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Abstract  In this paper we present an analytical solution of the advection-diffusion equation which describes the 
dispersion of pollutants in the atmosphere considering time dependence in the wind profile and in the eddy diffusivity. A 
solution is constructed following the idea of a decomposition method upon expanding the pollutant concentration in a 
truncated series, thus obtaining a set of recursive equations whose solutions are known. Each equation of this set is solved by 
the GILTT (Generalized Integral Transform Technique) method. For numerical simulations the data of the OLAD 
experiment, conducted on the 12th of September, denoted OLAD 5, were used and the comparison of model prediction with 
these data are presented.  
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1. Introduction 
The present work shows a model based on an 

advection-diffusion equation (A-D), which describes the 
dispersion of pollutants in the atmosphere. The principal 
objective of the forthcoming discussion is to consider time 
dependence in the wind field and in the eddy diffusivity to 
get more realistic results of the dispersion phenomenon with 
moving sources. To attain this objectives, we use an idea 
inspired by Adomian’s decomposition method [1-3]. Thus, 
the original advection-diffusion equation which describes 
the problem is cast in a set of recursive equations, where 
each one is solved by the GILTT (Generalized Integral 
Transform Technique) method. A complete review of the 
GILTT method is given in [15] and references therein.  

The results obtained with the model are compared with 
measurements from the OLAD campaign (Over-Land 
Alongwind Dispersion). This experiment was conducted in 
the period of 8 – 25 September, 1997 at the U.S. Army 
Dugway Proving Ground (DPG) West Desert Test   
Center (WDTC). The OLAD experiment made use of 
continuous release of a known quantity of tracer gas 
(sulfur-hexafluoride, SF6) along a line perpendicular to the   
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prevailing wind direction. These releases were 
accomplished using either an aircraft or truck mounted 
dissemination system. The aircraft-mounted disseminator 
line source of 20-km length and at an altitude of 100 m 
above ground level (AGL), while the truck-mounted 
disseminator line source was of 10 km length and at 3 m 
AGL. The line-source tracer cloud generated during each 
release advected downwind towards three lines of 
surface-mounted samplers and one aircraft-mounted 
sampler. Each surface sampling line, located 2 to 20 km 
downrange of the dissemination line, consisted of 15 
whole-air samplers spaced at 100-m intervals. The 
whole-air samplers reproduced time-averaged (15 min) 
tracer gas concentrations [4].  

The results presented in this work refer to a simulation of 
day 12 of September, denoted OLAD 5. In this experiments 
the release is performed by truck-mounted disseminator. 
The data of concentration considered for simulation 
comparison were of the sampler located in the route Foxtrot 
2 km away from the release location. To this end the line 
source was represented by a finite number of point sources. 

2. The Analytical Solution 
The advection-diffusion equation is a deterministic 

approach to dispersion of pollutants in the atmosphere. It is 
obtained by mass conservation combined with first order 
close (K-Theory) [5]: 
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Here c  denotes the mean concentration of a passive 
contaminant; u, v e w are the cartesian components of 
the mean wind speed in the direction x, y and z, 
respectively; κx , κy  and κz  are the eddy diffusivities. For 
convenience we align the predominant wind direction with 
the direction of the x coordinate, v = w = 0, and equation 
(1) simplifies to  
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The space-time domain is given by t > 0, 0 < x < Lx , 
0 < y <  Ly  and 0 < z < zi, and equation (2) is subject to 
the following boundary and initial conditions:  
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c(x, y, z, 0) = 0 
Recalling that the line source was discretised, so that 

each individual point source was represented by a generic 
source condition, 

uc(0, y, z, t;𝑦𝑦0𝑖𝑖 , 𝑡𝑡0𝑖𝑖) = Qδ(y − y0)δ(z − Hs)δ(t − t0), 

with Q  being the emission rate, zi  the height of the 
atmospheric boundary layer, Hs  the height of the source, 
Lx  and Ly  are domain limits in the x and y-direction far 
from the source and δ represents the Dirac delta function.  

