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ABSTRACT

The application of new technologies has been profoundly affecting the automobile in-
dustry, especially when talking about autonomous cars. The self-driving scenario is close
to becoming reality, however many challenges still need to be solved for this. Another as-
pect that is motivating the technological advances is the need to increase safety, in which
much of the effort is being made to reduce the number of traffic accidents, especially those
caused by driver errors. The reduction of accidents brings as a consequence a decrease
in the resulting injuries and fatalities, as well as the related financial costs. Within this
context, this thesis presents an approach for traffic sign detection and recognition using
off-the-shelf onboard vehicular cameras. Assuming that the camera intrinsic parameters
are obtained off-line, an on-line calibration scheme is used to estimate the extrinsic cam-
era parameters, and Regions of Interest (ROIs) are created in the image domain based on
the expected geometry and location of the traffic signs. Given the reduced size and back-
ground complexity of these ROIs, we developed a lightweight regional Convolutional
Neural Network (CNN), called ScapNet. Our experimental results for Brazilian traffic
signs indicate that the proposed approach presents classification accuracy comparable to
state-of-the-art methods at much faster running times, with over 30 FPS on embedded
devices.

Keywords: Traffic sign detection and recognition, Onboard vehicular cameras, Advanced
driver assistance systems, Convolutional Neural Networks..



RESUMO

A aplicação de novas tecnologias tem afetado profundamente a indústria automobilís-
tica, especialmente quando se fala de carros autônomos. O cenário de auto-condução está
próximo de se tornar realidade, entretanto, muitos desafios ainda precisam ser resolvidos.
Outro aspecto que está motivando os avanços tecnológicos é a necessidade pelo aumento
da segurança, no qual grande parte do esforço está sendo feito para reduzir o número de
acidentes de trânsito, especialmente aqueles causados por erro do motorista. A redução de
acidentes traz como conseqüência, uma diminuição nas mortes, lesões e nos custos finan-
ceiros associados aos acidentes. Dentro desse contexto, esta dissertação apresenta uma
abordagem para detecção e reconhecimento de sinais de trânsito usando câmeras veicula-
res a bordo. Assumindo que os parâmetros intrínsecos da câmera são obtidos off-line, um
esquema de calibração on-line é usado para estimar os parâmetros da câmera extrínseca, e
as Regiões de Interesse (ROIs) são criadas no domínio da imagem com base na geometria
e localização esperadas dos sinais de trânsito. Dado o tamanho reduzido e a complexidade
de fundo desses ROIs, desenvolvemos uma Rede Neural Convolucional Regional (CNN),
chamada ScapNet. Nossos resultados experimentais para os sinais de trânsito brasileiros
indicam que a abordagem proposta apresenta uma precisão de classificação comparável a
métodos de última geração em tempos de funcionamento muito mais rápidos.

Palavras-chave: Detecção e Reconhecimento de sinais de trânsito,Câmeras veiculares
onboard, Sistemas avançados de assistência ao condutor, Redes neuras convolucionais.
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1 INTRODUCTION

1.1 Motivation

Road traffic injuries are a major cause of death worldwide, with a toll of over 1.2
million of lives lost per year (WHO, 2013). Furthermore, these accidents cause 20 to 50
million non-fatal injuries (WHO, 2013), and many of the survivors develop post-traumatic
stress symptoms that can become chronic, such as recurring nightmares and problems in
concentration, among others (HERON-DELANEY et al., 2013).

According to the World Healyh Organization (WHO, 2013), many countries have
successfully reduced the number of deaths on their roads in recent years, which does not
occur in Brazil, where the number of deaths in traffic accidents remains high. As shown in
Figure 1.1, data from DATASUS (SUS, 2017) indicate a number of approximately 40,000
deaths per year since 2010, with the lowest rate of 37,306 deaths in 2015.

Figure 1.1 Number of deaths caused by traffic accidents in Brazil in recent years.

Source: The Author

Also, it is important consider the social, psychological and economical impacts of a
traffic accident. First of all, many studies demonstrate that the vast majority of accidents
occurs in low-income and middle-income countries. Likewise, individuals who have a low
social status are more frequently involved in road accidents than individuals who have a
high social status (ELVIK et al., 2007). At last, but not least, the financial impact of
traffic injuries reaches exorbitant values due to the cost of the health care, discontinuation
of professional activity, indemnities (WHO, 2013; ELVIK et al., 2007).

Governments and the automotive industry have been investing a great amount of
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money and research efforts to reduce the number and severity of traffic accidents, and
one research direction is toward the development of Driving Assistance Systems (DAS),
which assist the driver with information about possible hazards ahead. From the many
sensors typically explored in DAS, conventional video cameras are the most flexible and
accessible. Smartphones with video cameras are widespread even in poorer/developing
countries, which present a larger number of traffic accidents, and they can be attached to
the windshield of a conventional vehicle turning it into a “smart car”. In this context, the
development of vision-based algorithms for DAS must take into account the limited mem-
ory and computational power of these devices (compared to modern desktop computers),
keeping enough accuracy for being used in practical scenarios.

One particular problem of vision-based DAS is traffic sign recognition (TSR). Traffic
signs are designed to inform driver about the local road conditions (speed limits, incoming
sharp turns, forbidden overtaking, etc.), aiming to improve traffic safety. According to the
Brazilian legislation (CONTRAN, 2007), vertical traffic signs that belong to either rural
or urban areas of Brazil are divided into three categories, as shown in Figure 1.2. The
first one is Regulation, whose purpose is to transmit to users the conditions, prohibitions
or restrictions on the use of roads. The second one is warning, which is intended to alert
users as potentially dangerous obstacles on the road or adjacent to it. The last one is
indication, whose purpose is to identify routes and places of interest, as well as guide the
routes, destinations, distances, auxiliary services and tourist attractions.

Figure 1.2 Brazilian traffic-sign. Signs in yellow, red and green boxes are warning,
regulation and indication signs respectively.

Source: http://www.detran.sc.gov.br/

With the information provided by traffic signs, on-board TSR systems that use cam-
eras basically take the single video stream to scan the road for traffic signs, as shown in
Figure 1.3(a). When the system identifies a traffic sign, it must provide some kind of alert
to the driver. For example, Figure 1.3(b) shows the system developed by Siemens, which
uses a camera attached inside the car and an on-board computer to detect and recognize
road signs, displaying the information to the driver. 1.

Despite the existence of several methods, there are still open problems regarding the
flexibility of the camera setup, and compromise between accuracy and execution time.
As shown in (MATHIAS et al., 2013; MOGELMOSE; LIU; TRIVEDI, 2015), machine-
learning algorithms based on sliding windows and multiple scales, commonly used for
pedestrian detection and face recognition, can reach very high accuracy rates in TSR

1Source: https://www.siemens.com/press/en/presspicture/?press=/en/pp_
sv/2007/sosv200703_01_(geisterfahrer)_1456407.htm
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(a) (b)

Figure 1.3 Example of a traffic sign recognition system using onboard camera: a)
Schematic depiction of a vehicle approaching a traffic sign in a birds-eye view b) Ex-
ample way of presenting the information about a detected sign to the driver.

Source: https://www.siemens.com/press/en/presspicture/?press=
/en/pp_sv/2007/sosv200703_01_(geisterfahrer)_1456407.htm

without the need of encoding traffic sign specific information. Furthermore, the inclusion
of additional information about the camera location can speed up the detection process
and even improve the accuracy in the context of pedestrian detection (HOIEM; EFROS;
HEBERT, 2008; FUHR; JUNG, 2015), so that the same behavior is expected to happen
for TSR.

Recently, many authors have used Convolutional Neural Networks (CNNs) to achieve
good detection and classification performance for TSR, as can be observed in benchmark
results such as GTSDB (HOUBEN et al., 2013). Furthermore, new strategies such as
CNN with region proposals (R-CNNs) (GIRSHICK, 2015; REN et al., 2015) allow both
object detection and classification, eliminating the need of using sliding windows. How-
ever, detecting objects that are very small w.r.t. the image dimensions is still a challenge,
as well as achieving real-time performance using CPUs (in particularly in hardwares with
low processing power and energy requirements, which are desired for embedded applica-
tions).

1.2 Goals

1.2.1 Main Goals

The main goal of this work is to propose a new low-cost technique for detecting and
classifying vertical traffic signs for Brazilian rural areas, in which they have well defined
characteristics, such as two-way lanes where the signs are on the right side of the road,
using images captured by a detachable onboard camera.

1.2.2 Specific Goals

To achieve the main goals, the following specific goals are defined:

• To identify Regions of Interest (ROIs) based on the expected location of the signs
in the world and the camera parameters
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• To develop a detection and recognition algorithm that achieves a good compromise
between accuracy and running time

• To test the proposed method in hardwares suited for embedded applications

• To evaluate the obtained results and compare with the state of the art in traffic sign
recognition.

