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ABSTRACT

The increase of computing power in the last decades allowed for the creation and

establishment of many high level programming languages such as Java and Python. In

these languages, control over the hardware is often neglected in favor of more convenient

abstractions for the programmer that offer some important guarantees (such as memory

safety). At the same time, older lower level languages, such as C, are still considered

one of the few viable options for systems programming. This work proposes a new low

level programming language called Light that makes use of meta-programming ideas,

commonly present in higher level, interpreted languages, in a compiled one. Light is a

lower level, statically typed language that focuses on simplicity, consistent syntax and

understandability. It has minimal runtime, no garbage collection and is composed of a

simple core with a meta-programming layer built on top. We will present the complete

language design and its compiler implementation. The objective of this work is to

provide a general purpose system language that uses meta-programming to complement

the base language as a tool to the programmer for building software.

Keywords: Linguagens de Programação. Meta-programação. Compiladores.



RESUMO

O aumento em poder computacional nas últimas decadas permitiram a criação e esta-

belecimento de diversas linguagens de programação de alto nível como Java e Python.

Nessas linguagens, controle sobre o hardware é constantemente esquecido em favor de

abstrações mais convenientes para o programador que oferencem algumas garantias im-

portantes (como segurança de memória). Ao mesmo tempo, antigas linguagens de baixo

nível como C, ainda são consideradas uma das poucas alternativas para linguagens de sis-

tema. Esse trabalho propõe uma nova linguagem de programação de baixo nível chamada

Light que faz uso de conceitos de meta-programação, comumente presentes em lingua-

gens interpretadas de alto nível, em uma linguagem compilada. Light é uma linguagem

de baixo nível, estaticamente tipada com foco em simplicidade, consistência de sintaxe e

compreensibilidade. Possui ambiente de execução mínimo, não possui coletor de lixo e

é composta de um núcleo simples com uma camada de meta-programação construída por

cima. Nós apresentaremos o projeto completo da linguagem e a implementação de seu

compilador. O objetivo deste trabalho é oferecer uma linguagem de sistema de uso ge-

ral que utiliza-se de meta-programação para complementar a linguagem base como uma

ferramenta para o programador construir software.

Palavras-chave: Programming Language, Meta-Programming, Compilers.
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1 INTRODUCTION

1.1 Background

Simplicity is often overlooked in modern language design. With almost all new

languages since the creation of the first programming languages, with a few exceptions,

feature creep and patched features are common place nowadays. The programmer is al-

most always forced to work with several languages that have several thousand pages of

documentation and are still changing. Since the 1950’s, when the first programming lan-

guages were created, the evolution branched out into many different types of languages.

But as for low level, "close to the metal" languages, few of them survived until today.

Notoriously, the C programming language, proposed in 1972 by Dennis Ritchie and Ken

Thompson (KERNIGHAN, 1988) is still to this day used for embedded systems, low

level and systems programming. Inspired by Simula, an early object oriented program-

ming language, in 1979 Bjarne Stroustrup developed C++ to be an evolution of C. Like

Simula, C++ is an object oriented language but tries to take C’s place in the low level

language niche while also maintaining full backwards compatibility with C. Since then,

an impressive amount of effort was made in the programming language field. However,

the main focus was dedicated to higher level languages, leaving C and C++ almost by

themselves as low level programming languages.

In the last couple of decades, a tremendous amount of effort was put into making

higher level languages fit programmers needs in a way that removed them from the hard-

ware beneath. It is not a surprise that this effort gave birth to many of the most popular

languages today, like Python, JavaScript, PHP, Java, C# and many others. Almost all of

them have very similar goals. Many of them were an attempt to simplify and automate

web developing to be later adapted to general purpose use or vice-versa, gathering a sub-

stantial amount of features and libraries. Also along with many higher level languages,

a few lower level focused languages emerged, like D (2007), Rust (2010) and even Go

(2009), although the latter having other goals that will be later discussed. Along with

these languages, the main inspiration for the Light programming language was Jonathan

Blow’s yet to be released jai (BLOW, 2014), which attempts to fill the niche of a low

level, modern language just like Light does, but with a focus in games.

Interpreted languages by their nature, have the ability to execute code on the fly, as

well as having a runtime type system that provides a lot of information to the programmer,
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making them very powerful and resourceful languages to work with. Light attempts to

make those features available to low level programmers that understand their code in

a more deep level, but maintaining a statically typed compiled language as a baseline.

Reaching that goal brings myriad benefits with respect to quality of software, because a

faster runtime program is always better for the end user. Light attempts to reach that goal

using a simple language core that provides the feature set that is most important, possibly

eliminating smaller supporting features in order to achieve less variability in the code.

1.2 Motivation

A programming language has as its primary goal to translate to a computer ex-

actly what the programmer wants to do. For that, many approaches were taken and trade

offs are unavoidable, so creating a perfectly expressive programming language for every

different field and application might be impossible. Although creating abstractions to

solve problems is a great way of doing things quickly, dealing with the hardware at a low

level requires knowledge of many things like the architecture, system, memory layout and

instruction set. All of those components have limitations, and in order to accomplish a

more ambitious project, one would have to deal with those concepts. Assuming such task,

transparency is imperative in the language - the abstractions a language has between the

programmer and the hardware becomes just another mental construct to remember and

keep in mind - transforming the programmer problem into a fight with the language in

that case. Higher level constructs can be useful and are useful when they do not impose

themselves when not needed.

Several modern languages provide large feature sets in order to speed up develop-

ment. Language growth, although beneficial for few specialists in that specific language

or technology, also comes with deleterious consequences like lack of coherence in syn-

tax, unwanted or unused features, bad design decisions. It also creates a scenario where

the same language can look and feel like other languages. Conversely, that are modern

languages that prioritize simplicity, for example Go, which values simplicity, minimalism

and coherence. It is not a systems level programming language, is garbage collected and

still maintains a level of abstraction and similarity with object oriented languages. We will

show in chapter 4 (Language comparisons) many examples that illustrate why the Light

language was created and why its few features regarding meta-programming, code gen-

eration and code modification are important to modern low level languages. We believe
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that is still space for a language that facilitates systems programming whithout requiring a

complex runtime support, relying on key features to accomplish better understandability.

Keeping a small and solid core language was paramount for the success of C and

it is also the main influence for the design decisions that will be presented throughout

this work. To give the programmer the tools required to write programs that still keep

the hardware and performance as a concern is therefore a big motivation for this work

and will manifest in design decisions and even limitations that will be explained in the

following chapters.

1.3 Objectives

The main objective of the Light programming language is to be an alternative to C

and C++ as lower level languages for high performance, high bandwidth data processing,

multi-threading and CPU intensive tasks. The language preserves a few core features from

several languages whilst giving a solid and powerful meta-programming, code inspection,

code modification and good support for code visualization and debugging. It is intended to

be very pragmatic and loose - unrestrictive - not having security as a main priority, instead

opting for a more pragmatic approach of being friendly to helping tools like debuggers

and memory visualizers to provide compensation for that underrepresented area. This

work will present the language state along with its initial compiler with an overview of

the main features, design decisions, technologies used and a road map for future work.

To minimize the difficulty of translation between a more human understandable language

to a machine one is the goal of any programming language and the challenge is to do it in

the most direct way possible.



13

2 LIGHT LANGUAGE

2.1 Overview

The Light language is based on a very simple core that underpins a meta-

programming layer, which will be detailed in Section 2.3. This chapter will give an

overview of the core language, its constructs and design decisions. As a statically typed

compiled language, implementation will also appear as a major concern in design deci-

sions since the language intent is to provide efficient runtime and fast compilation time.

All language and compiler details will be abstracted in this chapter in order to present the

language from the perspective of the programmer. Further details about the compiler and

comparisons with existing languages will be later presented in subsequent chapters. Keep-

ing the feature set to a minimum is also an objective, therefore all features that appear in

the language were considered to be essential and sufficient to fulfill general programming

needs. We recognize, however, that the perception that a reduced amount of features is

advantageous can be highly subjective. Some of the main features that characterize the

language are type inference, compile time execution of code, code modification, reflection

and introspection.

2.2 Core

The Light programming language has a simple core that is the base for all other

constructs. Having a simple core is important to reduce the amount of complexity when

generating code to match what the programmer wrote. This avoids obtuse or seemingly

strange behavior, from the perspective of the programmer, that is common in a more

complex language like C++.

The core language is composed of three main kinds of constructions: declarations,

expressions and commands. Compiler directives, for example #run, are excluded from

the core and will be addressed subsequently in Section 2.3. A declaration will always

have a name associated with it and can either be constant, identified by the token ::, or

not, identified by a single :. All declarations in the top level of compilation (global scope

and file scope) are processed independent of order, without the need for header files or

forward declarations. In the example code shown in Listing 2.1 the procedure sum is

declared after main but is accessible by it independent of order.
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Listing 2.1 – Example declaration order of top level

1 main :: () -> s32 {

2 return sum(2, 3);

3 }

4

5 sum :: (a : s32 , b : s32) -> s32 {

6 return a + b;

7 }

All declarations inside a scope that is more internal than a file scope are dependent

of order and will cause a compiler time undeclared identifier error in the event of using

an identifier before its declaration. Declarations can be one of the following:

• Procedure

• Variable

• Constant

• Structure

• Enumeration

• Union

• Type Alias

Another construct of the language is the command, which directly dictates control

flow and assignments. Most commands are control flow statements, with the exception of

assignments and block delimiters. List of possible commands:

• Block

• Assignment

• If

• For

• While

• Break

• Continue

• Return

Finally, expressions allow one to express data types and operations over them.

