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ABSTRACT

Calibration and validation are two important steps in the application of  sediment models requiring observed data. This study aims to 
investigate the potential use of  suspended sediment concentration (SSC), water quality and remote sensing data to calibrate and validate 
a large-scale sediment model. Observed data from across 108 stations located in the Doce River basin was used for the period between 
1997-2010. Ten calibration and validation experiments using the MOCOM-UA optimization algorithm coupled with the MGB-SED 
model were carried out, which, over the same period of  time, resulted in 37 calibration and 111 validation tests. The experiments were 
performed by modifying metrics, spatial discretization, observed data and parameters of  the MOCOM-UA algorithm. Results generally 
demonstrated that the values of  correlation presented slight variations and were superior in the calibration step. Additionally, increasing 
spatial discretization or establishing a background concentration for the model allowed for improved results. In a station with high 
quantity of  SSC data, calibration improved the ENS coefficient from -0.44 to 0.44. The experiments showed that the spectral surface 
reflectance, total suspended solids and turbidity data have the potential to enhance the performance of  sediment models.

Keywords: MGB-SED; Doce River; Erosion; MUSLE; Sediment modelling.

RESUMO

A calibração e a validação são duas etapas importantes na aplicação de modelos de sedimentos que requerem dados observados. Nesse 
contexto, este estudo investigou o potencial de uso dos dados de concentração de sedimentos em suspensão (CSS), qualidade da água e 
sensoriamento remoto na calibração e validação de um modelo hidrossedimentológico de grande escala. Foram usados dados observados 
de 108 estações, localizadas na bacia do rio Doce, para o período entre 1997 e 2010. Foram realizados dez experimentos de calibração e 
validação usando o algoritmo de otimização MOCOM-UA, acoplado ao modelo MGB-SED, resultando em 37 calibrações automáticas 
e 111 testes de validação, todos no mesmo período. Os experimentos foram construídos modificando as métricas, discretização espacial, 
dados de CSS e parâmetros do algoritmo MOCOM-UA. Os resultados mostraram que, no geral, os valores das correlações variaram 
pouco e foram melhores na etapa de calibração. Observou-se que, o aumento da discretização espacial da bacia ou o estabelecimento 
de uma concentração mínima para o modelo, possibilitou obter resultados melhores. Em uma estação com muitos dados de CSS, a 
calibração melhorou o coeficiente de ENS de -0,44 para 0,44. Os experimentos mostraram que os dados de reflectância espectral de 
superfície, sólidos suspensos totais e turbidez apresentam potencial para melhorar a performance dos modelos de sedimentos.

Palavras-chave: MGB-SED; Rio Doce; Erosão; MUSLE; Modelagem de sedimentos.
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INTRODUCTION

Monitoring suspended sediments (SS) in water bodies is 
useful in the development of  various studies that relate sediments 
to environmental, social and economic issues (MORRIS; FAN, 
1998). Through the use of  observed data and sediment models it is 
possible to understand erosion processes and sediment transport; 
and to simulate scenarios which involve climactic alterations or 
land cover and land use, for example (MILLINGTON, 1986; 
MERRITT; LETCHER; JAKEMAN, 2003; SANTOS, 2009; 
PANDEY et al., 2016; WORKU; KHARE; TRIPATHI, 2017).

Two important procedures to applicate sediment models 
are calibration and validation, which aim to ensure their optimal 
performance (BRESSIANI et al., 2015; PANDEY et al., 2016). 
Bressiani  et  al. (2015) demonstrated that calibration is only 
performed in 66% of  the models in Brazil in order to achieve 
improved results. Model calibration is commonly carried out 
manually, adjusting the parameters through trial and error, turning 
it into a very time consuming and monotonous task (SUGAWARA, 
1979; BOYLE; GUPTA; SOROOSHIAN, 2000; MULETA; 
NICKLOW, 2005). However, in order to achieve a satisfactory 
fit between observed and simulated data, a learning period is 
necessary. This arises from the lack of  knowledge regarding the 
exact outcome of  changes in parameters values in each region of  
the model application. One’s insights acquired through practice is 
difficult to be swiftly transferred to another person, let alone to 
another model (BOYLE; GUPTA; SOROOSHIAN, 2000). To aid 
the user in applying a model - which does not exempt them from 
having basic knowledge about the basin’s physical characteristics, the 
model and its parameters - optimization methods and algorithms 
(e.g. YAPO; GUPTA; SOROOSHIAN, 1998; VRUGT et al., 2003; 
MULETA; NICKLOW, 2005) were implemented in hydrological 
(e.g. GUPTA; SOROOSHIAN; YAPO, 1998; VINEY; SIVAPALAN, 
1999; BOYLE; GUPTA; SOROOSHIAN, 2000; TUCCI; 
COLLISCHONN, 2003; BLASONE; MADSEN; ROSBJERG, 
2007; TUCCI; BRAVO; COLLISCHONN, 2009) and sediment 
(see Table  1) models, allowing for the parameters calibration 
automatically. Few sediment model studies were carried out using 
automatic calibration (Table 1). The main goals of  the studies 
displayed on Table 1 were: to calibrate, to analyze uncertainties 
and to validate models; to compare the performances of  different 
models; and to compare automatic calibration methods.

Among them, the studies of  Van Rompaey et al. (2005) 
and Rostamian  et  al. (2008) Respectively grant that automatic 
calibration can be used to perform a various number of  experiments 
(simulations), and to perform applications in large basins. A problem 
that emerges in merging these two approaches is that calibration 
and validation procedures demand observed data, of  which 
suspended sediment concentration (SSC) or discharge (QSS) 
are normally used. On the other hand, we verify a low density 
of  measuring stations across monitoring networks, few of  them 
presenting long and continuous series of  data (LODHI et al., 
1998; PANDEY et al., 2016). According to Pandey et al. (2016), 
this limits the understanding of  erosion ratios in the multiple 
spatial and temporal scales, as well as that of  the efficiency of  
erosion control measures.

