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ABSTRACT

In this thesis, we present an approach for deadlock detection in Sokoban based on neural

networks. Sokoban is a challenging state space problem in artificial intelligence due to

many characteristics, being the presence of deadlocks one of them. A deadlock is a state

reachable from the initial state which cannot reach any goal state. An informed search

algorithm aims to find in a state space an ordered sequence of actions that transform the

initial state into a goal state. Deadlock detection is essential to increase the performance

of an informed search algorithm. Pattern databases are the current state of the art heuristic

for deadlock detection in Sokoban. We present methods to generate a training set and train

a neural network to detect deadlocks. Our approach has a similar performance to a pattern

database. When compared to the standard heuristic function of Sokoban we solved two

more instances while exploring an order of magnitude fewer states.

Keywords: Sokoban. Deadlocks. Neural Networks. Heuristic Search.



Aprendendo Deadlocks em Sokoban

RESUMO

Nesta tese, apresentamos uma abordagem para detecção de deadlocks em Sokoban ba-

seada em redes neurais. Sokoban é um problema de espaço de estados desafiador na

inteligência artificial devido a muitas características, sendo a presença de deadlocks uma

delas. Um deadlock é um estado alcançável a partir do estado inicial que não consegue

atingir nenhum estado de objetivo. Um algoritmo de busca informada visa encontrar em

um espaço de estados uma sequência ordenada de ações que transformam o estado inicial

em um estado objetivo. A detecção de deadlocks é essencial para aumentar o desempenho

de um algoritmo de busca informada. Pattern databases são a atual heurística estado da

arte para detecção de deadlock em Sokoban. Apresentamos métodos para gerar um con-

junto de treinamento e treinar uma rede neural para detectar deadlocks. Nossa abordagem

tem um desempenho semelhante a pattern databases. Quando comparado com a função

heurística padrão do Sokoban resolvemos duas instâncias a mais enquanto exploramos

uma ordem de grandeza menos estados.

Palavras-chave: Sokoban. Deadlocks. Redes Neurais. Busca Heurística.
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1 INTRODUCTION

We can define a large number of problems as state space problems. The solution

for these problems is an ordered sequence of actions that transform the given initial state

into a goal state. Each of the actions transforms a state into another with an associated

cost. The cost of a solution is the sum of the costs of all its actions. An optimal solution

has the minimum cost among all solutions.

There are two classes of algorithms that search for a solution to a state space

problem: uninformed and informed search. Uninformed search operates in a brute-force

way, it has no additional information about the states and needs to expand all states, from

the initial states, until it finds the goal. It is inefficient in larger problems, where the

number of states in the state space is prohibitive for brute-force search. Informed search

algorithms speed up the search by pruning states using additional information about the

problem, usually provided by a heuristic function.

A heuristic function, or simply a heuristic, is a function that usually returns the

remaining cost to reach a goal state from any given state. This information is used by

the informed search algorithm to expand the most promising states, that are closer to the

goal, first. However, computing the exact remaining cost is, in general, as hard as solving

the problem, so heuristics provide estimates of the remaining cost. The quality of the

heuristic directly impacts the performance of the search algorithm. In general, a search

algorithm with more informed heuristics expands fewer states. The task of designing

informed heuristics is an active research topic. A recent approach to automate the process

of finding good heuristics is the use of machine learning algorithms.

Many state space problems are reversible, that is, for every action that transforms

a state s to a state s′, there exists an ordered sequence of actions that transform the state

s′ to the state s. When a problem is not reversible, an action that cannot be undone can

lead to a state that has no solution, a deadlock. Deadlocks are states that cannot reach any

goal state, while states that can still reach a goal are called alive. Good heuristics should

be able to detect deadlocks, pruning them from the search and significantly reducing the

number of expanded states.

Sokoban is a PSPACE-Complete (CULBERSON, 1999) problem and an example

of a state space problem. In this problem a man needs to push all stones in a maze to

certain marked positions called goal squares. The movement of the man is limited to

free squares. Free squares are squares within the walls of the maze and not occupied by
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stones. He can move to any adjacent free square or push adjacent stones if the square the

stone is being pushed to is free. Deadlocks also play an important role in Sokoban. There

are nontrivial placements of subsets of stones that can generate deadlock states. Solving

Sokoban is a hard task which requires informed heuristics and deadlock detection for an

efficient search algorithm.

Inspired by previous works on learning heuristics this thesis explores the poten-

tial of machine learning, namely neural networks, to detect deadlocks in Sokoban. The

objective is to train a neural network that detects deadlocks and then use it together with

a heuristic function to improve the performance of an informed search algorithm. After

giving some background in the related areas, we discuss how to create the training set and

the model for the neural network, then we present experiments that compare the neural

network with Pattern Databases, the state of the art for efficient deadlock detection in

Sokoban (PEREIRA; RITT; BURIOL, 2014).
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2 BACKGROUND

This chapter provides an introduction to the concepts and techniques used through-

out this thesis.

2.1 Heuristic Search

This section gives an introduction to heuristic search. Most notations and defini-

tions are based on the book Heuristic Search: Theory and Applications (EDELKAMP;

SCHROEDL, 2011).

Figure 2.1: Instance #1 of xSokoban. The man is shown at L9, a stone at C8, a wall at
A6, and a goal square at R8.
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2.1.1 State Space Problems

A state space problem P can be defined as P = (S,A, s, T ) and consists of a set

of states S, a finite set of actions A = {a1, ..., an} where each ai : S → S transforms

a state into another state, an initial state s ∈ S and a set of goal states T ⊆ S. Using

the Sokoban instance in Figure 2.1 as an example, the state from the figure is the initial

state, the set of goal states are the states where all six stones occupy the six goal squares

and the man is in any of the remaining free squares. An action in Sokoban corresponds

to the man to push a stone to an adjacent free square. For example, in Figure 2.1 the

man can push the stone at H5 to G5 because its reachable component includes square I5.

However, the man cannot push the stone at F8 to G8 because its reachable component

does not include square E8. A solution to a state space problem is an ordered sequence of
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actions that transforms the initial state s into one of the goal states t ∈ T , it can be defined

by π = (a1, ..., an) with ai ∈ A, i ∈ {1, ..., n}. This solution also generates an ordered

sequence of states (s0, ..., sn) with s0 = s, sn = t, and applying ai to si−1 will result in

si for i ∈ {1, ..., n}. State space problems can also be weighted, that is, every action has

a cost, but for this thesis, we are only interested in unweighted state space problems. In

unweighted state space problems, the cost of each action is the same, usually represented

as one, making the cost of a solution π the number of actions in it.

