and for a=0.1 for numerical results.

These results are in agreement with A. Bekshaev’s predictions, namely, that the
angular deviation vanishes for a circularly symmetric beam and that the magnitude of the angular
deviation does not grow monotonically [228].

Still according to A. Bekshaev, the transverse angular shift of a truncated beam should
correspond to the transverse canonical momentum produced by the tilt of the beam and can be
written as 4

p⊥= 1
kPIm

∫
u∗y∇uydxdy (3.12)

4 In our case, the direction parallel to the screen edge is the y, not the x direction.
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The transverse canonical momentum along with the orthogonal displacement of the beam center
produces EOAM. For an incident circular LG beam of radial order 0, equation (3.12) yields
angular deviations proportional to the incident OV topological charge. As commented by A.
Bekshaev, in general, the analytical expression for p⊥ is quite complex. For this reason, we
calculate the values of transverse canonical momentum along y for `=±1 for various values of
a, assuming an initial full and symmetric beam such that 5

p⊥=∓γ[q +
√
π erfc(q) exp(q2)]−1 (3.13)

Where it is assumed that the screen plane coincide with the beam waist. With q=a/w0 and q
scaling from -1 to +1 and with γ=(

√
2 kw0)−1.

Figure (28) evidences good agreement between the transverse angular momentum
values obtained from the analytical expression described in equation (3.13) and the experimental
angular deviations for several a, for a beam of topological charge `=−1.

Discrepancies between experimental and numerical results can be attributed to our nu-
merical integration method for the beam intensity profile due to slight asymmetries in the incident
beam profile and the presence of small contributions from higher order radial modes, despite the
application of a mask. Fresnel-based wavefront splitting however remains a promising approach
to improve the accuracy of deviation calculations, by taking advantage of the complementarity
between each beam part. Future works should ideally rely on a quadrant detectors or use weak
measurements methods to improve the accuracy of the measure of angular deviations [258, 259].

Figure 28 – Experimental and analytical angular deviations for an incident circular LG beam of topological charge
`=−1, in function of the relative position a between the incident beam and the Fresnel biprism apex.

Beyond topological-dependent trajectory changes, i.e., orbit-orbit interactions, as
evidenced above, it would also be interesting to study in further details the OAM transformation,
such as the transfer of IOAM from vortex related IOAM and asymmetric IAOM, as defined by A.
Bekshaev et al. [252]. It should also be interesting to consider that the incident mode purity is

5 This expression slightly differ from the one found in the work of A. Bekshaev due to different definitions of
the beam waist and a.
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degraded when the spatial profile is restricted [94]. It recently came to our knowledge that the
modal distribution of an OAM-carrying beam can be simply evaluated by using a second SLM
or by using half of the primary SLM for mode sorting [260].

We also investigated the evolution of the OV core as a is varied. The position of the
OV core was determined by interferometry. In our configuration, we did not observe the creation
of auxiliary vortices, as predicted by A. Bekshaev et al. in the case of edge diffraction [227].
Figure (29) shows the interference pattern between the tail of each beam part, which can be
approximated by a planar wavefront, and each beam part, at a short propagation distance after
the biprism. When varying a such that the OV core passes from being diffracted on the left to
the right direction, we observed that the OV core simply jumps from one split beam part to the
other. We obtained similar numerical results.

Figure 29 – Interference pattern between each beam part, for a beam topological charge `=1.

As a complementary study about orbit-orbit interactions, Appendix 3 shows the
interactions of two OV cores embedded in a diffracting LG beam. Our numerical results show
that the topological charge of individual vortices influence the trajectory of individual OV cores
and that a beam carrying OV cores of opposite topological charge separated by a small distance
annihilate whereas beams with the the same topological charge do not. Similar studies about OV
cores interactions can be found in the work of G. Molina-Terriza et al. [261].

3 .2 ASTIGMATISM IN A VERTICAL GRADIENT OF REFRACTIVE INDEX

3.2.1 Motivation

When investigating the evolution of OV cores in a symmetrical optical beam, a review
of G. Molina-Terriza [56] came to our attention. In this review, the process of topological charge
inversion in an asymmetric paraxial monochromatic beam is described.

The author gives a definition for the most general kind of stable isolated vortices,
namely, "noncanonical" vortices. In the vicinity of an OV of unit topological charge, located at
(x1, y1), the scalar field can be written as E(x≈x1, y≈y1)=ax(x− x1) + ay(y− y1) + O(x2, y2),
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where ax and ay are complex. Assuming ax 6=0, the electric field becomes [56]

E(x≈x1, y≈y1)=C((x − x1) + i A(y− y1)) + O(x2 + y2) (3.14)

Where C=ax and A=−i ay/ax. The variable A is the noncanonical parameter of the OV core,
the sign of its real part defines the vortex topological charge. Equation (3.14) allows to determine
the intensity of the field associated with the non-canonical parameter A. G. Molina-Terriza
provides a thorough study of the general dynamics of OV cores.

While the topological content of an optical beam is known to change when vortex-
antivortex pairs are created or annihilated, as showed in Appendix 3, or when vortices appear
or disappear from a reservoir at infinity, such as demonstrated in the work of A. Bekshaev,
G. Molina-Terriza shows that an OV can also transform due to continuous deformations of its
noncanonical parameter. In particular cases, this leads to an inversion of the beam topological
charge, i.e., A changes sign [56].