In order to construct a solution, first we separate 
time-dependent wind field and time-dependent eddy 
diffusivity contributions from their time averaged values: 

u(z, t) = U(z) + U(z, t),          (3a) 

κx(z, t) = Κx(z) + Κx(z, t),        (3b) 

κy(z, t) = Κy(z) + Κy(z, t),        (3c) 

κz(z, t) = Κz(z) + Κz(z, t),        (3d) 

where U(z) , Κx(z) , Κy(z)  and Κz(z)  are the time 
averages. Upon inserting this assumptions in equation (2) 
yields: 
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According to the idea of the decomposition method the 
solution of (4) is written as a truncated expansion: 

c(x, y, z, t) = ∑ cl(x, y, z, t)J
l=0       (5) 

These new degrees of freedom for each component may 
now be used to decompose (4) into a set of 
advection-diffusion equations, that together form a 
recursive scheme: 

 

Figure 1.  OLAD test site at Dugway Proving Ground showing the locations of dissemination lines, sampling lines, and meteorological measurement 
sites [4] 
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Note, that the decomposition procedure is not unique. Our choice for reshuffling term with the specific form of source 
terms is justified because it allows to solve the resulting recursive system analytically by the GILTT method. Further, the 
time dependence of the eddy diffusivity and wind field in the proposed solution is entirely accounted for in the source term, 
which is constructed from the solutions of previous recursion steps and thus are known. Moreover, the recursion 
initialisation satisfies the boundary conditions of the original problem, whereas all the subsequent recursion steps satisfy 
homogeneous boundary conditions. Once the set of problems is solved, the solution of equation (5) is well determined. A 
remark on the truncation is in order here, the accuracy of the results may be controlled by the proper choice of the number 
of terms in the solution series. 

2.1. The GILTT Method 

The equations of the set of recursive equations are solved, by applying initially the Laplace transform in the t variable, 
which leads to 
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where cl denotes the Laplace transformed concentration in the t variable cl(x, y, z, s) = ℒ{cl(x, y, z, t); t → s}. 
Upon making use of the expansion of the concentration series with respect to the y coordinate: 
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The afore mentioned procedure may be repeated for the z coordinate cln (x, z, s) = ∑ cli
(x, s)I

i=0 ξli (z) with ξli
(z) =

cos(μli z) the eigenfunctions of the associated Sturm-Liouville problem, and μli = iπ
zi

 ( i = 0,1,2, …) are the respective 
eigenvalues. Again, projecting out orthogonal components reduces the original equation by one further dimension 
∫ (. )ξlj

(z)zi
0 dz, and the equation is cast in matrix form for the dimension where the coordinate axis is aligned with the wind 

direction: 
AY′′ (x, s) + BY′(x, s) + EY(x, s) = F                            (9) 

Here Y(x, s) is the vector of the coefficients cli
(x, s) and 
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Figure 2.  Representation of the ten point source 

Equation (9) it is solved by order reduction with 
Z1(x, s) = Y(x, s)  and Z2(x, s) = Y′(x, s) , so that the 
remaining problem to be solved is  

Z(x, s) + MZ(x, s) = S0             (10) 
with 

Z = �Z1
Z2
�, S0 = �0S� and M = �0 −I

H G �. 

To solve problem (10) one may employ the steps detailed 
in reference [16], where a combined Laplace transform 
technique and diagonalization procedure M = XDX−1 was 
proposed. The recursive problem reads then 

Z�(r, s) = X(rI + D)−1X−1Z(0, s) + X(rI + D)−1X−1S0(11) 
where for the recursion initialisation S0 = 0 and thus 

Z�(r, s) = X(rI + D)−1X−1Z(0, s) 
whereas for the other equations Z(0, s) = 0 so that 

Z�(r, s) = X(rI + D)−1X−1S0 
where Z�(r, s)  denotes the Laplace Transform of vector 
Z(x, s). Here X is the matrix of the eigenvectors of matrix 
M and X−1 is its inverse. The matrix D is the diagonal 
matrix of eigenvalues of the diagonalised problem, where 
the entries of the matrix (rI + D) have the form {s + dn}. 
After Laplace transform inversion of (12), we get: 

Z(x, s) = XP(x, r)ξ 
where P(x, r)  is the diagonal matrix with components 
𝑒𝑒−𝑑𝑑𝑛𝑛𝑥𝑥 . Further, the unknown constant vector ξ is given by 
ξ = X−1Z(0, s)  (initialisation) or ξ = X−1S0  (recursion), 
respectively. 

Once these coefficients are evaluated one can construct 
the analytical solution of problem (7) applying the inverse 
Laplace transform definition. This procedure yields a result 
in analytical representation: 
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For numerical purposes and to overcome the difficulty of 
evaluating the line integral appearing in Eq. (12), one may 
approximate the integral by a Gaussian quadrature scheme: 
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Here Ak  and Pk  are the weights and roots of the 
Gaussian quadrature scheme tabulated as for instance 
tabulated in the book of Stroud and Secrest [21].  

