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Abstract. Ewing Sarcoma (ES) is a highly aggressive bone 
and soft tissue childhood cancer. The development of resis-
tance to chemotherapy is common and remains the main 
cause of treatment failure. We herein evaluated the expres-
sion of genes associated with chemotherapy resistance in 
ES cell lines. A set of genes (CCAR1, TUBA1A, POLDIP2, 
SMARCA4 and SMARCB1) was data-mined for resistance 
against doxorubicin and vincristine, which are the standard 
drugs used in the treatment of patients with ES. The expres-
sion of each gene in SK-ES-1 ES cells was reported before and 
after exposure to a drug resistance-inducing protocol. There 
was a significant downregulation of CCAR1 and TUBA1A in 
doxorubicin-resistant cells, with low expression of TUBA1A 
in vincristine-resistant cells. By contrast, POLDIP2 was 
significantly upregulated in cells resistant to either drug, and 
the expression of the SMARCB1 and SMARCA4 genes was 
upregulated in doxorubicin-resistant cells. These findings 
indicate that resistance to specific chemotherapeutic agents 
was accompanied by differential changes in gene expression 
in ES tumors. 

Introduction

Ewing Sarcoma (ES) is a bone and soft tissue tumor of 
possible neuroectodermal or mesenchymal origin that afflicts 
children and young adults. Approximately 20-25% of cases 

are metastatic at diagnosis, and the survival rates are poor in 
the advanced setting (1,2). ES is characterized by a frequent 
characteristic cytogenetic translocation of the EWSR1 
(22q12) and FLI-1 (11q24) genes. The resulting fusion protein 
EWS-FLI-1 is responsible for oncogene activation, inhibition 
of tumor suppression, chromatin remodeling and epigenomic 
reprogramming (3-5). 

Standard multimodality treatment consists of induction 
chemotherapy followed by local control with surgery and/
or radiotherapy and then consolidation chemotherapy with 
multiple drugs. Active chemotherapy agents in the first-line 
setting include doxorubicin, vincristine, cyclophosphamide, 
etoposide and ifosfamide. Treatment efficacy appears to reach 
a plateau after dose intensification and interval compression 
of all active agents (6,7), and the development of resistance 
to chemotherapy remains as the main cause of treatment 
failure (8,9). Cooperative groups have examined different 
chemotherapy combinations, dose-intensifying regimens 
with bone marrow transplantation, metronomic therapy 
and other synergistic mechanisms associated with the EWS 
fusion protein in ES. However, these approaches have failed 
to improve survival rates in clinical trials thus far (10,11). 
Elucidating the molecular mechanisms underlying the devel-
opment of chemotherapy resistance in ES may help develop 
new agents with improved synergy. 

Doxorubicin belongs to the class of anthracyclines and acts 
by topoisomerase II poisoning, creation of double-strand DNA 
breaks (DSBs), and impairment of DNA repair and super-
coiling, leading to changes in epigenetic processes (12,13). 
Mechanisms involved in resistance to doxorubicin include 
drug efflux transporters, alterations in the ability of doxoru-
bicin to form DSBs, and alterations in downstream apoptosis 
signaling triggered by DNA damage (14).

Vincristine, a natural alkaloid extracted from Vinca 
rosea, interferes with microtubule formation and stability 
through depolymerization, resulting in cell cycle arrest and 
apoptosis (15). In addition to affecting chromatin stability (16) 
by interfering with DNA binding and histone eviction, 
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vincristine also affects topoisomerase IIa levels (17). Resistance 
to vinca alkaloids involves overexpression of ATP-binding 
cassette (ABC) transporters such as P-glycoprotein, alterations 
of β-tubulin (βII, βIII and βIV) and multidrug-resistance 
proteins (18).

The aim of the present study was to investigate whether the 
expression of genes associated with resistance to chemotherapy 
in other tumor types is different in chemotherapy-resistant ES 
cells. The literature was first data-mined for genes associated 
with resistance to drugs used in ES treatment, focusing on 
doxorubicin and vincristine, and then SK-ES-1 cells resistant 
to these drugs were developed. Subsequently, the expression of 
the selected genes was evaluated with quantitative polymerase 
chain reaction (qPCR) analysis. 