All arithmetic expressions, literals, memory manipulation and procedure calls are expres-

sions. Unlike the C language, Light is more restrictive in relation to expressions. For
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example, the C ternary operation (condition)? true_result : false_result, which is the

equivalent of a conditional if-then-else for expression, does not have an associated con-

struction in Light. Light does not allow several of these constructs common to other

languages in order to be clear and offer the minimum amount of features needed to ac-

complish the same goal. The list of possible expressions is:

• Binary expression

• Unary expression

• Literal

• Variable

• Procedure call

• Directive

2.2.1 Syntax

The first important part of a language is syntax. The focus of the Light language

is to have consistent and orthogonal syntax. We intend for consistency to have priority

over other design aspects such as beauty and conciseness. Having a simple and consistent

foundation allows the programmer to reduce friction with the language constructs. By

minimizing syntax variability, Light reduces the programmer need to remember the lan-

guage’s syntax, therefore improving productivity. This section will describe the "Light"

syntax as it is at the time of this work. In Figure 2.1 we present all the reserved keywords

of the Light programming language.

Figure 2.1: Light Keywords
bool s16 if return true
void s8 else struct false
r32 u64 for enum string
r64 u32 while union
s64 u16 break array
s32 u8 continue null

There are two types of comments in Light, the single line comment is characterized

by double forward slashes, which comments everything after the slashes up until the end

of line. There are also multi line comments, which start with the token /* and end with

the token */, commenting everything within those tokens. Multi line comments can also

be nested.



16

Declarations always bind to a name and a type separated by a colon. For instance,

the declaration x : u32; declares a variable x of type unsigned integer of 32 bits with

default value of zero. Optionally, an assignment can immediately follow a declaration.

For instance, the declaration x : u32 = 3; declares the same variable x and assign the

value 3 to it. When accompanied by an assignment, the type can be optionally omitted,

making use of type inference, which in the previous example would become x := 3;. This

would change the type of x to be the default type for the literal 3 (s64).

Constant declarations are similar, only instead of an assignment, they are indicated

by an extra colon (:). For instance, the declaration main :: ()-> s32 { ... } declares a

procedure main, which returns a signed integer of 32 bits. In the case of other types (not

functional), the type is declared between the colons. The code to declare a constant value

x of type u32 would be x : u32 : 3;.

In the code presented in the Liting 2.2, we declare a procedure main (line 1), a

constant MAX (line 2) and a variable sum (line 3). The example also shows a for loop in

the line 5, for a programmer of procedural languages with syntax similar to C’s, the Light

syntax for commands is very familiar, that is a design decision that will manifest also in

the language semantics and has the intent of facilitate the transition from those languages

to Light. The complete language grammar is found in the Appendix A.

Listing 2.2 – Light Syntax example

1 main :: () -> s32 {

2 MAX :: 10;

3 sum : s64;

4

5 for i := 0; i < MAX; i += 1 {

6 sum += i;

7 }

8 return [s32]sum;

9 }

2.2.1.1 Type Declaration

The type declaration syntax is read left to right where the symbol ˆ (caret) is read

pointer to. The array type is represented by brackets [S], where S is the array size expres-

sion and is read array of S. The functional type starts with begin parenthesis ( followed

by a list of argument types, ending with a close parenthesis ) and an arrow token ->
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followed by the procedure return value. The structure and union types are represented by

its names, since there are declarations binding them to their respective definitions. Finally

the primitive types are represented by the reserved keywords in the Table 2.1.

Table 2.1: Primitive type keywords
u8 u16 u32 u64 unsigned integers
s8 s16 s32 s64 signed integers

r32 r64 floating point numbers
bool boolean type
void unit (no value)

Using those rules, all types in the language can be built. The Table 2.2 shows ex-

amples of various type declarations in Light and its correspondent descriptions in natural

language.

Table 2.2: Type declaration syntax examples
[32]u8 array of 32 u8’s

^[4]bool pointer to array of 4 booleans

() -> ^s32 procedure with no arguments returning

pointer to s32

((s32, s32)-> s32)-> void procedure receiving a procedure receiving

two s32’s and returning s32 and returning

void

[10]()->()->s32 array of 10 procedures with no arguments

returning a procedure with no arguments

and returning s32

2.2.1.2 Literals

Literals are the values of types that can be directly expressed in the source code of

the language, such as numbers, string or structures. Currently, Light does not provide a

literal representation for functions (lambda notation), although we can declare functions,

create variables that store them, assign functions as values and pass them as arguments to

higher-order functions. Union literals are also not present in the language.

The most simple type of literals are integer and floating point that represent inte-

gers and floating point types respectively. The rules for the lexical tokens are described

using regular expressions in the Appendix A along with the language grammar. Integer

literals can be expressed in decimal, hexadecimal and binary while floating point currently



18

only support the standard syntax without scientific notation. Other primitive type literals

are booleans, represented by the reserved keywords true and false. The void type does

not have a literal representation. Character literals are syntactic sugar for unsigned 32 bit

integers that are translated to the character’s Unicode representation.

Pointer types are an exception for literal construction since the only pointer value

represented by a literal is the null pointer value, which is represented by the reserved

keyword null. Other values for pointer types can only be extracted using operations. For

instance the code &x where x is an addressable value of type T, represents the pointer value

to a value of type T.

Arrays and structures (records) are non-atomic structures which support arbitrary

nesting. Because of this, it is important to follow the principle of a clear syntax, that is,

maintaining a construction pattern the simplest possible. Array literals therefore are con-

structed recursively following the pattern array:{L1, L2, ..., Ln}, where L1 is a literal

of the type of the array separated by colons inside brackets. Given that literals are finite,

the element count will determine the array dimension.

Similar to the array literal, the structure literal is a recursive construction following

the StructName:{L1, L2, ..., Ln} pattern. As expected, the order and types of literals L1,

L2, ..., Ln must abide the format established by the struct declaration. The string type

in the Light language is implemented as a syntactic sugar for a internally defined struct

declaration (2.3). As an example, the string literal "Hello World!" is syntactic sugar for

string:{12, -1, &arr} where arr is an array of characters arr : [12]u8 = {'H', 'e', ...}.

Listing 2.3 – Light string declaration

1 string :: struct {

2 length : s64;

3 capacity : s64;

4 data : ^u8;

5 }
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In the example Listing 2.4 a literal for a structure Vertex is nested with an array

literal, making an array of four Vertex. In line 10 a pointer is declared and initialized using

the null literal. Line 13 shows an example of a boolean variable declaration and line 16

shows a string declaration using a literal.

Listing 2.4 – Light literals example

1 // Array , struct and floating point literals.

2 vertices : [4] Vertex = array {

3 Vertex :{vec3:{-1.0, -1.0, 1.0}, vec2 :{1.0, 1.0}},

4 Vertex :{vec3:{ 1.0, -1.0, 1.0}, vec2 :{1.0, 1.0}},

5 Vertex :{vec3:{ 1.0, 1.0, 1.0}, vec2 :{1.0, 1.0}},

6 Vertex :{vec3:{-1.0, 1.0, 1.0}, vec2 :{1.0, 1.0}},

7 };

8

9 // pointer literal

10 ptr : ^s32 = null;

11

12 // boolean literal

13 boolean := true;

14

15 // string literal

16 name := "Literals example";
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2.2.1.3 Commands

An assignment in the Light language is a command that operates on two expres-

sions, much like a binary expression, although a command does not have a return value

and cannot be used inside an expression. The left side of an assignment is called the

lvalue and the right side, rvalue, in many languages and in Light likewise. An assignment

operation is represented by the token = with many syntactic sugar variations of the binary

operations. += -= *= /= %= <<= >>= ˆ= &= |=

All of which are syntactic sugar for lvalue = lvalue BINARY_OPERATION rvalue, i.e. a += b

is equivalent to a = a + b.

Control flow commands in the Light language are for the most part composed by

a starting keyword followed by expressions or more commands. The standard branching

command is the if statement. In Light, differently from C/C++, the if keyword is fol-

lowed immediately by a boolean expression, very similar to Go’s syntax. Like in most

languages, an else statement can occur optionally after an if. In the example 2.5 the first

two if statements are equivalent and the last (line 9) doesn’t make use of an else.

Listing 2.5 – Light if/else example

1 if a >= b {

2 return a + b;

3 } else {

4 return a - b;

5 }

6

7 if a >= b return a + b; else return a - b;

8

9 if a >= b return -1;

Even simpler than the if statement, the while command does not have an optional

else, hence will always follow the pattern while expression command. An example of

an infinite loop would be: while true {} since an empty scope block is a command.

As in most languages, the while command is complemented by other looping con-

structs with an objective of convenience and conciseness. These constructs are present in

the Light language in the form of syntactic sugar. In the current version of the language

the for statement is the only construct built over the while command. The structure is

similar to the one used in C, starting with initializers commands separated by commas
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followed by a semicolon, an exit condition expression, semicolon, posterior loop com-

mands and finally the command to run inside the loop. The example 2.6 illustrates the

use of the for command to calculate the sum of the numbers between 0 and 10 with its

respective syntax expansion and output.