Topological charge inversion is witnessed when a canonical vortex, embedded in the
center of a collimated circular Gaussian beam, traverses an astigmatic lens. In this case, the
OV core becomes elliptical until it becomes an edge dislocation [262]. In terms of OAM, in a
linear homogeneous media, OAM is conserved along the propagation direction. For an incident
circularly symmetric host beam, a cylindrical lens only mixes the eigenfunctions of angular
momentum. The asymmetric beam produced by the lens is characterized by a superposition of
angular momentum eigenmodes. For an incident beam carrying an OV core of unit topological
charge, the main contribution comes from the modes of order +1 and −1. From the perspective
of geometric optics, the cylindrical lens produces a mirror image of the incident field.

In this context, we decided to study OAM transformation in an incident monochromatic,
paraxial cylindrical LG beam when introducing astigmatism in a vertical gradient of refractive
index (VGRIN). This is, to my knowledge, the first time OAM is being investigated in a VGRIN,
the large majority of studies being dedicated to gradients of refractive index maintaining a form
of cylindrical symmetry, such is the case in waveguides [263, 264]. Contrary to mirror inversion
occurring at sharp interfaces, a VGRIN allows to study OAM transformations as astigmatism is
slowly introduced.

3.2.2 Realisation and probing of a Vertical gradient of refractive index

Mirage effects have been experimentally reproduced by heating surfaces [265, 266]
and by superposing liquids if different densities [267, 268]. We choose the later approach as it is
relatively risk-free, easy to implement, and minimizes edge effects.

A cylindrical glass cell of inner diameter 26 mm and 200 mm length enclosed with
two quartz windows is filled with distilled water in its lower half and its upper half is filled with
ethanol (>99,9%). Ethanol is poured in such a way to minimize initial liquid mixing. Ethanol
having a lower density and higher refractive index with respect to distilled water, a VGRIN
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establishes through the solution. A He-Ne laser beam is used to probe the solution as illustrated
on figure (30). The beam deflections confirm the presence of a VGRIN.

Figure 30 – A He-Ne laser beam (λ=632.8 nm) propagating through a binary solution of distilled water and ethanol.
Commercial ethanol is used here for illustrative purposes only.

In the following, a GaN Fabry Perot laser diode source of wavelength 405 nm is used.
The beam is collimated by a telescope to achieve a waist radius of size 850µm at half of its
maximum intensity. The same SLM and fork diffraction gratings as the ones described in the
last section are used to impart OAM. After being spatially filtered, the beam corresponding to
the first diffracted order is incident on a pair of mirrors which control the beam incidence angle
on the cylindrical glass cell. The glass cell is positioned on a translation stage, which allows to
control the incidence height of the incident beam upon the binary solution. A CCD camera is
placed at the cell exit plane. The whole experimental setup is illustrated on figure (31).

Figure 31 – Experimental setup for probing a vertical gradient of refractive index with an optical vortex beam
(viewed from above). The inset above shows how the incident beam angle and height are adjusted. The cell is filled
with a binary solution of water (in blue) and ethanol (in white).
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A few minutes after the cylindrical cell is filled the incidence height of the beam is
adjusted such that it enters the solution with a few millimetres above the water-ethanol interface
with a small incidence angle (θ0<5◦). Initially, two consecutive total internal reflections (TIR)
are observed. Four hours later, a single TIR is visible, slowly fading away over the course of the
next six hours. The VGRIN profile thus changes over time and gradually loses its steepness.

The temporal evolution of the VGRIN formed by a binary solution of distilled water
and ethanol can be understood based on the following considerations. For a binary mixture, the
refraction index of the solution is given by the Gladstone-Dale empiric relation [269]

(nmix − 1)/ρmix=α1[(n1 − 1)/ρ1] + α2[(n2 − 1)/ρ2] (3.15)

With α1,2 being the weight of the pure components and n1,2 and ρ1,2 being the refractive index
and density of the pure components, respectively. For λ=405 nm we consider nH2O=1.3429 and
nC2H6O=1.3725 [270, 271].

Assuming that there is no variation of refractive index along the horizontal direction,
and based on the work of T. Zhang et al. [272], the VGRIN profile of the present binary solution
can be expressed as:

n(y)=nH2O + a · µ(y) + b · µ(y)2 + c · µ(y)3 (3.16)

With a=7.972× 10−2, b=−3.706× 10−2, c=−1.381× 10−2 and with µ(y) corresponding to
the mass fraction of ethanol as function of liquid height which can be written as

µ(y)=(1 + erf(y− y0)/d)/2 (3.17)

with y0 being the height of the water-ethanol interface at t=0 and d being the diffusion length of
this quasi-stationary distribution.

Just after the container is filled, a thin mixing layer is present, through which the
fraction of alcohol increases, as illustrated on figure (32). The refractive index of the solution
increases similarly across the mixing layer, however, liquid mixing also causes a peak in the
VGRIN profile µ=0.75 of higher value than the refractive index of the pure components alone
due to the volume contraction of the water-ethanol mixture.

As time passes, diffusion causes the mixing layer to broaden, decreasing the steepness
of the VGRIN profile. Initial liquid mixing and diffusion thus strongly affect the VGRIN formed
by the nonuniform binary solution.

Note that the VGRIN profile evolves more rapidly during the first hours according to
Fick’s laws [273] as diffusion lowers the concentration gradient. According to the interdiffusion
constant of the two liquids, D=1.22× 10−5cm2s−1, the diffusion length d evolves at d2=4Dt=
(4.2[mm]2[t]−1)t, where t is measured in hours.
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Figure 32 – Ethanol fraction and VGRIN profile of a solution of distilled water and ethanol as function of liquid
height for a thin mixing layer (d=0.25 cm) for λ=405 nm.

In order to obtain a quasi-stationary VGRIN profile from a binary liquid solution, an
adequate timescale should therefore be considered.

In view the above results, for a binary solution of distilled water and alcohol, a stable
( <5% variations) VGRIN profile producing an inferior mirage can be obtained over twenty
minutes periods, four hours after the container has been filled.