1.2.3 Contributions

As consequence of our TSR approach, the major contributions of this work, which are
closely related to the specific goals, are the following:

• To define a model using camera parameters to crop ROIs where the traffic sign
appears in the image.

• To generate a dataset with Brazilian traffic sign, which represent conditions found
on rural zone.

• To develop a regional CNN that presents a good compromise between accuracy and
execution time.

1.3 Structure of the thesis

The remaining part of the text is organized as follows. Chapter 2 discusses the lit-
erature review related a TSR. In the Chapter 3 the created Brazilian traffic sign dataset
is discussed. Chapter 4 presents the proposed TSR approach in Brazilian roads using a
calibrated camera. Then, the results and comparisons with other state-of-art techniques
are demonstrated in Chapter 5. Chapter 6 presents the final considerations and point out
the future work. Finally, the references used throughout this work are listed.
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2 LITERATURE REVIEW

The generic problem of traffic sign recognition (TSR) has been researched extensively
by the computer vision and intelligent transportation systems communities, and a wide va-
riety of methods have been proposed in the past years. In order to identify such initiatives,
we conducted a review selecting works with expressive results on traffic signs detection
and recognition systems.

According to Eichner e Breckon (EICHNER; BRECKON, 2008), the recognition of
vertical traffic signs can be divided into two stages: detection and recognition. The de-
tection process consists in locating the traffic signs that are present in the input images,
while the recognition focuses on validating and identifying the exact kind of sign that was
detected. The authors also mention the importance of dealing with video sequences, and
the need of real-time processing for practical applications.

There are various approaches for both the detection and recognition steps. Generally,
these tasks are usually accomplished by using color and shape information, with a classi-
fier to define the correct class. This chapter presents the state of the art in traffic sign detec-
tion and classification systems. Firstly, we present the techniques that use color and shape
information with a classifier, here called as conventional methods (Section 2.1). Then, we
present a brief review on generic convolutional neural networks, exploring region-based
approaches to image recognition (Section 2.2). Finally, the initiatives related to traffic
sign recognition that explore neural networks are analyzed in Section 2.3.

2.1 Conventional Methods

As previously mentioned in this work, researchers have invested their efforts in both
the traffic sign detection and recognition tasks. For the first phase (detection), the task
is usually accomplished by using two main sources of information: color and shape.
According to (MOGELMOSE; TRIVEDI; MOESLUND, 2012), color-based methods ex-
plore the fact that road signs are designed to be easily distinguished from its surroundings,
and its visual identity defines strong and contrasting colors. Moreover, traffic signs also
have different and characteristic shapes, which provide an additional cue for the detection
phase. Gomez et al. (GOMEZ-MORENO et al., 2010) subdivided the detection task into
segmentation (color information) and detection (use of geometric shapes). The notation
and taxonomy vary considerably among authors, but the final purpose is the same and
they often use the words detection and segmentation for the same finality.

Various methods exploit segmentation based on color cues, partitioning the image
into regions. This class of techniques consists mostly of thresholding the input image in a
given color space. One of the most commonly used color models is HSV, since it separates
the component intensity of the color information (hue and saturation) in a color image,
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and it is explored by several authors (KUO; LIN, 2007a; NGUWI; KOUZANI, 2008; REN
et al., 2009; CHIANG et al., 2010; QINGSONG; JUAN; TIANTIAN, 2010; BERKAYA
et al., 2016; LI et al., 2015). As noted in (MOGELMOSE; TRIVEDI; MOESLUND,
2012), some authors criticize the use of HSV for not handling adequately changes in color
temperature due to different weather conditions, and explore the RGB color space (TIM-
OFTE; ZIMMERMANN; GOOL, 2009; PRISACARIU et al., 2010).

Some researchers choose to use shape-based segmentation, and edge cues are pop-
ular choices to find the boundaries of the traffic sign candidates. The Canny detec-
tor (CANNY, 1986) is present in various traffic sign systems such as (HOUBEN, 2011;
TIMOFTE; ZIMMERMANN; GOOL, 2009; RUTA; LI; LIU, 2010; DEGUCHI et al.,
2011). Another popular and most recent trend to explore shape information in a higher
level is based on Histograms of Oriented Gradients (HOGs). The work of Dalal and
Triggs (DALAL; TRIGGS, 2005) showed the potential of HOG in the context of pedes-
trian detection, and later other authors explored HOG-like features for traffic sign detec-
tion/recognition, such as (GAO et al., 2006; XIE et al., 2009; CREUSEN et al., 2010).

For the classification stage, a set of features computed within the detected sign are
typically extracted and fed to a classifier. There is a great variety of possible features and
classifiers, such as Haar wavelets (KUO; LIN, 2007b; PRISACARIU et al., 2010), Gabor
filters (KONCAR; JANSSEN; HALGAMUGE, 2007), HOG (GREENHALGH; MIRME-
HDI, 2012), Integral Channel Features (ICFs) (MATHIAS et al., 2013) and Aggregate
Channel Features (ACFs) (MOGELMOSE; LIU; TRIVEDI, 2015). Among the classi-
fiers, Support Vector Machines (SVMs) (BASCÓN et al., 2010; WANG et al., 2013), Self
Organizing Maps (SOMs) (PRIETO; ALLEN, 2009), Random Forests (ZAKLOUTA;
STANCIULESCU, 2014; ELLAHYANI; EL ANSARI; EL JAAFARI, 2016) and deep
learning-based methods (STALLKAMP et al., 2012) have been used. A more compre-
hensive review can be found in recent survey papers (MOGELMOSE; TRIVEDI; MOES-
LUND, 2012; GUDIGAR; CHOKKADI; RAGHAVENDRA, 2016).

Although the typical pipeline for TSR involves first detection and then recognition,
some machine-learning approaches may complete both tasks simultaneously. One possi-
ble approach is to characterize a particular traffic sign using a set of features (e.g. HOG,
ACF, Haar-like, deep features, etc.), and explore a classifier based on sliding windows and
multiple resolutions. Although this strategy achieves high accuracy rates in related prob-
lems, such as pedestrian detection and face recognition (MATHIAS et al., 2013; MOGEL-
MOSE; LIU; TRIVEDI, 2015), the use of sliding windows tends to be computationally
costly.

In this context, different from the majority of existing systems, the pipeline proposed
in (SALTI et al., 2015) is based on interest regions extraction rather than sliding window
detection. It uses Maximally Stable Extremal Regions (MSER) detector (MATAS et al.,
2004) and Wavebased Detector (WaDe) (SALTI; LANZA; DI STEFANO, 2013) to detect
candidate regions. Then it uses HoG and SVM to classify the traffic signals.

An attractive alternative approach is the use of end-to-end neural networks that are
used for both detection and classification tasks, such as Fast-RCNN (REN et al., 2015),
Faster-RCNN (GIRSHICK, 2015) and YOLO (REDMON; FARHADI, 2016). These
methods use region proposals to improve the object detection performance and accuracy
without using sliding windows. A brief revision of such CNNs for generic purpose object
detection and recognition is presented next.
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2.2 Convolutional Neural Networks

Despite the attractive qualities of deep Machine Learning algorithms, they have started
to be widely used only in recent years, due to the advancement of parallel processing
units (GPUs) and the increasing quantity of big datasets with high-resolution. In particu-
lar, Convolutional Neural Networks, which take advantage of a highly-optimized imple-
mentation of convolutions into current GPUs, have shown impressive results in several
detection and classification problems. (CHEN et al., 2017)

Before this notorious advance, the networks had a fixed input size (almost always
small because of computational cost, e.g. 32 × 32 or 48 × 48) and were used only for
classification. Generally, the CNN used as classification was trained on a large set of ex-
amples with positive and negative samples, and applied in the whole image using sliding
window approach. Besides sliding in all possible locations in the image, it is necessary
to search at different scales, because the classifier was trained with fixed input size and
objects could appear in different sizes in the same image. Therewith, the classifier typi-
cally generates multiple responses that subsequently need to be post-processed and also
it is computationally very expensive when we search for multiple aspect ratios.

An alternative to cope with these problems is the Selective Search approach (UI-
JLINGS et al., 2013), proposed to be fast with a high recall rate. It is based on com-
puting hierarchical grouping of similar regions based on color, texture, size and shape
compatibility. The grouping algorithm starts by over-segmenting the image based on
intensity of the pixels to get a set of small starting regions which ideally do not span
multiple objects. To do this, they used the method proposed by Felzenszwalb and Hut-
tenlocher (FELZENSZWALB; HUTTENLOCHER, 2004), which is an efficient segmen-
tation algorithm based on measuring the evidence for a boundary between two regions
using a graph-based representation of the image. Then, use a greedy algorithm that first
calculate similarities between all neighboring regions, group together the two most simi-
lar regions, and calculate new similarities between the resulting region and its neighbors,
until the whole image becomes a single region. Figure 2.1 shows examples of the se-
lective search algorithm. The result is some region proposals, which could be classified
using a CNN or other object recognition model, and the region proposals with the high
probability scores can be considered locations of the object.