Listing 2.6 – Light for loop example

1 for i := 0, sum := 0; i < 10; i += 1 {

2 sum += i;

3 print("% ", sum);

4 }

5

6 // Expands to:

7 {

8 i := 0;

9 while i < 10 {

10 sum = sum + i;

11 print("% ", sum);

12 i += 1;

13 }

14 }

$ 0 1 3 6 10 15 21 28 36 45

Complementing the control flow statements are the commands break, continue and

return. All of which can appear by themselves or followed by an expression, which in

the case of the return command corresponds to the return value of the scoping procedure.

The other constructs can only appear inside a loop and optionally followed by an integer

literal, which will be later explained in the type system section 2.2.2.

Finally, a command block serves two purposes, aggregating a sequence of com-

mands as a single command and providing an explicit scope for internal declarations. The

command block body can be viewed as a list of commands and declarations separated by

semicolons and delimited by curly brackets. An empty block is also considered valid in

Light.

2.2.1.4 Expressions

An expression is build from literals, variables and operations. Additionally, it can

also be built from directives, as seen in Section 2.3. An important distinction from the
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C/C++ language is the fact that an assignment is not an expression in Light. Conse-

quently, C expressions such as i++ are not allowed in Light. This is to avoid common

syntax misinterpretations and keep the intent of an expression more clear to the reader.

Binary operators comprise the largest number of operators available in Light. The

most common processor level operations like addition, subtraction, bit shifting and com-

parisons are binary operations taking two expressions in the form expr op expr where op

is one of the operators listed in the table 2.3 Binary operators. The only exception to the

general rule is the array accessing operator which is in the form expr[expr index].

Table 2.3: Binary operators
+ - * / % arithmetic operators
<< >> ˆ & | bitwise operators
&& || logic operators
< > <= >= == != comparison operators
. dot operator
[] array accessing operator

Along with binary operators, the unary operators in the Light language also charac-

terize some of the most common operations found in a processor ALU. As it is intended to

be used for systems programming, memory operations like address of and pointer deref-

erence, as well as type casting operations are necessary for the intent of the language and

therefore are present. All unary operators are prefixed in the expression in the form unop

expr and are also inspired in the C language syntax, being very similar with the exception

of the casting operator which uses brackets instead of parenthesis. The table 2.4 shows

all unary operators available in the language and its description.

Table 2.4: Unary prefixed operators
+ unary plus
- unary minus
˜ bitwise not
! logic not
& address of
* dereference
[Type] unary cast

Operator precedence differs between languages and is common cause of confu-

sion, therefore must be designed with care in order to avoid surprises. The Light language

follows an operator precedence table 2.5 with a left to right associativity for binary op-

erators and right to left associativity for unary operators. The precedence table 2.5 has
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precedence in ascending order from top to bottom. As an example, a binary expression

a + b + c is equivalent to ((a + b)+ c) while the expression -*v will be equivalent to -(*(

v)) and the expression a + b * c according to the table is equivalent to (a + (b * c) since

multiplication has higher precedence than addition.

Table 2.5: Operator precedence table
&& ||

< > <= >= == !=

<< >> ˆ & |

+ -

* / %

unary operators

.

[] procedure call

parenthesis

2.2.2 Type System

A statically typed language, as Light, associates a specific type to well-formed

programs, and such types are intended to be preserved by program evaluation. Contrary

to languages like C++, that are statically typed but incorporate some parts of runtime

type evaluation in a form of object oriented polymorphism, the Light language is com-

pletely static. Since one important objective is to maximize performance while keeping

a modern, simple and easy to use language, Light provides type inference optionally at

variable or constant declarations, meaning it will infer the type based on the rvalue in the

initialization assignment of the declaration. This makes the syntax more concise and also

provides convenience for the programmer that does not need to explicitly declare the type

of all declarations. The Listing 2.7 shows an example of type inference, where declara-

tions in lines 8, 9 and 10 are inferred from their respective initial assignments by omitting

the type declaration after the colon.
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Listing 2.7 – Light type inference example

1 vec2 :: struct {

2 x : r32;

3 y : r32;

4 }

5

6 main :: () -> s32 {

7 normal : s32 = 1; // normal declaration with the type.

8 one := 1.0; // r32 inferred.

9 vector := vec2 :{2.0, 3.0}; // inferred as vec2

10 arr := array {1, 2, 3}; // inferred as [3]s64

11

12 return 0;

13 }

Light also defines types as being unique and available as values in run-time, allow-

ing programming techniques that depend on availability of type information at runtime,

such as reflection, for instance. This is known in many languages as runtime type infor-

mation (RTTI).

2.2.2.1 Operations

The Light type system is quite restrictive regarding implicit type coercions, keep-

ing them at the minimum. At the current language state there exists only one type coercion

which converts any pointer type to void. Many languages choose to keep a big type coer-

cion table to allow programmers to write more freely without worrying about type errors,

often ignoring unsafe type coercions warnings. The policy for Light’s type system is to

not give any warnings, therefore currently every type mismatch will raise a type error.

To describe the type system in depth we will use the Table 2.6. In the semantic

rules used to describe the Light type system, the left side of the symbol 7→ represents an

operation using the types specified and the right side the resulting type from the operation.
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Table 2.6: Types and Operators
Types Description

u8 u16 u32 u64 Integer unsigned

s8 s16 s32 s64 Integer signed

Integer unsigned Integer signed Integer

r32 r64 Floating point

bool Boolean

Operators

+ - * / Arithmetic

% Modulo

< > <= >= == != Comparison

<< >> | & ^ Bitwise

&& || Comparison Boolean

Binary operations in Light are well defined and do not allow for coercion of any

type in the current state of the compiler. An incorrect typed construction will cause a

type mismatch error which indicates that a valid operation is done with incompatible

types. Bypassing this can be done with type casting, explained in more detail at the end

of this chapter. Overflow and underflow, as well as representation limits are present in

the language but we omit them for the sake of brevity. Unsigned integers obey arithmetic

modulo rules according to the number of bits in its representation. Floating point values

and operations follow the IEEE 754 standard (IEEE. . . , 2008) (Same as Intel’s modern

chips).

All valid binary operations of primitive types and its corresponding type yields are

described in the rules below, where lines with types of the same description are equal, i.e.

Integer + Integer 7→ Integer where Integer is u32 means u32 + u32 7→ u32.

Figure 2.2: Binary operations - Type rules

Integer Arithmetic Integer 7→ Integer
Integer Bitwise Integer 7→ Integer
Integer Comparison Integer 7→ bool
F loating point Arithmetic F loatint point 7→ Floating point
bool Boolean bool 7→ bool
bool == bool 7→ bool
bool ! = bool 7→ bool
bool ^ bool 7→ bool
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All unary operations available are described in the rules below, where T is any

type.

Figure 2.3: Unary operations - Type rules

− Integer 7→ Integer
+ Integer 7→ Integer
− Floating point 7→ Floating point
+ Floating point 7→ Floating point
~ Integer 7→ Integer
! bool 7→ bool
* ^T 7→ T
& T 7→ ^T

Pointer arithmetic is an important construct for memory manipulation. Similar to

C, the semantic of a sum and subtraction by an integer type is to multiply the integer with

the size of the type pointed to. Because memory manipulation is an important concept

for this language, safety of the type system is not guaranteed, since free manipulation of

memory does not always guarantee a valid pointer will be return by pointer arithmetic

operations.

Listing 2.8 – Light pointer arithmetic

1 a : ^s32 = [^s32]array{1, 2, 3};

2 b : ^s32 = a + 2; // a + (2 * #sizeof s32)

3 c : s32 = *b; // c will have 3

Considering T a pointer of any type except void, the following semantic rules

represent pointer arithmetic in the Light language:

^T + integer type 7→ ^T

^T − integer type 7→ ^T

^T − ^T 7→ s64

^T comparison ^T 7→ bool

With the aim to provide memory manipulation capabilities, type punning and com-

patibility with low level calling conventions, Light provides an unary cast operator. The

Listing example 2.9 shows a reinterpretation of the memory for the value 3 as an r32

floating point value using unions and unary operations.
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Listing 2.9 – Light type punning

1 value :: union {

2 f : r32;

3 i : s32;

4 }

5

6 main :: () -> s32 {

7 number : value;

8 number.i = 3;

9 reinterpreted_as_r32 : r32 = number.f;

10 reinterpreted_as_u32 : u32 = *[^u32]& number.f;

11 }

Compatibility with C’s standard calling convention was also decisive in choosing

to keep this unsafe behavior. Unions in Light are untagged in order to preserve com-

patibility. Numeric types can be casted to any other numeric type (Floating point and

integers). All other type casts are described by the following rules, considering T and S

any types, different or not.

[^T] Integer 7→ ^T

[^T] ^S 7→ ^T

[^T] Array Type 7→ ^T

[^T] Functional type 7→ ^T

Currently enumerations are internally implemented by means of integer types, de-

faulting to u32. Therefore all previous rules regarding integers are applied to enumerated

values in the language.

2.2.3 Commands

All commands with conditional operations (if, while and for) require a boolean

typed expression. The return command is matched with the return type of the function

that scopes it, meaning a type mismatch error is raised in case of conflicting types, similar

to a binary operation.