3.2.3 Numerical ray tracing

The trajectory y(x) of a ray propagating in a known GRIN profile n(y) along the
horizontal direction x can be simply deduced from Snell’s law, as detailed in work of K. Mamola
[274]. Snell’s law can be written as n sin(θ)=k, where k is a constant. When differentiated,
Snell’s law gives [274]:

dn
n =−cos(θ)dθ (3.18)

Where cot(θ)=dy/dx. The differential dθ can be expressed in terms of x and y as [274]:

dθ=− d2y/dx2

1 + (dy/dx)2 dx (3.19)

The ray trajectory y(x) is thus given by the following ordinary differential equation [274]:

d2y
dx2 = 1

n
d(n)
dy

1 +
(

dy
dx

)2
 (3.20)

Alternatively, the ray equation is determined by [274]:

d2y
dx2 = 1

2k2
d(n2)

dy (3.21)

Where k=n(1 + (dy/dx)2)−1/2. Given y(0), the beam incidence height upon the binary solution
and y′(0)=atan(θ0), where k=k0=nsin(θ0), with θ0 being the beam incidence angle upon
the solution, equation (3.21) can be numerically solved. To do so, we use a system of first
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order differential equations using the Matlab solver "ode45", which implements a Runge-Kutta
iterative method.

For y0=15.25 mm and θ0=1.5◦, a VGRIN corresponding to a thin mixing layer ( 15
mn after the cell has been filled) yields two successive total internal reflections, as illustrated on
figure (33). As the mixing layer broadens due to diffusion (for a time of 4 hours after the cell
has been filled), the magnitude of the beam’s deflections diminishes and a single total internal
reflection is observed, as illustrated on figure (33).

Figure 33 – Ray trajectories in a binary solution of distilled water and ethanol for times corresponding to a thin
(t=15 mn) and broader (t=4 hours) mixing layer. For λ=405 nm, y0=15.25 mm and θ0=1.5◦. Inflection points
corresponding to one total internal reflection are indicated by crosses on each curve.

Mirror inversion and astigmatic effects can be evidenced by considering the trajectory
of a series of rays, which incident height y0 is constantly spaced, as illustrated on Figure (34).

Figure 34 – Ray trajectories in a binary solution of distilled water and ethanol for a series of rays of different
incidence height. The colour of the ray distinguishes the upper half of the beam from its lower half. θ0=1.5◦.
The incidence height of the upper ray at the cell entrance is y0=19.0 mm in a. and y0=20.0 mm in b. The beam
diameter has been exaggerated.

For a VGRIN profile corresponding to one total internal reflection and for an incidence
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angle θ=1.5◦, figure (34) shows that the VGRIN causes a lensing effect of the beam along the
y-direction. This entails variations of the beam diameter in one direction, i.e., the beam becomes
astigmatic, and the beam orientation is inverted upon traversing the lens focus plane, i.e., a mirror
image will be produced. By varying the beam incidence height while keeping the incidence
angle constant, the position of each inflection point for individual rays is varied.

Figure (35) shows the propagation of a series of rays as the incidence height of the
leading ray (upper ray at x=0) is increased. Varying the incidence height causes the VGRIN
focus plane to migrate towards the cell exit plane, where the CCD camera is placed.

To overcome the limitations of the ray tracing numerical model defined by equation
(3.21), we are now developing a complementary numerical model, which will allow to plot the
intensity and phase distributions of a paraxial beam carrying OAM when propagating in an
inhomogeneous media, for any propagation distance in the media.

This model will be based on the split-step beam propagation method, also known as
beam propagation method, as defined in the book of T. Poom and T. Kim [275].

Figure 35 – Translation of the focus plane in a binary solution of distilled water and ethanol for a series of rays for
different incidence height. Experimentally, the CCD camera is positioned at the exit of the cell (x=200 mm). The
incidence height of the upper ray at the cell entrance is y0=20.5 mm in a., y0=21.0 mm in b., y0=21.5 mm in c.
and y0=22.0 mm in d. The incidence angle is θ0=1.5◦.
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3.2.4 Results and discussion

The intensity distributions recorded by the CCD camera, positioned at the exit of
the cylindrical cell are summarised in figure (36), for various incidence height and topological
charges ranging from `=−5 to `=+5. The incidence angle is constant θ0=3◦ and the VGRIN
under consideration allows to witness a single TIR.

For all ,̀ as the incidence height diminishes, the focusing plane associated with the
VGRIN migrates closer to the CCD camera, as predicted by figure (35). The height of the CCD
camera is progressively lowered to record the beam intensity distribution, in agreement with
figure (35). The intensity distribution for an incidence height h3 on figure (36) corresponds to
the situation c. on figure (35).

The exiting beam undergoes astigmatic changes in the vertical dimension, its diameter
along the y axis diminishes until the beam reaches the focal plane then increases back beyond
this point. A beam exiting the binary solution and having experienced the VGRIN corresponding
to one TIR will present astigmatism in relation to the incident beam, except in the situation
illustrated on figure, where the rays inflection point is located at the cell center (34 a.).

Figure 36 – Intensity distributions of OAM-carrying beams, when exiting an inhomogeneous binary solution of
distilled water and ethanol. The beam incidence angle on the binary solution being θ0=3◦ for decreasing incident
heights denoted h1,h2,h3,h4,h5 and various incident topological charges .̀ the height of the CCD camera is
adjusted to record the beam intensity.
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As illustrated on figure (35), the wave-vector distribution of the beam in the cell
exit plane varies depending on the beam incidence height, for a constant incidence angle and
a quasi-static VGRIN. After exiting the cell, the beam undergoes free propagation, thus, the
intensity distribution corresponding to an incident height h3 on figure (36) and appearing as a
superposition of two half beams, can be spatially separated upon free propagation.