(a) (b)

Figure 2.1 Two examples of selective search algorithm showing the necessity of different
scales

Source: (UIJLINGS et al., 2013)

In this context, Region Convolutional Neural Network (GIRSHICK et al., 2014) first
gets the input image and uses Selective Search to generate approximately 2000 different
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region of interest that have a high probability of containing an object, as show in Fig-
ure 2.2-2. Then, the region proposal are warped into an standard square image size which
satisfies the input of a modified version of an CNN, to compute features vector for each
region of interest (Figure 2.2-3). Finally, these features are categorized with an SVM
classifier (Figure 2.2-4). Furthermore, a linear regression is used on the region proposal
to generate tighter region of interest.

Figure 2.2 The R-CNN system overview

Source: (GIRSHICK et al., 2014)

The main limitation of the Region-CNN is the execution time. For each image, the
system need around 2000 forward pass on the CNN (for every region box). Moreover,
it is necessary to train one CNN (AlexNet in this case), one classifier and an regression
model, making the pipeline very complex to train.

To cope with this issue, the authors created the second version, faster and easier to
train, called Fast Region-based Convolutional Network (GIRSHICK, 2015). In this new
version, instead of computing the region proposals and warp them into a ConvNet, the
input image is passed through a convolutional network, and then the Region of Interest
Pooling is used to share computed features into bounding boxes. Furthermore, the Con-
vNet that extract features, the classifier and the regressor used to tighten bounding boxes
were joined in a single module, as shown in Figure 2.3. In this pipeline, the RoiPool is
a layer of the CNN, and the SVM classifier was replaced by a fully-connected layer with
sofmax at the end of the CNN. In addition, the regression model used in R-CNN was also
changed by a linear regression layer parallel to the softmax layer.

Figure 2.3 Fast R-CNN architecture

Source: (GIRSHICK, 2015)

In fact, the Fast R-CNN version is faster, cleaner and has higher detection quality,
reaching a speedup of almost 9 times to train and 146 times to test, not including the time
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to generate region proposals. Including the Selective Search method to generate region of
interest proposals the speedup decreases to about 25 times for the test. Then, the Faster
R-CNN (REN et al., 2015) version was proposed, and instead of using Selective Search
they introduced the Region Proposal Network (RPN), which is a fully-convolutional net-
work that simultaneously predicts object bounding boxes and “objectness” scores at each
position.

Basically , the RPN added after the last convolutional layer produces region proposals
from a feature map (Figure 2.4(a)). To generate region proposals, RPN explores a sliding
window over the feature map, and at each sliding-window location, k region proposals are
simultaneously predicted. The k proposals are parameterized relative to reference boxes,
called anchors, that represent scale and aspect ratio from the dataset.

An anchor is labeled as positive if it presents the highest Intersection over Union (IoU)
overlap w.r.t. the ground-truth box, also setting an IoU threshold of 0.7. Therefore, at each
sliding-window location, the reg layer has 4k outputs encoding the coordinates, as shown
in Figure 2.4(b). The cls layer outputs 2k scores that estimate probability of object or
not-object for each proposal. The RPN loss function is given by

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (2.1)

where:

• i is the index of an anchor in a mini-batch

• pi is the predicted probability of being an object for anchor i

• p∗i is the ground-truth label (1 if positive, 0 if anchor is negative)

• ti is the coordinates of the predicted bounding box for anchor i

• t∗i is the ground-truth box associated with a positive anchor

• Ncls is the number of anchors in minibatch

• Nreg is the nuber of anchor locations

• Lcls is log loss over two classes (object vs. not object)

• Lreg is the smooth L1 loss function (GIRSHICK, 2015)

• λ is an costant to balance both terms

Another very widespread approach in object detection is You Only Look Once
(YOLO) (REDMON et al., 2016). Different from the region-based techniques presented
previously, the authors proposed a new approach to detecting objects. A single neural
network predicts bounding boxes and class probabilities directly from full images in one
evaluation, without bounding box proposals and subsequent pixel or feature resampling
stage.

The core idea in YOLO, shown in Figure 2.5 is to divide the input image into a grid
with dimensions S × S, and if the center of an object falls into a grid cell, that grid cell
is responsible for detecting that object. Besides that, each grid cell predicts B bounding
boxes and confidence scores for those boxes that represent how confident the model is to
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(a) (b)

Figure 2.4 (a) The Faster R-CNN workflow (b) Region Proposal Network (RPN)

Source: (REN et al., 2015)

classify if each box contains or not an object, obtained as IOU of predicted box and any
ground truth box.

Each grid cell also predicts C conditional class probabilities, that are multiplied by the
individual box confidence predictions, which gives the class-specific confidence scores
for each box. Finally, a non maximum suppression (NMS) step is applied in the final
detections, as shown in Figure 2.5.

Figure 2.5 Yolo system model

Source: (REDMON et al., 2016)

In the second version of YOLO (REDMON; FARHADI, 2016), called YOLOv2, the
authors improved training and increase performance making some modifications of the
previous version. One of them was achieved by adding Batch Normalization on all of
convolutional layers and removing dropout, without overfitting. To transform YOLOv2
robust to running on images of different sizes and since the model only uses convolutional
and pooling layers, in which it can be resized on the fly, the authors introduced multi-
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scale training. It consists in every 10 batches, randomly chooses a new image dimension
according to the downsampling factor of the network, resize the network to that dimension
and continue training.

Another major change was the addition of anchor boxes, as in R-CNN approach. Dif-
ferent from the first version of YOLO, which predicts the coordinates of bounding boxes
directly using fully connected layers on top of the convolutional feature extractor, in this
approach they remove the fully connected layers from YOLO and use anchor boxes to
predict bounding boxes. These anchors, are selected running k-means clustering on the
training set to get good priors for the model and chose 5 centroids as a good tradeoff
between complexity and high recall.

Besides these approaches in detecting objects, it is important to mention the Mask-
RCNN (HE et al., 2017) and Single Shot MultiBox Detector (SSD) (LIU et al., 2016).
However, even with the recent advances in object detection, runtime is still a problem (e.g.
7 fps with a good GPU using Faster-RCNN (GIRSHICK, 2015)), making it impossible to
achieve higher framerates on low-power hardware.

2.3 Neural Network based TSR

Some of the architectures described in Section 2.2 have been explored in the context
of TSR, as shown in (ZHU et al., 2016; MENG et al., 2017). Other studies with the
neural networks were also used by Nguwi and Kouzani (NGUWI; KOUZANI, 2008),
Fistrek and Loncaric (FISTREK; LONCARIC, 2011), Zhang Sheng and Li (ZHANG;
SHENG; LI, 2012), Yang et al. (YANG et al., 2016), Stallkampa et al. (STALLKAMP
et al., 2012), Cireşan et al. (CIREŞAN et al., 2012), Bruno D. and Osorio F. (BRUNO;
OSÓRIO, 2017).

The method introduced by Meng et al. (MENG et al., 2017) exploits some concepts
of convolutional networks to propose a approach that is capable of detecting small objects
from large images (e.g. with a resolution of over 2000 × 2000). As shown in Figure 2.6,
the first process is to break the image into patches with size 200×200 in a sliding window
fashion. Since the Small Object Sensitive CNN (SOS-CNN) was designed to be sensitive
to small objects, objects with larger sizes will not be detected in the original image. Thus,
an image pyramid is constructed, where the larger objects that cannot be captured in the
image with original resolution become detectable on images with smaller scales.

Figure 2.7 illustrates the proposed SOS-CNN. The network was designed for small
object detection and was derived from an SSD model with a VGG-16 network, where
only the first 4 convolutional stages are kept, combined with a set of convolutional layers
with a kernel size of 3 × 3 in the end of the network. As in Faster-RCNN, a set of pre-
defined default anchor boxes with different sizes and aspect ratios are introduced to assist
producing the predictions for bounding boxes. Also, the network produces the confidence
scores for each category.

The SOS-CNN predicts offsets relative to each of the default anchor boxes, rather
predicting the location of bounding boxes for each object in an image, and also the cor-
responding confidence scores over the target classes simultaneously. A patch-level is
considered as match if the IoU overlap is higher than a threshold. Then, all the patch-
level predictions will be projected back onto the image at the original scale and a NMS is
employed to generate the final image-level predictions, as illustrated in 2.6.