The commands break and continue are required to be inside a looping command

(while, for) and may optionally be followed by an integer literal which represents the level
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number from which the command is to break or continue.

Listing 2.10 – Light type punning

1 for i := 0; i < 10; i += 1 {

2 for j := 0; j < 10; j += 1 {

3 print("%", j);

4 if(i == 3 && j == 5)

5 break 2;

6 }

7 print("\n");

8 }

0123456789

0123456789

0123456789

012345

The loop depth level for a break or continue starts at 1. The level is checked and

should not pass the number of nested loops or an error will be raised. The example 2.10

shows two levels of iterative loop with a break of two levels, this with result in breaking

outside both loops when the condition inside the if statement is met, the output shows the

result of the inside print statement.

Similar to a binary operation, an assignment command will cause a type mismatch

if the types associated with the lvalue and rvalue do not match. Coercions are applied to

assignments and transform the rvalue expression into the lvalue type before the assign-

ment. This is also valid for assignments in declarations.

2.3 Meta-Programming

As languages evolve, the software industry has increasing demand for code, mean-

ing code generation and the ability to inspect code should grow concurrently. This is

not the reality since most statically typed languages give very limited or even no meta-

programming ability. This concept is not new for interpreted languages, where running

code generated ”on the fly” was never a problem, since the interpreter is doing this any-

way at every line of code. The real challenge is to build a compiled statically typed

language with a simple and reliable alternative that can mimic such feature in a sim-

ple and helpful way. This would be very beneficial not only for code optimization, but
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also automization of repetitive tasks and even customizable compile time code check-

ing, improving code quality in general. This chapter shows important key mechanisms to

achieve this goal. We intend to use the same language to write programs and to do meta-

programming. Reducing variability in the language aims at a simple and understandable

meta-programming capability. Although only compile time code execution was imple-

mented for the initial version of the compiler. All those different features will be refered

as a meta-programming layer on top of the core language which was already presented.

2.3.1 Compiler directives

Compiler directives represent the meta-programming layer. This layer is charac-

terized by directives, which are:

• #run

• #import

• #if

• #else

• #assert

• #export

• #sizeof

• #typeof

• #compile

• #end

• #foreign

The directive #sizeof will take a type and return its size in bytes, since type sizes

are known at compile time, this directive will generate an integer literal in place of the

directive. A common use for this directive is dynamic allocation depending on the type

of a structure or array to perform copies or simply comunicate with external API’s.

Having type information at runtime provides capabilities for manipulating types

as if they were values, sometimes refered to as reflection. The directive #typeof takes an

expression and inserts in place of the directive a structure that represents the type and can

be used at runtime. In the subsection 3.4.1 (Type Table) this is further explained along

with the reference to the definition for the types in code.
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Importing files is temporarily in the language only to organize projects into differ-

ent files, since the current behavior is to add the imported file to the project as if it was

pasted in the main file. As we intend to provide a proper module system in the future,

where library imports and modules will be added, this is directive is planned to be altered.

Perhaps one of the most important directives, the #foreign directive follows a pro-

cedure declaration that will not have a body since it is an external imported procedure.

This is directly compatible with C libraries and is designed to be simple to use. The li-

brary name comes after the #foreign directive like in the example

malloc :: (size : u64)-> ^void #foreign("c");

which imports from the C standard library the memory allocation procedure malloc.

2.3.2 Compile time code execution

Composed by the directives #run, #assert and #if/#else, compile time execution

of arbitrary code can be used to generate constant expressions at compile time without

restrictions. A simple example would be a table of hashes for keywords generated us-

ing the #run directive. In the code shown in Listing 2.11, a hash function generates the

hash at compile time for the keywords if and else a common operation in a compiler

implementation.

Listing 2.11 – #run example

1 hash :: (in : string) -> u64 {

2 // some hash function ...

3 }

4

5 hash_table := array { #run hash("if"), #run hash("else") };

The conditional directives #if #else will #run the expression directly following the

directive and will conditionally include in the compilation the source code immediately

after the expression until it reaches the #end directive. In the example 2.12, a common way

to write multiplatform programs is to check for a definition at compile time indicating the

operating system the compiler is running.
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Listing 2.12 – #if example

1 #if PLATFORM_WINDOWS

2 #import "windows.li"

3 #else

4 #import "linux.li"

5 #end

Similarly, the #assert directive is a static assertion that uses #run in a boolean

expression, aborting compilation with an error in case the expression evaluates to false.

2.3.3 Code Generation

Code generation is one of the most powerful features in Light. The directive

#compile takes a string parameter followed by a command block. The string is defined

inside this block and can be modified to contain arbitrary code, including other #compile

directives, the directive will include the argument string in the compilation. The code

depicted in Listing 2.13 defines a procedure that takes many different types of arguments,

which in many languages is called generic programming. Also to illustrate nested #compile

directives, the arguments for the sprint procedure are duplicated 4 times using another

defined procedure that takes a string and replicates it separating by commas.
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Listing 2.13 – #compile example

1 #compile result {

2 types := array { "s32", "u32", "s64", "u64" };

3

4 for i := 0; i < #sizeof types / #sizeof string; i += 1 {

5 sprint(result , "sum_% :: (a : %, b : %) -> % { a + b }"

, #compile repeat_string(types[i], 4));

6 }

7 }

8 repeat_string :: (s : string , count : s64) -> string {

9 result : string;

10 for i := 0; i < c; i += 1 {

11 if i != 0 sprint(result , ", ");

12 sprint(result , "%", s);

13 }

14 return result;

15 }

2.3.4 Code modification

Directly accessing the program’s Abstract Syntax Tree enables powerful custom

tools for code analysis or modification. One could check, for example, if a particular

global variable is assigned at any point during execution, not just statically but also at

runtime. This could be achieved by inserting checking code at every assignment which

includes the address of this particular variable, this ensures the code is correct considering

what the programmer defines as correct customly. Although this feature is not currently in

the language, there are several different approaches to define it. For example, one would

be a messaging system attached to the compilation stage where the programmer could in-

tercept the compiler when certain compilation events happened, all information currently

availabe to the compiler could be made available to the programmer. This is similar to

what Jonathan Blow defines in his language jai (BLOW, 2014). Code modification in this

way is arguably complex and requires deep understanding of the language AST, but the

benefits outwheigh the potential addition in complexity in this case. As the language’s

AST was also designed to be fairly small and simple, the addition of this feature can be

considered justifiable.
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3 COMPILER IMPLEMENTATION

Along with the language design, a compiler was developed for Windows and

Linux operating systems and its source code is available in the link <https://github.com/

Hoshoyo/Light>. The compiler is written in C++ and Assembly without use of third party

libraries, with the exception of the C runtime library. The compiler base architecture

is similar to the architecture described in the section 1.2 of (AHO; SETHI; ULLMAN,

1986), consisting of lexical analysis, syntax analysis, semantic analysis, intermediate

code generation, symbol table management and code generation. To implement meta-

programming, the compiler runs multiple passes, evaluating directives each time it runs.

It is important to mention that any code can be run at compile time with the use of a

directive such as #run, without any restriction, potentially leading to infinite loops during

compilation. That is a design choice, since giving the programmer the most amount of

freedom is one of the Light’s design principles. Many of the design decisions behind the

compiler implementation are inspired by Jonathan Blow’s language jai (BLOW, 2014)

which by the time of this work is not yet released. Described in this chapter, the lexer,

parser and type checker will be referred as the front end whilst the intermediate code

generator and code generator will be referred as back end.

Figure 3.1: Compiler Architecture

Figure 3.1 shows an overview of the compiler architecture. From the source code,

the Lexer is invoked to provide tokens to the parser that, following the language grammar,

available in Appendix A, constructs an Abstract Syntax Tree that is fed to the semantic

analyzer which fills it with type information while creating symbol tables and one type

table. Nodes that require another compilation step go through byte code generation and

return to the semantic analyzer as part of the AST. At the end of type checking, code

generation is performed to ultimately produce an executable.

https://github.com/Hoshoyo/Light
https://github.com/Hoshoyo/Light
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3.1 Lexer and Parser

Reading all files and dividing them into tokens is the first step of the compiler,

given initial files with Light source code. The lexer - also referred as tokenizer - is there-

fore responsible to keep important file information for describing the location of eventual

syntax or type errors, as well as token type information and lexical range (token start in

the stream along with its size). The lexer also is responsible for internalizing strings, that

is, making a string unique in the compilation by using a hash table to facilitate later inser-

tion in the symbol table. In that process it also identifies keywords and directive words,

marking them accordingly. Comments and white spaces are ignores at this stage, differ-

ently from some languages like Python, which interprets indentations as being semantic

meaningful.

With all lexical information the compiler proceeds to the parsing stage. This stage

has as input the previous stage’s data and as output a data structure representing the pro-

gram AST. The parser uses a technique known as top-down recursive descent parsing,

which is most natural for human understanding as opposed to a bottom up parser gen-

erated by a parser generating tool like flex/yacc (JOHNSON et al., 1975). A guide to

implement a top down parser manually, similar to the one in this work can be found in

the section 3.3 of the Modern Compiler Design book (GRUNE et al., 2012). It is in the

parsing stage that syntax errors can be raised. These errors are caused by unexpected or

missing tokens and are fatal to the compiler, halting compilation immediately, otherwise

the compiler would have to guess the user’s syntax mistake and might generate misleading

errors.