The intensity distributions corresponding to an intermediate situation described on
figure (35 b. and c.), for an increasing propagation distance after the cell exit plane, are provided
on figure (37).

According to figure (35), in c., at the cell exit, the upper part of the incident beam (in
black) is not inverted and has a small gradient of wavevector. Upon free propagation, this beam
part retains it overall shape and is slightly propagating in the downward direction, as illustrated
on figure (37). The lower beam part of the incident beam (in red) however has a larger spread in
its local wavevector direction at the cell exit, at c., this beam part still undergoes TIR and, upon
propagation, undergoes strong astigmatic changes, as illustrated on figure (37).

Figure 37 – Intensity distributions for an increasing propagation distance after the cell exit plane. z=0, 5, 10, 15, 20
cm for a.,b.,c.,d.,e., respectively, where z=0 corresponds to the cell exit plane.

According to figure (35), the full beams corresponding to the intensity distribution for
h1 and h5 on figure (36) should correspond to mirrored images. Indeed, as the incidence beam
experience the VGRIN present in the binary solution, the beam undergoes TIR, producing a
mirror inversion of the beam about the vertical direction. As the beam incidence height increases,
the deflection point of each individual ray migrates toward the cell exit plane, until only part of
the beam undergoes TIR then none of the beam does. Image inversion can easily be verified by
gradually obstructing the incident beam while observing its image through the solution.

Image inversions such as the ones produced by TIR are known to reverse the hand-
edness of OAM-carrying beams, and, depending on the beam collimation, can also generate
OAM sidebands, degrading the purity of the mode [276]. Dove prisms are capable of such
transformation and do exhibit inversion of the beam topological charge [276]. However note that,
in the case of a Dove prism, TIR occurs at a sharp interface, it is not the case here.
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The handedness and average orbital angular momentum of a beam exiting the binary
solution are determined using a tilted lens. The CCD camera is placed near the lens focal plane
and records the beam intensity distribution corresponding to a fully inverted and a non-inverted
beam. For an incident beam of topological charge `=+1, the difference of axial symmetry in the
intensity distribution between a full inverted (figure (38) a.) and a full normal beam (figure (38)
b.) indicates that the beams carry topological charges of opposite handedness.

Figure 38 – Intensity distributions near the focal plane of a tilted lens for a full inverted beam (a.) and a full normal
beam (b.) exiting a binary solution of ethanol and distilled water, for an incident beam of topological charge `=+1.

Based on the works of G. Molina-Terriza [56, 262], it would be interesting to further
investigate mode conversion in the vicinity of the beam "focusing" region. In our case, practical
limitations forbid us to record the intensity pattern in this entire region. For this reason, we are
now developing a numerical model based on the split-step beam propagation method, which
should allow us to study the apparition of the edge dislocation and the trajectory and the evolution
of the vortex core, as well as the beam amplitude and phase distributions. We expect a modal
decomposition to reveal the passage from a pure LG mode to a superposition of LG modes upon
propagation through the VGRIN.

An interesting aspect of the VGRIN profile described above is that it allows, when the
rays’ deflection points is located near the cell exit plane, to split the beam into a mirrored and a
normal part in variable proportions depending on the beam incident height. In terms of OAM,
it is rather difficult to compare the OAM content of the individual beam parts as OAM is fully
defined for beams with a full azimuthal range. Instead, it would be more interesting to study the
whole OAM of the beam, by considering that the beam has been spatially folded. This will have
to be investigated in the future.

In all of the above, a single TIR has been considered, allowing to observed an inferior
mirage when the beam is partially or totally deflected in the "upward" direction. As illustrated on
figure (33), a binary solution of distilled water and ethanol also allows to obtain two consecutive
TIR, leading to the observation of the Fata Morgana effect, as illustrated on figure (39).
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Figure 39 – Intensity distribution at the exit of the cylindrical cell for a VGRIN and incidence conditions leading to
the formation of two consecutive TIR

In summary, the inferior mirage of an optical vortex beam carrying OAM has been
obtained from a binary solution of distilled water and ethanol. The slow varying VGRIN profile
present in the solution was explored to match the mirage propagation conditions. Preliminary
results show that the handedness of an optical vortex beam propagating through the solution can
be reversed and, depending on the incidence parameters, the beam can be decomposed into a
mirrored and normal images. This process is accompanied by astigmatic effects, which role in
topological inversion needs to be investigated. We intend to complement our analysis on OAM
transformation by a numerical model based on the split-step beam propagation method before
submitting our work to publication.

Beyond the scope of our study, nonuniform liquid solutions are versatile in comparison
to bulk elements as they can lead to the formation of various VGRIN profiles. This configuration
also opens possibilities to study spin-orbit couplings by adding optically active particles or
molecules to the binary solution.

71



CONCLUSIONS

In this thesis, I have sought to provide a concise overview of our current understand-
ing of spin orbit interactions of light and I have presented two original studies on orbit-orbit
interactions of light in asymmetric optical beams.

In chapter 1, I have answered the question "what are the spin part and orbital part of
light?" by showing that two competing approaches, one based on a symmetric energy-momentum
tensor and the other based on gauge-invariant canonical densities, propose fundamentally differ-
ent definitions. Fortunately, both approaches yield similar qualitative results and, under special
circumstances, can even be considered equivalent. In the case of paraxial beams, both approaches
agree that the total angular momentum of light can be split into a "spin angular momentum"
(SAM) part, associated with the field polarisation, and an "intrinsic orbital angular momentum"
(IAOM) part, associated with the phase distribution of the beam. It is also possible, by consider-
ing a shift of the beam centroid, to introduce "extrinsic orbital angular momentum" (EOAM),
associated with the beam trajectory. Both approaches also agree that in the case of non-paraxial
beams, a clear separation of angular momentum into a spin and orbit part is problematic. A few
practical considerations regarding optical beams carrying SAM and OAM, with an emphasis on
IOAM was also provided, intended to readers unfamiliar with the notion of optical IOAM.