2.1.2 Heuristics Functions

A heuristic function h(u) is a state evaluation function that estimates, for a state

u ∈ S, the remaining cost to a goal state t ∈ T . This is used to direct the search to the

goal by expanding more promising states first.

A heuristic h is called admissible if it never overestimates the optimal cost of

reaching the goal, and it is called consistent if, for a state u and its neighbor v, h(u) is less

than or equal to the cost from u to v plus h(v). All consistent heuristics are admissible

but not all admissible heuristics are consistent.

2.1.3 A∗ Algorithm

A∗ is an informed search algorithm that uses the evaluation function f(u) = g(u)+

h(u), where g(u) is the cost of the path from the initial state to u and h(u) is the heuristic

function estimating the cost from u to a goal t ∈ T . This evaluation function is used to

determine the order in which the states are expanded. The algorithm starts at the initial

state, adding its successor states to the open set. Next, the state with the lowest f -value is

expanded and has all of its successors added to the open set; this process continues until a

termination condition is met. A∗ using an admissible heuristic is guaranteed to return an

optimal solution if one exists. The algorithm terminates once it finds an optimal solution,

or if there is no solution the algorithm expands all states before terminating.
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2.1.4 Pattern Databases

Pattern Databases(PDB), introduced by Culberson and Schaeffer (1996), are heuris-

tics implemented as lookup tables that store the optimal solution cost of an abstraction

space S ′ = φ(S) from a state s′ to a closest abstraction goal state t′. An abstraction func-

tion φ defines the abstract space. φ maps the state space S into a smaller abstract state

space S ′ in which the optimal cost between abstract states u′ and v′ does not exceed the

optimal cost between states u and v in S. The PDB is constructed in the preprocessing

phase by a reverse search from the set of abstract goal states storing the cost for each

visited state in the lookup table. Later, during the search, the states are mapped to their

respective abstract spaces using the function φ and the values stored in the lookup table

are used as the heuristic function.

2.2 Sokoban

Sokoban is a PSPACE-Complete (CULBERSON, 1999) problem that is challeng-

ing for both humans and computers due to its large state space with deadlock states, long

solutions, and great branching factor. Its similarities with general robot motion planning

make it an interesting problem for research in artificial intelligence.

Deadlocks are extremely important in Sokoban, they are very common and greatly

impact performance during the search. Dead squares are squares from which a stone

cannot be pushed to the goal, Figure 2.2 shows the dead squares in instance #1. The

subset of stones that defines a deadlock can be simple, such as a stone in a dead square, or

complicated, involving multiple stones. An informed heuristic for Sokoban should be able

to detect deadlocks, pruning them from the search and greatly increasing the performance.

2.2.1 Enhanced Minimum Matching

Enhanced Minimum Matching (EMM) is the standard heuristic function for Sokoban,

it is consistent and was introduced in the Rolling Stone solver (JUNGHANNS; SCHA-

EFFER, 2001). The idea behind EMM is to match each stone to a different goal square.

It is computed using three components: backout conflicts, a minimum cost perfect match-

ing, and linear conflicts. The heuristic initially computes the minimum number of pushes
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Figure 2.2: Instance #1 of xSokoban, a dead square is shown for example at F2.
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needed to move a stone from each square to every other square considering all the other

stones were removed from the maze, this considers backout conflicts. A backout con-

flict occurs when the optimal path of a stone considers the current position of the man.

An example is shown in Figure 2.3a, where the only way to push the stone to the goal

is through the C3 square. Then, a minimum cost perfect matching in a bipartite graph

composed of nodes for the stones in one half and nodes for the goals in the other half

computes a lower bound estimating the minimum number of pushes needed to bring all

stones to goal squares. The weight of each edge is the number of pushes needed to move

the stone to the goal according to the previous computation. Linear conflicts add a cost

of two if two adjacent stones are in the optimal path of each other, an example is shown

in Figure 2.3b. Detecting deadlocks is extremely important for a Sokoban heuristic, and

EMM can detect simple deadlocks, such as stones in dead squares or when a matching

does not exist, for example, when there are multiple stones that can only reach a single

goal square. EMM will be used as the main heuristic in this thesis, together with neural

networks for deadlock detection.

2.2.2 PDBs in Sokoban

PDBs were introduced in Sokoban by Pereira, Ritt and Buriol (2013) using in-

termediate PDBs (IPBD), a technique that decomposes the instance to allow multiple

abstract goal states to be abstracted into one single intermediate abstract goal state. This

cuts the instance into two zones, the maze zone, were the PDB is used as the heuristic to

reach the intermediate goal state, and the goal zone, where a standard minimum matching
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Figure 2.3: Example of backout and linear conflicts.
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(a) The stone can not be pushed to the goal
directly, it must first be pushed back to
square C3.
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(b) The stones are in the optimal path of
each other, the stone on C3 must be pushed
down in order to push the stone on D3 to the
goal.

heuristic is used to reach the goal states. IPDB was proven to produce great lower bounds

for Sokoban, but it is effective at detecting deadlocks only in the maze zone.

Later on Pereira, Ritt and Buriol (2014) introduced multiple goal states PDBs

(MPDB), a technique that uses PDBs for deadlock detection in Sokoban. MPDBs have

different sizes based on the number of stones used in the abstraction, an MPDB-4, for

example, uses only four stones. This limits the MPDB capability to detect deadlocks of

up to its order, an MPDB-2 can detect deadlocks of order two or lower, and an MPDB-4

can detect deadlocks of order four or lower. Figure 2.4a shows a deadlock of order one, the

stone can only be moved left or right following the wall. Deadlocks of order one consist

of a stone on dead squares. Figures 2.4b, 2.4c and 2.4d show deadlocks of order two,

three and four respectively. Pereira, Ritt and Buriol (2014) experimented with MPDBs as

a heuristic function, but it provided worse estimates than both EMM and IPDB. Later they

used MPDBs only for deadlock detection. In this experiment, they ran an A∗ guided by

EMM that used MPDBs only for pruning deadlock states. For every generated state, A∗

checks with an MPDB if that state is a deadlock. If it is the state is pruned. If the MPDB

classify the state as alive A∗ inserts it into the open set. A∗ algorithm guided by EMM and

pruning states with MPDB-4 solves two more instances from xSokoban, twelve in total,

while expanding an order of magnitude fewer states. We will use an MPDB-4 to create

the training set for the neural network and this configuration of A∗ as a comparison for

our approach.
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Figure 2.4: Sokoban deadlocks of different orders. The order of a deadlock is defined
by how many stones are needed for the state to be a deadlock. So if any of the stones is
removed the state will be alive.
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(b) Deadlock with two stones.
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(c) Deadlock with three stones.
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(d) Deadlock with four stones.