Yang et al. (YANG et al., 2016) proposed a real-time traffic sign recognition system
consisting of detection and classification modules, although used CNNs just in the clas-
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Figure 2.6 The proposed framework with an image pyramid, the SOS-CNN to produce
patch-level detection and a Non Maximum Suppression (NMS) to generate the final pre-
dictions on the original image

Source: (MENG et al., 2017)

sification module. Essentially, they used a color probability model (YANG; WU, 2014)
to transform the input color image into a traffic sign probability map. This probability
map is a gray image that represents at which pixels the image contains a traffic sign. Af-
terwards, rather then using sliding windows, they extract traffic sign proposals by finding
MSERs from probability maps and filter false positives of traffic sign proposals with a
Support Vector Machine (SVM) based on a color HOG feature. Finally, in the classifica-
tion module, they applied contrast limited adaptive histogram equalization (CLAHE) to
adjust the contrast of the images and tested three CNNs in the proposals to classify into
their sub-classes. Yang et al. also proposed a Chinese Traffic Sign Dataset (CTSD) with
1100 images in different sizes.

Zhu et al. (ZHU et al., 2016) showed the potential of regional CNNs for TSR, besides
the difficulty of traditional solutions in detecting target objects that occupy a small part
of the whole image as well (e.g. traffic signals), training two CNNs for just detect and
simultaneously detect and classify traffic signs.

The difference between the two networks, is in the branches in the last layer. Inspired
by the work of Huval et al. (HUVAL et al., 2015), which evaluates the performance
of CNNs on lane and vehicle detection, the authors modified network architecture and
adapted to detect and recognize traffic signals. Basically, they made the network branch
after layer six into three streams, a bounding box layer, a pixel layer and a label layer
which can output the probability to a specific class. Figure 2.8 illustrates the network
architecture used.

Furthermore, the authors introduced a new large dataset with traffic signs. This dataset
have been generated from 100000 Tencent Street View 1 panoramas, containing 30000
traffic-sign instances in different conditions of illumination and weather. Tencent maps is

1Link to access: map.qq.com
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Figure 2.7 The proposed SOS-CNN.

Source: (MENG et al., 2017)

Figure 2.8 Architecture of multi-class network. The network is fully convolutional, and
branches after the 6th layer.

Source: (ZHU et al., 2016)

a service application that offers satellite imagery, street maps, street view and historical
view perspectives, from mainland China, Hong Kong and Taiwan. They chose 10 regions
from 5 different cities in China (including both downtown regions and suburbs for each
city) and downloaded 100000 panoramas from the Tencent Data Center.

Then, each Chinese traffic-sign in the data is annotated by hand, with a class label, its
bounding box and pixel mask and divided into three categories, as shown in Figure 2.9.
The first category represent warning signs (mostly yellow triangles with a black boundary
and information), the second symbolize prohibitory signs (mostly white surrounded by a
red circle and also possibly having a diagonal bar), and the last indicate mandatory signs
(mostly blue circles with white information).

The final dataset contains 100,000 images with some of them only containing back-
ground. Of these, 10,000 contain 30000 traffic-signs in total, divided into three categories
and 45 classes that have more than 100 instances. Classes with fewer than 100 instances
were simply ignored.

Therefore, even though there are several techniques using convolutional neural net-
works, the challenge of recognizing traffic signs is still open, especially when the exe-
cution time is evaluated. The current techniques have satisfactory results, however they
remain nonviable for embedded hardware.
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Figure 2.9 Chinese traffic-sign classes from Tencent Data Center. Signs in yellow, red and
blue boxes are warning, prohibitory and mandatory signs respectively. Each traffic-sign
has a unique label.

Source: (ZHU et al., 2016)

2.4 Conclusion

In these previous studies, the authors present their efforts to establish new techniques
of traffic sign detection and recognition, more recently, migrating from conventional tech-
niques to the use of Convolutional Neural Networks, obtaining satisfactory results. Nev-
ertheless, the computational costs for good accuracy are still very high, making these
solutions unfeasible for embedded environments with low-cost hardware, as shown in
(ZHU et al., 2016), (REDMON; FARHADI, 2016), (REN et al., 2015), where a good
quality GPU is required for execution on real time.

In this context, our approach is focused on maintaining a good trade-off between
complexity and high recall, adapting state-of-the-art techniques in object recognition and
using known information of location in the highway and norms where the transit signs
appear. Thus, we propose a technique of traffic sign recognition that is applicable in
scenarios with low cost of processing.
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3 TRAFFIC SIGN DATASETS

Despite the success and popularity of deep CNNs for object detection and recogniton,
they are inherently data hungry. They require several labeled images, and many datasets
for object detection and recognition exist, as PASCAL VOC 2007-2012 dataset (EVER-
INGHAM et al., 2010), Common objects in context (COCO) (LIN et al., 2014), Salient
Object Subitizing (SOS) (ZHANG; MA; SAMEKI, 2015), and the ImageNet Large Scale
Visual Recognition Challenge (RUSSAKOVSKY et al., 2015).

However, labeled datasets for traffic sign detection and recognition are still emerging,
and as far as we know there is no available dataset for Brazilian signs. In this chapter, we
first revise some existing datasets, and then describe the proposed dataset for Brazilian
traffic signs.

3.1 Publicly available traffic signs datasets

One of the first and most used traffic sign dataset is the German Traffic Sign Recog-
nition Benchmark (GTSRB) (STALLKAMP et al., 2012) for classification and German
Traffic Sign Detection Benchmark (GTSDB) (HOUBEN et al., 2013) for localization.
Both datasets contain traffic sign images of German patterns that were taken from cars on
real streets. The GTSRB contains images cropped for classification purposes, while the
GTSDB has signs and labels into images for detection.

The GTSRB was proposed in 2011, containing 51,840 single-images in total to a
multi-class classification problem. The dataset was collected from approximately 10
hours of video that were recorded on different road types in Germany during daytime,
then the data collection, annotation and image extraction was performed using the NISYS
Advanced Development and Analysis Framework (ADAF). The images was divided into
43 classes and some instances can be observed on Figure 3.1.

In order to increase the number of datasets freely available, the GTSDB was proposed
in 2013, which comprises a large dataset of real-world images with different scenarios
(e.g. urban, rural, highway). In total, the dataset contains 900 RGB images with size
1360 × 800 pixels, containing 1,206 traffic signs with sizes varying between 16 and 128
pixels. Every image was annotated with the rectangular regions of interest (ROIs) of the
visible traffic signs and the specific traffic sign class (e.g., stop sign, speed limit 60, speed
limit 80, etc.). They also divided classes into three competition-relevant categories (pro-
hibitive signs, mandatory signs, and danger signs). Figure 3.2 illustrates some examples
from the dataset.

As shown in Section 2.3, Zhe et al. (ZHU et al., 2016) proposed a new large dataset
with traffic sign collected from Tencent Street View images. In this dataset, 30,000 traffic
signs were divided into 45 classes, as shown in Figure 2.9. For this purpose, the authors
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Figure 3.1 All classes from GTSRB dataset

Source: (STALLKAMP et al., 2012)

downloaded panoramas, as in Figure 3.3(a), and sliced vertically into 4 images. They also
cropped sky and ground at top and bottom part of panoramas. Then, they manually mark
the classes, the ROI that contains the respective traffic sign and the pixel mask, as shown
in Figure 3.3(b).

Another large dataset is the Belgium Traffic Sign Dataset (BTSD) (TIMOFTE; ZIM-
MERMANN; VAN GOOL, 2014), which consists of 13,444 traffic sign annotations in
9,006 images. Most of them present signs visible at less than 50 meters from the camera.
The images also are divided into three categories: mandatory, warning and prohibitory.

The Swedish Traffic Sign Dataset (STSD) was collected in 2011, presenting more than
20.000 images, from which approximately 20% are labeled. The dataset contains 3,488
traffic signs from highways and cities recorded from more that 350km of Swedish roads.
Also, the Dataset of Italian Traffic Signs (DITS) provide challenging images captured at
night and in presence of fog in 14 hours of videos recorded in different places around
Italy.

Despite the existence of some (fully or partially) annotated datasets for traffic sign
detection and/or recognition from several countries, it is not to our knowledge the exis-
tence of publicly available and labelled datasets with Brazilian traffic signs. We found a
mention to a Brazilian dataset collected by Hoelscher, I. and Susin, A. (HOELSCHER,
2017), however were unable to use because it is not available yet. The proposed dataset
is presented next.

3.2 The Proposed Brazilian Traffic Sign Dataset

Deep learning algorithms have shown superior performance for several tasks such
as image detection, classification and speech recognition. For both tasks, the used data
needs to be in accordance with some characteristics. The first one is that data must be
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Figure 3.2 Some example images from the GTSDB dataset, representing variations in
weather, lighting, and driving conditions.

Source: (HOUBEN et al., 2013)

directly relevant to problem in which it is adapted to, in other words, the training data
must resemble as much as possible the real-world data that will be processed.

The second characteristic is how the data is annotated. This process can be signif-
icantly more expensive and is very important for deep learning algorithms methods to
learn with the training data, generalize, and to be applied to new unlabeled (and unseen)
data. In some cases, it is necessary to perform a pre-processing, such as cutting, resizing,
or applying some filters in the training data.