Having laid the foundations for the study of spin-orbit interactions of light, which
I define as the mutual conversions between SAM, IOAM and EOAM, I chose, In chapter 2,
to describe spin-orbit interactions of light from the perspective of fibre bundle theory. This
framework appears naturally when studying the transformation of light beams within a geometric
representation and allows to draw analogies with other physical systems. I briefly reviewed a few
fundamental concepts about fibre bundle theory, defining a geometric phase as the anholonomy
of a fibre bundle and emphasizing the role of the connection and its curvature. I then studied
geometric phases acquired by a light beam as its transformation traces a path in the parameter
space or (and) in the state space. I showed that specific transformations can lead to spin-orbit
interactions of light. I then presented the dynamical effects of the quantum fibre bundle, leading
to another manifestation of spin-orbit interactions of light, namely, optical Hall effects.

Having defined spin-orbit interactions of light, in chapter 3, I present two original
studies about orbit-orbit interactions of light upon symmetry breaking.

In the first study, an azimuthally symmetrical beam carrying OAM is split into two
complementary beam parts using a Fresnel biprism. It is the first time, to my knowledge, that
a Fresnel biprism is used to carry out wavefront splitting of a paraxial beam carrying OAM.
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This device presents a considerable advantage in comparison with conventional symmetry-
breaking configurations such as opaque masks, which is that both beam parts are preserved
and propagate in different propagation directions. I interpret the rotation of the asymmetric
beam distribution in terms of the Gouy phase of the beam and evidence orbital-dependent
deflections, based on experimental and numerical results. Our results are in agreement with
previous analytical studies. This work opens new perspectives to the study of asymmetric beams
carrying angular momentum, both from a classical and quantum perspective, by allowing to
simultaneously study two complementary beam parts. It also brings the question of IOAM to
EOAM conversion upon symmetry breaking and invites to further study the question of angular
momentum associated with the vortex core and the host beam. Future works should consider
weak measurement methods to improve the accuracy on the measurement of the deflections, in
particular if spin-dependent reflections are to be investigated.

In the second study, a vertical gradient of refractive index (VGRIN) is used to introduce
astigmatism to an azimuthally symmetrical beam carrying OAM. A nonuniform binary solution
of distilled water and ethanol is used to realize a VGRIN. In the literature, most graded-index
medium preserved a form of cylindrical symmetry, it is not the case here. I show, based on
experimental observations supported by a numerical model, that this binary solution forms a
VGRIN profile evolving with time, depending on initial liquid mixing and diffusion. I obtained
a quasi-static VGRIN profile yielding a single total internal reflection over twenty minutes
periods, a time sufficient to investigate the transformation of the incident beam. I show that the
VGRIN solution produces a mirror image of the incident beam, resulting in the inversion of
the beam topological charge. This process is accompanied by the introduction of astigmatism
along the vertical direction. It is possible, by varying the beam incidence condition upon the
binary solution, to obtain two beam parts at the exit of the cell, one corresponding to the mirror
image and one being the normal image of the incident beam. Numerical ray tracing is used to
endorse our results, however, I am now developing a new model based on the split-step beam
propagation method in order to further investigate the role of astigmatism in topological charge
inversion. According to the literature, this study should evidence OAM mode competition upon
mirror inversion. This also brings in discussions about OAM related to the optical vortex core
and the host beam. Using a nonuniform binary solution to establish a VGRIN offers a few novel
aspects to investigate, first, contrary to most bulk optical elements, mirror inversion does not
occur at a sharp interface but occurs smoothly, second, optically active particles or molecules
can easily be introduced to the solution.
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Interference between vector vortex beams  
 

Claire Marie Cisowski1, Amanda Kronhardt Fritsch1, Ricardo Rego Bordalo Correia1  
1Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500 Agronomia, 91501-970 Porto Alegre, RS, Brasil.  

Author e-mail address: claire.cisowski@ufrgs.br 
 

Abstract: We numerically demonstrate that interfering two paraxial monochromatic beams          
corresponding to orthogonal states on the higher-order Poincaré sphere leads to the disappearance             
of the interference pattern. This extends the concept of quantum eraser to vector vortex beams.  

 
1. Introduction 

In 1816, Fresnel and Arago established that two orthogonally polarized do not interfere [1]. Homogeneous               
polarization states of light are often represented as points spanning the surface of the Poincaré Sphere (PS),                 
diametrically opposite points representing orthogonal states. Interfering a state B with a state A corresponds to                
transporting B to A along the shorter geodesic on the PS, performing a “projection”. Orthogonal states do not                  
interfere as their phase difference is undefined [2]. Recently, beams with inhomogeneous polarization and phase               
distributions such as vector vortex beams have received considerable attention [3]. To account for both spin and                 
higher dimensional orbital states, Milione et. al. introduced higher-order Poincaré spheres (HOPS) [4]. Such              
representation features orthogonal circularly polarized optical vortex beams at the poles and cylindrical vector (CV)               
beams at the equator. Relying on Jones formalism, we study the interference between pairs of VV beams spanning                  
the surface of an HOPS (see Fig.1.a). VV beams are defined as follows [5]: 

(1) 

With  and  being the unitary vectors of the right and left CP basis and with  and . 
3. Numerical results and discussion  

 
Fig.1. a. Higher order Poincaré sphere for  OV beams at the poles, the arrows indicate the polarization distribution. 

 b. Interference patterns of various combination of VV beams spanning the higher order Poincaré sphere.  