2.3 Learning Heuristic Functions

This section gives an introduction to machine learning and neural networks. See

(GEISSMANN, 2015) for a more detailed explanation.

2.3.1 Machine Learning

Machine learning is a field of study in Computer Science where the algorithm

learns based on a dataset to be able to make predictions or act based on new data. There

are three main types of learning algorithms. Supervised learning is when the learning

algorithm receives a dataset where the input values have a corresponding output value,

the goal is to learn a function that maps the input data to the output values. Unsupervised

learning is when the learning algorithm receives a dataset with only the input values and

has to find patterns in the dataset. Reinforcement learning is when the learning algorithm

takes actions in a dynamic environment to perform a specific task based only on some

notion of rewards. This thesis only uses supervised learning. In supervised learning,

there are two possible tasks: classification and regression. Classification maps the input
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values to different class labels while regression maps the input values to output values.

We will use a binary classification model to learn whether a Sokoban state is a deadlock

or not.

2.3.2 Artificial Neural Networks

Artificial Neural Networks, or simply Neural Networks (NN) are computing sys-

tems inspired by biological neural networks such as the human brain. A NN is an inter-

connected net of artificial neurons, each neuron calculates its output based on its inputs

and their weights using an activation function. The simplest form of NN consists of two

layers of neurons: the input layer, and the output layer. The neurons in the input layer

do not use the activation function, they simply provide the input values to the next layer.

The neurons on the output layer calculate their outputs based on the values received from

the previous layer. Hidden layers are extra layers added between the input and the output

layer, increasing the complexity of the NN.

NNs are particularly interesting because there are algorithms to learn the weights

of the neurons based on the training set, a set of inputs with their expected output values.

These algorithms run the network with their current weights and then use the error pro-

duced to update the weights backward throughout the network’s layers. The weights can

be updated for each element of the training set or in batches. Each batch can contain the

whole training set, only one element, or any number in between. An epoch is when each

element of the training set was used once to update the weights, the learning rate controls

how much the weights are updated each batch.

2.4 Related Work

Next, we present approaches that use algorithms to learn heuristics that estimate

the cost of state space problems. They use machine learning to learn heuristics that can

be used to guide an informed search algorithm.

When a problem has multiple existing heuristics, taking their maximum is an ef-

fective way of combining them, but Samadi, Felner and Schaeffer (2008) introduced a

new technique where the heuristics are treated as features of the problem domain and an

NN is used to combine them. The NN learns a function that combines k heuristics to get
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as close as possible to the optimal solution. The experimental results showed that this

technique greatly reduced the search effort with a small cost in the quality of the solution.

Arfaee, Zilles and Holte (2011) investigated the use of machine learning to create

effective heuristics for search algorithms or heuristic-search planners in a single domain.

Their method generated a sequence of heuristics from a given weak heuristic h0 and a set

of unsolved instances using a bootstrapping procedure. The bootstrapping procedure uses

the training instances that can be solved using h0 to create a training set for a learning

algorithm that produces a heuristic h1 that is expected to be stronger than h0. The boot-

strapping procedure is repeated until a sufficiently strong heuristic is produced. They pre-

sented experiments for the 24-Sliding-tile puzzle, the 35-Pancake puzzle, Rubik’s Cube,

and the 20-Blocks world, in all cases the heuristic produced was strong enough to solve

random instances quickly with solutions close to optimal. The total time to create strong

heuristics was in the order of days, for a more efficient way to solve a single instance they

presented a variation in which the bootstrap learning of new heuristics is interleaved with

problem-solving using the initial heuristic and whatever heuristics have been learned so

far. This substantially reduced total time with solutions that were still close to optimal.

Lelis et al. (2012) presented an algorithm to predict the optimal solution cost for

a space state problem called Bidirectional Stratified Sampling(BiSS). BiSS is based on

ideas of bidirectional search and stratified sampling that produces accurate estimates of

the optimal solution cost without finding the solution itself. Their method makes accurate

predictions in several domains, is guaranteed to return the optimal solution cost in the limit

as the sample size goes to infinity, and is much faster than actually finding the solution.

Later on, Lelis et al. (2016) used BiSS to improve the bootstrapping procedure by Arfaee,

Zilles and Holte (2011). Instead of using search to solve problem instances to generate

a training set, they generate a set of problem instances and then use BiSS to label these

instances to form the training set. They were able to reduce the time needed for the

bootstrapping procedure to train the heuristic from days to minutes, while still keeping

the quality of the learned heuristics roughly the same.

Based on the bootstrapping procedure approach by Arfaee, Zilles and Holte (2011),

Geissmann (2015) introduced a framework to learn heuristic functions that can be used

in classical domain-independent planning. Their approach reduced the number of states

expanded when compared to blind search, but because the heuristic needs to be learned

the total time was increased.
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3 LEARNING DEADLOCKS IN SOKOBAN

Deadlocks are extremely important in some state space problems such as Sokoban,

but, usually, there is no obvious way to detect them. We explore the possibility of using

neural networks for deadlock detection, comparing them to the current approach, MPDBs

(See Section 2.2.2). One of the main problems when using neural networks is how to

generate a good training set. If the training set is too small or contains states that are too

much alike, the capability of the network to learn can be severely limited. To generate a

good training set, we present different methods to generate alive states, and we use MPDB

to generate deadlocks states. Then, using our best method, we train a neural network for a

specific Sokoban instance with the goal to emulate the behavior of an MPDB. Afterwards,

we run an A∗ guided by EMM (See Section 2.2.1) that uses the NN only for pruning states.

For every generated state A∗ will use the NN to detect if the state is alive or a deadlock and

prune them accordingly. The following sections explain how we generated the training

set, the model used for the neural network.

3.1 Training Set

We generate a training set composed of two classes of states: deadlock states and

alive states. The training set contains the same number of alive states and deadlock states,

and this is done to prevent the network from favoring the class that is more frequent in

the training set. The next sections explain the methods used to generate alive states and

to generate deadlock states. Chapter 4 shows experiments with these methods and their

combinations to obtain the best approach.