In face of  these issues, several alternatives to standard 
monitoring have been developed to estimate suspended sediments 

(SS), based on water quality data or spectral surface reflectance 
(SSR), obtained from Remote Sensing images (RS). Glysson, Gray 
and Conge (2000) and Williamson and Crawford (2011) used total 
suspended solids (TSS) data to estimate SSC through linear regression. 
Pavanelli and Bigi (2005) and Minella et al. (2008) estimated SSC 
from turbidity data through empirical equations developed over each 
Rspective study. Sari, Castro and Pedrollo (2017) imputed turbidity 
data in a artificial neural networks model and secured valuable SSC 
estimations. SSR data has been used to undertake SS estimations 
in water bodies since the deployment of  the Landsat 1 satellite, as 
exposed by Munday Junior and Alföldi (1979). Lodhi et al. (1998) 
carried out a laboratory study concerning the relationship between SSC 
and SSR data across different concentrations. Martinez et al. (2009) 
and Espinoza Villar et al. (2012) also developed empirical equations 
to estimate SSC from SSR in the Amazon, and Ucayali and Marañon 
(Amazon’s tributaries) rivers, Respectively. Zhang  et  al. (2014) 
carried out procedures similar to those of  Martinez et al. (2009) 
and Espinoza Villar et al. (2012), to estimate SSC in the Huang He 
(Yellow River) estuary.

Despite the aforementioned studies employing RS to estimate 
SSC, none have broached the matter of  using these information 
to calibrate models. Miller et al. (2005) and Yang et al. (2014) used 
SSC derived data from satellite images to calibrate and validate 
sediment transport models for coastal waters. These two were 
the few studies in the literature that were found which used RS 
to calibrate or validate a sediment transport model.

The advantage of  using surrogate data sources, be it water 
quality or RS data, comes from increasing the availability of  
information stemming from such indirect measurements, which 
broadens the monitoring scope. Within the context of  large-scale 
sediment modeling, however, a few limitations and disadvantages 
are made present through the sole use of  SSC derived from 
empirical equation (such as those used by Miller et al. (2005) and 
Yang et al (2014)): (i) in order to establish these relationships in 
an accurate manner, a sufficiently long SSC series is necessary 
that be representative of  the basin conditions both in dry and in 
wet seasons; (ii) generally, these relationships are only reasonable 
over the location where the station was deployed; (iii) in many 
regions, the spatial density of  water quality data stations and 
virtual stations (created from remote sensing images) is much 
higher than that of  sediment stations. Thus, being limited to the 
use of  sediment data derived from empirical equations would 
be to waste alternative information which have great application 
potential in studies related to sediment transport.

No research within the literature, however, has been 
found to directly use water quality and RS data in automatically 
calibration a sediment model at a basin-scale. Therefore, there 
are no clear recommendations regarding how to handle such 
data. In face of  this context, the present study investigated the 
potential use of  SSC, turbidity, total suspended solids and spectral 
surface reflectance data to calibrate and validate a large-scale 
sediment model. To that end, the MOCOM-UA (YAPO; GUPTA; 
SOROOSHIAN, 1998) automatic calibration algorithm was 
employed jointly with the MGB-SED (BUARQUE, 2015) model 
to carry out 10 experiments, which resulted in 37 automatic 
calibrations and 111 validation tests.
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DATA AND METHODS

Study area

The study area is the Doce River basin (Figure 1a of  the 
supplementary material), considered by Lima et al. (2005), among 
the great Brazilian basins, that one that has the largest SSC average 
(386.25 mg/L). It is a very emblematic basin, since it is where, 
on November 5th, 2015, the infamous Mariana Dam Disaster 
occurred, afflicting a great part of  the Doce River, and leading to 
rampant environmental impacts (ANA, 2016). Aside from these 
reasons, the basin was selected due to the presence of  a relatively 
large number of  stations having observed data (Figure 1a of  the 
supplementary material).

It has an area of  approximately 86,715 km2 (PIRH, 2010) 
and is located between the states of  Minas Gerais and Espírito 
Santo. The basin has a strongly seasonal rainfall pattern (PINTO; 
LIMA; ZANETTI, 2015) presenting a dry season that varies from 

April to September, and a rainy season varying from October to 
March (Figure 1b of  the supplementary material). The strong 
and concentrated rainfall contribute to the intensity of  erosive 
processes in the basin, causing siltation issues in the reservoirs 
(FAN et al., 2015b). The predominant types of  soil within the 
region are Red-Yellow Latosols and Red Argisols. There are also 
other types of  Latosols and Argisols, Litholic Neosols, Gleysols 
and Cambisols (PIRH, 2010).

Fagundes et al. (2017) showed that the basin sediment yield 
varies from around 10 t/ano.km2 to close to 14,680 t/ano.km2. 
The authors also demonstrated that sediment yield is directly 
linked to the increase in slope; also that regions south of  the Doce 
River tend to hold the highest sediment yield values. Furthermore, 
Fagundes et al. (2017) observed that sediment discharge increases 
along with the drainage area, reaching values higher than 
7,000,000 t/day in the Doce River. Tributaries, transporting the 
largest sediment load, are the Piracicaba, Santo Antônio, Suaçuí 
Grande and the Manhuaçu Rivers.

Figure 1. (a) Doce river basin, main rivers, and locations of  ANA and CEMIG suspended sediment concentration monitoring station, 
IGAM water quality stations, and virtual surface reflectance stations; (b) Long-term monthly average (1970-2010) hyetograph and 
hydrograph at stations 1940006 and 56994599, respectively, located in Colatina - ES.
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Datasets

Suspended sediment concentration

We obtained information stemmed from 24 SSC monitoring 
stations (Figure 1) from the National Water Agency (ANA), made 
available through the Hydrological Information System (HidroWeb), 
possessing around four annual measurements between 1997 and 
2010 (surrogate data was also acquired for this period). SSC data 
was also obtained from the Fazenda Ouro Fino station (Figure 1), 
provided by the Minas Gerais Energy Company (CEMIG), which 
holds around one daily measurement over the rainy season, and 
from four to ten measurements for dry-season months.

Turbidity and total suspended solids

Turbidity and total suspended solids (TSS) data was obtained 
from 63 water quality monitoring stations (Figure 1) of  the Minas 
Gerais Water Management Institute (IGAM), taking around four 
annual measurements. This data was used as a proxy of  SSC, 
despite them considering other substances suspended in water 
(ASTM, 2003) besides the inorganic soil fractions (silt, clay and 
sand), which is the SSC case. This was performed since various 
studies (e.g. GLYSSON; GRAY; CONGE, 2000; WILLIAMSON; 
CRAWFORD, 2011; PAVANELLI; BIGI, 2005; MINELLA et al., 

2008; SARI; CASTRO; PEDROLLO, 2017) demonstrated that 
there is a substantial correlation between SSC and these water 
quality data.

