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Gene expression related to the formation and modification of memories is regulated
epigenetically by chromatin remodeling through histone acetylation. Memory formation
and extinction can be enhanced by treatment with inhibitors of histone deacetylases
(HDACs). The basolateral amygdala (BLA) is a brain area critically involved in regulating
memory for inhibitory avoidance (IA). However, previous studies have not examined the
effects of HDAC inhibition in the amygdala on memory for IA. Here we show that infusion
of an HDAC inhibitor (HDACi), trichostatin A (TSA), into the BLA, enhanced consolidation
of IA memory in rats when given at 1.5, 3, or 6 h posttraining, but not when the
drug was infused immediately after training. In addition, intra-BLA administration of TSA
immediately after retrieval delayed extinction learning. Moreover, we show that intra-BLA
TSA in rats given IA training increased the levels of brain-derived neurotrophic factor in
the dorsal hippocampus, but not in the BLA itself. These findings reveal novel aspects
of the regulation of fear memory by epigenetic mechanisms in the amygdala.

Keywords: histone deacetylase, brain-derived neurotrophic factor, amygdala, hippocampus, memory extinction,
memory consolidation

INTRODUCTION

In inhibitory avoidance (IA), a type of fear-motivated conditioning, a new memory is formed after
a single training trial, and the behavioral outcome of previously formed memories can be modified
upon recall through extinction or reconsolidation. These processes are mediated and regulated
by a range of neurotransmitter and neuropeptide receptors, intracellular protein kinase signaling
pathways, and transcription factors, resulting in changes in gene transcription. Brain areas critically
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involved in mediating or regulating the formation and extinction
of IA memory include the dorsal hippocampus and the
basolateral amygdala (BLA; McGaugh, 2000; Roesler and
McGaugh, 2010; Roesler and Schröder, 2011; Roozendaal and
McGaugh, 2011; Alberini and Kandel, 2014; Furini et al., 2014;
Roesler et al., 2014a; Izquierdo et al., 2016). The BLA is proposed
to interact with the hippocampus and related structures to
enhance the consolidation of memory for events that trigger fear
or aversiveness (McGaugh, 2002; McIntyre et al., 2003).

Gene expression related to memory consolidation is regulated
epigenetically by chromatin remodeling, post-translational
DNA modifications, and small RNAs (Levenson and Sweatt,
2005; Barrett and Wood, 2008; Mikaelsson and Miller, 2011;
Gräff and Tsai, 2013; Landry et al., 2013). Modifications in
chromatin state influence the access of the transcriptional
machinery to the genome. It is now well established that DNA
methylation and histone acetylation are crucial epigenetic
processes influencing long-term fear memory (Barrett and
Wood, 2008; Mikaelsson and Miller, 2011; Gräff and Tsai,
2013). Histone deacetylase (HDAC) proteins deacetylate
N-terminal lysine residues in histones, leading to a more
compact chromatin structure and reduced gene transcription
(Kouzarides, 2007).

HDAC inhibitors (HDACis) are the most widely investigated
pharmacological agents modulating epigenetic processes.
Administration of HDACis lead to increased acetylation and
enhanced gene expression in neurons, resulting in a facilitation
of synaptic plasticity as well as formation and extinction of
fear conditioning (Levenson et al., 2004; Lattal et al., 2007;
Vecsey et al., 2007; Bredy and Barad, 2008; Stafford et al.,
2012). Acute systemic or intrahippocampal administration of
HDACis enhances IA memory consolidation and rescues IA
deficits related to aging or models of memory impairment
(Silva et al., 2012; Blank et al., 2014, 2015, 2016; Sharma et al.,
2015; Petry et al., 2016). Epigenetic alterations in the lateral
amygdala, including increased histone H3 acetylation, are
involved in the formation and reconsolidation of memory for
auditory fear conditioning in rats. Intraamygdala infusion
of the HDACi trichostatin A (TSA) enhances both the
consolidation and reconsolidation of auditory fear memory
(Maddox and Schafe, 2011; Monsey et al., 2011). Increased
H3 acetylation in the amygdala is also related to accelerated
extinction of auditory fear conditioning in mice after a
systemic injection of an HDACi (Itzhak et al., 2012). However,
previous studies have not examined the effects of HDAC
inhibition in the amygdala on memory for IA. In the present
study, we investigated the effects of TSA infused into the
BLA at several time points after training, or immediately
after retrieval, on the consolidation and extinction of IA
memory in rats. Given the reported interactions between
the BLA and dorsal hippocampus mentioned above, the
enhancing effect of HDAC inhibitors on the expression of
brain-derived neurotrophic factor (BDNF; Wu et al., 2008),
and the role of hippocampal BDNF in promoting memory
for IA (Chen et al., 2012), we also verified whether intra-BLA
infusion of TSA resulted in an increase in hippocampal BDNF
levels.