We evidence that the interference of two orthogonal states on the higher order Poincaré sphere leads to the                  
disappearance of the interference fringes (see Fig.1.b). Our results are in agreement with the experimental work of I.                  
Nape et al. [6]. Such interference studies opens perspectives to exploring higher-order Pancharatnam Berry phases.  
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[4] G. Milione, H.I. Sztul, D.A. Nolan, R.R. Alfano. “Higher-order Poincaré Sphere, Stokes Parameters and the Angular momentum of light”, 
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[5] N. Bhebhe, P.A.C. Williams, C. R-Guzman, V. R.-Fajardo, A. Forbes. “A vector holographic optical trap”, Nat. Sc. Reports, 8, 17387 (2018). 
[6] I. Nape, B. Ndagano, A. Forbes. “Erasing the orbital angular momentum information of a photon”, Phys. Rev. A. 95, 053859 (2017). 
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APPENDIX 2

Based on the work of P. F. Chimento et al [174] and of A. Roszkiewicz and W. Nasalski
[277] on SAM to OAM conversion upon transmission from a circular air nanoslit on a thin
metal film, we investigated as a proof of principle numerical study, the phase and polarization
distribution exiting from a air nanoslit of radius 100 nm and width 20 nm in a gold layer of 200
nm thickness on a glass substrate, when illuminated by a monochromatic (λ=530 nm), circularly
polarized plane wave.

This study was carried out using a Finite-difference time-domain method, which
computes the full electric and magnetic field within the computation domain [278].

As illustrated on figure (40), we find that at a propagation distance 2µm after the
slit, the phase distribution of the electric field spin-flipped component exhibits a helical phase
distribution of topological charge `=+2 and that the spatial distribution of the transverse total
electric field direction in the transverse plane is inhomogeneous.

SAM to OAM conversion is only partial in this case as the ring retardation was not
optimised nor characterized in this preliminary study.

Figure 40 – a. Intensity and b. phase of the spin-flip component. c. transverse electric vector distribution at a
propagation distance of 2µm after a nano aperture.
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Splitting an optical vortex beam to study
photonic orbit–orbit interactions
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We numerically and experimentally evidence photonic
orbit–orbit interactions in freely propagating asymmetrical
beams carrying orbital angular momentum. A Fresnel
biprism is used to carry out the wavefront division of an
optical vortex beam, generating two complementary asym-
metrical beams. The optical orbital Hall effect is presented
in the form of angular deviations from the beam’s geomet-
rical expectation. We also observe the rotation of the field
transverse profile near the nominal propagation axis upon
propagation, which direction depends on orbital momen-
tum currents. © 2018 Optical Society of America

OCIS codes: (260.6042) Singular optics; (050.4865) Optical vortices;

(070.2580) Paraxial wave optics.

https://doi.org/10.1364/OL.43.000499

In the semi-classical approximation [1], the spin and orbital
properties of light become coupled. In paraxial beams, photonic
spin–orbit interactions refer to the coupling between spin
angular momentum, associated with circular polarization,
and extrinsic orbital angular momentum (EOAM), related
to the trajectory of the beam’s centroid [2]. Similarly, coupling
between intrinsic orbital angular momentum, associated with
optical vortices, and EOAM is known as orbit–orbit interac-
tion. Both interactions are related to geometrical Berry phases
and topological spin or orbital transport, namely the spin Hall
effect (SHE) for spin–orbit interactions or orbital Hall effect
(OHE) for orbit–orbit interactions [3].

SHEs consist of polarization-dependent deflections of the
beam’s trajectory. SHEs can manifest at sharp interfaces in
the form of polarized-dependent transverse shifts known as
Fedorov–Imbert shifts [4,5] and in smoothly inhomogeneous
media, as spin-dependent angular deflections (also known as
optical Magnus effect [6]), leading to splitting of beams with
different polarization states [7].

OHEs refer to orbital-dependent deflections of the beam’s
trajectory. OHEs have been extensively studied at sharp inter-
faces in the form of orbital-dependent transverse shifts [8,9]
and orbital angular deflections in smoothly inhomogeneous
media [3]. The latter evidence splitting of beams with different
topological charges l (pitch, in units of wavelength, of the

helical wavefront on the single full rotation near the axis) as
well as splitting of multi-charged vortex beams into constella-
tions of l unit strength vortices [10,11]. Deformation of the
beams intensity distributions, involved in the process of orbital
momentum conservation, and the appearance of rotation of the
beam profile upon propagation, dependent on orbital momen-
tum current, have also been reported in this context [12,13].

Remarkably, Hall effects can also manifest in freely propa-
gating asymmetrical beams [14] and, in the case of SHE effects,
can even be enhanced without relying on complex fabrication
techniques [15]. By breaking the symmetry of a paraxial
linearly polarized optical vortex beam, OHE emerges as unbal-
anced transverse fluxes generate an extra transverse OAM,
responsible for OAM-dependent angular deflections [16,17]
and multi-charged vortices breakdown [18]. The process of
multi-charged optical vortices breakdown upon symmetry
breaking is of particular interest as it exposes processes involved
in orbital momentum conversion and implies complex optical
vortices dynamics [17].

Symmetry breaking also reveals the rotation of the field
transverse profile near the nominal propagation axis upon
propagation [3,19]. The role of transverse-orbital and spin
momentum currents upon the rotation of a free propagating
beam’s centroid has been discussed by Luo et al. in the case
of a general vector field, who also related the rotation angle
to the Gouy phase [20]. For helical beams, the rotation
direction indeed shows a dependence on transverse OAM
currents, related to the sign of the optical vortex topological
charge l [21–23].