Spectral surface reflectance

Studies indicate that it is possible to use the visible 
(~0.40 µm to 0.70 µm) and infrared (~0.70 µm to 1.30 µm) 
electromagnetic spectrum to evaluate water components through 
remote sensing (LODHI  et  al., 1998; MUNDAY JUNIOR; 
ALFÖLDI, 1979). The red band is one of  the most used in 
SSC estimation, for it is where the peak of  reflectance occurs 
in water-sediment mixtures (LODHI et al., 1998). On the other 
hand, reflectance saturation may occur for high SSC, causing 
reflectance to not increase proportionally to SSC (LODHI et al., 
1998). Among the advantages of  using SSR to monitor SS are the 
low financial cost in acquiring images and the possibility to obtain 
information with wide spatial coverage and with high temporal 
frequency (WANG et al., 2009; ESPINOZA VILLAR et al., 2012). 
Among the disadvantages are the limited use of  SSR in rivers that 
are too narrow, once the water-sediment mixtures reflectance value 
may be influenced by the presence of  river banks and/or sand 
bars, both in rainy and dry seasons (e.g. MARTINS et al., 2017).

21 virtual stations across the Doce River basin were created 
using images from the Landsat 5/ TM satellite (Figure 2), where 

Figure 2. Potential locations for red band surface reflectance extraction in the Doce River basin (0.64 µm-0.67 µm) and virtual stations 
created from Landsat 5/ TM images. Satellite images in the natural composition show details of  reflectance extraction places for 
stations Piranga, Suaçuí and Linhares.
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SSR information was extracted in the red band. The Landsat 5/ TM 
satellite was chosen because it presents a long temporal series of  the 
past, 30m spatial resolution and also due to institutions that already 
provide that product with atmospheric corrections. In the present 
study, images were acquired at no charge from the United States 
Geological Survey - USGS (2018a) with atmospheric correction 
(USGS, 2018b). To encompass the entire basin, images from four 
scenes with the following orbit/point were used: 216/073, 216/074, 
217/073 and 217/074. An average of  13 images per year were 
used for each scene, due to images with high cloud cover (>80%) 
not being used. SSR data extraction was performed through the 
same approach proposed by Fagundes, Paiva and  Fan (2017), 
which seeks to obtain information on pixels free from cloud and 
shadow interference.

A procedure that could have been adopted to work with the 
remote sensing data would be their transformation in SSC through 
empirical relationships, as performed by Martinez et al. (2009), 
Espinoza Villar et al. (2012), Zhang et al. (2014) and others. In the 
current study, however, a simpler possibility was tested, one that 
allows for a broader use of  information, which would be the direct 
use of  reflectance in comparing to the sediment model results, 
following the procedure presented in the “Experiments” section.

The MGB-SED Model

The MGB-SED (BUARQUE, 2015) model is coupled to 
the MGB large-scale hydrological model (COLLISCHONN et al., 
2007), which is a distributed and conceptual model, with daily time 
step, unit catchments discretization, and that uses the Hydrologic 
Response Units (HRU) approach. MGB-SED was developed 
to represent the erosion and sediment transport processes in 
hill slopes, as well as to depict channel sediment transport with 
possible interactions with floodplains. The sediment yield at 
each unit catchments is estimated through MUSLE (Equation 1) 
(WILLIAMS, 1975), considering a LS  two-dimensional topographic 
factor (BUARQUE, 2015) extracted from the Digital Elevation 
Model (DEM), using surface runoff  volumes calculated by MGB 
as an input. Fine sediments (silt and clay) are routed along the 
river as suspension loads by the diffusion-advection equation and 
don’t settle into the channel.

( )  sur peakSed Q q A K C P LS
β

α= . . . . . . .    	 (1)

where Sed  [t/day] is the sediment load resulting from soil erosion, 
supQ  [mm/ha] is the surface runoff  volume, picoq  [m3/s] is the peak 

flow rate, A is the superficial area, α  and β  are the adjustment 
coefficients (which are calibrated afterwards), whose values originally 
estimated by Williams (1975) were 11.8 and 0.56, Rspectively, K 
[0.013.t.m2.h./m3.t.cm] is the soil erodibility factor, C [-] is the 
cover and management factor, P  [-] is the conservation practice 
factor and LS [-] is the topographic factor.

A model with the configurations defined by Fagundes et al. (2017) 
was employed in this study, which they used in the Doce River 
basin and obtained good results in the calibration process. A brief  
description of  these settings follows.

The Doce River basin was discretized into 1173 unit 
catchments (Figure 1c of  the supplementary material) and the HRU 
were acquired from the South America HRU map (FAN et al., 
2015a). We use 217 rainfall and 59 ANA flow stations, along with 
14 meteorological stations from MGB internal database (FAN; 
COLLISCHONN, 2014). The employed channel flow routing method 
was the Muskingum-Cunge, which has shown satisfying results 
in basins with no significant effects of  backwater and floodplain 
storage (e.g. ALLASIA et al., 2015; COLLISCHONN et al., 2007; 
TUCCI; BRAVO; COLLISCHONN, 2009; GETIRANA et al., 
2010; NÓBREGA et al., 2011; FAN et al., 2016).

The peakq  was calculated from the daily uniform surface runoff  
volume (BUARQUE, 2015). The LS  factor is the combination of  
the slope-length L and slope-steepness S factors. This factor was 
calculated using Buarque (2015) methodology, who developed a 
computational routine that computes the LS factor two-dimensionally, 
making use of  Desmet and Govers (1996) approach to determine 
the L factor, and the Wischmeier and Smith (1978) equation to 
determine S  factor.

Value of  P factor was adopted equal to 1 for two reasons: 
i) conservation practices have greater impact in small watersheds. 
With the increase of  the watershed, its impacts can be despised or 
may not cause significant difference in the estimates performed by 
the model; and ii), due to the hardship of  obtaining the P values 
for large basins. Factor K was estimated following the equation 
proposed by Williams (1995), which uses soil texture data, obtained 
from the Food and Agriculture Organization of  the United Nations 
(FAO, 1971), displayed on Table 2. Factor C values for each HRU 
are also indicated within that table, obtained from the literature 
(see FAGUNDES et al., 2017).