MATERIALS AND METHODS

Animals
Adult male Wistar rats (220–350 g at time of surgery) were
obtained from the institutional breeding facility (CREAL, ICBS,
UFRGS) and maintained at the university hospital animal
research facility (UEA, CPE-HCPA). Animals were housed four
per cage in plastic cages with sawdust bedding and maintained
on a 12 h light/dark cycle at a room temperature of 22 ± 2◦C.
The rats were allowed ad libitum access to standardized pellet
food and water. All experiments took place during the light phase,
between 8 AM and 5 PM.

Surgery
Rats were implanted under anesthesia with isoflurane (vaporized
in 100% oxygen, at a dose of 5% for induction and 2% for
maintenance, in a fraction of 0.5 l/min) with bilateral 14-mm, 23-
gauge guide cannulae aimed 1.0 mm above the BLA, as described
previously (Roesler et al., 2004; Jobim et al., 2012). Coordinates
(anteroposterior,−2.8 mm from bregma; mediolateral,±4.8 mm
from bregma; ventral, −7.5 mm from skull surface) were
obtained from the atlas of Paxinos and Watson (2007). Rats were
allowed to recover at least 5 days after surgery before behavioral
training.

Inhibitory Avoidance
Single-trial step-down IA was used as an established model of
fear-motivated conditioning memory, where the animals learn to
associate a location in the training apparatus (a grid floor) with
an aversive stimulus (footshock). The general procedures for IA
behavioral training and retention tests were described in previous
reports (Jobim et al., 2012; Blank et al., 2014). The IA training
apparatus was a 50 cm × 25 cm × 25 cm acrylic box (Albarsch,
Porto Alegre, Brazil) with a floor composed of parallel caliber
stainless steel bars (1 mm diameter) spaced 1 cm apart. A 7-cm
wide, 2.5-cm high platform was placed on the floor of the box
against one wall.

On training trials, rats were placed on the platform and their
latency to step down on the grid with all four paws was measured
with a digital chronometer. Immediately after stepping down
on the grid, rats received a 0.4-mA, 3.0-s footshock and then
removed from the apparatus immediately afterward. The first
retention test trial was given 24 h after training by placing the rats
on the platform and recording their latencies to step down. No
footshock was presented during retention test trials. Step-down
latencies on the retention test trial (maximum 300 s) were used as
a measure of IA memory retention.

For IA extinction, rats were returned daily to the IA
training context without footshock for 6 days as described
previously (Roesler et al., 2014b; Petry et al., 2016). Rats that
did not step down to the grid floor within 300 s during the
first 24 h retention/extinction test trial were gently led by
experimenter to the grid floor. Rats were given a 0.3 mA
reminder footshock at the end of the fifth test, followed by an
additional retention test 24 h later (Tronel and Alberini, 2007;
Roesler et al., 2014b).
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Drug Infusions
The general procedures for BLA infusions were described in
previous reports (Jobim et al., 2012; Pedroso et al., 2013). At the
time of infusion, a 27-gauge infusion needle was fitted into the
guide cannula. The tip of the infusion needle protruded 1.0 mm
beyond the guide cannula and was aimed at the BLA. Drug or
vehicle was infused during a 30-s period. The infusion needle was
left in place for an additional minute to allow diffusion of the drug
away from the needle tip.