Other point to note is the minimum amount of data required for the algorithm to learn
and generalize the problem. This quantity varies according to complexity of the problem,
the number of classes or size of object to be detected. Generally, without considering
over-training, the more amount for training can ensure better performance.

In this context, we propose a new Brazilian Traffic Sign Dataset (BrTSD) that repre-
sent real-world images in Brazilian rural roads. The aim is to create a dataset that allows
algorithms to be applied with the patterns of Brazilian traffic signs and conditions of
structures found in Brazilian highways, instead of other countries as found in the datasets
discussed in Section 3.1.

Our dataset was generated with images provided by Street View Application Program-
ming Interface (API) from Google Maps (ANGUELOV et al., 2010). This API provides
communication with the pre-programmed functions defined by Google, which allows the
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(a) (b)

Figure 3.3 (a) Panorama from Tencent StreetView, with size 8192 × 2048 and marks in
red to slice vertically into 4 images. (b) Images from dataset annotated with class label,
bounding box, and pixel mask.

Source: (ZHU et al., 2016)

creation of maps, route generation, access to the panoramas in Street View mode and
download of information.

To capture the dataset images, the Google API1 account with permissions was created.
We then generated a map and put a marker (which can be dragged to other positions) in a
Brazilian random highway, as shown Figure 3.4. The next step was to define a destination
bookmark in the map, and finally the route was generated when the “Calculate Route!”
button is clicked. Since the idea is to run the application on the roads of Brazilian rural
areas, the routes were not defined within cities.

Jointly with the map and the route, we created a viewer with the Street View, as illus-
trated in the bottom of Figure 3.4. In this image, the current mark position was showed.
When the “Start Navigation” button is clicked, the mark goes to the destination step by
step and all images in this route were saved. We take care to update some parameter val-
ues when the marker advances one step, which is defined according to the car and camera
used by google when capturing images, towards the destination, such as the Field of View
(FOV) that determines the horizontal field of view of the image, the pitch that specifies the
upper or lower angle of the camera relative to the Street View vehicle, and heading that
indicates the compass direction of the camera. These values assist the system, to leave the
panorama at an angle that resembles a camera in front of the car looking forward, rather
than looking at the sides in curves when it was stepping automatically.

Several routes were generated on the map and about 100,000 images were saved with
size 600 × 600. To label these images, we explored a semi-automatic process that con-
sisted of: (i) firstly label approximately 200 images that contains signs; (ii) use our CNN
presented in Section 4.2 to detect images with traffic signs in the rest of dataset, retriev-
ing additional 600 images that contain traffic signs; (iii) re-train the network with all 800
images and run in the rest of the dataset.

To adapt our convolutional network to just detect images that present signs, we just do
not consider the classes values in the last layer. In other words, we run a neural network in
the dataset in order to capture all the images that contain signs, along with their location
in the image. We also relax the acceptability values of the network confidence values, to
not risk losing frames with signs. After this process, all captured images were manually

1https://developers.google.com/maps/
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Figure 3.4 Overview of our system to generate the proposed dataset

Source: The author

validated.
These images that contains a sign were annotated with the class labels, as well as

their corresponding bounding box. Images without a sign or containing signs that do
not present enough samples (set empirically to 100) were discarded from the dataset.
Figure 3.5 shows a bar plot related to the final dataset, which contains 3,798 images
(and the same amount of traffic signs), divided into seven classes: No overtaking (1398
instances), left curve (733 instances), right curve (557 instances), 60Kmh speed limit (189
instances), 80Kmh speed limit (305 instances), trucks use right lane (433 instances) and
bridge ahead (183 instances). The Brazilian traffic-sign classes are shown in Figure 3.6.
In particular, traffic signs related to speed limit, no-overtaking and indication of curve
ahead are very important in the context of DAS, particularly in two-way roads, where
high speed and curves might be a potential combination for accidents.

One of the main difficulties encountered when generating the dataset with Google
StreetView relates to images with blurred traffic signs, as shown in Figure 3.8. Visual
inspection does not indicate motion or camera blur, and we believe that a possible cause
could be the selective blur algorithm used by Google that is typically applied to faces,
license plates, and other cues that might characterize individuals. In any event, these
images were also discarded.
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Figure 3.5 Amount of images, divided by class from our Brazilian Traffic Sign Dataset

Source: The author

Figure 3.6 All seven classes from our Brazilian Traffic Sign Dataset

Source: The author
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Figure 3.7 Examples of images in the training dataset.

Source: The author

Figure 3.8 Examples of images in the training dataset with signs blurred.

Source: The author
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4 THE PROPOSED APPROACH

There are different approaches in the literature, with methods for detecting and rec-
ognizing traffic signs, as shown in Chapter 2. Knowledge about the scenario, such as the
expected location of road signs, as well as their size, shape, and color, can be used to
simplify the problem. In this chapter, we present an approach for the recognition of traffic
signals on Brazilian highways.

Figure 4.1 briefly illustrates the approach developed for the detection and recognition
of traffic signs. Firstly, by using a camera coupled to the windshield of the car with
known extrinsic and intrinsic parameters, as well as the information of traffic signs as
position where it appear on the highway, ROIs are created to limit the search. Then, a
CNN is trained with images that represent the Brazilian highways. Finally, the trained
CNN trained searches for traffic signs inside the ROI projected onto the image (detection
mode). When a sign is found, the search region is adjusted so that the sign is tracked
every frame (tracking mode). These steps are detailed in the next sections.

Figure 4.1 Diagram illustrating the process for the recognition of traffic signals.

Source: The author

4.1 Definition of the ROIs

The core of the proposed approach is to explore a calibrated onboard camera (which
can be done on-the-fly) to find Regions of Interest (ROIs) that may contain a traffic sign
in the Image Coordinate System (ICS) based on the expected location of the signs in
the World Coordinate System (WCS). The placement of vertical signs in each country
is usually regulated by specific legislation, and this work is focused on Brazilian traffic
signs.
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According to the Brazilian legislation (CONTRAN, 2007), vertical traffic signs must
be placed upright at an angle of 93 to 95 degrees about the direction of traffic flow and
directed towards the external side of the road, or near the direction orthogonal to the
central axis of the track. The height and lateral distance of placement depend on the
type of road, urban or rural. For instance, for rural roads the height measured vertically
from the bottom of the sign to the elevation of the near edge of the pavement, shall be
1.20m (CONTRAN, 2007), and the minimum lateral offset should be 1.20m from the
shoulder.

The recommended dimensions for the sign vary according to the road type. For rural
roads, circular traffic signs should have diameter of 1 meter. There are other special cases
in the legislation, such as the suspended plates, which are not addressed in this paper.
Figure 4.2 illustrates the main guidelines for vertical sign placement.

≥ 1.20m

1.20m

ShoulderRoad

Figure 4.2 Height and lateral location of sign in rural area.

Source: The author

The proposed system is also aimed at low-cost solutions, in which a detachable cam-
era (e.g. a smartphone) is placed at the top-central portion of the windshield, monitoring
the road ahead, as illustrated in Figure 4.3. Hence, the extrinsic camera parameters are
characterized by the camera height h and the yaw (α), pitch (β) and roll (γ) angles. In
this work, we consider that there is no roll (since such movement is usually prevented by
the windshield), and estimate the remaining parameters using the online self-calibration
scheme presented in (DE PAULA; JUNG; DA SILVEIRA JR., 2014). This method as-
sumes that the camera intrinsic parameters are known (they can be easily obtained using
publicly available toolboxes such as (BOUGUET, 2008), and are always fixed if the focal
length of the camera does not change), and explore the expected geometry of a flat planar
road with dashed lane markings. Hence, it allows a very flexible setup, in which the user
may attach the camera in a different way every time they enter the vehicle, and detach it
when leaving.

Given a calibrated camera, the next step is to identify the region in the WCS where
traffic signs are expected to lie on, and then project to the ICS using the known camera
parameters. In the WCS, such regions are rectangles orthogonal to the ground plane and
also to the central axis of the road. We define a rectangular region r, at a distance δz meters
along the vertical axis in a birds-eye view, as shown in Figure 4.4 (left). The region is
defined by its width δw (in meters) and height δh (in meters), as well as its central position
Wz given by
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Figure 4.3 3D world and camera coordinate systems.

Source: (DE PAULA; JUNG; DA SILVEIRA JR., 2014)

Wz =

 ph +
pd
2

δy
δz

 , (4.1)

where δy is the approximate lateral distance from the vehicle location to the center of the
sign, pd and ph are the expected diameter and height (computed from the ground to the
bottom of the sign) of the vertical sign, respectively, and δz is the distance from the ROI
to the camera. Figure 4.4 illustrates geometrically the parameters involved in Eq. (4.1),
as well as the rectangular ROI reprojected to the ICS (in the right).
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Figure 4.4 Region of interest in world coordinate system (left). Reprojection of the image
regions (right).