Listing 3.1 shows the declaration of three variables in which the first two

are declared without the ending semicolon. When the compiler is parsing the line

1, at the last token 0, it expects either the end of the expression or the continu-

ation of it, which could have been a binary operator or even an unary postfixed

operator (currently non existent in Light). In the output it is clear that the com-

piler stopped at the first syntax error, at line 2 an unexpected token space was read.
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Listing 3.1 – Syntax error example

1 i := 0

2 space := ' '

3 number := 2.0;

file.li:2:1 Syntax Error: expected ';', but got 'space '

3.2 The Abstract Syntax Tree

The abstract syntax tree is a representation of the program source code as a tree

data structure containing all the required information for the semantic analysis and code

generation steps. The information, if not provided directly by the parser stage, it is in-

ferred in semantic analysis. Although all information is present in the AST, only simple

language constructs - described in the Core language section 2.2 - will be part of it, mean-

ing all syntactic sugar is processed in the parser stage. Each item in the lists from the Core

language section is a node in the tree, which the definition can be found in the Appendix

B directly transcribed from the original code.

The Figure 3.2 illustrates how the AST for the code in Listing 3.2 would be, omit-

ting detailed information for clarity. Touching nodes in the diagram represent arrays of

nodes of the same type, procedure arguments for the sum procedure and the commands

inside the main procedure.

Listing 3.2 – Ast example code

1 sum :: (a : s32 , b : s32) -> s32 {

2 return a + b;

3 }

4 main :: () -> s32 {

5 result := sum(5, 6);

6 return result;

7 }
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Figure 3.2: AST Example tree

3.3 Symbol Table and Scope

One of the major compiler operations is to perform identifier lookup, either to

check for redeclarations or to retrieve information about an identifier. The information

associated with each identifier, such as its type and size, is essential for routines such

as type checking and code generation. To make this operation efficient, most compilers

make use of a a hash table algorithm to optimize identifier lookup. Since good hash

table look up implementations have constant (O(1)) asymptotic cost (Section 1.2.11 of

(KNUTH, 1997) for the O notation), it is an efficient method that we employed in our

implementation.

Each command block is part of a tree of symbol tables that define a scope, the top

level global scope being the root branching down for every procedure block and nested

blocks inside it. An identifier is considered defined if it is in any of the parent scopes to

the one that it is used in or in the latter, if that path to the root defined the identifier more

than once, the closest block to the one the identifier is used will shadow all the others

and will be the valid declaration in that case. Redefinition errors also benefit from a fast

identifier look up since they can refer to previous definitions and get their information to

better describe what is the cause of a given error. For example, in Listing 3.3 we show

two variable declarations (line 1 and 2) defined in global scope. In line 4, the variable
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max is defined again, shadowing the previous declaration, since its own scope definition

precedes all previous ones. The definition of the variable avg (line 6) is confined to its

scope only, since that are no previous definitions

Listing 3.3 – Scope rules example

1 max : s32 = 10;

2 min : s32 = -10;

3 main :: () -> s32 {

4 max := 255;

5 {

6 avg : s32 = 0;

7 }

8 }

The Light compiler makes use of the previous lexer work of internalizing strings

to speed this process even more, utilizing its address in memory (as it is unique for each

identifier) as a hash, making the comparison a simple register size comparison for any

processor assuming the address size matches the register size.

3.4 Type Inference and Type checking

Semantic analysis is the last step where the AST is filled with information that will

be used for the code generation, which comprises any back end for any architecture or

even an intermediary language like LLVM’s IR (LLVM. . . , ). At this stage, the compiler

goes through the AST, inferring type annotations the programmer omited and perform

type checking. Definitions without a type declaration will have their type assigned to the

same type inferred in the expression inference step, this will ensure that all definitions

will have a type associated with them. Structure and union type declarations are also

internalized and considered a strong type by default. During this step the memory sizes

and alignments are calculated for each field, and although not finished, memory alignment

rules are by default the size of the type with byte padding (equal to C’s default alignment

rules). We plan to add alignment directives to the compiler in the future.

The type inference algorithm implemented uses the concept of weak and strong

types. Strong types will force weak types to coerce to them, meaning for example,

a weak s64 will coerce to any integer type since no type was specified. A strong

type in contrast will force any other type to try to coerce to it. For example, a vari-
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able expression is always considered strong and therefore in the expression variable

+ 10 where variable is of type s16, the literal 10 will coerce to an s16 type. The de-

fault values for numeric literals are s64 for integers and r32 for floating point values,

the reason for this choice is to match current technology since currently most proces-

sors are 64 bit and floating point operations for graphical applications are usually done

using 32 bit precision. The algorithm is based on propagating already fixed strong

types through the expression branch of the AST whenever a strong type is found, but

a complete description is not going be presented for brevity (the code can be found at

<https://github.com/Hoshoyo/Light/blob/master/src/type_infer.cpp>).

Every strong type found in the type inference step goes through another process of

internalization, utilizing a hashing algorithm for types created for the compiler utilizing

as a base the FNV hash (FOWLER; VO, 1991). The objective is to create a type table

with unique types to later use them for code reflection at runtime.

Type checking of expressions is done alongside type inference. The rules from

the chapter 2 are applied and any type mismatch will raise a Type Error at this stage.

Differently from a Syntax Error, this kind of error can be raised more than once. The last

part of type checking is to check redeclaration of identifiers within the same scope, which

is done by checking the declaration identifier for duplication in the corresponding scope.

Other verifications include checking for boolean types in the conditions statements for

the commands if while and for, checking if break and continue commands are inside of

loops with compatible depths and type checking return statements with the corresponding

procedure return types.

3.4.1 Type Table

Providing type information at runtime allows for reflection, the compiler allows

the programmer to manipulate and query data from the type table, kept in the data seg-

ment, to construct programs that utilize polymorphic behavior or any other manipula-

tion that is made available by that feature. The ability to generate code through meta-

programming also benefits from this feature, since the textual representation of a type

can be trivially generated from the type information available in the type table. A similar

program made in C/C++ would require at least a parser and would still lack important

information like type size or alignment.

https://github.com/Hoshoyo/Light/blob/master/src/type_infer.cpp
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3.5 Code Generation

The final compilation stage is code generation, in the case of the Light compiler,

the AST is transformed into C code as it is simpler to generate than a more low level

machine language such as x64 assembly, although an assembly back end is planned for

the future. The current main code generator therefore generates c99 code which at the end

calls the gcc compiler for both supported platforms (Windows and Linux), making gcc a

temporary dependency of the compiler along with its linker ld.

A second back end was also developed with the intent to run compile time code,

for that a small register virtual machine was written with a simple byte code instruction set

similar to an x64 architecture. This means that any #run directive passes through byte code

generation, runs inside the virtual machine and at the end the return value is transformed

back into a literal matching the directive expression return type to be finally substituted

back into the AST. Though not aimed to be an official back end, this virtual machine is

designed to be able to run any Light code, maximizing the power of code generation.

To make external calls (calls to the operating system) the virtual machine uses a

small part of assembly code which translates its context stack frame to the standard 64 bit

C calling convention (FOG, 2004), this makes it possible for external linkage at compile

time.

For all other nodes besides external procedure call, code generation follows a sim-

ple pattern, emit code for each node making note of referenced jumping addresses, in the

case of control flow statements, that are later filled in with the appropriate relative or ab-

solute addresses. This technique although not exactly the same as described in the section

6.2 of the book (AHO; SETHI; ULLMAN, 1986), follows a very similar approach to the

three-address code, common in many compilers. Register allocation is an important topic

in code generation, for this work a very simple algorithm is used, optimization was not a

priority in the initial compiler and therefore was not addressed. The current register allo-

cation algorithm for the byte code back end picks the first available register and allocated

it, in the case of unavailability, the oldest allocated register is saved into the stack and

allocated.
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4 COMPARISON TO OTHER PROGRAMMING LANGUAGES

With many languages being proposed each year, it can be argued that great part

of this effort is put into ever more abstract and higher level constructs that hide the hard-

ware underneath almost completely. The advance in lower level programming languages,

although disproportionately smaller, is noteworthy. Modern languages like Go, Rust, D

and others have their own aspects that they consider important in low level language de-

sign, each walking different paths. That leaves older languages like C and C++ with the

responsibility to adhere or not to modern language philosophy which have shaped them

through the decades in arguably good and bad ways, nevertheless they are still heavily

used in the industry for high performance computation showing a still needed space for

this type of language to evolve. This Chapter presents qualitative comparison between

Light and alternative languages by means of code examples. It also attempts to point out

problems with other languages and reasons why Light is a better in certain areas. This

Chapter also gives ideas in the overall design path to which development of low level

languages should go.

4.1 C

Created in the early 70’s along with the Unix operating system, the C language

was aimed to be a system programming language or sometimes referred to as a higher

level assembly language. With a static type system and relatively verbose syntax, C

stands today as one of the most successful languages ever created, being used to create a

plethora of new languages and many other purpose software. Even though the success of

C can be attributed to several aspects, an important one is simplicity - when compared

to its successor C++, C is simpler by a great margin. Although a program written in it

is sometimes bigger, a relatively experienced C programmer can certainly understand it.

Some of the arguably more advanced concepts, like pointers, can be a source of a lot of

bugs that are certainly unwanted, but it is an example of a necessary construct of the type

of language C proposes to be. Considering how many years the language has survived

and is still widely used, we can infer that the need for a language like C is undeniable.

