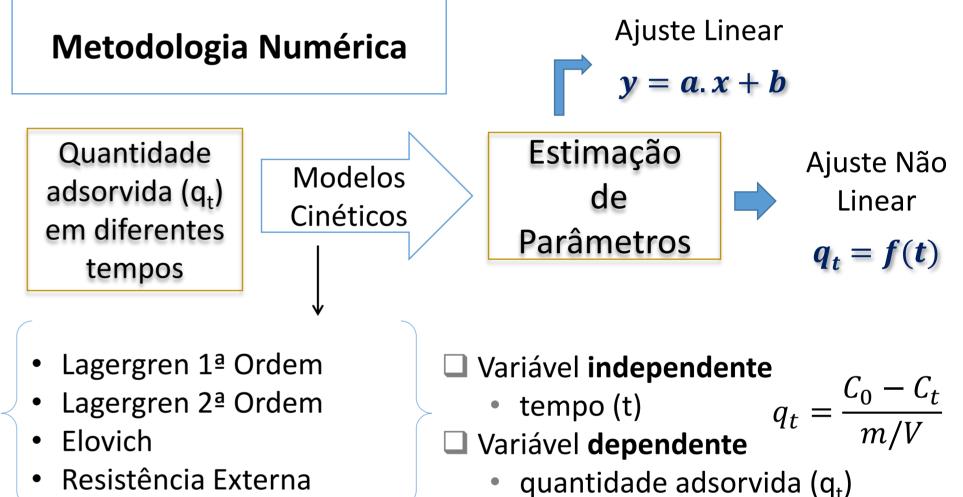


Desenvolvimento de ferramentas computacionais para o estudo da adsorção de corantes em batelada e em leito fixo

Karine Eisenhut Ivanovick, Marcio Schwaab


Introdução

O processo de adsorção tem diversas aplicações em processo de separação de compostos, tendo um papel fundamental na área ambiental, em particular, para o tratamento de efluentes de indústrias. Portanto, o estudo da adsorção de corantes é de fundamental importância.

O objetivo deste trabalho é a adsorção de corantes em adsorventes de elevada área específica como carvão ativo e óxido de magnésio para identificar características dos sistemas e identificar a velocidade, a cinética, em que ocorre o processo em batelada.

Metodologia

Resultados

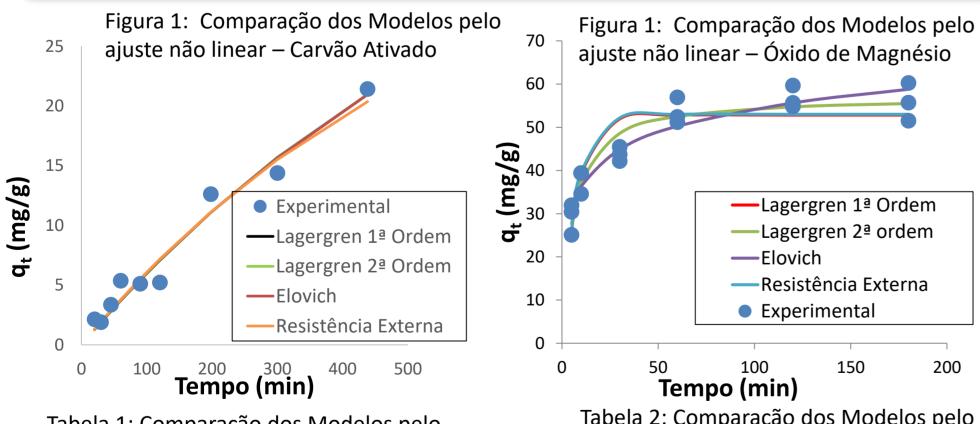


Tabela 1: Comparação dos Modelos pelo ajuste não linear – Carvão Ativado

Modelo	Número de Parâmetros	Graus de Liberdade (NE=9)	Função Objetivo	σ² (Variância do modelo)
Lagergren 1ª ordem	2	7	11,703	1,672
Lagergren 2ª ordem	2	7	11,592	1,656
Elovich	2	7	11,484	1,640
Resistência Externa	2	7	16,392	2,342

Tabela 2: Comparação dos Modelos pelo ajuste não linear – Óxido de Magnésio

Modelo	Número de Parâmetros	Graus de Liberdade (NE=18)	Função Objetivo	σ² (Variância do modelo)
Lagergren 1º ordem	2	16	424,915	26,557
Lagergren 2ª ordem	2	16	207,239	12,952
Elovich	2	16	199,057	12,441
Resistência Externa	2	16	459,329	28,708

ambos adsorventes. todos modelos Para são estatisticamente equivalentes e descrevem igualmente bem os dados experimentais.

Conclusão

O ajuste linear apresenta problemas, devido a maior manipulação dos dados para conseguir transformar a equação em uma reta tipo y = ax + b; e, desta forma, não se usa a mesma variável, q, nos ajustes dos diferentes modelos.

Os ajustes não lineares levam a resultados melhores que os obtidos com o modelo linear, se aproximando mais dos dados experimentais.

O ajuste não linear permite a comparação direta dos diferentes modelos empregando-se testes estatísticos.

Entretanto, não foi possível identificar o melhor modelo que descreve a cinética de adsorção, pois, na faixa experimental avaliada, todos os modelos se mostraram estatisticamente equivalentes para a adsorção de tartazina em carvão ativo e em óxido de magnésio.

Agradecimentos

Química

UFRGS