Source: The author

The ROI clearly limits the spatial search, since just a fraction of the image is ana-
lyzed. This characteristic can be used to speed-up traditional classifiers based on slid-
ing windows, such as (VIOLA; JONES; SNOW, 2005; DALAL; TRIGGS, 2005; DOL-
LAR et al., 2014), which have shown to present very good accuracy rates when trained
in the context of TSR (MATHIAS et al., 2013; MOGELMOSE; LIU; TRIVEDI, 2015;
CIREŞAN et al., 2012). Recognition CNNs, such as those discussed in (STALLKAMP
et al., 2012), can also be employed in a sliding window fashion.
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Although recent (and popular) deep CNNs based on region proposals (REN et al.,
2015; GIRSHICK, 2015; REDMON et al., 2016; REDMON; FARHADI, 2016) do not
rely on sliding windows, they can also benefit from the proposed ROIs. As noted in (ZHU
et al., 2016), these approaches might face problems when the possible range of scales in
which the object might appear (the traffic sign) is large. Within the proposed ROIs, the
relative size of the traffic sign is roughly constant, alleviating the problem. Furthermore,
the background variability is reduced when using the ROIs, which indicates that more
shallow (and faster) CNNs can be used. The proposed CNN architecture is presented
next.

4.2 The Proposed CNN

Given the image patch corresponding to the extracted ROI, the next step is to detect,
localize and recognize traffic signs within the patch. Considering that the relative location
and scale of the traffic sign w.r.t. to the ROI does not change significantly, we propose
a simplified regional CNN that presents a good compromise between accuracy and com-
plexity (i.e. running times), which is important for embedded applications. The chosen
topology, called ScapNet, was inspired on the Fast-YOLO network, and it is described in
Table 4.1. The main idea is to start from an already consolidated network (Fast-YOLO),
and make changes in the network in order to reduce the cost of processing while main-
taining a high performance. The input layer is fed with 104 × 104 RBG images (this
input resolution presented a good compromise between running time and accuracy rates
for traffic signs located at approximately 42 meters from the camera). The size of the
proposed network (≈ 4Mb) is almost sixteen times smaller than Fast-YOLO (≈ 62Mb),
which is one the fastest existing regional CNNs.

The detection layer locates and classifies the traffic sign, if present. Although there
are dozens of vertical traffic signs according the Brazilian legislation, this work focuses
mostly on roads and highways, where the most dangerous accidents occur. In this context
of traffic safety, a subset of seven traffic signs related to speed limit, no-overtaking and
indication of curve ahead were chosen, as discussed in Section 3.2.

It is also important to note that the relative size of the sign w.r.t. to the size of the ROI
presents small variations, so that a smaller number of anchor boxes can be used. More
precisely, we applied k-means clustering in our dataset and chose three anchors that can
represent the ground truth boxes, the result values found with our dataset are respectively
(3.85, 6.59), (4.33, 7.76) and (4.80, 8.20).

Another key aspect when dealing with CNNs is the choice for the training dataset.
However, it is not to our knowledge the existence of publicly available datasets with
Brazilian traffic signs. To overcome this limitation, we collected a set of images provided
by Street View API from Google Maps1, as described in Chapter 3. Since the number
of images in the training dataset is still small, training was actually performed in two
stages. In the first stage, ScapNet was trained using the well-known Pascal VOC 2007-
2012 dataset (EVERINGHAM et al., 2010), aiming to generalize the initial layers. Then,
this pre-trained network was refined using the proposed dataset. More details about the
training procedure are provided in Section 5.1.

1https://developers.google.com/maps/documentation/javascript/
streetview
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Type Filters Size/Stride Output
Convolutional 8 3 × 3 / 1 104 × 104
Maxpool 2 × 2 / 2 52 × 52
Convolutional 16 3 × 3 / 1 52 × 52
Maxpool 2 × 2 / 2 26 × 26
Convolutional 32 3 × 3 / 1 26 × 26
Maxpool 2 × 2 / 2 13 × 13
Convolutional 64 3 × 3 / 1 13 × 13
Maxpool 2 × 2 / 1 13 × 13
Convolutional 128 3 × 3 / 1 13 × 13
Convolutional 128 3 × 3 / 1 13 × 13
Convolutional 65 1 × 1 / 1 13 × 13
Detection

Table 4.1 The structure of ScapNet

4.3 Detection Mode

When no traffic sign was detected in the previous frames, the system operates in a
“detection mode”. In this mode, the ROI given by Eq. (4.1) is computed using δz = zmax,
where zmax is a fixed distance based on how far from the vehicle a traffic sign can be
detected and recognized.

In other words, when dealing with video sequences, a traffic sign initially appears at
the far field of the camera, and it approaches the vehicle as it moves. Based on this fact,
and aiming to keep computational burden small, we decided to use a ROI placed in the
far field of the camera, approximately at the limit for which a traffic sign can be detected.
Figure 4.5 illustrates the detection mode running until sign is detected, then it changes to
tracking mode, which is explained next.

Figure 4.5 Illustration of detection mode. ROI waits until signs appear

Source: The author
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4.4 Tracking Mode

If a traffic sign is detected in a given frame, it is expected to appear in the following
frames as well. Moreover, the path described by the center of the sign in the image
domain is well-behaved: should be linear along straight portions of the road, and almost
linear along curves (since the curvature of roads is typically small).

Although the predicted path of the sign could be estimated based on the current loca-
tion, the camera parameters and the vehicle speed, we adopt a simpler approach in this
work. Let (u(t), v(t)) denote the center of the sign detected at frame t, and s(t) denote
the diameter of the sign. Assuming spatial consistency between the location of the sign
in adjacent frames, the search ROI at frame t + 1 is centered at (u(t), v(t)). The size of
the ROI during the tracking mode is adjusted adaptively, based on the previous detected
diameter. More precisely, it is given as a square region with dimensions Ms(t)×Ms(t),
where M is a scaling factor (set experimentally to 3).

It is important to note that different traffic signs might appear in the same image, so
that detection and tracking modes could co-exist. When a traffic sign being tracked gen-
erates a search ROI disjoint with the (fixed) ROI used in the detection mode, the proposed
CNN (ScapNet) is applied to both ROIs. This situation is illustrated in Figure 4.6.

Figure 4.6 Illustration of the tracking mode: the search ROI is adjusted based on the
previous detection (larger ROI in the right image). Since new traffic signs might also
appear, the detection mode is also active (smaller ROI).

Source: The author

As in most problems involving object tracking, one drawback of assuming temporal
continuity is that any mis-detection (false negative) in the process leads to failure in track-
ing. To cope with this issue, if a traffic sign is not detected at a given frame during the
tracking mode, the system waits for detections in the next frames with the current ROI
stagnated in its last position. This tolerance scheme is applied duringmdmax frames: after
this limit, the tracking mode is aborted and the system resets to detection mode only.
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5 EXPERIMENTAL RESULTS

This chapter presents the experimental results obtained with the proposed system.
Here, we focus on three important aspects of practical TSR implementations: accuracy,
flexibility to different cameras (resolution and location/pose), and running times.

In this chapter, we first present the protocol adpoted to train the proposed model, and
then the test dataset. Next, we present the quantitative results of the proposed method and
competitive techniques, as well as running times using different hardware platforms.

5.1 Training Details

As mentioned in Section 3.2, we have generated a dataset of Brazilian traffic signs
containing 3,798 images. To cope with distortions that are not present in the training
set but might appear in real scenarios (such as varying illumination conditions and mo-
tion blur), we have synthetically expanded the training set using data augmentation. As
in (REDMON et al., 2016; REDMON; FARHADI, 2016), we used hue, saturation, and
exposure shifts to expand the training set. Since the captured images might suffer from
motion blur, we have also added smoothing with two different blur kernels (Gaussian
smoothing kernels with dimensions 3×3 and 5×5). Figure 5.1 illustrates some examples
of data augmentation used to train ScapNet.

Since the proposed classifier is applied to a ROI cropped from the full video frames,
the training dataset must be adjusted accordingly. For that aim, we cropped the training
images around the annotated signs, randomly generating regions 3 to 5 times larger than
the traffic sign (so that the range of traffic scales learned is from 1/5 to 1/3 of the ROI
size). These regions are selected centered at the annotated sign with a random artificial
offset (horizontal and vertical), as illustrated by a blue rectangle in Figure 5.2.

It is also important to select image patches with no traffic sign, to avoid biasing the
network. To cope this issue, we added hard negative samples by selecting patches in
the rest of the image, that present pattern similar to a sign. Figure 5.3 shows images
with regions selected to train the network which do not have class. With this step, we
decreased the number of false positives. These regions, are selected automatically in the
database, with regions similar to those shown above, however being careful that no signal
was inserted.

Even with data augmentation, the training set is small for learning all the weights in
ScapNet from scratch. To cope with this issue, we first trained the proposed network
using the well known PASCAL VOC 2007-2012 dataset (EVERINGHAM et al., 2010),
aiming to generalize the initial layers. Then, this pre-trained network was refined using
the proposed dataset. We used the batch size initial learning rate of 0.001 and divided
it by 10 at 100, 10 thousand and 30 thousand iterations. We also used the loss function
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1 Examples of images with data augmentation used to train the proposed CNN.

