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Abstract
The evolution of self-gravitating systems to out-of-equilibrium stationary states occurs
through the mechanism of violent relaxation, a process by which particles exchange energy
by moving in a time-changing potential. It’s commonly well accepted that this stage’s
dynamics is governed by the Vlasov equation – a kinetic equation whose evolution conserves
the system’s entropy. This dissertation goes through the formulation of kinetic theories
until the Vlasov equation is defined within the limit N →∞. The entropy production of
finite self-gravitating systems – during the process of violent relaxation – is investigated
using molecular dynamics simulations. The author then determines that the entropy is
produced on a timescale that grows with Nα, α > 0, diverging in the thermodynamic
limit and therefore, keeping the entropy constant. In addition, the dynamics of a few
observables in mean-field models based on the Vlasov equation are identical to those
obtained from molecular dynamics simulations, corroborating the validity of the Vlasov
equation even for finite models.

Key-words: Long-range interacting systems. Vlasov equation. Entropy production.





Resumo
A evolução dos sistemas auto-gravitacionais para estados estacionários fora de equilíbrio
ocorre através do mecanismo de relaxação violenta, um processo pelo qual partículas trocam
energia por estarem se movendo em um potencial dependente do tempo. É comumente
aceito que a dinâmica dessa fase seja governada pela equação de Vlasov – uma equação
cinética cuja evolução conserva a entropia do sistema. Esta dissertaçao estende-se desde a
formulação de teorias cinéticas até a definição da equação de Vlasov no limite N →∞.
A produção de entropia em sistemas auto-gravitacionais finitos – durante o processo de
relaxação violenta – é investigada usando simulações de dinâmica molecular. O autor
então determina que a entropia é produzida em uma escala de tempo que cresce com Nα,
α > 0, divergindo no limite termodinâmico e, portanto, mantendo a entropia constante.
Além disso, a dinâmica de alguns observáveis em modelos de campo médio baseados na
equação de Vlasov são idênticos àqueles obtidos de simulações de dinâmica molecular,
corroborando a validade da equação de Vlasov mesmo para modelos finitos.

Palavras-chave: Sistemas com interações de longo-alcance. Produção de entropia.
Equação de Vlasov.
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1 Conventions

It is interesting to define, at first, some conventions utilized by the author in this
dissertation. The most outstanding ones are as follow:

• The full distribution function is denoted by f (N) and the one-particle DF is denoted
by f , for simplicity, as it was done in the author’s attached paper;

• The Eulerian vector is denoted by ~x = (~q, ~p), in contrast to the attached paper,
where vectors are distinguished using a bold font, as in w = (q,p);

• The set of vectors (~x1, . . . , ~xN) is denoted by {~xi};

• The Laplacian is denoted by ∆, instead of ∇2 or ∇ · ∇.

• The partial derivative of a function f with respect to a variable x may appear
represented as ∂xf .
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2 Long-range interacting systems

Long-range interacting (LRI) system is a denomination for those systems whose
potential decays as a power of the inverse of the distance with an exponent smaller than
the dimensionality of the embedding space. These systems distinguish themselves from
short-ranged ones as the contributions to its internal energy from any sub-part of the
system cannot be neglected – including the interface, which isn’t clearly defined. These
conditions make LRI systems non-additive. Furthermore, the collisionless aspect of its
interactions makes them converge to non-equilibrium quasi-stationary states – whose
lifetime is often macroscopic, possible diverging in the thermodynamic limit – instead of
stationary ones [1]. Due to its long-range (LR) forces, these systems are also known as
non-integrable, e.g., let the interaction potential ψ be

ψ(r) ∝

£

rγ
(2.1)

where £is the coupling constant and r is the distance in the configuration space. Let
the internal energy ε of a particle placed at the center of a homogeneously density filled
d-dimensional (hyper-)sphere of radius R be equal to

ε =
∫ R

δ
ddr ρ

£

rγ
(2.2)

= ρ

£Ωd

∫ R

δ
dr rd−1−γ (2.3)

= ρ

£Ωd

d− γ
[
Rd−γ − δd−γ

]
(2.4)

where ρ is the density, Ωd is the volume of a d-dimensional (hyper-)sphere and δ is an
arbitrarily small radius whereupon we neglect the contributions from within. As the radius
R of the sphere is made to increase, the energy ε remains finite only if γ > d, otherwise
the energy diverges. Hence, the definition of non-integrable for LRI systems. δ → zero.