Materials and methods

Data mining and refining. To select drug resistance genes, the 
literature was searched for studies investigating resistance to 
doxorubicin and vincristine in all cancer types. Approximately 
270 genes were identified, but only 23 genes appropriately vali-
dated by experimental methodologies (mutational and knockout 
gene analysis) were selected. This database was further enriched 
with information from online tools, such as DrugBank, Gene 
Ontology and UniProt. Finally, a set of five genes (CCAR1, 
TUBA1A, POLDIP2, SMARCA4 and SMARCB1) was selected 
based on pathways that are important for ES development. 

Cell culture. The standard Ewing sarcoma cell line SK-ES-1 
(American Type Culture Collection, Manassas, VA, USA) 
was cultured in RPMI-1640 medium (Gibco®; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) supplemented with 
10% bovine serum, 4 mg/ml gentamicin (Nova Farma, São 
Paulo, Brazil) and amphotericine B (Fungizone®, Invitrogen; 
Thermo Fisher Scientific, Inc.).

Chemoresistance induction. For chemotherapy resistance 
induction, the cells underwent treatment for 72 h, with 
increasing drug concentration every 2 weeks, for a period of 
≥10 weeks. The concentrations were 10, 20, 30, 40 and 50 mM 
for doxorubicin (Libbs, São Paulo, Brazil) and 0.5, 1, 2, 3 
and 4 nM for vincristine (Pfizer, Inc., New York, NY, USA). 
Untreated cells served as control (9). 

Cell proliferation. SK-ES-1 cells were seeded at a density of 
2.104 cells per well in 48-well plates. After 24 h, the cells were 
treated with vincristine and doxorubicin individually, including 
control. The concentrations for this treatment were 10, 30 and 
50 nM for doxorubicin and 1, 3 and 5 nM for vincristine. The 
medium was removed after 72 h of treatment; the cells were 
washed with phosphate-buffered saline, detached with 0.25% 
trypsin solution (no EDTA; Invitrogen; Thermo Fisher Scientific) 
and then counted with the trypan blue exclusion method in a 
hemocytometer, as previously described (19). The mean of three 
experiments for each dose was utilized for calculations.

RNA extraction and cDNA synthesis. RNA was extracted using 
TRIzol® (Invitrogen; Thermo Fisher Scientific) according to 
the manufacturer's protocol. cDNA was synthesized using 
the reverse transcription (RT)-PCR kit SuperScriptTM III 

First-Strand Synthesis SuperMix (Invitrogen; Thermo Fisher 
Scientific).

qPCR. qPCR was performed using the AB 7500 system 
(Thermo Fisher Scientific Inc.), with positive and negative 
controls. Reactions were prepared with KiCqStart® qPCR 
Ready mix™ (Sigma-Aldrich; Merck KGaA, St. Louis, MO, 
USA), using a 0.5-µl sample cDNA. Expression levels were 
evaluated using the 2-ΔΔCq method, with GAPDH used as the 
housekeeping gene. The primers used for CCAR1, TUBA1A, 
POLDIP2, SMARCA4 and SMARCB1 are listed in Table I.  

Statistical analysis. Statistical differences were analyzed 
using one-way analysis of variance, with the Sidak correc-
tion method for multiple comparison tests. Experiments 
were conducted three times and in triplicates. All statistical 
analyses were performed using SPSS 16.0 for Windows. The 
differences were considered statistically significant when 
P-values were <0.05.

Results

Protein network integration. Protein interaction networks are 
crucial for understanding the biological cellular processes. 
We designed a protein network to visualize the interactions 
between the selected genes and molecular pathways associated 
with ES. A set of genes associated with resistance to doxoru-
bicin and vincristine was manually curated. The open-source 
software programs Cytoscape version 3.6.0 and String version 
10.5 were used to build the network. The interactions between 
the investigated genes (CCAR1, TUBA1A, POLDIP2, 
SMARCA4 and SMARCB1) and DNA-topoisomerase II 
(TOP2A), a target of both doxorubicin and vincristine, and 
genes directly binding to EWS-FLI1 fusion protein, including 
those associated with spliceosomal activity that is crucial to 
ES pathogenesis, are shown in Fig. 1. 