Source: The author

defined in Fast-YOLO (REDMON; FARHADI, 2016), momentum 0.9 and batch size of
32.

5.2 The Test Dataset

An important issue for validating any classification approach is a suitable choice for
the test dataset. In this work, the goal is to perform fast and accurate detection and recog-
nition of traffic signs in video sequences acquired with a detachable onboard camera.

The proposed Brazilian Dataset of Traffic Signs, which is based on “synthetic video
sequences” acquired using the Google Maps API and used to train the model could be
a possibility, but the analysis could be biased (since the test images would be similar to
the training dataset). Furthermore, the intrinsic camera parameters are not known, so that
the on-the-fly calibration scheme (DE PAULA; JUNG; DA SILVEIRA JR., 2014) used to
obtain the extrinsic parameters and the ROIs cannot be applied.

In this work, we decided to use a set of video sequences captured by a smartphone,
with different placement settings when attached to the windshield. More precisely, eleven
full HD videos (with resolution of 1920× 1080) were acquired using an iPhone 5s smart-
phone. For each video shooting session, the camera was manually attached to the wind-
shield using a flexible smartphone holder, so that extrinsic parameters are different for
each video (as previously explained, the intrinsic camera parameters were obtained of-
fline). Table 5.1 shows the approximate vehicle speed, number of frames, number of
annotated signs and also the estimated extrinsic camera parameters for each clip. The
second and third sequences were acquired at different roads but at the same shooting
session, which explains the same set of extrinsic parameters.

The eleven test videos captured represent the conditions found when traveling in
Brazilian rural roads. The videos contain a set of frame sequences with all the classes
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(a) (b)

(c) (d)

Figure 5.2 Examples of selected regions used to train ScapNet. Each region example has
a labeled sign.

Source: The author

of traffic signs used in this work. Table 5.2 presents in detail the number of instances
of each class in the test videos (one sign per frame). In fact, the “no overtaking” class
presents more samples than all other classes, since it was the most frequent sign in the
roads when the videos were recorded. Fortunately, this is possibly the most important
sign to be detected, since it indicates portions of the road where overtaking is dangerous.
In total, 2,588 signs were annotated in the test dataset. As in the train dataset, they were
divided into seven classes, and each instance was labeled along with the corresponding
bounding box.

5.3 Quantitative Evaluation

The proposed system was implemented in C++, using the Open source Computer
Vision library (OpenCV) and the darknet (REDMON; FARHADI, 2016)/caffe (JIA et al.,
2014) frameworks for the CNN classification. To evaluate running times, we used three
different hardwares: i) a desktop computer with 3.40 GHz Intel Core i7-2600 CPU, 8GB
RAM; ii) an embedded hardware with a 1.9 GHz Quad Core ARM Cortex-A15 CPU; iii)
a Raspberry Pi 3 Model B hardware, with a 1.2 GHz Quad Core ARM BCM2837 CPU
with 1GB RAM.

We tested our algorithm using all video sequences in our test dataset, evaluating the
results in terms of precision and recall rates, as well as runtime. For the sake of com-
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(a) (b)

(c) (d)

Figure 5.3 Examples of selected regions used to train ScapNet. Each image has three
selected region without sign.

Source: The author

parison, we also ran Fast-YOLO (REDMON; FARHADI, 2016), Faster-RCNN (GIR-
SHICK, 2015) and the CNN-based traffic sign recognition approach proposed in (ZHU
et al., 2016), called CNN-sign. Since these methods were not trained to detect Brazilian
traffic signs, we only used the topology of these networks and re-trained them similarly to
the procedure used for ScapNet: we pre-trained these networks with the PASCAL VOC
2007-2012 dataset from scratch, and then fine-tuned them with our training dataset. How-
ever, we used the full image frames when training these networks, instead of the proposed
ROIs, since they were designed to process full frames.

In all experiments, the dimensions of the initial ROI (detection mode) were δh = 2.25
meters high and δw = 3.25 meters wide. Based on (CONTRAN, 2007), we selected
pd = 1.0 meters (diameter of circular traffic sign) and ph = 1.2 meters (length of the sign
stem), and the lateral offset from the vehicle to the sign was set to δy = 3.75 meters.

Based on the dimensions and center of the ROI, as given in Eq. (4.1), the ROI was
projected onto the image plane using zmax = 42 meters, which is approximately the
farthest detection distance. Furthermore, we used mdmax = 5 frames as the temporal
tracking tolerance.

To validate our experiments, a detection is considered correct if the Intersection over
Union (IoU) given by

IoU(A,B) =
# (A ∩B)

# (A ∪B)
(5.1)
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Clip Name Speed Frames Signs h α β
clip_i5s_0789 20km/h 935 382 1.05m -5.54◦ 1.48◦

clip_i5s_0094 80km/h 2160 131 1.22m 6.00◦ -0.85◦

clip_i5s_0099 80km/h 628 90 1.22m 6.00◦ -0.85◦

img_5159 40km/h 449 167 1.09m 5.88◦ 0.69◦

img_5160 60km/h 1534 196 1.04m 5.57◦ 1.44◦

img_5164 50km/h 1641 408 1.14m 6.78◦ -0.55◦

img_5167 60km/h 1559 259 1.15m 4.36◦ -0.47◦

img_5169 40km/h 1353 290 1.08m -3.98◦ 1.16◦

img_5171 60km/h 336 107 1.20m -6.21◦ 0.98◦

img_5172 50km/h 473 276 1.24m -5.19◦ 0.78◦

img_5173 60km/h 1020 282 1.25m -5.76◦ 0.57◦

Table 5.1 Extrinsic parameters of the test dataset

No Overtaking Left Curve Right Curve 60 kmh 80 kmh Trucks Right Bridge Total
clip_i5s_0789 382 382
clip_i5s_0094 131 131
clip_i5s_0099 90 90

img_5159 167 167
img_5160 196 196
img_5164 186 222 408
img_5167 90 169 259
img_5169 186 104 290
img_5171 107 107
img_5172 88 188 276
img_5173 122 160 282

Total 1349 222 295 226 160 167 169 2588

Table 5.2 Instances of each class in the test videos

is greater than a threshold TIoU (we used TIoU = 0.5), whereA andB denote the detection
and ground truth bounding boxes, and # is the cardinality of a set.

Table 5.3 shows the precision-recall results and processing times (in different hard-
wares) for the proposed method (ScapNet) and competitive techniques considering all
processed frames, while Table 5.5 shows individual results for each video clip. These
values are computed per-class, meaning that if a sign of a given class “A” is correctly
detected and localized in the image but recognized as class “B”, it counts both as a false
negative for class “A” and a false positive for class “B”.

It can be observed that the runtime for our technique is significantly lower than the
others in all tested hardwares (PC, Cortex-A15 and Raspberry Pi 3), achieving 20 FPS
for the PC just using the CPU, with the second best precision (very low false positive
rate), and recall rate of 96.32% considering all video sequences (with a minimum per-clip
recall of 91.32%). The results using Faster-RCNN are the overall best in both precision
and recall, but the execution time is very high, making it unfeasible to run on embedded
devices with low processing power. We were unable to complete the training of Faster-
RCNN (as well as CNN-sign) on the Raspberry 3 hardware due to excessive time and
equipment overheating. Table 5.4 shows the individual time values (per frame, in seconds)
obtained for each clip in the test dataset.

Figure 5.5 illustrates some (cropped) frames from the test video sequences with cor-
rect results of the proposed approach. In particular, Figure 5.5(a) shows a true negative
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Figure 5.4 Examples of images in the test dataset.

Source: The author

Processing speed (FPS)
Precision Recall PC Cortex-A15 Rasp3

Faster-RCNN 97.61% 97.36% 0.054 0.044 –
CNN-sign 95.56% 93.84% 0.315 0.253 –
TinyYolo 95.55% 94.30% 0.397 0.323 0.027
ScapNet 97.18% 94.51% 20.290 17.575 1.687

Table 5.3 Precision-recall results and processing times.

result, in which the detection ROI (yellow) is in the far field, and contains no sign (the
no-overtaking sign present in the frame is farther from the ROI, and gets detected after
a few frames). Figures 5.5(b)-(c) and (d) illustrate true positive results (note the second
ROI in the far field waiting for others signs).

Figure 5.6 illustrates some (cropped) frames from the test video sequences examples
when the proposed approach failed. In particular, Figure 5.6(a) shows a (soft) false nega-
tive, in which a 60km/h speed limit traffic sign was correctly detected, but misclassified as
80km/h. Figures 5.6(b)-(c) as the sign is too small, it is not located by CNN, although it
was within the ROI. In both cases, the sign is detected by the ScapNet in the next frames,
when the car gets closer to sign. Figure 5.6(d) presents a detection of a sign not present
in the set of annotated classes that was classified as “No Overtaking”.