3. Results 
The solution of the considered model may be evaluated 

against the OLAD experiment [4]. To this end the dataset of 
the 12th September 1997, where sulfur-hexafluoride (SF6) 
was released by a truck mounted disseminator at 3 m above 
ground level and following the Bravo route for 10 km. The 
beginning of the emission was at 6 hours and 58 minutes 
with duration of 10 minutes. According to reference [7] this 
experiment has the characteristic of low wind speed less or 
equal 3.5 m/s. Further, the planetary boundary layer showed 
a stable condition during the sampling period, as classified 
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by the Monin-Obukhov lengths presents in the Table (1). 
The whole-air samplers produced time-averaged (15-min) 

tracer gas concentrations, that are referenced by the 
respective fifteen analysers (LC101-LC115) located along 
the route Foxtrot with a distance of 2 km “parallel” to the 
Bravo Route. We used ten point source to reliable represent 
the experiment’s line source, and in each source the release 
duration was ∆𝑡𝑡. Thus the concentration in each sampler is 
defined by 

𝐶𝐶𝑙𝑙(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = �𝑐𝑐𝑙𝑙 �𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡 − 𝑎𝑎∆𝑡𝑡 −
∆𝑡𝑡
2
�

9

𝑎𝑎=0

 

where a denotes the displacement centred line segment 
source, as shown in Figure 2. 

3.1. Simulation Source 

While the real experiment used a continuous line source 
to dissemination the tracer, for convenience we used in the 
simulations a finite number of point source to represent the 
problem. Figure 2 shows the implemented representation of 
this approximation.  

3.2. Parameterisation 

In atmospheric diffusion problems, the choice of the 
turbulence parameterisation is a fundamental decision to 
adequately model the dispersion process. From the physical 
point of view the turbulence parameterisation is a 
phenomenological approach for a complex dynamics that 
up to date is far from being described in terms of a 
consistent non-linear theory, so that dimensional arguments 
and similarity conceptions provide a mathematical model 
that is being used as a surrogate for the terms that should 
come from the afore mentioned unknown theory. Hence, the 
reliability of each model strongly depends on the way 
turbulent parameters are calculated and related in the 
context of current understanding of the ABL [11]. In stable 
conditions of the boundary layer the vertical eddy 
diffusivity can be formulated as [9] 

Κz =
0.3(1 − z/zi)u∗z

1 + 3.7(z/Λ)
 

where Λ = L(1 − z/zi)5/4 , whereas Degrazia et al. 
proposed for a stable boundary layer an algebraic 
formulation for the eddy diffusivity in the x and y direction 
according to [8], 
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where (fm )ν = (fm )n,ν(1 + 3.7(z/Λ)) is the frequency of 
the spectral peak, (fm )n,ν = 0.33 is the frequency of the 
spectral peak in the neutral stratification [20], Λ =
L(1 − z/zi)(1.5α1−α2) (α1 = 1.5,α2 = 1  [17]) is the local 

Monin-Obukhov length, aν = (2.7cν)1/2/(fm )n,ν
1/3 , where 

cν = 0.4 , u∗  is the friction velocity and X′ = xu∗/uz 
represents the non-dimensional distance. The wind speed 
profile can be describe by the power law [12]  

u�
u1���

= �
z

z1 
�

n
 

where u� and u1��� are the horizontal wind velocity at height 
z  and z1 . The power parameter 𝑛𝑛  is related to the 
intensity of turbulence.  

3.3. Numerical Results  
In the experiment five of OLAD the beginning of the 

emission was at 6 hours and 58 minutes. We used the 
meteorological data of the first hours to simulate the 
dispersion with the proposed model. The data presentd in 
Table 1 were calculated in [8] based on the dataset of 
reference [4]. The data u , u∗ , L  and zi  represent the 
wind speed in 10 meters, the friction velocity, 
Monin-Obukhov length and the height of the planetary 
boundary layer, respectively.  

Table 1.  Meteorological conditions of OLAD 5 [8] 

OLAD 5 
u (10m) u∗ L zi  

(m/s−1) (m/s−1) (m) (m) 

6:45 – 7:00 1,71 0,10 43,48 171,60 

7:00 – 7:15 1,95 0,12 64,81 223,80 

7:15 – 7:30 1,82 0,11 127,27 303,03 

7:30 – 7:45 1,90 0,11 221,12 407,32 

The concentrations obtained with the simulation in this 
work are for the period of 6:45 – 7:45 and we used the 
concentrations observed in the first sampling line of the 
experiment for comparison. In all fifteen analysers the 
convergence of the series (5) occurred after six terms. In 
Table 2 we present the numerical convergence of the results 
for sampler LC115.  