3.1.1 Generating Alive States

We generate alive states using a reverse search from a goal state. Given a state

space problem P = (S,A, s, T ) the problem for the reverse search can be defined as

P ′ = (S,A′, t, s), where the initial state is a goal state t ∈ T and the goal state is the

original initial state s. A′ is the set of reverse actions, that is, given an action a ∈ A with

a(u) = v there exists an action a′ ∈ A′ with a′(v) = u and u, v ∈ S ′. We use a reverse

search to ensure the generated states are indeed alive. Since we only generate states that
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are reachable from the goal state with the reverse set of actions A′, and every action in A′

can be reversed, then all generated states can reach the goal in a forward search. Thus, a

reverse search generates only alive states.

Many search algorithms can be used for the reverse search, the ones we chose

are Breadth-Firs Search, Greedy Best-First Search, and A∗. The objective is to use these

different algorithms to generate a diverse set of states.

3.1.1.1 Breadth-First Search

Breadth-First Search(BFS) is an uninformed search algorithm that expands the

states in the order of their depth. In general, using BFS in the reverse search produces

states that are close to the goal.

3.1.1.2 A∗ Algorithm

The motivation to use of a reverse A∗ is to produce states that are more likely to

be seen on the forward search. A∗ starts at the goal and move in the direction of the initial

state, searching for the optimal solution. A∗ algorithm requires a heuristic that estimates

the cost from the current state to the initial state. For this, we use the Reverse Enhanced

Minimum Matching heuristic. REMM is similar to EMM but for the reverse state space

problem. We compute backout conflicts and linear conflicts using the reverse moves and

the minimum matching from the current positions of the stones to the squares that contain

stones in the initial state. REMM is the same as EMM but estimating the costs from the

current state to a goal state of the reverse. A∗ also tends to produce states close to the goal

but in the direction of the initial state.

3.1.1.3 Greedy Best-First Search

Greedy Best-First Search (GBFS) only uses the value of the heuristic to choose

which state expand next. GBFS always expands the generated state with the best h-

value. We have used two different heuristics for GBFS, maximizing EMM and minimiz-

ing REMM. GBFS guided by EMM, in general, generates states that are as far from the

goal as possible. GBFS guided by REMM, what we call Reverse GBFS (RGBFS), in

general, produces states that are as close to the initial state as possible.
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3.1.2 Generating Deadlocks

We propose a simple method to generate deadlocks. Our algorithm places all

stones of the instance at random free square. Then, an MPDB-4 is used to detect if the

generated state is a deadlock, if the state is classified as a deadlock it is added to the

training set. This is done until there is the same number of deadlocks states as there are

alive states. Using an MPDB-4 limit the order of the generated deadlocks to four.

We also force deadlocks of each order, that is, we try to generate the same number

of deadlocks for each order up to four for a time limit. If the time limit is reached and

there are not enough deadlocks, we generate them freely until we complete the training

set. To find out the order of a deadlock we generate four MPDBs, one for each order,

the first one to detect a state as a deadlock represents its order, for example, a state is a

deadlock of order three if MPDB-1 and MPDB-2 classify it as alive but MPDB-3 classify

it as a deadlock. Deadlocks with order higher than four are not included in our training

set.

3.2 Neural Network Model

We use a fully connected neural network with hidden layers. The input is a flat

state: an array of zeros and ones that has twice the size of the number of free squares,

the first part contains the positions of the stones and the second part the position of the

man. The output is the two classes: alive and deadlock. To decrease the number of false

positives in the search we only consider the state a deadlock if the network predicts it

with 99% certainty. Mistakenly pruning an alive state from the search could render the

problem unsolvable or the solution sub-optimal, while ignoring all deadlocks degrades

the heuristic back to the original one, in our case EMM.
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4 EXPERIMENTS

This chapter presents the results of the experiments. First, we choose the param-

eters for the network. Then, we use the network to compare the different algorithms to

generate the training set. In the end, we compare our best method with MPDBs when de-

tecting deadlocks for random states and for pruning states during an informed search with

A∗ guided by EMM. The instances tested were the ones solved when using an MPDB-4

to detect deadlocks in one hour, instance #1 was kept out for being too small.

During this chapter we reference a neural network as NN(A1, A2, . . . , An). This

notation means that the alive states in the training set were generated by algorithms

A1, A2, . . . , An. The number of alive states generated by each algorithm is always the

same. In tables below, when we present experiments for NN(A1, A2, . . . , An) we are run-

ning an A∗ guided by EMM which uses NN(A1, A2, . . . , An) only for deadlock detection.

The framework used for the neural network implementation was TensorFlow (ABADI

et al., 2015), it is a widely used open source framework for machine learning that was de-

veloped by Google. Tensorflow supports the use of GPUs for optimization, and it has

APIs for multiple programming languages, the main one being Python. In our case, the

network was modeled with the Python API but trained and executed with the C++ API

using GPU. The API version is 1.10.1. Experiments run on a computer running Ubuntu

with an Intel Core i7 6700k CPU, 16 GB of RAM, and an NVIDIA GTX 1070 GPU. We

limit the number of expanding nodes to 5 million and the time to one hour.

4.1 Instances

The instances used throughout this thesis are taken from the benchmark xSokoban

(MYERS, 1995). The 90 instances have varying levels of difficulty, from easier ones

(Figure 2.1) to harder ones (Figure 4.1), and are ordered roughly in difficulty for humans

to solve.

4.2 Neural network parameters

There are many parameters that can be adjusted in a neural network: how the input

and output are mapped, the number of hidden layers, the number of nodes in each layer,
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Figure 4.1: Instance #90 of xSokoban. D15, G14 and H15 are goal squares.
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the activation functions, the weights initial values, the bias initial values, the learning

rate, the loss function, the optimizer, number of epochs, the batch size, and the size of the

training set. Since we want a total time of less than one hour, we limit some parameters

to have a training time of fewer than 30 minutes. This section does not present all experi-

ments made to arrive in the final values, but, as an example, Table 4.1 compares different

numbers of hidden layers, other parameters are at their final values. The column Nodes

shows the number of expanded states, instances that were not solved within the time lim-

its are marked with the > symbol. The column Time shows the time taken for the search

in seconds, excluding training time. We can see that more hidden layers provide the best

results, expanding fewer states in less time. Instance #51 is the best example, expanding

less than half the number of states for each additional hidden layer.