Finally, Table 5.6 shows the overall confusion matrix of the proposed method con-
sidering all videos together. It can be observed that 90% of the false positives relate to
traffic signs that were correctly detected and localized, but misclassified. Considering all
classes, the number of “actual” false positives (detection of any sign where there is none)
is very small, as shown in the last line of the table. The number of actual false negatives (a
traffic sign that is not even detected) considering all classes is smaller than 4%, as shown
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Faster-RCNN CNN-Sign TinyYolo ScapNet
PC Cortex-A15 PC Cortex-A15 PC Cortex-A15 Rasp3 PC Cortex-A15 Rasp3

clip_i5s_0789 0.0542 0.0442 0.3132 0.2620 0.4051 0.3212 0.0263 20.6876 17.9521 1.5758
clip_i5s_0094 0.0539 0.0438 0.3156 0.2453 0.3950 0.3305 0.0261 20.8623 17.6875 1.5823
clip_i5s_0099 0.0538 0.0433 0.3211 0.2512 0.3972 0.3256 0.0262 20.3478 18.0563 1.5683

img_5159 0.0540 0.0430 0.3183 0.2497 0.3946 0.3346 0.0261 20.3564 17.2486 1.5767
img_5160 0.0535 0.0438 0.3164 0.2536 0.3894 0.3327 0.0263 19.8765 17.9531 1.5838
img_5164 0.0539 0.0438 0.3059 0.2574 0.4012 0.3275 0.0263 20.1953 17.1563 1.5825
img_5167 0.0528 0.0442 0.3170 0.2461 0.4035 0.3246 0.0263 20.5195 17.6023 1.5836
img_5169 0.0538 0.0430 0.3233 0.2563 0.3994 0.3312 0.0263 19.4587 17.5965 1.5832
img_5171 0.0548 0.0441 0.3165 0.2536 0.3980 0.3289 0.0263 19.8523 17.0932 1.9985
img_5172 0.0539 0.0440 0.3060 0.2515 0.3915 0.3324 0.0294 20.3598 17.5498 2.2695
img_5173 0.0547 0.0443 0.3163 0.2578 0.3975 0.3305 0.0270 20.6785 17.4325 1.6508

Table 5.4 Average processing framerate (frames per second) of our technique and com-
petitive approaches in each of the test videos

(a) (b)

(c) (d)

Figure 5.5 Examples of correct classification results obtained by our method. The yellow
rectangles illustrate the ROIs and green rectangle our detection.

in the last column of the table. The highest confusion rate occurs between the two speed
limit signs, which is expected due to the visual similarity between them (in particular
when they are in the far field, which leads to small regions in the image domain).

It is important to note that the most confusions occurs with similar signs, such as speed
limit signs. In addition, most errors occur when the signs are in the far field. This occurs
because the network is able to correctly detect, but not to recognize the corresponding
class when the sign is too small in relation to the whole image. Figure 5.7 presents
examples of traffic signs in far field, (cropped from the image - with a larger size, original
approximately has 24× 24 pixels). In this scenario, the network detects the sign but does
not have enough information to recognize it.

Analyzing the errors of our approach, we can observe that approximately 90% of
errors occur when detections of traffic signs are smaller than 48× 48 pixels. The graph of
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ScapNet Fast-Yolo Faster-RCNN CVPR2016
Clip Name Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

clip_i5s_0789 99.47% 98.17% 98.95% 98.17% 98.96% 98.96% 97.13% 97.12%
clip_i5s_0094 98.44% 96.18% 98.47% 98.46% 100.00% 100.00% 98.46% 97.71%
clip_i5s_0099 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

img_5159 98.10% 92.81% 93.21% 90.42% 98.77% 96.99% 95.68% 92.81%
img_5160 98.96% 96.94% 99.48% 96.94% 100.00% 100.00% 98.47% 98.47%
img_5164 99.24% 96.32% 97.79% 97.06% 96.83% 97.30% 95.05% 94.12%
img_5167 91.80% 90.72% 91.83% 91.12% 93.41% 93.05% 87.76% 83.01%
img_5169 95.82% 94.82% 94.79% 94.14% 96.88% 96.21% 92.68% 91.10%
img_5171 95.96% 88.79% 94.06% 88.79% 95.33% 96.32% 95.15% 91.59%
img_5172 96.17% 90.94% 96.67% 94.57% 97.79% 96.38% 94.44% 92.39%
img_5173 94.98% 93.97% 85.76% 87.59% 95.74% 95.74% 96.36% 93.97%

Table 5.5 Results for the proposed approach and the baseline methods for all test videos.

(a) (b)

(c) (d)

Figure 5.6 Incorrect examples of classification results obtained by our method. The
yellow rectangles illustrate the ROIs and green rectangle our detection. (a) and (d) “Soft”
false negative, meaning that a sign was detected but wrongly classified. (b)-(c) True false
negative (sign not detected).

Source: The author

the Figure 5.8 presents the number of erroneous occurrences in relation to the size of the
traffic sign detection, obtained by our approach. It shows that, as previously mentioned,
errors occur exactly in the far field, where it is difficult to distinguish visually. However,
as the sign approach the car, the errors stop happening.
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No Overtaking Left Curve Right Curve 60 kmh 80 kmh Trucks Right Bridge Miss - FN
No Overtaking 1322 0 0 2 0 2 0 23

Left Curve 0 209 3 0 0 0 0 10
Right Curve 0 14 258 0 0 0 0 23

60 kmh 0 0 0 207 18 0 0 1
80 kmh 0 0 0 8 148 0 0 4

Trucks Right 0 0 0 2 1 155 0 9
Bridge 0 6 7 0 0 0 147 9

Nothing - FP 2 0 0 0 0 5 0 0

Table 5.6 Confusion matrix for our technique.

(a) (b) (c) (d)

Figure 5.7 Examples of signs in far field, showing the difficulty to recognize the corre-
sponding class.

Source: The author

Figure 5.8 Predicted traffic sign size in cases of error

Source: The author
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6 CONCLUSIONS

The research presented in this work proposed a framework for Brazilian TSR with a
flexible camera setup (detachable camera installed on the interior of the windshield) that
allows a good compromise between accuracy and running times. The core idea was to
explore the given extrinsic and intrinsic camera parameters, together with the information
of the Brazilian traffic signs based on their expected location in the world coordinate
system, to define regions of interest (ROIs) in the image.

Within the proposed ROIs, the background complexity is reduced and the relative
size of the sign present small variations, so that lighter (more shallow) CNNs might be
adequate to detect and recognize signs. Based on this observation, a new and light CNN,
called ScapNet, was proposed to locate and recognize Brazilian traffic signs within the
extracted ROIs.

The proposed CNN was trained with captured data that represent Brazilian highways,
as well as climate changes that influence illumination. In addition, the proposed CNN
presents a much smaller number of parameters compared to state-of-the-art networks,
while maintaining similar accuracy.

The proposed approach was tested on different hardware setups, and our results in-
dicated that embedded harware with lower processing power can be used for processing.
More precisely, the experimental results showed that the proposed TSR approach can run
at over 17 FPS on an embedded Cortex-A15 processor for full HD video sequences, with
precision and recall rates comparable to or better than more complex (and state-of-the-art)
regional CNNs, which achieve less than 0.5 FPS on the same hardware when processinf
full-frame images. These results indicate that the proposed approach presents potential
for over 30 FPS on embedded devices that contain CPU and GPUs, such as NVIDIA’s
Jetson TX1.

As an additional but still important contribution of this work, we have collected and
annotated two distinct datasets with Brazilian traffic signs: the first one is composed of
3,798 frames obtained from Google Street View, containing 3,798 traffic signs in the
total (one per image), divided and annotated into seven different classes most common
on Brazilian highways, which are: No overtaking, Left Curve, Right Curve, Limit Speed
60km/h, Limit Speed 80km/h, Trucks Right Lanea and Bridge Ahead. The second dataset
is composed of 11 short full HD video clips, with 12,088 frames in the total and 2,588
annotated Brazilian signs.

6.1 Future Work

As future work, we plan to further expand our test database by collecting more video
sequences, and then making it publicly available along with the vehicle speed and cam-
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era parameters. Besides new images, we intend to collect new classes of traffic signs,
expanding the coverage of Brazilian traffic signs. Moreover, the training dataset will be
increased by running the application that captures images through the Google Street View
API.

Together with new classes of acquired traffic signs, we also plan to expand ScapNet,
until the network is able to generalize all the classes with the lowest computational cost,
evaluating its performance using embedded CPU+GPU processors.

Another improvement that is planned, is to optimize the updating of Regions of In-
terest in the tracking mode, using the known car speed and the camera parameters. In
addition, using this information, the traffic sign could be predicted in future frames and
used to improve validations using temporal coherence.
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