Table 2. Parameters used for sediment yield estimation through MUSLE. 
HRU SOIL SAND (%) SILT (%) CLAY (%) ORGC (%) C

Shallow soil forest Cambisols and Litosols 65.55 15.55 18.90 0.87 0.04
Deep soil forest Argisols and Latosols 44.50 16.75 38.75 1.84 0.04

Shallow soil agriculture Cambisols and Litosols 65.55 15.55 18.90 0.87 0.164
Deep soil agriculture Argisols and Latosols 44.50 16.75 38.75 1.84 0.164

Shallow soil field Cambisols and Litosols 65.55 15.55 18.90 0.87 0.05
Deep soil field Argisols and Latosols 44.50 16.75 38.75 1.84 0.05

Wetlands Argisols 53.30 17.20 29.50 1.74 0.000
Semi-impervious area Argisols and Latosols 44.50 16.75 38.75 1.84 0.001

Water - 0 0 0 0 0
Source: Fagundes et al. (2017).
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Procedures for automatic calibration

According to Moriasi et al. (2007), calibration is the process 
of  estimating the model parameters through comparisons between 
a model estimation and an observed data set, both in similar 
conditions. Validation is used here as defined by Refsgaard (1997): 
as the process that demonstrates that a specific model is capable 
of  performing “sufficiently accurate” simulations for a location. 
The term “sufficiently accurate” being subjective and related to 
goals to be achieved.

The MGB-SED model was calibrated using the MOCOM-
UA multi-objective automatic calibration algorithm (YAPO; 
GUPTA; SOROOSHIAN, 1998), which has already been 
implemented in the MGB model (FAN; COLLISCHONN, 
2014). Some modification was necessary to calibrate parameters 
related to sediment load estimation. The adjustment coefficients 
α and β present in MUSLE (Equation 1) were adopted as 
calibration parameters. These parameters have been modified in 
several studies, as shown by Sadeghi et al. (2014) in their review 
paper about MUSLE applications around the world, in which 
about 30% of  the papers have carried out alterations of  these 
parameters. A surface runoff  delay parameter (TKS) from the 
MGB-SED model was also adopted to calibration procedures. 
Sediment volumes generated at each HRU are virtually stored in 
a linear reservoir, which is a structure that transports sediments 
from the unit catchments to the river channel. TKS parameter is 
associated to the linear reservoir (COLLISCHONN et al., 2007), 
and determines the period in which sediments reach the channel. 
TKS was computed for each unit catchment and is directly related 
to their time of  concentration. After setting TKS  value, changes 
were considered at the sub-basin level (or to the whole basin, 
if  that were the case); that is, every TKS value was amplified or 
reduced at the same rate, but each unit catchment could have a 
single TKS value. A sensitivity analysis was also performed for 
each calibration parameter.

The MOCOM-UA algorithm uses genetic algorithm techniques 
and has Nelder and Mead simplex algorithm (SOROOSHIAN; 

GUPTA, 1995) in its structure. To make use of  the MOCOM-UA 
it is necessary to define the number of  parameters (N) to undergo 
calibration; the search space limits that each parameter may take; 
the number of  objective functions (NF) to evaluate the model; 
and the parameter set number (NS) or points (defined randomly) 
within the region determined by the space limits. Each point 
is provided by the N parameter values and, for each point, the 
NF objective functions are assessed, providing a result matrix 
F(NS, NF) (COLLISCHONN; TUCCI, 2003).

To perform multi-objective automatic calibration it is 
necessary to define, beyond calibrated parameters, which objective 
functions will be used to evaluate the desired quality adjustment. 
Moreover, the MOCOM-UA algorithm seeks to optimize these 
functions simultaneously. The main characteristic of  a multi-objective 
optimization problem is that the solution, generally, will not be 
a single one (COLLISCHONN; TUCCI, 2003). The value that 
presented the best objective function average for a given data 
set was always the selected one for the calibration in this study. 
The calibrated parameter values adopted for each experiment 
may be found in the supplementary material. Further information 
regarding the automatic calibration method used in this study, 
as well as other information about the subject can be found in 
Collischonn and Tucci (2003).

Experiments

In order to investigate how remote sensing and water 
quality data may be used in calibrating and validating sediment 
models, as well as aiding towards potential enhancements, several 
experiments were conducted and compared to a reference simulation 
in which the model was not calibrated. The reference simulation 
was performed considering the values α=11.8 and  β=0.56 
(WILLIAMS, 1975), TKS without variation and 17 sub-basins. 
10 experiments were performed (Table 3), all having the same 
calibration and validation period: 1997-2010. In each experiment, 

Table 3. Experiments for calibrating and validating the MGB-SED hydrosedimentological model with different data sources.

Experiment Nº of  
sub-basins

Objective 
functions Calibration Observations

E1 1 Rtp, Rsp, Rgl SSC, SSR, Turbidity, TSS -
E2 5 Rtp, Rsp, Rgl SSC, SSR, Turbidity, TSS -
E3 17 Rtp, Rsp, Rgl SSC, SSR, Turbidity, TSS -
E4 17 Rtp, Rsp, Rgl SSClog, SSR, Turbidity, TSS SSC transformation into SSClog
E5 17 Rtp, Rsp, Rgl QSS, SSR, Turbidity , TSS Use of  observed and calculated QSS instead of  SSC
E6 17 Rtp, Rsp, Rgl SSC, SSR, Turbidity , TSS Only observed and calculated SSC data > 50 mg/L was used
E7 17 Rtp, Rsp, Rgl SSC, SSR, Turbidity , TSS Use of  background concentration
E8* 17 Rtp, Rsp, ENS SSC, SSR,  Turbidity , TSS α search interval between 10.0 and 13.0, β  between 4.0 and 7.0, 

TKS between 0.5 and 1.5, Imaxgen equal to 100, and  SSCbg
E9* 17 Rtp, Rsp, Rgl SSC, SSR,  Turbidity , TSS α search interval between 0.00001 and 3.0,  β  between 0.00001 

and 0.5, TKS  between 0.5 and 1.5, and  SSCbg
E10 17 ENS, KGE, Rtp SSC Calibration for only 1 station

In the table, SSC is the suspended sediment concentration; SSR is spectral surface reflectance in red band; TSS are total suspended solids; Rtp is the temporal correlation 
coefficient; Rsp is the spatial correlation coefficient; Rgl is the global correlation coefficient; KGE is the Kling-Gupta coefficient; ENS is the Nash-Sutcliffe efficiency 
coefficient; Imaxgen is the maximum value for algorithm iteration; QSS is the suspended solid discharge; SSCbg is the SSC background concentration that always 
remained in the river. All experiments made use of  all datasets to validation; *For these experiments, SSC stations 56800000, 56846000 and 5697600, Turbidity stations 
RD091 and RD098 and TSS RD098 and RD099 stations were not considered, and a second reference simulation was performed (without calibration).
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generally, one type of  data (e.g. SSC measured in situ) was used 
for the model automatic calibration, while the others (e.g. SSR, 
turbidity and TSS) were used for validation, which resulted in 
4 calibrations in the case of  experiment E1, for example. Other 
elements that influenced the type of  experiment to be performed 
were the number of  sub-basins (1, 5, and 17), and the objective 
functions (always three for each experiment, which may be distinct). 
Spatial discretization of  the basin are illustrated in Figure 1 of  
the supplementary material.