The NN used in the rest of the thesis has four hidden layers, 1024 nodes in each

hidden layer, a flat state as the input and two classes as the output. The activation function

used in the hidden layers is rectifier(ReLU), and the activation function for the output

layer is softmax. The weights are initialized using the truncated normal function with a

standard deviation of 0.1 and the bias values are initialized at 0.01. The Adam optimizer

minimizing the cross-entropy loss is used to update the network weights and learning rate,

that starts at 0.00001. The network trains for 10 epochs with batches of 2048 elements

and a training set consisting of 10 million unique alive states and the same number of

unique deadlock states, if the instance does not contain 10 million unique alive states then

all alive states are used in the training set. The time to generate the training set and to
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Table 4.1: Comparing different number of hidden layers for NN(BFS,GBFS,RGBFS).
# 2 Hidden layers 3 Hidden layers 4 Hidden layers

States Time States Time States Time
2 105,414 251 84,356 226 109,204 287
3 348,180 382 135,056 205 154,499 232
6 559,775 600 384,721 496 296,311 436
7 >4,115,756 3600 >3,910,386 3600 >3,645,610 3600

17 645,261 370 344,020 237 482,362 343
38 31,979 41 22,843 33 17,995 28
49 1,580,374 1795 1,554,011 1909 1,436,325 1847
51 >1,404,784 3600 842,433 2508 306,711 902
78 392 1.36 20,863 63 27,076 91
80 27,705 28 27,694 30 27,694 32
81 >1,403,714 3600 >1,075,350 3600 >945,112 3600
83 7,624 15 2,634 6.25 13,239 32

Mean 852,580 1191 700.364 1077 621.845 952
Solved 7 8 8

training the NN takes at most 27 minutes.

4.3 Training Set

With the NN model fixed we test which method for generating the training set

produces the best results. We start by comparing the different algorithms to generate alive

states and then test if deadlocks of higher order produce a better training set.

4.3.1 Generating Alive States

We proposed four different methods to generate alive states for the training set:

BFS, A∗, GBFS and RGBFS. We compare them running A∗ guided by EMM using the

NN only for deadlock detection. Since BFS and A∗ produce similar states that are close

to the goal they are not combined. All other possible combinations are shown in Tables

4.2, 4.3 and 4.4. Due to the high number of tests a lower limit of 10 minutes was used in

the search. The tables show the number of expanded states and the time in seconds for the

search, excluding the training, if no solution was found in the given limits the symbol >

is used, if the solution found was not optimal the symbol + is used. All methods, except

for NN(BFS), found the optimal solution in all solved instances. The time to generate the

training set is at most 12 minutes, with BFS being the fastest and A∗ the slowest.

In table 4.2 we see that NN(BFS) performed the worst, solving only two instances
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and being the only one to find solutions that are not optimal. For instance #38 NN(BFS)

found a solution with cost 83, instead of the optimal 81, and for instance #17 it found a so-

lution with cost 217, instead of the optimal 213. NN(A∗) performed better than NN(BFS),

solving five instances, but not as good as NN(GBFS) and NN(RGBFS) which solved eight

instances each. NN(RGBFS) solved the same number of instances than NN(GBFS), but

in less time and expanding fewer states.

Table 4.3 show combinations of two algorithms, NN(BFS,GBFS) solves seven in-

stances and NN(BFS,GBFS), NN(A∗,GBFS) and NN(A∗,RGBFS) solves eight instances.

Table 4.4 show combinations of three algorithms, NN(BFS,GBFS,RGBFS) solves seven

instances and NN(A∗,GBFS,RGBFS) solves eight instances. Comparing the results from

the three tables we see that many solved the same number of instances, NN(RGBFS)

expanded the lowest number of states and NN(A∗,GBFS,RGBFS) was the fastest overall.

Table 4.2: Comparing methods to generate alive states with one algorithm.
# NN(BFS) NN(A∗) NN(GBFS) NN(RGBFS)

States Time States Time States Time States Time
2 >830,212 600 >582,198 600 39,795 112 77,025 210
3 >927,984 600 >331,403 600 127,477 224 129,664 210
6 >927,369 600 344,225 495 111,292 192 164,860 274
7 >808,279 600 >643,042 600 203,816 365 >354,466 600

17 +446,954 273 434,742 342 454,164 324 426,374 329
38 +50,495 57 19,251 33 20,118 32 16,831 28
49 >719,266 600 >380,325 600 >691,842 600 >349,425 600
51 >493,723 600 >158,636 600 >203,509 600 >196,116 600
78 >796,995 600 >263,115 600 852 3 1,217 4
80 >650,001 600 9,820 20 27,743 39 27,773 35
81 >644,689 600 >135,817 600 >149,943 600 >184,176 600
83 >884,527 600 448 2 >294,267 600 940 3

Mean 681,708 527 275,252 424 193,735 308 160,739 291
Solved 2 5 8 8

To better compare the best methods we ran another experiment using a higher

time limit of one hour only with harder instances. We chose instances #7, #17 and #49

and compared methods that solved eight instances previously, except for GBFS since it

was unable to solve instance #83, which should be easy and is solved by EMM with

559 expanded states. Table 4.5 show these results. NN(A∗,GBFS), NN(A∗,RGBFS) and

NN(BFS,RGBFS) were only able to solve two instances, while NN(A∗,GBFS,RGBFS)

and NN(RGBFS) solved all three instances. We confirmed the results from the previous

tests that NN(RGBFS) is the best method, solving the instances faster and with fewer

states expanded. It is interesting that using a single algorithm to generate the alive states

performed better than more complex combinations.
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Table 4.3: Comparing methods to generate alive states with two algorithms.
# NN(BFS,GBFS) NN(BFS,RGBFS) NN(A∗,GBFS) NN(A∗,RGBFS)

States Time States Time States Time States Time
2 31,013 98 71,653 195 41,089 116 94,309 251
3 381,877 501 152,898 219 169,879 290 169,254 263
6 109,931 188 131,366 213 220,300 361 344,343 483
7 >533,160 600 >547,245 600 >511,343 600 >532,611 600

17 425,460 314 462,511 329 520,034 359 519,130 358
38 17,310 29 22,317 34 19,017 29 15,693 25
49 >731,608 600 >416,607 600 >452,950 600 >430,914 600
51 >202,766 600 >165,053 600 >149,768 600 >156,335 600
78 1,141 3 7,586 12 2,007 3 8,329 14
80 177,691 600 43,384 69 23,976 29 27,639 31
81 >177,005 600 >189,202 600 >185,289 600 >173,575 600
83 >306,227 600 3,388 9 921 2 23,541 66

Mean 257,932 394 184,434 290 191,381 299 207,973 342
Solved 7 8 8 8

4.3.2 Generating Deadlocks

We also tested how the NN would perform if given a training set contains a higher

number of more complex deadlocks. To generate this training set we forced the same

number of deadlocks of each order for 30 minutes. We trained the network and ran A∗

guided by EMM using the NN only for deadlock detection.