Induction of chemotherapy resistance. Chemotherapy resis-
tance was successfully induced for both doxorubicin and 
vincristine in SK-ES-1 cells. Doxorubicin resistance was 

Table I. Quantitative polymerase chain reaction primer 
sequences.

Gene Primer sequence Product

SMARCB1 F: 5'-TCCGTATGTTCCGAGGTTCT-3' 154
 R: 5'-CTGGTGGCTAGAGTCGTGTA-3' 
SMARCA4 F: 5'-GCTCCGAGGTCTGATAGTGA-3' 133
 R: 5'-CGCTGTCTGGATCTGGAATC-3' 
CCAR1 F: 5'-AGAGTTCGACGTGTTGTTCC-3' 90
 R: 5'-GCGCCTTAGTTCCATCATGT-3' 
TUBA1A F: 5'-TTGTTCACTGGTACGTTGGG-3' 105
 R: 5'-AATCCACACCAACCTCCTCA-3' 
POLDIP2 F: 5'-TTCCAGTATAGCAGCCACGT-3' 97
 R: 5'-GAACATCAAAGTGGGAGCCA-3' 
GAPDH F: 5'-CAAGATCATCAGCAATGCCTCC-3' 103
 R: 5'-GACTGTGGTCATGAGTCCTTCC-3'

F, forward; R, reverse.



MOLECULAR AND CLINICAL ONCOLOGY  8:  719-724,  2018 721

evidenced at concentrations of 10 nM (P<0.0001 compared 
with controls) and 30 nM (P<0.005 compared with controls), 

and vincristine resistance at a concentration of 3 nM (P<0.0005 
compared with controls; Fig. 2).

Figure 2. Chemotherapy resistance in SK-ES-1 Ewing sarcoma cells. Evidence of resistance was observed at concentrations of 10 and 30 nM for doxorubicin 
and 3 nM for vincristine. Values are presented as percentage of survival of resistant (R) vs. non-resistant (NR) SK-ES-1 cells, for three independent experi-
ments; **P<0.005; ***P<0.0005; and ****P<0.0001 compared with controls cells.

Figure 1. Protein interaction network of genes involved in resistance to chemotherapy. Genes selected for this study are represented in red or green according to 
higher or lower relative mRNA expression, respectively, between control and chemoresistant Ewing sarcoma cells. DNA-topoisomerase (TOP)2A and TOP2B 
(pink/orange) were included due to their role as doxorubicin targets. Genes involved in spliceosomal activity and EWS/FLI1 activity are shown in yellow. The 
network was constructed using the STRING database, version 10.5.
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Gene expression. Changes in expression for the selected genes 
in chemoresistant ES cells were analyzed. The results revealed 
a modest, but statistically significant downregulation of CCAR1 
(P<0.0001 compared with control cells; Fig. 3A) and TUBA1A 
(P<0.0001 compared with controls) in doxorubicin-resistant 
cells, with decreased expression of TUBA1A also observed in 
vincristine-resistant cells (P<0.0001 compared with controls; 
Fig. 3B). By contrast, POLDIP2 was upregulated in cells 
resistant to either drug (P<0.0001 for doxorubicin-resistant and 
P<0.0005 for vincristine-resistant cells; Fig. 3C). For SMARCB1 
and SMARCA4, gene expression was upregulated in cells 
resistant to doxorubicin (P<0.0001 and P<0.0005, respectively), 
whereas changes were observed in vincristine-resistant cells for 
SMARCB1 only (P<0.0005; Fig. 3D and E). 

Discussion

Resistance to chemotherapy remains the main reason for treat-
ment failure in patients with ES. In the present study, a group 
of genes was selected (TUBA1A, POLDIP2, SMARCA4, 
SMARCB1 and CCAR1), known in other tumors to be asso-
ciated with resistance to drugs commonly used in ES, and 
the gene expression in chemotherapy-resistant ES cells was 
evaluated. It was demonstrated that the TUBA1A expression 
levels were lower in cells resistant to either doxorubicin or 
vincristine, when compared with the non-resistant cells. The 
TUBA1A gene encodes the α-tubulin protein, which belongs 
to the tubulin family of proteins that form and organize 
microtubules that are required for cell division and movement. 
Given that vincristine is a microtubule-depolymerizing agent, 

resistance to this agent may develop from changes in tubulin 
levels (20). Doxorubicin may interfere in TUBA1A levels, 
with lower gene expression observed in resistant MCF-7 breast 
cancer cells (21).