The objective functions used in the automatic calibration 
were the Nash-Sutcliffe efficiency coefficient (ENS) (NASH; 
SUTCLIFFE, 1970), Kling-Gupta efficiency coefficient (KGE) 
(GUPTA  et  al., 2009), Pearson correlation coefficient (Rtp) 
(ELSEL; HIRSCH, 1992), and its variations, named spatial 
correlation coefficient (Rsp) and global correlation coefficient 
(Rgl), explained in the text below. The MOCOM-UA algorithm 
aims to optimize each of  the objective functions, to that end, a 
single value derived from these functions is necessary. For ENS 
and KGE, the objective function value (OFV) was calculated 
according to Equation 2.

( )"
n

i
OFV  1 coefficient value of station  i"= −∑ 	 (2)

As Rtp results in a single value for each station, an average 
Rtp value from all of  them subtracted from the unit was used 
(Equation 3). In order to calculate Rsp two new data series were 
built: one composed by the long-term average of  observed values 
for each station, and the other by the long-term average of  the 
simulated values to the corresponding station. It was also built 
two data series to estimate Rgl: one with all observed values from 
all stations, and the other with their respective simulated values. 
After we have defined the series, the Pearson was computed for 
both Rsp and Rgl. OFV for Rsp and Rgl is calculated in the same 
way as Equation 3, just changing the variable Rtp  to Rsp and Rgl.

OFV  1 Rtp= − 	 (3)

Table 3 summarizes the experiments and illustrates their 
specific characteristics. For most experiments, a search space for 
parameter α  was set between 2.0 and 25.0, for β  between 0.2 and 1.7, 

and TKS  between 0.1 and 3.0, with a maximum number of  
algorithm iteration (Imaxgen) at 60, and 50 parameter sets (NS). 
Since parameters α  and β  are not physically based, and TKS can 
have broad variations due to the several real conditions that may 
retain sediments over the basins, these ranges could be different. 
However, they were defined through the sensitivity analysis of  
these calibrated parameters.

Experiments E1, E2 and E3 were performed by varying 
the number of  sub-basins (calibration elements) at 1, 5 and 17, 
Respectively, to investigate whether the model better represented 
sediment processes when the calibration parameter set was more 
heterogeneous. Other experiments were carried out to investigate 
whether highest correlation values would be achieved when 
correlations between observed SSC derived data and simulated 
data from MGB-SED were calculated. These were the case of  
the experiments E4, in which SSC data was converted into the 
logarithm of  SSC (logSSC); E5, in which SSC was converted into 
QSS; E6, in which only SSC values higher than 50 mg/L (a value 
hardly exceeded in measurements taken during the dry season in 
the Doce River basin) were used; and E7, which a background 
concentration (SSCbg) was employed to attempt to enhance the 
representation of  SSC values. SSCbg was computed as the average 
of  SSC values measured in the dry season, for each sediment 
station. Aiming to verify the influence of  certain automatic 
calibration algorithm parameters, experiments E8 and E9 were 
conducted. In the experiment E10, the model was calibrated for 
the Fazenda Ouro Fino - CEMIG, which is the station with the 
highest number of  SSC observed data. For this latter, the found 
calibrated parameter values were applied all over the basin.

RESULTS

Sensitivity analysis

MUSLE parameters α  and β  affect the amount of  sediments 
generated at each HRU, while the  affect the time in which these 
sediments arrive at the drainage network. Figure 3 shows that 
sediment graphs are amplified or reduced proportionally to the 

Figure 3. Sensitivity analysis of  suspended sediment concentration simulated by MGB-SED for α  parameter changes in Piranga-MG.
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parameter value variation α, meaning a 20% increase in the α value 
will cause a 20% increase in the SSC value. Parameter β , however, 
amplifies the sediment graphs and intensifies their peaks and valleys 
at the rate its value decreases, which is evidenced in the blue line 
(-50%) on Figure 4. Changes to β  are not proportional, a 20% 
increase in the parameters value caused, on average, a reduction 
of  66% in the SSC value. This happens due to the β  parameter 
being the exponent of  a value that is always less than 1.

Figure 5 exhibits the MGB-SED results in the face of  
changes to the  parameter. It is observed that the smaller the  
value, the more intense are the peaks and valleys, as shown by the 
sediment graph in blue (-50%). A 50% decrease in  value could 
cause an increase of  up to 7,300% in the SSC value. Furthermore, 
a change to the  value causes a temporal variation in the sediment 
graph, anticipating the SSC peak. Comparing the sediment graph 
in yellow (+50%) to the sediment graph in blue inside the marked 
rectangle in Figure 5, a near 2 days discrepancy is noted in the SSC 
peak and its reduction from 953 mg/L to 660 mg/L.

Deviations in calibrated parameters values may result in 
large differences in the values estimated by the MGB-SED model, 
especially in the amplification of  extreme values. For an appropriate 
representation it is important to establish a search space during 
the automatic calibration process that results in simulated values 
that are consistent with observed values.

Experiment analysis

In this section the results of  the experiments are briefly 
outlined, they support the subsequent discussion. To aid in the 
comprehension of  the results presented in the form of  tables, 
the average difference (AD) and the average absolute difference 
(AAD) were calculated. AD was calculated as the average between 
the values presented in the tables, considering whether they are 
positive or negative, to verify how much the results improved or 
worsened. AAD was calculated similarly, but without considering 
the sign of  the values, in order to indicate the difference magnitude 
of  the results.