The first sampling line located in the route Foxtrot have 
fifteen samplers denoted LC101 to LC115. In Table 3 
concentration results observed in the experiment (CO) and 
concentrations predicted by model proposed (CP) are 
shown. 

Table 2.  Concentration of the LC115 with five recursion steps 

Eq. Concentration (pptv) 

0 11007,36 

1 10728,59 

2 10695,75 

3 10669,16 

4 10658,07 

5 10658,07 
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Table 3.  Tracer concentration for the fifteen samplers of experiment five 
of OLAD and model prediction 

LC CO (pptv) CP (pptv) 

101 470,10 5533,69 

102 5,24 5744,58 

103 76,04 5719,13 

104 7951,42 7841,28 

105 6433,66 6809,26 

106 5697,37 6648,48 

107 5930,83 6603,05 

108 5974,47 6631,44 

109 7565,40 7010,36 

110 8498,44 8473,20 

111 7878,68 7505,47 

112 7329,51 7487,19 

113 8294,43 8345,55 

114 10190,91 11396,06 

115 9198,10 10658,07 

Although the analysers LC101, LC102 and LC103 
present results in disagreement between experiment and 
model, the results obtained with the model describe with 
efficiency the dispersion phenomenon. Low quality 
observed concentrations presents in the afore analysers are 
justified either by inaccuracy of samplers or by an 
experimental failure.  

In Figure (3) one can check the concentration for the 
fifteen analyser of the Foxtrot route.  

 

Figure 3.  Observed and predicted concentration 

3.4. Statistical Results 

The comparison between the observed (Co) and predict 
(Cp) data concentration shown in Table (3) were analysed 
statistically [13]  

NMSE = 2( )o p p oC C C C− , 

COR = ( )( )o o p p o pC C C C σ σ− − , 

FS = ( ) 0.5( )o p o pσ σ σ σ− + , 

where NMSE, COR and FS represent the normalized mean 
square error, correlation coefficient and fractional standard 
deviations, respectively. Due to a stochastic phenomenon, 
that is being simulated by a deterministic model a small 
NMSE and a correlation coefficient beyond ~0.8 (but less 
than 1) indicating an acceptable solution (see Table 4). 

Table 4.  Statistical comparison between observed and predict 
concentration 

Indices NMSE COR FS 

Model 0,14 0,80 0.64 

Figure (4) confirms the agreement of the model results 
with the data of the experiment of OLAD.   

 

Figure 4.  Observed (CO) and predict (CP) scatter plot 

4. Conclusions  
The present work is a continuation in a sequence of 

implementation that as a general problem treat the pollutant 
dispersion in the atmosphere considering physically 
relevant meteorological scenarios and a diversity of 
pollution sources. Progress in relation to previous works 
considers the implementation of time dependence in the 
eddy diffusivity and the field wind, respectively. Most of 
the analytical problems found in the literature make use of 
fixed sources, however, a considerable amount of pollutant 
release is due to sources in motion. The model was 
validated using data from an experiment with moving 
source, the OLAD campaign. In this experiment a tracer 
substance was emitted from a facility mounted on a truck 
that run on the route Bravo along 10 km and thus represents 
a time dependent line source. For convenience this line 
source was approximated by a sequence of point sources, 
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between two subsequent sources the emission was delayed 
by a time interval, in agreement with the experimental setup. 
Trials with different discretisations have shown us that the 
present implementation allows to simulate fairly well the 
dispersion of the experiment. 

To this end the advection-diffusion equation was solved 
by a combination of a decomposition method, and the 
Generalised Integral Laplace Transform Technique 
(GILTT). While the first part of the solution method 
produces a recursive set of equations, where each of the 
equations have a known solution by GILTT. We also 
analysed stability of the procedure which showed that only 
a small recursion depth is necessary in order attain an 
acceptable accuracy (Table 2) for the simulated 
concentration as measured in analyser LC115. Results for 
the other samplers are comparable in quality with the 
previous one. 

The results of concentration obtained with the model and 
the concentrations observed in the experiment show similar 
behaviour and one can conclude that the proposed model 
describes satisfactorily the phenomenon. Disagreement in 
some of the values in three of the samplers may be 
attributed either to atypical behaviour of meteorological 
conditions limited to the time interval of emission and 
measurement. Moreover there may be a discrepancy 
because of the fact that the phenomenon is stochastic 
whereas the model is deterministic and thus reproduces only 
average values, while the measured data are one sample of 
an unknown distribution. Also malfunction of the 
instruments may not be excluded and those topics will be 
analysed in future works. 
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