Example 1. Listing 4.1 presents a code snippet that illustrates the problems with the C
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language that we want to stress. A convoluted syntax contributes to a worse experience

for programmers, a simple program like the example shows the lack of syntax clarity of

C for some language constructs. In the example a function that iterates through pixels of

an image pointed by unsigned char* image - in the commented line 10 the code intent is

clear, but because image is a pointer the compiler cannot calculate the sizes of the array

in runtime, resulting in a compile time error. The solution in this case is either casting to

a fixed array size at compile time (line 13), or calculating an index and using it directly

manipulating memory and using pointer arithmetic for this.

This example highlights several points that cause friction, leading to syntax con-

fusion that ultimately is not a huge problem but slows down the programming process.

A better syntax is ideally consistent and easy to read without having to read carefully to

understand what the code is doing. In the Light version 4.2 the same code for the type

casting to array is in line 9, the consistency with the declaration syntax of an array is

direct, whilst an array declaration in C is Type name[size], in Light is name : [size]Type

isolating the type and keeping the syntax the same throughout all language constructs.

Listing 4.1 – Example array usage - close to direct memory management

1 void modify_image(unsigned char* image , int width , int height) {

2 for(int y = 0; y < height; ++y) {

3 for(int x = 0; x < width; ++x) {

4 // 4 bytes per pixel

5 int index = (y * 4) * width + (x * 4);

6 unsigned char r, g, b;

7 // Calculate rgb values

8 unsigned int color =

9 0xff000000 | (r << 16) | (g << 8) | b;

10

11 // Can't do image[y][x] = color;

12

13 (*( unsigned int (*) [512][512] image)[y][x] = color

14

15 // If width and height are not known at compile time

16 *( unsigned int*)(image + index) = color

17 }

18 }

19 }
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Listing 4.2 – Light version - array usage

1 modify_image :: (image : ^u8, width : s32 , height : s32) {

2 for y:s32=0; y < height; y += 1 {

3 for x:s32=0; x < width; x += 1 {

4 index := (y * 4) * width + (x * 4);

5 r, g, b : u8;

6 // Calculate rgb values

7 color : u32 = 0xff000000 | (r << 16) | (g << 8) | b;

8

9 [ [512][512] u32 ]image[y][x] = color;

10

11 // If width and height are not known at compile time

12 *[^u32](image + index) = color;

13 }

14 }

15 }
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Another common example of the same problem is function pointers. While in C

the declaration name is infixed between parts of the type, making not clear what are the

types involved, the same example code written in Light is easily read left to right without

any ambiguities as is shown in the comparing examples 4.3 and 4.5, where the function

getSum returns the sum function.

Listing 4.3 – C return function pointer

1 #include <stdio.h>

2

3 int sum(int a, int b) {

4 return a + b;

5 }

6

7 int (* getSum ())(int , int) {

8 return sum;

9 }

10

11 int main() {

12 printf("%d\n", getSum ()(2,3));

13 return 0;

14 }

Listing 4.4 – C return function pointer - Output

1 $ 5
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Listing 4.5 – Light return function pointer

1 #import "print.li"

2

3 sum :: (a : s32 , b : s32) -> s32{

4 return a + b;

5 }

6

7 getSum :: () -> (s32 , s32) -> s32 {

8 return sum;

9 }

10

11 main :: () -> s32 {

12 print("%\n", getSum ()(2,3));

13 return 0;

14 }

Listing 4.6 – Light return function pointer - Output

1 $ 5
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Another example available at <https://blog.golang.org/gos-declaration-syntax>

shows the same problem in both declaration of functions and function pointers in C which

Go’s syntax is much more readable. This is also true for Light where again, not only types

are read from left to right, but they don’t differ between different declarations. The Listing

4.7 shows the referred code in C and the listing 4.9 the Light version.

Listing 4.7 – Unwieldy syntax

1 #include <stdio.h>

2

3 typedef int function_t (int , int);

4

5 int sum(int x, int y) {

6 return x + y;

7 }

8 int sub(int x, int y) {

9 return x - y;

10 }

11

12 function_t* transform(int(*f)(int , int), int v) {

13 if (f(v, v) > 0) {

14 return sum;

15 } else {

16 return sub;

17 }

18 }

19

20 int main() {

21 int (*(*fp)(int (*)(int , int), int))(int , int);

22 fp = transform;

23

24 printf("%d\n", fp(sum , 3)(4, 5));

25 printf("%d\n", fp(sub , 3)(4, 5));

26 return 0;

27 }

Listing 4.8 – Unwieldy syntax - Output

1 $ 9

2 $ -1

https://blog.golang.org/gos-declaration-syntax
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Listing 4.9 – Unwieldy syntax - Light version

1 #import "print.li"

2

3 sum :: (x : s32 , y : s32) -> s32 {

4 return x + y;

5 }

6 sub :: (x : s32 , y : s32) -> s32 {

7 return x - y;

8 }

9

10 transform :: (f : (s32 , s32) -> s32 , v : s32) {

11 if f(v, v) > 0 {

12 return sum;

13 } else {

14 return sub;

15 }

16 }

17

18 main :: () -> s32 {

19 fp := transform;

20

21 print("%\n", fp(sum , 3)(4, 5));

22 print("%\n", fp(sub , 3)(4, 5));

23

24 return 0;

25 }

To illustrate this, a procedure declaration in Light follows the pattern
name :: (arg1 : s32 , arg2 : string) -> s32

where each argument inside parentheses is identical to a variable declaration and the re-

turn type comes after the -> token, while a type declaration (s32, string)-> s32 of this

function type follows the same pattern, omitting the names and the :: token - which

means constant declaration. If it is not apparent in that simple example, the same exam-

ple given in the Chapter 5.12 Complicated Declarations of the book The C programming

language (KERNIGHAN, 1988), is read left to right in a simpler manner in Light.
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C Light Description
int *f(); f :: ()-> ^int; f: function returning pointer

to int
int (*daytab)[13]; daytab : [13]^int; daytab: array[13] of pointer

to int
int (*pf)(); f : ^()-> int; fp: pointer to function return-

ing int
char (*(*x[3])())[5]; x : [3]^()-> ^[5]char x: array[3] of pointer to func-

tion returning pointer to ar-
ray[5] of char

4.2 C++

Created in 1979 by Bjarne Stroustrup as a ”C with classes”, C++ introduced the

object oriented paradigm while maintaining direct compatibility with C’s procedural style

and its standard library. C++’s feature set is one of the biggest and most complex feature

sets of lower level programming languages whilst tooling and support are also one of the

biggest and most mature. The consequences for this large feature set are lack of consis-

tency in general, making the language prone to errors which can be harder to avoid as a

project grows forcing projects to have guidelines or even to prohibit some of the language

features completely from being used. Louis Brandy, developer for facebook, talks about

several problems that can occur to large code bases due to this lack of consistency and

overload of features in his talk at CppCon 2017 (BRANDY, 2017).

Many of the features currently in C++ were designed and added after the initial

language definition, an example is the runtime type information or RTTI, although avail-

able in C++, it is very limited, as the example shows, only the name and a hash of a given

structure or class can be retrieved, also types are comparable like shown in line 23 of the

example 4.10. In this example, a structure Entity can have its name accessed at compile

time, but the name of fields or type information are not provided.
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Listing 4.10 – Limited runtime type information

1 #include <iostream >

2 #include <typeinfo >

3

4 struct Entity {

5 char name [32];

6 int age;

7 };

8

9 int main(int argc , char** argv) {

10 const std:: type_info& info = typeid(Entity);

11

12 Entity e = {

13 "entityName",

14 20

15 };

16

17 std::cout << typeid(e).name() << std::endl;

18 std::cout << typeid(e).hash_code () << std::endl;

19

20 Entity f;

21 Entity g;

22

23 if(typeid(f) == typeid(g)) {

24 std::cout << "Equal types" << std::endl;

25 } else {

26 std::cout << "Not equal types" << std::endl;

27 }

28

29 return 0;

30 }



49

For C++11, constexpr was added as a way to run code at compile time. This may

be considered enough for simple constant functions, but is limited as no external functions

can be called as shown in the example 4.11 where a simple hashing function (line 4) is

compiled successfully whilst a compilation error is thrown when trying to call a library

function printf (line 22).

Listing 4.11 – Limited compilation time execution

1 typedef unsigned long long u64;

2

3 // Fowler -Noll -Vo hash function

4 constexpr u64 fnv1_hash(char* s, u64 length) {

5 u64 hash = 14695981039346656037;

6 u64 fnv_prime = 1099511628211;

7

8 for(u64 i = 0; i < length; ++i) {

9 hash = hash * fnv_prime;

10 hash = hash ^ s[i];

11 }

12

13 return hash;

14 }

15

16 int main(int argc , char** argv) {

17 printf("%llu", fnv1_hash("Hello", sizeof("Hello") - 1));

18 return 0;

19 }

20

21 // Compilation error

22 constexpr void print(char* str) {

23 printf("%s", str);

24 }
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Template meta-programming started as a feature to aid programmers in generic

programming and was not designed for general purpose. Quickly after the realisation that

templates are turing complete in C++, illustrated in the article by Todd L. Veldhuizen

(VELDHUIZEN, 2003), C++ programmers started using as a way to run arbitrary code

at compile time, in the example 4.12 a factorial function is defined using templates.