Figure 4. Sensitivity analysis of  suspended sediment concentration simulated by MGB-SED for β  parameter changes in Piranga-MG.

Figure 5. Sensitivity analysis of  suspended sediment concentration simulated by MGB-SED for TKS  parameter changes in Piranga-MG.
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Sub-basin numbers deviation

Table 4 exhibits the comparison between experiments that 
had the number of  sub-basin changed. Both in that table as in 
the others that follow that template: values represent the absolute 
increase (green) or decrease (red) in relation to the values in the 
reference simulation (without calibration); the main diagonal 
represents the metric values related to calibration; the values on 
the other cells represent the metric values regarding validation.

Table 4 results show that in the calibration period, metrics 
are generally better, while in the validation period they are worse, 
which is common within the context modelling (e.g. BUSSI et al., 
2014; YESUF  et  al., 2015; AYELE  et  al., 2017; WORKU; 
KHARE; TRIPATHI, 2017). Nevertheless, the metrics worsening 
was not significant, proving that all data assisted in the model 
validation process. It should be noted that the E1 experiment 
(1 sub-basin) is the one that have the smallest differences, both 
in the calibration (AAD = 0.02) as in validation (AAD = 0.02) 
period. With the increase of  sub-basin numbers from 1 to 5, 
AD increased from 0.01 to 0.06 in the calibration step. In increasing 
from 5 to 17 sub-basins, the results exhibit little difference, with 
some values remaining the same. Experiment E3 (17 sub-basins) 
shows that reflectance was the dataset in which the correlation 
average had the most increase (0.12), even when using turbidity 
data (0.06) and TSS (0.06) to calibrate MGB-SED.

Comparison with SSC derived data

The results of  experiments E5 (QSS) and E6 (SSC values 
higher than 50 mg/L) showed low or even negative correlation 
values. For these experiments, results tables are not be presented. 
Although the MGB-SED model may have underestimated observed 

values in the dry season during the current application, in trying to 
calibrate it only taking into consideration SSC values > 50 mg/L, 
the results do not showed enhancements. In establishing a SSC 
threshold, the amount of  observed data available for comparison 
decreased, and the sediment temporal variability was worse.

Table 5 presents the results of  experiments E4 (SSClog) and 
E7 (SSCbg). Experiment E4 highlights the improvement of  mean 
values of  correlations between simulated and observed SSClog, 
both in calibration (+0.14) as in validation (+0.25). On the other 
hand, for turbidity and TSS data, both calibration (AD=-0.19) 
as validation (AD=-0.19) presented worse correlation values. 
When a background SSC was included, in calibration AD increased 
by 0.10, and in validation it decreased by -0.07 It is emphasized 
that the best model performance, during the calibration step using 
SSC data, was in experiment E7. In a certain way, this fact was 
expected, once the observed SSC values themselves were used 
to calculate the SSCbg.

Changes in automatic calibration parameters

Table 6 presents the results for experiments E8 (smaller 
search space and greater Imaxgen) and E9 (small α  and β  values). 
The more restricted the search space, smaller are the possibilities of  
combinations being able to generate an optimal result. This procedure 
could make the search algorithm found a local maximum instead 
of  a global maximum. It is observed that in experiment E8, the 
calibration performed with SSR data resulted in higher metric 
values for SSC results in the validation. In experiment E9, it is 
noted that the metrics were improved only for SSC and SSR data 
during the calibration. For turbidity and TSS data, automatic 
calibration did not find a better parameter set than those from 
the reference simulation, thus the results did not show changes. 

Table 5. Result comparisons for results E4 (SSClog) and E7 (SSCbg), where different SSC derived data was employed.
E4 (SSC LOGARITHM) E7 (SSCBG)

Validation Validation
Calibration SSC SSR Turb. TSS SSC SSR Turb. TSS

SSC 0.14 -0.11 -0.01 -0.08 0.17 -0.10 -0.20 -0.26
SSR 0.23 0.09 -0.13 -0.22 0.02 0.10 -0.10 -0.08
Turb. 0.29 -0.15 -0.07 -0.12 0.00 -0.12 0.05 0.06
TSS 0.23 -0.15 -0.07 -0.12 -0.02 -0.12 0.05 0.07

The values within the cells represent the increase (green) or decrease (red) in relation to the average of  the three correlations (temporal, spatial and global) when 
compared to the reference simulation values (without calibrating): SSC – 0.50; SSR – 0.63; Turb. – 0.63; TSS – 0.65. The results of  the main diagonal (in bold) refer 
to the calibration process while the others refer to the validation process, both performed for 1997-2010 period.

Table 4. Result comparisons for experiments E1, E2 and E2, where sub-basins 1, 5 and 17 were respectively used.
E1 (1 SUB-BASIN) E2 (5 SUB-BASINS) E3 (17 SUB-BASINS)

Validation Validation Validation
Calibration SSC SSR Turb. TSS SSC SSR Turb. TSS SSC SSR Turb. TSS

SSC 0.02 -0.07 -0.03 -0.05 0.05 -0.03 -0.01 -0.03 0.05 -0.02 -0.02 -0.04
SSR 0.00 -0.01 0.01 0.00 -0.08 0.12 -0.03 -0.01 -0.08 0.12 -0.05 -0.04
Turb. 0.00 -0.04 0.02 0.01 0.00 0.04 0.03 0.02 -0.02 0.06 0.02 0.03
TSS 0.01 -0.02 0.02 0.01 -0.06 -0.03 0.03 0.02 -0.02 0.06 0.02 0.03

The values within the cells represent the increase (green) or decrease (red) in relation to the average of  the three correlations (temporal, spatial and global) when 
compared to the reference simulation values (without calibrating): SSC – 0.50; SSR – 0.63; Turb. – 0.63; TSS – 0.65. The results of  the main diagonal (in bold) refer 
to the calibration process while the others refer to the validation process, both performed for 1997-2010 period.



RBRH, Porto Alegre, v. 24, e26, 2019

Fagundes et al.

11/18

These results show that the parameter sets that present values 
closest to those found by Williams (1975), α, especially, result in 
better model performances.

Results from experiment 8 are detailed on Table  7. 
The main improvements occur during calibration, for Rsp values 
(AD=0.24). Considering only SSC, Resp values increase from 
0.36 (in reference simulation) to 0.79 after the model has been 
calibrated. On the other hand, Rtp values, on average, had slight 
variations (AAD=0.01). Improvements in Rsp values indicates 
that observed and simulated values became closer for each station 
after automatic calibration procedure.