To study these effects, we consider a paraxial Laguerre–
Gauss (LG) beam carrying an optical vortex of topological
charge l propagating in the z direction, incident upon a
Fresnel biprism to perform symmetry breaking. A Fresnel
biprism is an optical plate with equal wedges from opposite
extremities forming a centered wide apex angle. Each wedge
refracts light in a direction determined by the apex’s comple-
mentary angle β, causing an incident beam simultaneously
illuminating both wedges to be split into two complementary
beams propagating in different directions [24]. In the biprism’s
exit plane z � z1 � 0, the field complex amplitude u1�l; a�
can be written as

u1�l; a� � LG0l�l�FB�a�; (1)
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with LG�l� a standard LG beam of topological charge l as
defined by Allen et al. [25] and BF�a� accounting for the action
of the Fresnel biprism,

FB�a� � exp�−ik�β∕2�sgn�x − a���x − a�; (2)

with a being the position of the biprism’s apex. At the biprism’s
exit plane, the field’s relative position with respect to the
biprism’s apex a defines two possible propagation directions
forming an angle β∕2 with the z-axis. Consequently, the initial
beam is split into two complementary beams propagating to the
right (R) or to the left (L) direction (see Fig. 1) and Eq. (1) can
be rewritten as u1�l� � u1;R�l� � u1;L�l�.

At a propagation distance r12, each split beam’s complex
amplitude u2;R�L��l� in the plane z � z2 can be obtained using
the Rayleigh–Sommerfeld diffraction formula [26]:

u2;R�L��l; a� �
ZZ

u1;R�L��l; a��z12∕�iλr212��

× exp��ikr12�dx1dy1: (3)

The gravity center g of each split beam in the z � z2 plane can
be defined as [27]

gR�L��l; a� �
1

P

Z
rju2;R�L��l; a�j2dxdy; (4)

with P being the beam’s power P � R ju2;R�L��l; a�j2dxdy and
r being the transverse radius vector.

In the absence of OHE, gR�L��l; a� coincides with the
geometrical expectation of the split beam’s trajectory due to
the biprism’s edge diffraction; this is the case for split beams
without orbital angular momentum (l � 0). Angular devia-
tions θy along y of each split beam’s trajectory from its
geometrical expectations can be calculated as

θy � atan��gR�L��l; a� − gR�L��l � 0; a��y∕z12�: (5)

Our experimental setup is shown in Fig. 1. We use a fiber-
coupled Fabry–Perot laser operating at 405 nm. The beam’s
output is collimated and illuminates a forked diffraction grating
produced by a spatial light modulator (SLM). The SLM
produces LG beams of topological charges ranging from
l � 0 to l � �5 in its first diffraction order [28]. A polarizer

introduced after the SLM determines a linear polarization state
for the beam.

The beam illuminates a Fresnel biprism of diffraction angle
β � 6.46 mradmounted on a millimetric stage. Lateral scan of
the Fresnel biprism allows to control in which proportion each
biprism’s wedge is illuminated. The biprism’s center position a
ranges from −w0 to w0, covering the whole incident beam, with
a � 0 generating two perfect half beams. The beam’s waist ra-
dius at the exit of the biprism z1 is w0 � 431 μm. The inten-
sity pattern of the two complementary split beams are recorded
on a CCD camera of resolution 1296 × 964 and pixel size
3.75 μm. The CCD camera is placed at 60.0 cm after the
biprism on a millimetric stage such that it can image both
diffracted beams. Our SLM produces a LG beam with various
radial modes; only the lowest-order intensity ring is extracted
from the images for post-processing. The beam’s center of grav-
ity from the CCD images are calculated using Eq. (4) and the
deviation angle is obtained using Eq. (5).

We perform a series of measures based on the following pro-
cedure: for a given position of a (Fig. 1, inset image 1), the
CCD camera is centered on one split beam (Fig. 1, inset image
2). The incident beam’s topological charge is varied from
l � −5 to l � �5 including l � 0 and the intensity profiles
are recorded on the CCD camera. For the same position a, the
camera is translated and centered on the other split beam
(Fig. 1, inset image 3) and the procedure is repeated. The image
acquisition is repeated for various positions of a and the centers
of gravity for each beam part gR�L��l; a� are calculated.

A numerical model using the Rayleigh–Sommerfeld
diffraction formula described above is used to calculate the
corresponding angular diffraction. We consider a LG beam
of azimuthal order l and radial order 0. Intensity patterns
at 60.0 cm after the biprism are generated for various values
of a, using the parameters of our biprism. The positions of
the gravity centers are extracted from the numerical model,
as well as the corresponding angular deviations.

Both split beams’ experimental and numerical intensity pat-
terns exhibit a rotation as a whole, related to the sign of the
topological charge l: for l > 0 the intensity pattern follows
an anti-clockwise rotation whereas for l < 0 the intensity
pattern follows a clockwise rotation, following the circulation
of internal OAM fluxes. The emergence of beam rotation as a
whole has been described by Basistiy et al. [29] by considering
the phase of a paraxial LG beam, neglecting propagating fac-
tors, as originating from the Gouy phase of the beam, for a
beam with radial mode 0, −�jlj � 1� arctan�z∕zR� (zR being
the Rayleigh length) combined with the characteristic
azimuthal dependence lφ. They showed the expression for
the phase can be rewritten to evidence a new azimuth angle
φ 0 � φ − sgn�l� arctan�z∕zR�, demonstrating rotation of
coordinate frame or rotation of a beam as a whole during propa-
gation, dependent on the sign of l and independent of its mag-
nitude. In the far-field limit, the beam’s apparent rotation
stabilizes after having performed a π∕2 rotation [29]. Other
works also relate the rotation to the Gouy phase [30–33].
Note that the Gouy phase shift is a manifestation of a general
Berry phase [34] and originates from a transverse spatial con-
finement, introducing a spread in the transverse momenta [35].
The rotation is particularly noticeable for high values of l (see
Fig. 2) [36]. Evidence of internal fluxes in symmetry breaking
has been reported in the case of edge-diffracted beams [17], and

Fig. 1. (a) Linearly polarized LG beam carrying an optical vortex of
topological l illuminates a Fresnel biprism and is split into two com-
plementary beams propagating in the right (R) and left (L) directions.
Inset: lateral displacement of the Fresnel biprism’s center a ranging
from −wo to �wo.
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here we extend this observation to the two complementary
split beams.