Listing 4.12 – Template meta-programming

1 template <int N>

2 struct Factorial {

3 enum { value = N * Factorial <N - 1>::value };

4 };

5

6 template <>

7 struct Factorial <0> {

8 enum { value = 1 };

9 };

4.3 Go

Go is a language created by Google with the simplicity design philosophy in mind,

the main designers of the language are Robert Pike and Ken Thompson, the latter also a

creator of the C language. Go however, was not designed to be a system’s language,

offering memory management through garbage collection and a sizable runtime support,

even though a statically typed compiled language, its priority is productivity above control

and speed.

Robert Pike in his talk ”Simplicity is Complicated” in 2015 (PIKE, 2015) ex-

plaining the success of Go, says that to have simplicity Go has hidden a good amount of

complexity, which Light’s design tries to avoid even though it might hinder simplicity in

the language’s front end to get simplicity in the back end in order to make the back end

also visible and understandable by the programmer, and this way offering a large amount

of control over the code.

Opting also to have limited meta-programming capabilities, Go feels like a more

friendly and solid C while focusing efforts in features to help concurrent and distributed

programming. As it follows a very similar design principle as Light’s, Go also inspired

some decisions in the creation of Light, mainly syntax, type inference and out of order
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top level declarations.

4.4 Rust

Rust proposed to be an alternative for system’s programming by avoiding the need

for a garbage collector with clever use of ownership and borrowing semantics making

memory allocation errors less of a concern to the programmer. This approach to safety

may encourage a different approach to memory management but also locks it artificially

as it can be circumvented by creating custom memory allocators, which is common in

lower level programming. Light addresses the safety issue not by adding features to the

language, but making the language friendly to debugging and troubleshooting by provid-

ing good meta-programming support for writing helper tools, customizable code checking

and relying on visualization tools to catch memory errors.

Going in a completely different approach as the base language, Rust also provides

meta-programming support in a form of macros which heavily make use of pattern match-

ing and introduce several new syntactical features. Similar to C++’s template features,

Rust introduces new concepts which don’t match the base language and therefore can ar-

guably be considered new languages within the originals and therefore resulting in the

growth of the language complexity.

4.5 D

Very similar to C++, D retains a heavy object orientation paradigm along with

most of the features that characterize C++, mainly RAII, template meta-programming and

exception handling. As it is still a low level programming language, D supports important

features like inline assembly for x86 and x64 maintaining hardware as a language concern

instead of abstracting it completely. Although D’s design didn’t allow for contentious

features like multiple inheritance and direct C compatibility for simplicity of the language,

its complexity is still comparable to C++’s.



52

5 EXPERIMENTS AND VALIDATION

One of the main objectives of the Light compiler is to provide with the maximum

compilation speed possible, and this principle affected many compiler design decisions.

Table 5.1 shows examples of compilation of programs with different amounts in lines of

code and compared the Light compiler complete run with the gcc compiler running in the

same machine (no optimizations are turned on). The results are an average of ten consec-

utive compiler executions. Although the Light compiler currently relies on generating C

code, we believe a corresponding Assembly back end would have similar generation time.

This is encouraging evidence regarding the efficiency of the Light compiler. We believe

that optimizing its code, which is currently single threaded, to a multi threaded version

would improve compilation even more, since compilation stages such as the parser and

lexer could be independently processed for every source file.

Table 5.1: Compile time - i7-2600 3.40 GHz

Lines of code Light Only (ms) gcc (ms) Light with gcc backend (ms)
4651 24.72 492.59 517.31
507 2.98 155.38 158.36
334 0.91 129.8 130.71
30 0.76 108.62 109.38

In order to test code running time, a small benchmark was created to compare

some of the most popular languages nowadays. The code can be found at <https:

//github.com/Hoshoyo/LanguagesBenchmark>. In this example the famous Mandelbrot

set (MANDELBROT et al., 2004) image with dimensions 800 by 800 pixels, was calcu-

lated using 256 iterations to check for escape, meaning each pixel iterates 256 times at

the worst scenario (if it is not in the Mandelbrot set), the result miliseconds are a mean

of six consecutive runs of the same program. Although optimizations for the initial ver-

sion of the compiler, as already mentioned, were defered to future work, the results were

obtained from the current C back end. In Table 5.2 we can see that Light language ranks

among the fastest runtimes - Javascript ranking is optimizing for usage of multiple cores

while the other versions are all single threaded. The results represent an average of ten

consecutive executions.

https://github.com/Hoshoyo/LanguagesBenchmark
https://github.com/Hoshoyo/LanguagesBenchmark
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Table 5.2: Mandelbrot benchmark - i7-2600 3.40 GHz

Language Elapsed time (ms) Standard Deviation (ms)
C++/g++ 362.10 1,31
Light/g++ 368.50 1,35
Javascript 387.17 5,01
Java 603.45 4,44
Matlab 6511.98 79,92
PHP 67042.02 1231,84
Python 218594.75 2487,09

Several other examples are available in the compiler public repository, which in-

clude utility libraries, common data structures, language feature demos and more. Among

the most complex examples are a small graphical engine with working OpenGL bindings,

a simple server and an implementation of the fast fourier transform.
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6 FUTURE WORK

The Light language is still under development. At this stage we have the complete

language core, runtime type information, type inference and an incomplete implementa-

tion for compile time code execution. However, there are many language features which

were planned but are not available in the current state of the language. We now revise the

most important planned additions.

The first step in completing the language is to implement key defining meta-

programming features described in this work. Compile time execution of code currently

does not have a context from which to run, this would be solved by implementing a depen-

dency system where the compiler can use only declarations within the scope of the #run

directive to execute it. Still regarding meta-programming, code modification is planned

to be a messaging system where the programmer can, at compile time, modify the AST

to perform checks or generate arbitrary code to perform a task at specific points in the

code. Other unimplemented meta-programming features already described in this work

are: static assertion, static if/else statements, the #compile and the #export directives.

An important feature for any language is its library modules support. Although

not yet defined, an import dependency system similar to Python’s is considered a good

alternative to provide support for libraries with different defined namespaces. Another

alternative, for example, is a packaging system similiar to what the Go language imple-

ments, where source files within a directory constitute a package, which defines its own

namespace. Expose compiler bindings to be used as a library is also an important fea-

ture that allows for tools to use the compiler as a library to, for example, provide syntax

highlight to an editor by using the compiler parser in a file. This also would allow for

generation of debugging information to debuggers such as gdb (STALLMAN, 1988).

An alternative to C++’s RAII way of resource managing, also used by the Go

language is the defer statement. This would allow an easy and explicit way to execute

code at the end of scope blocks and procedure returns. A simple example is the freeing of

memory or closing a file handle using the defer statement, this makes managing resources

in the same scope more clear.

The current version supports only a C back end. An initial goal for a more defini-

tive back end is to provide a simple x64 Assembly back end without optimizations. This

would eliminate the dependency on the gcc compiler leaving only the dependency for the

linker. To eliminate this dependency, the next step would be to generate PE/COFF (MI-
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CROSOFT, 2018) and ELF64 (LABORATORIES, ) executable files for Windows and

Linux respectively. Although this eliminates the gcc dependency, to link with C libraries,

a linker would still have to be written. The goal of this back end is to have an efficient

Debug build. To provide good optimization, we plan to provide an option for an LLVM IR

(LLVM. . . , ) back end, which would utilize the latest advances in compiler optimizations

to generate the most efficient runtime code possible for Release builds.

Error messages are also considered very important to have good productivity. We

plan to improve error messages for type mismatch to provide better description of the con-

text in which the error occured. A code path analyzer to report missing return statements

is also planned with the goal to maximize static type checking.

Runtime type information is planned to be used along variadic argument proce-

dures to provide type information to variadic functions. This eliminates the need for

unsafe markers in functions such as printf, since type information can be accessed by

the function at runtime. Compatibility with the C calling convention in that regard is still

undefined.

Finally, we plan to write a standard library consistent with the main goals of the

language and compatible with modern technologies.
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7 CONCLUSION

This work presented the design and implementation of Light, a low level program-

ming language with support for meta-programming.

The Light language is based on a simple, imperative core language with clear

syntax. This core language, although low level, allows for modern features such as type

inference and literals for structure types. A complete language documentation was not yet

provided, since the language current state is still changing. But the provided implementa-

tion supports all core language constructs making possible to construct working complex

example programs.

One distinct feature of Light is that it provides compiler support for meta-

programming techniques. Compiler directives can invoke the compiler to execute arbi-

trary code during compilation. This choice makes possible to use meta-programming as

a tool for implementing tasks usually performed by pre-processors and scripts in C/C++.

Besides the language design, a compiler for Light was developed in C++. Al-

though the current compiler generates C code, relying on GCC for code generation, a

direct Assembly backend is planned for the language. Meta-programming, on the other

hand, in particular, relies on compilation to bytecode and bytecode interpretation. Early

experimental data indicates that the compiler is lightweight and provide fast compilation.