In the experiment to examine the memory consolidation,
rats received a bilateral 0.5-µl infusion of TSA (Sigma-
Aldrich, St. Louis, United States; 22 mM) dissolved in 50%
ethanol in saline (vehicle, VEH; Vecsey et al., 2007) into
the BLA at different times after IA training. Different groups
of rats were used for each infusion time point. Control
animals received VEH in the same condition. In the memory
extinction experiment, rats received a bilateral 0.5-µl infusion
of TSA (22 mM) or VEH immediately after the first test
trial. The TSA dose was chosen on the basis of previous
findings from our group showing that it enhanced IA memory
consolidation when given into the dorsal hippocampus (Blank
et al., 2014). Drug solutions were prepared freshly before each
experiment.

Measurement of BDNF Levels
A separate group of rats was given one IA training trial as
described above, followed immediately by an intra-BLA infusion
of TSA (22 mM) or VEH. Four hours later, the rats were
sacrificed by decapitation, their brains were removed and the
BLA and hippocampus were quickly dissected out, immediately
snap-frozen in liquid nitrogen and stored at −80◦C until BDNF
measurement. The posttraining time for BDNF measurement was
chosen on the basis of a previous study showing that hippocampal
BDNF levels increased 4 h after learning (Goulart et al.,
2010). BLA and hippocampal BDNF was measured as described
previously (Kauer-Sant’Anna et al., 2007; Goulart et al., 2010),
using sandwich enzyme-linked immunosorbent assay (ELISA)
commercial kits according to the manufacturer’s instructions
(ChemiKineTM, CYT306, Merck Millipore, Temecula, United
States). Briefly, samples were homogenized in phosphate-
buffered solution with 1 mM phenylmethylsulfonyl fluoride and
1 mM ethyleneglycoltetraacetic acid. Microtiter plates (96-well
flat-bottom) were coated for 24 h with the samples diluted
1:2 in sample diluents and the standard curve ranged from
7.8 to 500 pg/ml of BDNF. The plates were then washed
four times with wash buffer and a monoclonal anti-BDNF
rabbit antibody (1:1000) was added to each well and incubated
for 3 h at room temperature. After washing, a peroxidase-
conjugated anti-rabbit antibody (horseradish peroxidase enzyme;
1:1000) was added to each well and incubated for 1 h at
room temperature. After addition of streptavidin enzyme,
substrate (3,3′,5,5′-tetramethylbenzidine) and stop solution, the
amount of BDNF was determined by absorbance at 450 nm
in a spectrophotometer. Total protein was measured using
the Bradford’s method with bovine serum albumin as the
standard.

Histology
A 0.5-µl infusion of a 4% methylene blue solution was infused
into the cannulae 24–48 h after the end of behavioral testing.
Rats were killed by decapitation 15 min later, and their brains
were removed and stored in 10% formalin for at least 72 h.
At least 24 h before sectioning, brains were placed in a 20%
sucrose solution in water for cryoprotection. Coronal sections
of 50 µm were cut on a cryostat, mounted on gelatin-coated
slides, stained with hematoxylin and eosin and examined under
light microscopy. The extension of the methylene blue dye was
taken as indicative of diffusion of the drugs previously given
each rat (Roesler et al., 2004; Jobim et al., 2012). Rats with
incorrect cannula placements were excluded from the statistical
analyses.

Statistics
Non-parametric tests were used to analyze retention test latencies
because of the 300-s cut-off imposed on retention test trials.
Training and retention test step-down latencies were analyzed
using a Kruskal–Wallis test followed by two-tailed Mann–
Whitney U-tests. Student’s t-tests for independent samples were
used for comparisons of BDNF levels between controls and TSA-
treated groups within each brain area (BLA or hippocampus). In
all comparisons, p < 0.05 was considered to indicate statistical
significance. All data are shown as mean ± standard error of
mean (SEM).