Fazenda Ouro Fino station

During experiment E10, MGB-SED was calibrated using 
ENS, KGE and Rtp statistics for the Fazenda Ouro Fino station 
(area ~ 6.438 km2). Results showed that Rtp after calibration 
remained equal to 0.64; KGE increased from -0.19 to 0.52; and 
the experiment most significant result is the enhancement in the 
ENS coefficient, which increased from -0.44 to 0.44. Figure 6 
shows SSC values observed and simulated at the Fazenda Ouro 
Fino station, and it is possible to note that simulated values after 
calibration were smaller. That is due to the characteristics of  the 
employed metrics (e.g. ENS) combined with the optimization 

Figure 6. SSC values calculated and observed at Fazenda Ouro Fino (CEMIG) station. Calibrated SSC values were calculated from 
experiment E10.

Table 6. Result comparison for experiments E8 (smaller search space and larger Imaxgen) and E9 (small α and β values).
E8 (SMALLER SEARCH SPACE

AND LARGER IMAXGEN)
E9 (SMALLER VALUES 

FOR α AND(β)
Validation Validation

Calibration SSC SSR Turb. TSS SSC SSR Turb. TSS
SSC 0.16 0.00 -0.07 -0.10 0.06 -0.08 -0.31 -0.35
SSR 0.03 0.11 -0.03 -0.03 -0.07 0.08 -0.09 -0.07
Turb. -0.20 -0.16 0.01 0.02 0.00 0.00 0.00 0.00
TSS -0.19 0.03 -0.03 0.08 0.00 0.00 0.00 0.00

The values within the cells represent the increase (green) or decrease (red) in relation to the average of  the three correlations (temporal, spatial and global) when 
compared to the reference simulation values (without calibrating): SSC - 0.51; SSR – 0.63; Turb. – 0.65; TSS – 0.65. The results of  the main diagonal (in bold) refer 
to the calibration process while the others refer to the validation process, both performed for 1997-2010 period.

Table 7. Detailed values of  metrics found through experiment E8 (search space smaller and Imaxgen larger).
Rsp Rtp Rgl

Validation Validation Validation
Calibration SSC SSR Turb. TSS SSC SSR Turb. TSS SSC SSR Turb. TSS

SSC 0.43 0.01 -0.18 -0.29 0.02 0.01 -0.01 -0.02 0.04 -0.02 -0.02 0.01
SSR 0.10 0.30 -0.06 -0.07 0.01 0.01 0.00 0.00 0.00 0.01 -0.01 -0.02
Turb. -0.22 -0.38 0.02 0.04 -0.11 -0.01 -0.01 0.01 -0.28 -0.09 0.01 0.01
TSS -0.20 0.14 -0.10 0.21 -0.12 -0.01 -0.01 0.01 -0.23 -0.03 0.00 0.03

The values within the cells represent the increase (green) or decrease (red) in relation to the average of  the three correlations (temporal-Rtp, spatial-Rsp and global-Rgl) 
when compared to the reference simulation values (without calibrating): SSC - 0.51; SSR– 0.63; Turb. – 0.65; TSS – 0.65. The results of  the main diagonal (in bold) 
refer to the calibration process while the others refer to the validation process, both performed for 1997-2010 period.
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algorithm, which jointly aim to minimize absolute errors between 
observed and simulated data.

Results from experiment E10 are important in showing that 
the metrics used, and calibration for a single station significantly 
improved the MGB-SED performance. Furthermore, results 
indicate that the improvements that can be reached also depend 
on the amount of  stations and, especially, of  available data at 
each one of  them. For instance, Fazenda Ouro Fino station is 
the one with the largest number of  available information, while a 
large part of  the stations used in the other experiments just have 
4 yearly observations.

Summary of  analyzes

When statistic metric values were larger during calibration 
for a specific dataset, in general, metric values were smaller for 
the other datasets during validation. This point out that, although 
all types of  data present information related to SS, there are 
divergences in the methodology of  estimating this data and in 
representing the spatio-temporal dynamic of  sediments within 
the basin. However, analyzes carried out from the experiments 
allowed for a few important considerations, outlined as follows:

•	 In increasing the number of  sub-basins, results tend to 
improve due to the better representation of  the basins 
heterogeneity;

•	 The calibration performed for a station that show a long 
and dense data time series, using metrics that represent 
the correlation, bias and amplitude of  variation, tends to 
provide better estimates of  SSC simulated;

•	 The replacement of  SSC values by their logarithms increased 
metric values both in calibration and in validation in the 
case of  SSC data; while, generally, decreased the metric 
values for SSR, turbidity and TSS during validation, as well 
as in turbidity and TSS calibration;

•	 Including a background concentration increased the 
metric values during calibration for all datasets, especially 
for SSC data;

•	 The reduction of  search space around the standard calibrated 
parameter values (α=11.8 β  =0.56 and TKS without changes), 
with a large number of  iterations resulted in higher average 
correlation values than when that search space was bigger.

DISCUSSIONS

Observational data for calibration

Several limitations and uncertainties were present in the 
calibration and validation processes using the MGB-SED model, 
and that influenced the results obtained. Firstly, taking observed data 
into consideration, we realize that there are uncertainties associated 
with them and their acquisition way (OP DE HIPT et al., 2017), 
and despite all of  them being related to suspended sediments, the 
used approaches and methods are different. Methods employed 

for SSC acquisition usually considered only inorganic sediments in 
water suspension (BOITEN, 2008). Turbidity may be influenced by 
suspended and/or dissolved organic matter in the water (ASTM, 
2003). Reflectance, however, considers every water suspended 
matter that interacts with solar radiation (JENSEN, 2009).

According to Morris and Fan (1998), sampling and analysis 
programs are usually inadequate in determining long-term sediment 
loads. That is because SS measurements, used to validate the 
models, are generally scarce for periods of  high stream flows and 
catastrophic events. One of  the techniques used in those situations 
is the extrapolation of  curve fitting to a period beyond that of  
observed data. This extrapolation might be a possible source of  
errors and uncertainties (MORRIS; FAN, 1998). Figure 6 illustrates 
that the application of  the MGB-SED model in the Doce River 
basin as it was done, could not represent the great peaks of  SSC. 
This could be related to the non-representation of  landslides by 
the model, usually frequent in the basin, mainly in Suaçuí Grande, 
Santa Maria do Doce and Caratinga basins (PIRH, 2010). Another 
specific source that contributes to the increase in sediment load 
are those originating in mining (LOBO et al., 2016). That activity 
is historically present in the basin (HORA et  al., 2012) and is 
carried out in several areas, primarily in the headwaters of  the 
Carmo and Piracicaba rivers.