Table 4.6 compares how many deadlocks of each order were generated when forc-

ing for 1 minute and for 30 minutes. Forcing for 1 minute has a small impact in most

cases, on average 91% of the generated deadlocks have order one, 8% of order two, 0,7%

of order three and 0,3% of order four, while forcing for 30 minutes has only 58% of order

one, almost 25% of order two, 12% of order three and 5% of order four. The only case the

algorithm finished in less than 30 minutes is instance #1, for all other instances 30 minutes

was not enough to produce the same number of deadlocks for higher orders. Overall we

see that forcing for a longer time resulted in more complex deadlocks in the training set.

Table 4.7 show how a training set with more complex deadlocks affects the per-

formance in the informed search. We can see that the number of states expanded and the

time for the search decreased, but the total time increased significantly. Using a limit of

one hour for the total time when forcing for 30 minutes the NN would not be able to solve

instances #7, #49, #51 and #80. Even though the performance improved when forcing

deadlocks for a long time it is not enough to compensate the extra preprocessing time.
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Table 4.4: Comparing methods to generate alive states with three algorithms.
# NN(BFS,GBFS,RGBFS) NN(A∗,GBFS,RGBFS)

States Time States Time
2 77,234 209 100,104 274
3 >447,153 600 50,090 85
6 150,654 251 >429,895 600
7 >481,793 600 >492,071 600

17 443,646 322 427,258 344
38 17,578 29 18146 28
49 >425,730 600 >433,500 600
51 >165,552 600 19,490 97
78 3,516 12 3,384 10
80 28,701 34 27,702 31
81 >200,165 600 >183,162 600
83 50,731 56 2,567 7

Mean 207,704 326 182,281 273
Solved 7 8

Table 4.5: Comparing best methods to generate alive states for harder instances.
# NN(A∗,GBFS,RGBFS) NN(A∗,GBFS) NN(A∗,RGBFS) NN(BFS,RGBFS) NN(RGBFS)

States Time States Time States Time States Time States Time
7 1,505,647 2029 >3,493,845 3600 >3,186,357 3600 1,268,034 1263 600,757 836

49 1,027,959 1497 759,668 1053 943,056 1346 1,024,895 1336 566,021 1020
51 35,649 170 182,718 672 227,649 940 >1,083,221 3600 187,982 602
M. 856,418 1232 1,478,744 1775 1,552,354 1762 1,125,383 2066 451,586 819
S. 3 2 2 2 3

4.4 Comparing to MPDBs

In our final experiments, we use NN(RGBFS) forcing deadlocks for one minute.

NN(RGBFS) was the best method when generating alive states and forcing deadlocks for

one minute has almost no impact in the total time while still having a small improvement

in the deadlock states for the training set.

Table 4.8 compares the deadlock detection capabilities of EMM, MPDB-2, MPDB-

4 and NN(RGBFS). We used the same 10,000 randomly generated states from Pereira,

Ritt and Buriol (2014) adding a column for the NN, each column shows how many of

the 10,000 states were classified as deadlocks by that method. EMM on average detects

only 1,318, MPDB-2 does a lot better with 8,168 deadlocks and MPDB-4 improves a bit

more with 8,981. The network considers even more states as deadlocks, with an average

of 9,988, but they are not necessarily correct.

While the other methods never classify an alive state as a deadlock, the network

does. We try to prevent this by only considering a deadlock when the network is almost
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Table 4.6: Deadlocks generated when forcing deadlocks.
# Order of deadlocks when forcing one minute Order of deadlocks when forcing 30 minutes

1 2 3 4 1 2 3 4
1 2,010,974 1,734,525 209,942 66,504 1,005,487 1,005,487 1,005,487 1,005,484
2 9,436,515 4,756,82 73,643 14,162 5,513,207 2,520,172 1,654,844 311,779
3 9,341,456 578,223 61,347 18,976 5,886,983 2,598,386 1,150,933 363,700
6 9,683,306 255,064 42,632 18,999 5,374,751 2,519,547 1,451,474 654229
7 9,572,769 306,949 71,283 49,001 4,849,442 2,510,475 1,566,699 1,073,386

17 7,969,700 1,965,710 48,176 16,416 5,804,694 2,566,137 1,216,955 412,216
38 7,603,961 2,161,236 167,467 67,338 3,503,361 2,662,488 2,512,578 1,321,575
49 9,366,810 568,956 53,944 10,292 5,777,451 2,517,751 1,434,757 270,043
51 9,837,068 134,653 19,416 8,865 6,834,054 2,532,870 435,438 197,640
78 9,356,747 563,918 64,351 14,986 5,941,759 2,643,573 1,151,637 263,033
80 9,915,158 76,951 3,870 4,022 8,310,465 1,527,451 82,612 79,474
83 9,757,914 221,644 16,665 3,779 6,902,231 2,527,605 466,671 103,495

Mean 8,654,364 753,626 69,395 24,445 5,475,323 2,344,328 1,177,507 504,671

certain, but it can still make mistakes. It is also possible that the NN is correct and all

generated states are deadlocks. For example, in instance #48 MPDB-4 detects 9,964

deadlocks, the remaining 36 states could be deadlocks of a higher order than four that

NN(RGBFS) classified correctly.

Table 4.9 shows an A∗ guided by EMM using MPDB-4 for deadlock detection.

For each state generated we use both MPDB-4 and NN(RGBFS) to detect if the state

is alive or deadlock, comparing their answers. The first two columns show the number

of states that were detected as alive by MPDB-4. Column “NN(RGBFS) Alive”, shows

the number of states that both MPDB-4 and NN(RGBFS) detected as alive while column

“NN(RGBFS) Deadlock” shows states that MPDB-4 detected as alive but NN(RGBFS)

detected as deadlocks. The states in the second column can either be a deadlock with

order higher than four that MPDB-4 is unable to detect or alive states that were mistakenly

detected as deadlocks by the NN. We can see that in average NN(RGBFS) agrees with

MPDB-4 in only 44% of the alive states, detecting the majority of the MPDB-4 alive

states as deadlocks. The last two columns are states that MPDB-4 detected as deadlocks,

these states are guaranteed to be deadlocks. States in the third column are deadlocks that

NN(RGBFS) missed, detecting them as alive, while states in the fourth column are states

the NN(RGBFS) correctly detected as deadlocks. We see that NN(RGBFS) correctly

detects 73% of the deadlocks detected by MPDB-4, missing 27%.