RESULTS

Time Course of Consolidation
Enhancement by Intra-BLA
Administration of TSA
The first set of experiments examined the effects of intra-BLA
administration of TSA at different posttraining intervals on IA
memory consolidation. Rats were given IA training followed
by a bilateral infusion of VEH or TSA (22 mM) into the BLA
immediately (VEH, N = 10; TSA, N = 9), 1.5 h (VEH, N = 13;
TSA, N = 13), 3 h (VEH, N = 14; TSA, N = 14), or 6 h (VEH,
N = 13; TSA, N = 13) after training. All rats were tested for
retention 24 h later after training.

Results are shown in Figure 1. Infusions given immediately
after training had no effect (p = 0.43, Figure 1A). However,
retention test latencies were significantly higher compared
to VEH-treated controls in rats infused with TSA at 1.5
(p < 0.01, Figure 1B), 3 (p < 0.05, Figure 1C), and 6
(p < 0.01, Figure 1D) h posttraining. There were no significant
differences between groups in training trial latencies (immediate
posttraining infusions, p = 0.10; 1.5 h posttraining infusions,
p = 0.25; 3 h posttraining infusions, p = 0.96; 6 h posttraining
infusions, p= 0.09).

Intra-BLA Administration of TSA Delays
IA Memory Extinction
We then went on to verify whether TSA into the amygdala would
affect IA extinction. Rats were given bilateral intra-BLA infusions
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FIGURE 1 | Enhancement of later phases of IA memory consolidation by HDAC inhibition in the amygdala shortly after learning. Rats were given a single IA training
trial followed by an infusion of VEH or TSA (22 mM) into the BLA (A) immediately, (B) 1.5 h, (C) 3 h, or (D) 6 h after training. Retention was tested 1 day after training
in all groups. Data are mean ± SEM latencies to step down; N = 9–14 rats per group; ∗p < 0.05, ∗∗p < 0.01 compared to respective controls.

FIGURE 2 | Amygdalar HDAC inhibition delays IA memory extinction. Rats
were given a single IA training trial and tested for retention 24 h later (Test 1).
This first test trial also served as extinction training. An infusion of VEH or TSA
(22 mM) was given into the BLA immediately after Test 1. Retention was
tested once daily from days 1 to 5 after Test 1 (Tests 2–5). A mild reminder
footshock was given after Test 5 and rats were tested again 1 day later
(Reminder). Data are mean ± SEM latencies to step down; VEH, N = 11,
TSA, N = 12; ∗p < 0.05; ∗∗p < 0.01 compared to controls.

of VEH (N = 11) or TSA (N = 12) immediately after the first test
trial (Test 1), which served as an extinction training trial. All rats
were tested for extinction 1 (Test 2), 2 (Test 3), 3 (Test 4), and
4 (Test 5) days after Test 1. Immediately after Test 5, rats were
given a reminder footshock and retention was tested again 1 day
later in the absence of footshock.

Results are shown in Figure 2. Latencies were significantly
higher in TSA-treated rats compared to controls in Test 2
(p< 0.01) and Test 4 (p< 0.01). The difference in Test 3 latencies
did not reach significance (p = 0.10), in spite of the apparently
higher latency in TSA-treated rats. Both groups reached similar
levels of extinction by Test 5 (p = 0.68). Overall, the results

FIGURE 3 | HDAC inhibition in the BLA results in increased BDNF levels in the
dorsal hippocampus in rats given IA training. Rats were given a bilateral
intra-BLA infusion of VEH or TSA (22 mM) immediately after IA training. Four
hours later, they were sacrificed and the BLA and dorsal hippocampus levels
were removed for BDNF measured with an ELISA. Data are mean ± SEM pg
of BDNF/ml of protein; VEH, N = 12, TSA, N = 10; ∗∗p < 0.01 compared to
respective controls.

indicate that TSA delayed extinction. Rats treated with TSA also
showed significantly higher latencies than VEH controls after
being presented with a reminder footshock (p< 0.05), supporting
the possibility that the fear response in TSA-treated rats was
more resistant to extinction. There were no significant differences
between groups in latencies during training (p= 0.68).