The reason to performed the experiment E7 (SSCbg) was 
the existence of  some natural processes related to sediments that 
were not being represented by the model, which consequently 
was not adequately estimating SSC values during the dry season. 
This indicates that during the periods without precipitations, 
the Doce river have other sediment sources that aren’t those 
originating in the hillslopes towards the channel. These sources 
could be the erosion of  sediment bars (FRYIRS, 2013), erosion 
of  the riverbed and the river banks (HOOKE, 2003) or even 
anthropogenic activities (LOBO et al., 2016). In the context of  
sediment transport connectivity, sediment bars (Figure 7) may 
have an important role in supplying the channel with sediments 
(FRYIRS, 2013). The largest part of  these sediments corresponds 
to the fractions of  silt and clay that, due to the large amount in 
the basin (LIMA et al., 2005), may be partly deposited during the 
rainy season and remain stored among the pores of  sandbars. 
During the dry season, these fine sediments may be mobilized 
by flows with low SSC. Hooke (2003) mentions that a stable river 
downstream segment is more active, although coarse materials are 
not enough to supply the suspended sediment deficit, which causes 
fine sediments to be eroded from river banks. Coarse loads are 
transported especially for high water discharges, while transport 
of  fine loads decreases proportionally (LIN et al., 2017).

The MGB-SED model and its structure

According to Morgan (2005), hardship in obtaining an 
exact adjustment between observed and calculated data reflects the 
uncertainty of  the predictions performed by models. The author 
remarks that uncertainties originate from (i) errors in measured 
values; (ii) high spatial variability of  some input parameters that 
could not be properly represented by a single value; (iii) the need 
to estimate some parameter values that cannot be easily measured; 
and (iv) errors in the model structure or the operating equations, 
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particularly where empirical equations are not used to describe 
physical processes. At a deeper analysis level, the author mentions 
that there is still considerable uncertainty even regarding the 
nature of  the mechanisms involved in soil particle detachment 
through surface runoff.

Oliveira and Quaresma (2017), while analyzing the 56994500 
(Colatina) fluviometric station (~88% of  the Doce river basin 
drainage area), concluded that 63% of  the variation in suspended 
sediment load within the Doce River basin can be explained by 
runoff, and the remaining 37%, by other factors, such as rain 
intensity, vegetation cover and soil use. Rainfall, considered one 
of  the main forcing in sediment models, also has great uncertainty 
in its measurements (XUE; CHEN; WU, 2014). In MGB-SED, 
rainfall values are interpolated to unit catchments centroids, 
which may lead rainfall values to be sometimes underestimated 
and, sometimes overestimated. Besides that, in the MUSLE 
equation, rain intensity factors are replaced by surface runoff  
and a peak flow to represent the maximum runoff  energy acting 
over the soil. However, peak flow values are difficult to estimate 
(KINNELL; RISSE, 1998), and therefore a simplified assessment 
were performed in the MGB-SED.

It is known that MUSLE is an empirical equation that 
mathematically represents a power function, presenting a simple 
way to represent all the complexity of  sedimentological processes. 
Sediment retention/deposition processes in landscape are not 
represented by a specific mathematical formulation, but are taken 
account in the equation (WILLIAMS, 1975). Shen, Chen and 
Chen (2012) in performing a SWAT model uncertainty analysis, 
which also employed MUSLE, demonstrated that the analysis 
of  sediment simulations presented higher uncertainty than that 
of  water discharge, and that uncertainty becomes even higher 
during rainy seasons. According to the authors, this could be 
related to the dependence that the sediment model has on the 
hydrological model.

It is practically unavoidable that there are uncertainties in 
the model parameters (SHEN; CHEN; CHEN, 2012). Hence, 
many model users tend to overcome uncertainty issues at the input 
parameters, splitting an observed data series into two periods, one 
for calibration and another for validation. However, calibration 
may not solve all uncertainty issues in modelling context, for it 
cannot be generalized for all environmental conditions (MORGAN, 
2005) and the model parameters have acceptable ranges of  values 
so that they may maintain their function.

CONCLUSIONS

Several automatic calibration and validation experiments for 
the MGB-SED model were performed using suspended sediment 
concentration (SSC), spectral surface reflectance (SSR) in the 
red band, turbidity and total suspended solids (TSS). We sought 
to investigate the applicability of  surrogate data sources in the 
calibration and validation for a large-scale sediment model, given 
the scarcity of  observed SSC data. Model calibration and validation 
procedures were carried out, using in each one, independent data 
for a given period. According to the literature research, this is one 
of  the first studies to adopt this kind of  approach.

After performed 37 automatic calibration and 111 validation 
tests, the main conclusions were:

•	 SSR, turbidity and TSS data have the potential to enhance 
the performance of  the MGB-SED model. Generally, 
after MGB-SED calibration, the model performance was 
improved, with positive changes in correlation values. 
During validation, the model performance was generally 
poorer than that of  calibration;

•	 From surrogate data used in this study, the best results in 
the calibration process were for experiments E2 and E3 
(that used of  5 and 17 sub-basins, respectively) in which the 
correlation average was increased to 0.12 in SSR. On the 

Figure 7. Sediment bars in Piracicaba River, a tributary of  Doce River. Image from Oct. 19th, 2017. Source: Google Earth (2018).
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other hand, traditional SSC data showed the best result 
in experiment E10, where the ENS coefficient increased 
from -0.44 to 0.44 at the Fazenda Ouro Fino station. 
This station was the one that have the highest number 
of  observed SSC data and highlight the importance of  
using in situ measured data together with a high sampling 
frequency, even when SSR data was available.

In summary, the results indicate that in basins devoid of  
in situ measurements, remote sensing data may be a powerful 
alternative in calibration and validation processes, enhancing the 
large-scale sediment model performance.

Furthermore, the performed experiments and the 
comparisons between observed and simulated data allowed to 
identify opportunities for improvements in the sediment model 
structure. To try fully represent what happens in environment, 
new processes should be included in the MGB-SED model. These 
enhancements will be the goal of  future studies.
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