Our final experiment compares the performance of an A∗ guided by EMM using

MPDB-2, MPDB-4 and NN(RGBFS) only for deadlock detection. In this experiment,

we use the complete set of instances of xSokoban and only instances solved by at least
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Table 4.7: Forcing deadlocks for NN(RGBFS).
# Forcing 1 minute Forcing 30 minutes

States Time States Time
Search Total Search Total

1 158 0 764 159 1 2003
2 50,284 132 1997 52,396 136 3580
3 165,503 232 1833 79,654 119 3568
6 97,599 157 1771 41,315 63 3477
7 486,226 701 2510 246,357 368 3814

17 134,745 124 1974 50,993 56 3500
38 18,854 31 1763 15,933 27 3318
49 299,967 487 2470 539,433 1030 4619
51 231,144 772 2493 124,903 404 3997
78 4,436 13 2029 3,846 11 3573
80 27,878 35 2054 31,252 41 3808
83 2,272 8 1653 1,352 4 3636

Mean 126,589 225 1943 98,966 188 3574
Solved 12 12

one of the methods are shown. We limit the number of expanded states to five million

and the time to one hour. Results are shown in table 4.10, for NN(RGBFS) there are two

columns for the time, one for the total time and one for the time taken only in the search.

For the other methods, we only show the total time. The neural network improves on

EMM significantly, EMM solved 10 instances and the NN solved 12, expanding one order

of magnitude fewer states for harder instances while maintaining a similar performance

for easier instances. It also performs better than MPDB-2, which solved 11 instances

expanding more states overall. MPDB-4 was still the best, solving 13 instances. NN

improved on MPDB-4 on instances #2, #49 and #78, but was unable to solve instance #81

and expanded more states on the other instances. The total time for the NN is higher due

to the preprocessing time to train the network.
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Table 4.8: Comparing deadlock detection over 10,000 randomly generated states. The
states and values for EMM, MPDB-2 and MPDB-4 are from Pereira, Ritt and Buriol
(2014), we generated the values for NN(RGBFS).

# EMM MPDB-2 MPDB-4 NN(RGBFS) # EMM MPDB-2 MPDB-4 NN(RBGFS)
1 76 5,669 6,434 9,812 46 2,063 7,754 8,752 9,999
2 142 6,545 7,764 9,998 47 0 8,365 9,119 10,000
3 9 7,153 8,173 9,995 48 0 9,808 9,964 10,000
4 2,463 8,612 9,194 10,000 49 3,848 9,079 9,707 9,998
5 4 7,619 8,456 10,000 50 8,268 9,616 9,768 9,672
6 2,491 6,897 7,928 9,985 51 0 6,792 8,296 9,997
7 0 5,779 8,079 9,969 52 62 9,479 9,765 10,000
8 37 7,056 8,377 10,000 53 1 7,485 8,278 10,000
9 3,935 8,685 9,106 10,000 54 0 8,147 8,900 10,000

10 1,315 8,218 9,405 10,000 55 8,072 9,087 9,520 10,000
11 0 7,959 8,792 10,000 56 7,922 9,626 9,819 10,000
12 205 7,199 8,380 10,000 57 0 5,643 6,845 10,000
13 0 7,564 8,887 10,000 58 2,853 8,070 8,683 10,000
14 3,518 9,575 9,867 10,000 59 1,979 7,758 8,890 10,000
15 0 7,985 8,922 10,000 60 5,180 8,274 8,917 10,000
16 2,623 8,506 9,642 10,000 61 4,218 9,044 9,591 10,000
17 3,890 8,254 8,387 9,937 62 8,721 9,763 9,877 10,000
18 4,930 7,503 8,757 10,000 63 13 5,820 7,152 10,000
19 3,245 9,020 9,467 10,000 64 1,671 8,327 8,861 10,000
20 0 8,380 9,044 10,000 65 0 6,479 8,311 10,000
21 0 8,196 8,923 9,998 66 2,003 7,170 8,400 10,000
22 0 8,826 9,569 10,000 67 2,554 8,168 9,219 10,000
23 0 9,262 9,658 10,000 68 35 6,986 8,736 9,681
24 3,460 9,613 9,875 10,000 69 29 7,435 8,700 10,000
25 4,004 9,290 9,775 10,000 70 2,271 9,006 9,585 10,000
26 444 8,426 9,303 9,996 71 2,370 8,706 9,601 10,000
27 64 8,869 9,587 10,000 72 1,100 8,326 9,405 10,000
28 2,687 9,215 9,809 10,000 73 2,958 7,376 8,313 10,000
29 0 9,524 9,952 9,999 74 2,116 8,341 9,441 10,000
30 0 9,651 9,927 10,000 75 28 8,324 9,487 10,000
31 0 8,802 9,645 10,000 76 1,906 9,059 9,651 9,999
32 2,526 8,457 9,359 10,000 77 1,701 9,147 9,810 10,000
33 0 8,439 9,508 10,000 78 195 5,134 5,863 10,000
34 14 7,140 8,774 10,000 79 153 4,005 4,935 10,000
35 0 7,639 8,641 10,000 80 1,939 5,656 6,080 9,998
36 28 8,968 9,724 10,000 81 130 6,402 7,320 10,000
37 39 8,252 9,186 10,000 82 17 7,016 7,854 9,999
38 0 7,942 8,775 9,946 83 426 6,227 6,828 10,000
39 3,625 9,498 9,896 10,000 84 1 5,597 6,122 9,999
40 9 9,185 9,543 10,000 85 5,701 9,040 9,749 10,000
41 0 8,826 9,740 10,000 86 68 7,315 8,338 9,989
42 2,465 9,066 9,638 10,000 87 3 8,223 8,907 10,000
43 0 6,874 8,030 10,000 88 0 9,413 9,775 10,000
44 3,030 7,595 8,414 9,996 89 2,453 9,529 9,876 10,000
45 0 8,167 9,044 10,000 90 959 9,665 9,952 10,000

Mean 1,318 8,168 8,981 9,988
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Table 4.9: Comparing NN(RGBFS) and MPDB-4 during search.
# MPDB-4 Alive MPDB-4 Deadlock