TSA Infusion into the BLA Increases
BDNF Levels in the Hippocampus But
Not Amygdala in IA-Trained Rats
In a separate group of rats given IA training followed by
an intra-BLA infusion of VEH (N = 12) or TSA (N = 10)
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FIGURE 4 | Infusion placements into the BLA. Representative
photomicrograph illustrating placement of a cannula and needle tip, and
schematic diagram of a coronal section of the rat brain (anteroposterior,
–2.8 mm from bregma), adapted from the atlas of Paxinos and Watson (2007),
depicting the diffusion of methylene blue in the BLA for rats included in the
statistical analysis.

immediately afterward, and sacrificed for BDNF measurements
4 h later, intra-BLA TSA induced a significant increase in BDNF
levels in the hippocampus (p < 0.01), but not in the BLA
(p= 0.85; Figure 3).

Histology
All animals (144 rats) included in the final analysis of IA
had cannula bilaterally placed in the BLA. Figure 4 shows
a representative photomicrograph illustrating placement of a
cannula and needle tip, as well as a schematic drawing of the
diffusion of methylene blue, which indicates infusion placements
and spread of drug infusions within the BLA.

DISCUSSION

Previous studies have shown that administration of HDACis into
the amygdala around the time of training or retrieval resulted
in enhanced consolidation and reconsolidation of memory for
fear conditioning (Maddox and Schafe, 2011; Monsey et al.,
2011), and systemic injections of HDACi could also accelerate
fear extinction (Lattal et al., 2007; Bredy and Barad, 2008; Itzhak
et al., 2012; Stafford et al., 2012). The present study reveals several
novel aspects related to the amygdalar HDAC involvement in
fear memory. First, we provide the first report of the effects of
HDAC inhibition in the amygdala on memory of IA. Second, we
show that HDACis can be more effective in enhancing memory
when given at later time points during consolidation (up to at
least 6 h after training) than when administered before or shortly
after learning. Third, we show that HDAC inhibition can impair
rather than facilitate fear extinction. Finally, we provide the first
evidence that inhibiting HDAC within the amygdala can result in
an increase in BDNF levels in the dorsal hippocampus.

In contrast to previous reports (Lattal et al., 2007; Bredy and
Barad, 2008; Itzhak et al., 2012; Stafford et al., 2012), we found
that treatment with an HDACi delayed rather than facilitated fear
extinction. In IA, memory reactivation at the time of testing can
initiate either one of two competing processes: further memory
strengthening, likely mediated by reconsolidation; or memory
extinction (Vianna et al., 2001; Jobim et al., 2012; Pedroso et al.,
2013; Furini et al., 2014; Roesler et al., 2014b). It is possible
that intra-BLA TSA given after retrieval acts by enhancing
reconsolidation to make the original memory more resistant to

extinction. The possibility that the original memory for training
was stronger in TSA-treated rats is supported by the finding
that, compared to controls, they showed an increased avoidance
response after exposure to a reminder shock.

Perhaps the most intriguing finding of the present report
was that intra-BLA TSA administration led to an increase
in BDNF protein content in the dorsal hippocampus, but
not in the amygdala. It is well established that BDNF,
which acts by activating its receptor, TrkB, resulting in the
stimulation of a range of intracellular kinase signaling pathways
including phospholipase C/protein kinase C, extracellular
signal-regulated protein kinase (ERK)/mitogen-activated protein
kinase (MAPK), and phosphatidylinositol 3-kinase, plays a
major role in synaptic plasticity and memory formation
(Huang and Reichardt, 2003; Minichiello, 2009; Yoshii and
Constantine-Paton, 2010). Consolidation of IA memory requires
BDNF/TrkB signaling that accompanies protein synthesis in
the dorsal hippocampus (Bambah-Mukku et al., 2014), and
intrahippocampal administration of an anti-BDNF antibody
before training impairs IA retention (Chen et al., 2012). Gene
transcription for BDNF is stimulated by HDACis (Wu et al.,
2008; Koppel and Timmusk, 2013), and systemic HDACi
treatment increases protein levels of BDNF in the rat brain
(Kim et al., 2009). In addition, administration of an HDACi
into the hippocampus rescues the impairment of IA memory
consolidation produced by TrkB inhibition (Blank et al., 2016).