Upon the completion of all its most interesting features, we expect Light to become

a viable, modern alternative to the currently available low level languages for systems

programming.
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APPENDIX A — GRAMMAR

command := { }

| { helper command list }

| command variable assignment

| command if

| command for

| command while

| command break

| command continue

| command return

comma separated commands := command

| command , comma separated commands

helper command list := command

| commandcommand helper list

operator assignment := = | +=

| -= | *=

| /= | %=

| < < = | > > =

| ˆ= | &=

| |=

command variable assignment := lvalue expression operator assignment expression ;

command if := if expression command

| if expression command else command

command for := for comma separated commands ;

expression ; comma separated commands

command

command while := while expression command

command break := break int literal ;

| break ;

command continue := continue ;

command return := return expression;

| return ;
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top level := declaration list

declaration list := declaration

| declaration list

declaration := declaration procedure

| declaration variable

| declaration struct

| declaration constant

| declaration union

| declaration enum

declaration variablelist := declaration variable

| declaration variable , declaration variable list

declaration arguments list := declaration variable

| declaration variable ; declaration arguments list

declaration constant list := declaration constant

| identifier

| declaration constant , declaration constant list

| identifier , declaration constant list

declaration procedure := identifier :: ( ) -> type { command list }

| identifier :: ( declaration variable list ) -> type

{ command list }

declaration variable := identifier : type

| identifier : type = literal

declaration struct := identifier :: struct { declaration arguments list }

declaration struct := identifier :: union { declaration arguments list }

| identifier : type : union

{ declaration arguments list }

declaration constant := identifier :: literal

| identifier :: constant

| identifier : type : literal

| identifier : type : constant
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expression := ( expression )

| expression binary

| expression unary

| expression literal

| expression variable

operator unary prefixed := - | +

| * | &

| ~ | !

| [ type ]

operator binary := - | +

| * | /

| % | &

| | | ˆ

| && | ||

| << | >>

| < | >

| <= | >=

| == | !=

| .

expression unary := operator unary prefixed expression

expression binary := expression operator binary expression

| expression [ expression ]

| expression ( )

| expression ( expression list )

expression variable := identifier

expression literal := literal int

| literal float

| literal bool

| literal struct

| literal array
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literal int := [0-9]+

| 0x([0-9]|[a-f]|[A-F])+

| 0b(0|1)+

literal float := [0-9]+.[0-9]+

literal bool := true

| false

literal pointer := null

literal string := \" (\\.|[^"\\] )* \"

identifer := ([a-z]|[A-Z]|_)([a-z]|[A-Z]|_|[0-9])*

literal struct := struct identifier { }

| struct identifier { literal list }

literal list := literal

| literal , literal list

literal array := array { }

| array { literal list }

expression list := expression

| expression , expression list

expression directive := # sizeof type

| # typeof expression

| # run expression

| # assert expression

| # import ( literal string )
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type := type primitive

| type ptr

| type struct

| type array

| type function

type primitive := s8 | s16 | s32

| s64 | u8 | u16

| u32 | u64 | r32

| r64 | bool | void

type ptr := ˆ type

type struct := identifier

type array := [ int literal ] type

| [ constant name ] type

type list := type

| type , type list

type function := () -> type

| ( type list ) -> type
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APPENDIX B — ABSTRACT SYNTAX TREE

Listing B.1 – Light’s AST

1 // ----------------------------------------

2 // ------------ Declarations --------------

3 // ----------------------------------------

4

5 struct Ast_Decl_Procedure {

6 Token* name;

7 Ast** arguments; // DECL_VARIABLE

8 Ast* body; // COMMAND_BLOCK

9 Type_Instance* type_return;

10 Type_Instance* type_procedure;

11 Scope* arguments_scope;

12

13 Site site;

14

15 u32 flags;

16 s32 arguments_count;

17

18 u64* proc_runtime_address;

19

20 Token* extern_library_name;

21 };

22

23 struct Ast_Decl_Variable {

24 Token* name;

25 Ast* assignment; // EXPRESSION

26 Type_Instance* variable_type;

27

28 Site site;

29

30 u32 flags;

31 s32 size_bytes;

32 s32 alignment;

33 u32 temporary_register;

34 s32 stack_offset;

35 s32 field_index;

36 };
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37

38 struct Ast_Decl_Struct {

39 Token* name;

40 Ast** fields; // DECL_VARIABLE

41 Type_Instance* type_info;

42 Scope* struct_scope;

43

44 Site site;

45

46 u32 flags;

47 s32 fields_count;

48 s32 alignment;

49 s64 size_bytes;

50 };

51 struct Ast_Decl_Union {

52 Token* name;

53 Ast** fields;

54 Type_Instance* type_info;

55 Scope* union_scope;

56

57 Site site;

58

59 u32 flags;

60 s32 fields_count;

61 s32 alignment;

62 s64 size_bytes;

63 };

64

65 struct Ast_Decl_Enum {

66 Token* name;

67 Ast** fields; // DECL_CONSTANT

68 Type_Instance* type_hint;

69 Scope* enum_scope;

70

71 Site site;

72

73 u32 flags;

74 s32 fields_count;

75 };

76 struct Ast_Decl_Constant {

77 Token* name;
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78 Ast* value; // LITERAL | CONSTANT

79 Type_Instance* type_info;

80

81 Site site;

82

83 u32 flags;

84 };

85

86 struct Ast_Decl_Typedef {

87 Token* name;

88 Type_Instance* type;

89

90 Site site;

91 };

92

93 // ----------------------------------------

94 // -------------- Commands ----------------

95 // ----------------------------------------

96

97 struct Ast_Comm_Block {

98 Ast** commands; // COMMANDS

99 Scope* block_scope;

100 Ast* creator;

101 s32 command_count;

102 };

103 struct Ast_Comm_VariableAssign {

104 Ast* lvalue; // EXPRESSION

105 Ast* rvalue; // EXPRESSION

106 };

107 struct Ast_Comm_If {

108 Ast* condition; // EXPRESSION (boolean)

109 Ast* body_true; // COMMAND

110 Ast* body_false; // COMMAND

111 };

112 struct Ast_Comm_For {

113 Ast* condition; // EXPRESSION (boolean)

114 Ast* body; // COMMAND

115 s64 id;

116 };

117 struct Ast_Comm_Break {
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118 Ast* level; // INT LITERAL [0,

MAX_INT]

119 Token* token_break;

120 };

121 struct Ast_Comm_Continue {

122 Token* token_continue;

123 };

124 struct Ast_Comm_Return {

125 Ast* expression; // EXPRESSION

126 Token* token_return;

127 };

128

129 // ----------------------------------------

130 // ------------- Expressions --------------

131 // ----------------------------------------

132

133 struct Ast_Expr_Binary {

134 Ast* left;

135 Ast* right;

136 Token* token_op;

137 Operator_Binary op;

138 };

139

140 const u32 UNARY_EXPR_FLAG_PREFIXED = FLAG (0);

141 const u32 UNARY_EXPR_FLAG_POSTFIXED = FLAG (1);

142 struct Ast_Expr_Unary {

143 Ast* operand;

144 Token* token_op;

145 Operator_Unary op;

146 Type_Instance* type_to_cast;

147 u32 flags;

148 };

149

150 struct Ast_Expr_Literal {

151 Token* token;

152 Literal_Type type;

153 u32 flags;

154 union {

155 u64 value_u64;

156 s64 value_s64;

157
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158 r32 value_r32;

159 r64 value_r64;

160

161 bool value_bool;

162

163 Ast** struct_exprs;

164 struct {

165 Ast** array_exprs;

166 Type_Instance* array_strong_type;

167 };

168 };

169 };

170

171 struct Ast_Expr_Variable {

172 Token* name;

173 Ast* decl;

174 };

175

176 struct Ast_Expr_ProcCall {

177 Ast* caller;

178 Ast** args; // EXPRESSIONS

179 s32 args_count;

180 };

181

182 struct Ast_Data {

183 Data_Type type;

184 u8* data;

185 s64 length_bytes;

186 Token* location;

187 Type_Instance* data_type;

188 s32 id;

189 };

190

191 struct Ast_Expr_Directive {

192 Expr_Directive_Type type;

193 Token* token;

194 union {

195 Ast* expr;

196 Type_Instance* type_expr;

197 };

198 };
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199

200 struct Ast {

201 Ast_NodeType node_type;

202 Type_Instance* type_return;

203 Scope* scope;

204

205 s64 infer_queue_index;

206 u32 flags;

207

208 union {

209 Ast_Decl_Procedure decl_procedure;

210 Ast_Decl_Variable decl_variable;

211 Ast_Decl_Struct decl_struct;

212 Ast_Decl_Union decl_union;

213 Ast_Decl_Enum decl_enum;

214 Ast_Decl_Constant decl_constant;

215 Ast_Decl_Typedef decl_typedef;

216

217 Ast_Comm_Block comm_block;

218 Ast_Comm_VariableAssign comm_var_assign;

219 Ast_Comm_If comm_if;

220 Ast_Comm_For comm_for;

221 Ast_Comm_Break comm_break;

222 Ast_Comm_Continue comm_continue;

223 Ast_Comm_Return comm_return;

224

225 Ast_Expr_Binary expr_binary;

226 Ast_Expr_Unary expr_unary;

227 Ast_Expr_Literal expr_literal;

228 Ast_Expr_Variable expr_variable;

229 Ast_Expr_ProcCall expr_proc_call;

230

231 Ast_Expr_Directive expr_directive;

232

233 Ast_Data data_global;

234 };

235

236 s32 unique_id;

237 };
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