NN(RGBFS) Alive NN(RGBFS) Deadlock NN(RGBFS) Alive NN(RGBFS) Deadlock
1 637 0 94 30
2 191,384 108,762 74,464 105,574
3 22,019 25,912 7,561 8,582
6 2,939 2,021 2,356 2,793
7 85,807 226,330 22,565 79,238

17 1,615 0 1,196 674
38 21,005 1,371 6,155 11,527
49 1,607,843 898,527 235,680 370,884
51 5,525 956,825 2,695 349,142
78 6,945 22,851 70 15,657
80 1,888 3,072 424 223
81 315,224 666,097 226,067 597,768
83 594 1,028 269 206

Mean 174,110 224,061 44,584 118,638

Table 4.10: Comparing Neural networks with MPDBs.
# EMM EMM+MPDB-2 EMM+MPDB-4 EMM+NN(RGBFS)

States Time States Time States Time States Time
Search Total

1 160 0 160 0 153 0 158 0 764
2 161,835 5 86,841 18 68,928 52 50,284 132 1997
3 1,187,486 21 950950 76 22,268 10 165,503 232 1833
6 1,354,432 25 366,955 26 1,641 1 97,599 157 1771
7 >5,000,000 93 223,957 24 127,841 64 486,226 701 2510

17 1,471,533 16 19,633 0 775 1 134,745 124 1974
38 93,423 1 24,196 1 8,919 1 18,854 31 1763
49 1,596,896 39 1,381,596 226 964,810 922 299,967 487 2470
51 >5,000,000 210 >5,000,000 1279 223,106 709 231,144 772 2493
78 8,544 0 8,387 1 7,646 9 4,436 13 2029
80 27,708 1.08 10,594 2 480 27 27,878 35 2054
81 >5,000,000 266 >5,000,000 1236 198,935 534 >1,169,441 3600 5772
83 559 0 362 0 305 9 2,272 8 1653

Mean 1,607,890 52 1,005,664 222 125,062 180 206,808 484 2238
Solved 10 11 13 12
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5 CONCLUSION

We presented an approach based on machine learning for deadlock detection in

Sokoban. We proposed methods to generate training sets of alive and deadlock states

which were used to train an artificial neural network. We applied the resulting network

to prune deadlocks with an informed search algorithm. Even though training the network

introduced a substantial preprocessing time, our best network solved more instances than

two of the previous methods and the solution found was optimal for all solved instances.

We have shown that neural networks are an effective alternative for the task of

deadlock detection. When comparing our results with EMM and MPDB-2 we signifi-

cantly decreased the number of expanded states during the search and solved more in-

stances. Our performance was close to an MPDB-4 which solved one more instance.

However, there are open problems: training requires a high preprocessing time and

finding the best model and parameters is challenging. We used a simple multilayer per-

ceptron, and different models or parameters could provide better results, both in training

time and in its deadlock detection capabilities. Another possible improvement would be

to use a model such as Convolution Neural Networks that is independent of the instance,

amortizing the preprocessing time among all instances.
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APPENDIX A — NN(RGBFS) ON ALL INSTANCES

Note that while NN(RGBFS) was able to solve instance #43 this was an isolated

case, we ran the test multiple times and it was never solved again.

Table A.1: Results for all instances using NN(RGBFS).
# States Time # States Time

Search Total Search Total
1 158 0 764 46 >1,011,739 3600 5654
2 50,284 132 1997 47 >3,530,893 3600 5808
3 165,503 232 2102 48 >653,362 3600 4994
4 >1,105,355 3600 5669 49 299,967 487 2470
5 >1,055,263 3600 5617 50 >2,010,329 3600 3752
6 97,599 157 1771 51 231,144 772 2493
7 486,226 701 2510 52 >1,741,871 3600 5742
8 >742,366 3600 5744 53 >1,059,168 3600 5685
9 >1,258,439 3600 5669 54 >1,334,225 3600 5681

10 >859,355 3600 5996 55 >968,036 3600 5678
11 >1,598,098 3600 5729 56 >602,548 3600 5668
12 0 0 0 57 >1,081,152 3600 5722
13 >989,835 3600 5682 58 >1,062,735 3600 5732
14 >1,098,070 3600 5685 59 >1,318,568 3600 5686
15 >1,931,383 3600 5721 60 >1,196,413 3600 5689
16 >2,269,023 3600 5638 61 >2,187,609 3600 5675
17 134,745 124 1974 62 >773,664 3600 5677
18 >1,109,961 3600 5599 63 >1,066,815 3600 5801
19 >1,810,420 3600 5709 64 >1,082,640 3600 5690
20 >973,786 3600 5764 65 >2,344,266 3600 5690
21 >2,730,205 3600 5594 66 >3,414,937 3600 5681
22 >2,021,888 3600 5441 67 >1,442,566 3600 5681
23 >2,045,786 3600 5755 68 >1,869,573 3600 5692
24 >1,355,357 3600 5934 69 >2,064,173 3600 5651
25 >1,860,117 3600 5713 70 >960,345 3600 5665
26 >2,920,417 3600 5574 71 >1,365,980 3600 5658
27 >3,081,117 3600 4988 72 >3,591,538 3600 5691
28 >3,598,128 3600 5052 73 >1,077,835 3600 5712
29 >3,446,820 3600 5652 74 >3,099,144 3600 5579
30 >3,403,857 3600 5647 75 >2,823,173 3600 5548
31 >3,071,542 3600 5176 76 >806,526 3600 5671
32 >1,073,985 3600 5650 77 >3,858,312 3600 5676
33 >1,361,511 3600 5622 78 4,436 13 2029
34 >2,223,820 3600 5642 79 >909,647 3600 5747
35 >2,840,992 3600 5799 80 27,878 35 2054
36 >3,590,473 3600 4954 81 >1169,441 3600 5772
37 >1,412,976 3600 5728 82 >1947,255 3600 5413
38 18,854 31 1763 83 2,272 8 1653
39 >1,157,307 3600 5824 84 >1,457,982 3600 5583
40 >1,371,116 3600 5674 85 >1,092,317 3600 5659
41 >2,043,810 3600 5642 86 >1,917,479 3600 5405
42 >590,108 3600 5815 87 >3,381,787 3600 5666
43 2,979,748 3270 5046 88 >1,797,888 3600 5403
44 >4,747,423 3600 5404 89 >1,083,628 3600 5915
45 >2,030,897 3600 5668 90 >1,787,636 3600 6100

Mean 1,591,389 3106 5060
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