Thus, promoting BDNF expression in the hippocampus could
be a crucial mechanism enabling amygdalar HDAC inhibition to
enhance different phases of IA memory consolidation. However,
TSA infused into the BLA immediately after training, which
resulted in an increase in hippocampal BDNF, did not affect
retention. It is possible that the increase in BDNF caused by
posttraining TSA was related to resistance to extinction, although
that BDNF has been shown to induce fear extinction under
some circumstances (Peters et al., 2010). Also, what could be
the mechanism mediating the increase in hippocampal BDNF
after inhibition of amygdalar HDAC? Previous studies have
indicated that BLA activity influences gene expression related
to IA memory formation in the hippocampus and related brain
areas. For instance, BLA activity is required to enable the
effects of memory-enhancing agents, including HDACis, given
into the hippocampus or entorhinal cortex (Roozendaal and
McGaugh, 1997; Roozendaal et al., 1999; Roesler et al., 2002;
Blank et al., 2014). Importantly, intra-BLA infusion of a memory-
enhancing drug, the beta-adrenoreceptor agonist clenbuterol,
resulted in an increase in dorsal hippocampal levels of activity-
regulated cytoskeletal protein (Arc, also called Arg 3.1), an
immediate-early gene involved in synaptic plasticity and memory
consolidation, whereas BLA inactivation by a lidocaine infusion
decreased Arc content in the hippocampus (McIntyre et al.,
2005; McReynolds et al., 2014). Noradrenaline can enhance
histone acetylation (Maity et al., 2016), and possible mechanisms
mediating BDNF influences on synaptic plasticity include an
upregulation of Arc levels (Yin et al., 2002; Ying et al., 2002).
Therefore, the possibility that increased histone acetylation in the
BLA can enhance hippocampal BDNF expression is consistent
with previously described neurotransmitter and gene expression
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pathways involved in BLA-hippocampal interactions during
memory formation.

Formation of IA memory has been previously shown to
involve ERK/MAPK signaling in the hippocampus and BLA 3 h
posttraining, but not shortly after training (Walz et al., 2000).
Increases in histone H3 acetylation in the amygdala induced
by fear conditioning are downstream of ERK/MAPK signaling
(Monsey et al., 2011), and BDNF mediates enhancing effects
on memory through MAPK activation (Revest et al., 2014).
Therefore, stimulation of hippocampal MAPK activity through
up-regulation of BDNF induced by intra-BLA TSA arises as
another candidate mechanism for the effects observed in our
study. It is likely that the enhancing effect of intra-BLA TSA
also involves the combined action of several other mechanisms.
TSA is a hydroxamic acid containing a functional group that
interacts with the critical zinc atom at the base of the catalytic
pocket of HDACs, thus inhibiting their activity. In addition to
inhibiting class I HDACs, which are localized predominantly to
the cell nucleus, TSA also inhibits HDAC6, the main cellular
cytoplasmic deacetylase (Bhalla, 2005; Bolden et al., 2006).
Moreover, HDACis might display extra-epigenetic effects, such
as direct interactions with cytoplasmic cell signaling pathways
and acetylation of non-histone proteins (Chen et al., 2005;
Glozak et al., 2005).

In summary, the present findings reveal novel aspects
of the involvement of amygdalar epigenetic mechanisms in
fear memory, by showing that HDAC inhibition in the
amygdala can enhance a later phase of consolidation, delay
extinction, and possibly act by increasing BDNF levels in the
dorsal hippocampus. Our findings raise the exciting possibility
that epigenetic manipulations within the BLA affect memory
processes by influencing the expression of molecules mediating

synaptic plasticity in the hippocampus rather than the amygdala
itself.
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