The analysis of the beam’s center of gravity for both exper-
imental and numerical data evidence angular deviations from
the geometrical expectation, scaling with the amount of
OAM carried by the beam, evidencing another phenomenon
related to orbit–orbit interaction, i.e., the orbital Hall effect.
Angular deviations occur parallel to the biprism’s apex line.
The error upon the beam’s experimental displacement was
evaluated by taking the full beam, entirely refracted in one sin-
gle direction after the Fresnel biprism, and taking the displace-
ment of the gravity centers for l � −5 to l � �5; l � 0
included, a maximum error of 0.03 mrad was found.

For an initial beam carrying orbital angular momentum,
changing the split beams’ asymmetry by selecting various values
of a alters the angular deviations in agreement with the orbital
Hall effect. Note that for a fixed value of a, the angular devia-
tions scale with jlj � 1 (∀ jlj ≥ 1) (see Fig. 3). This is due to
the difference between the fluxes’ velocity according to different
values of l. Both experimental and numerical results evidence
that the angular deviation between the right and left split beams
are correlated (see blue line in Fig. 3). This feature theoretically
gives our setup an additional sensitivity when it comes to meas-
uring angular deviations due to Hall effects, in contrast to
partially blocked beams.

In this regard the usage of a Fresnel biprism to provide sym-
metry breaking adds a full new perspective to explore the com-
plementarity properties of the split beams. Using the biprism to
split optical vortex beams also allows us to study quantum cor-
relations between the two beams’ split parts. Another subject of
interest is the dynamics of the single-charge vortices created
from a multi-charged optical vortex beam in both complemen-
tary beams. A good sensitivity in measures of deviations can
also be used to study spin Hall effects, which are expected
to be of lower magnitude than orbital Hall effects [3].

The transverse angular shift of a truncated beam corre-
sponds to the transverse canonical momentum (here along
the y direction) produced by the tilt of the beam propagation
direction [22], defined as [27]

p⊥ � 1

kP
Im

Z
u⋆x ∇uxdxdy: (6)

The transverse canonical momentum along with the
orthogonal displacement of the beam center produces
EOAM. As the apex angle of the biprism is small, one can
consider that angular deviations due to the orbital Hall effect
produced by such a device are expected to be similar to the ones
produced by edge diffraction.

To illustrate the similarity, we calculate values of the trans-
verse canonical momentum along y for l � −1 for various val-
ues of a using the approach presented by Bekshaev [27],
assuming an initially full and symmetric beam (related to
the left panel of Fig. 3):

p⊥ � 	γ
�
q � ffiffiffi

π
p

erfc�q� exp�q2��−1; (7)

with q � a∕wo, q scaling from −1 to �1 and γ � � ffiffiffi
2

p
kwo�−1.

The results are presented in Fig. 4 and are compared with the

Fig. 2. (a, b, d, e) Experimental and (c, f ) simulated intensity pat-
terns of complementary split beams for a � 0 at z � 60 cm for
l � �5 (upper panel) and l � −5 (lower panel). For l > 0 the
intensity patterns exhibit an anti-clockwise rotation whereas for
l < 0 they exhibit clockwise rotation.

Fig. 3. Angular deviations θy , in milliradians, for various positions
of a and values of l. The first row shows experimental results for the
split beams propagating to the left (L) and right (R) directions, respec-
tively. The second row shows numerical results from the split beams
propagating to the left (L) and right (R) directions, respectively. The
blue line emphasizes the correlation between the right and left split
beams for l � −4, in both experimental and numerical data.

Fig. 4. Transverse angular momentum p⊥ along the y direction,
given by edge diffraction, compared with experimental angular
deviation θ along y, for the left part of the beam, split with the
Fresnel biprism (Fig. 3, upper left panel). Both configurations assum-
ing an initial full and symmetrical LG beam of topological charge
l � −1.
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angular deviations obtained from the biprism configuration for
one split beam part with l � −1.

Good agreement between the two methods is found. The
numerical results slightly overestimate the angular deviations,
which can be attributed to the technique chosen to perform
integrations over the beam intensity profile.

In conclusion, we used a Fresnel biprism to perform a tun-
able symmetry breaking of an optical vortex beam. This con-
figuration allows us to evidence orbit–orbit interactions in the
form of angular deviations attributed to the optical orbital Hall
effect. We also evidenced the rotation of the field transverse
profile near the nominal propagation axis upon propagation,
which direction depends on orbital momentum currents.
We numerically and experimentally measure the angular
deviations due to optical orbital effect. These results are com-
pared with the expectation value of the transverse canonical
momentum in the transverse direction for l � −1 using a
model based on edge diffraction, which can be considered as
a very similar configuration for the individual split beam parts.
Good agreement is found between the two methods, and could
be improved by refining the integration model over the inten-
sity profile. The Fresnel biprism being a device that allows pres-
ervation of the two complementary split beams, we hope this
work will open perspectives for entanglement studies as well as
studies dealing with optical vortex symmetry breaking.
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