Upregulation of POLDIP2 in the chemotherapy-resistant 
ES cells was also observed. POLDIP2 encodes a protein 
implicated in the activity of translesional polymerases. The 
translesion synthesis polymerase and primer extension activi-
ties of PrimPol play a role in DNA damage tolerance (22); its 
involvement in repair processes may explain the increases 
in cell sensitivity to oxidative stress when POLDIP2 is 
silenced (23). In addition, POLDIP2 plays an important role 
in DNA replication/repair and regulation of reactive oxygen 
species and participates in cytoskeletal reorganization as 
well as key pathways in cancer, including those involved in 
autophagy and cell cycle regulation (24). POLDIP2 is also 
involved in vascular integrity, smooth cell migration and 
adhesion (25). These processes are important for tumor devel-
opment and survival, and its upregulation in drug-resistant 
cells may contribute to increased tumor aggressiveness.

Both SMARCB1 and SMARCA4 are part of the SWI/SNF 
chromatin-remodeling complex, which recruits TOP2A to 
DNA and leads to the formation of DSBs and cell death. Loss 
of the SWI/SNF complex results in drug resistance, including 
DSBs and repair pathways (26). Knockdown of SMARCA4 and 
SMARCB1 leads to increased chemotherapy resistance (27). 
Our results revealed higher expression levels of SMARCA4 
and SMARCB1 in doxorubicin-resistant ES cells, suggesting 
a different landscape in ES. The oncogenic EWS-FLI1 
fusion induces chromatin-remodeling patterns, stimulating or 

Figure 3. Gene expression analysis of (A) CCAR1, (B) TUBA1A, (C) POLDIP2, (D) SMARCB1 and (E) SMARCA4 in chemoresistant and non-resistant 
SK-ES-1 Ewing sarcoma cells. Values represent the relative expression of genes in doxorubicin (DOX)-resistant, vincristine (VCR)-resistant, and control 
SK-ES-1 cells (cell lines); **P<0.005; ***P<0.0005; and ****P<0.0001 compared with control cells.
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repressing enhancers and establishing a modified oncogenic 
regulatory and interaction network that may explain divergences 
in drug resistance mechanisms among different tumors (4).

The results of the present study are consistent with previous 
evidence indicating that loss of SMARCB1 is found in a small 
percentage of ES patients, and this may interfere favorably 
with outcome. It is possible that the combination of EWSR1 
translocation and SMARCB1 loss increases susceptibility of 
tumor cells to treatment (28). 

CCAR1 is a biphasic regulator of cell growth and apop-
tosis, and plays an important role in tumorigenesis in gastric 
cancer (29) and hepatocellular carcinoma (30). CCAR1 can 
target gene activation by estrogen and glucocorticoid receptors 
in breast cancer cells (31), and androgen receptors in prostate 
cancer (32). EWS-FLI1 alters mRNA splicing in ES cells, giving 
rise to several protein isoforms implicated in oncogenesis (33), 
and CCAR1 is associated with spliceosomal activity. An unex-
pected decrease in CCAR1 expression levels was observed in 
doxorubicin-resistant cells. Further experiments are required 
to elucidate how this gene is associated with chemotherapy 
resistance and alternative splicing in ES. Although the genes 
selected in the present study have different functions and are 
involved in diverse pathways, our integration network reveals 
a possible connection among these different mechanisms. 
Therefore, repair pathways, SWI/SNF chromatin remodeling, 
microtubule rearrangements and spliceosomal activity may be 
interacting to maintain chemoresistance mechanisms in ES.

In summary, the present findings provide early evidence 
revealing novel changes in gene expression associated with 
chemotherapy resistance in ES cells. Gene knockout assays, 
characterization of resistance pathways and the use of tumor 
samples from patients are among the next steps required to 
confirm and extend these findings, and validate this set of genes 
as possible targets to counteract therapy resistance in ES.
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