The outcome of N-body systems’ study typically relies on statistical mechanics.
The derivation of macroscopic quantities – and in particular thermodynamic properties
– from a probabilistic analysis is one of the most successful and solid achievements in
physics. However, one can inquire about the applicability of thermodynamic and statistical
mechanics for certain research fields. The study of non-neutral plasma or self-gravitating
systems (SGS) isn’t trivial, as these are LRI systems (to cite only the most researched
areas within the concern of LR interactions). The non-integrability of the potential makes
that the total energy grows superlinearly with the volume (at constant density), which
leads to non-extensivity, although it can be recovered by redefining the coupling constant

£as £

V σ/d−1. In particular, the Kac’s prescription corresponds to the case where σ = 0,
and it’s usually applied for mean-field models. It’s worth to note at this point that in
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the models studied in this dissertation, the volume extends to infinity and, the Kac’s
prescription is the equivalent of £

→

£

/N , leading to a well defined thermodynamic limit
as N →∞ [1, 2]. Nonetheless, the LR nature of the interaction forces still presents an
issue, as the system’s internal energy is non-additive, and there’s no such mechanism
as re-scaling to restore it. The lack of additivity is, indeed, the principal cause that
leads to non-traditional results of statistical mechanics of long-range interacting systems –
foremost non-equivalence of ensembles and negative specific heat – though, undoubtedly,
it is possible to have a well understanding of it [3].

An alternative to statistical mechanics is to work out the results from a dynamical
perspective relying on kinetic theories, even if it makes matters more complicated since
one must figure out a closed equation for the one-particle distribution function f (1) (see
section 3.1). The Boltzmann transport equation (BTE) is paramount in dealing with
short-range interacting systems:

df
dt = ∂f

∂t
+ ~p

m
· ∇qf −∇qψ · ∇pf =

(
∂f

∂t

)
coll

(2.5)

where f = f (1)(~x, t) is the one-particle distribution function (DF), ~xi = (~qi, ~pi) is the
Eulerian vector of, respectively, the generalized coordinate and momentum of the i’th
particle, m is the mass of the particle, and

(
∂f
∂t

)
coll

is the collisional term, also known as
relaxation term.

Because that the lifetime of collisions is supposedly very short with respect to the
average time between collisions; because that the particles interact only through binary
collisions within a short range of the potential; and because that the molecular chaos
hypothesis holds; then, the distribution function converges to the well known Maxwell-
Boltzmann distribution and the system achieves equilibrium. Contrarily, LRI systems do
not hold these assumptions, and thus the time evolution mechanism of the distribution
function f = f (1)(~x, t) must be made anew. To introduce mean-field potentials into the
transport equation is a realistic choice once Kac’s prescription is performed – considering
the thermodynamic limit. The forces acting over an individual particle depends on the
large-scale structure of the system and, with the increasing number N →∞, the particles’
correlation vanishes. The full distribution function, f (N), is then expected to reflect the
behavior of the one-particle distribution function, f (1). Its exact evolution, however,
depends on the two-body distribution function. Hopefully, given satisfactory assumptions,
one can get rid of it (or replace it by the collisional term, as in the case of the BTE),
making it a closed equation [2].

In the following, the author intends to present its study of the dynamical properties
of self-gravitating systems, a well known and studied LRI system, and in particular, its
entropy production during the process of violent relaxation to out-of-equilibrium steady
states. The key objective is to corroborate Vlasov equation’s validity during this process
by means of its entropy production. The author’s published work on the subject [4] is
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attached to the end of the dissertation and contain most of the reasoning, while the body
of the dissertation presents the necessary mathematical deductions and basis theories –
a literature review, so to speak. Vlasov equation is a mean-field model, which can be
introduced within the context of the kinetic theory, as it was seen above. In the remaining
of this chapter, the published paper’s main line of thought will be briefly reproduced,
showing how Vlasov equation fulfill any essential requisites to describe self-gravitating
systems (in the thermodynamic limit), including the violent-relaxation phase, as well as
the reasons why its entropy production not in the least invalidate its applicability.

Long-range interacting systems achieve quasi-stationary states instead of converging
to thermodynamic equilibrium, as it has already been stated. Particularly, SGS reach it by
the mechanism of violent relaxation, a process characterized by parametric resonances in
which particles exchange energy by moving in a time-changing potential. In order to study
its dynamic, it’s fairly common to take advantage of the LRI nature of SGS and reduce
the 2dN -dimensional Γ phase space to the 2d-dimensional µ phase space, containing N
points. The concept behind it is as follow: the correlation functions g(s) become null at
the thermodynamic limit N → ∞ because of Kac’s prescription (see section 3.1), and
then the reduced distribution functions f (s) can be well approximated by a product of
one-particle distribution functions, i.e.,

f (s)(~x1, . . . , ~xs, t) =
s∏
i=1

f(~xi, t) (2.6)

where f (s) is the s-particle distribution function. The physical meaning of this factorization
is clear. The full distribution function, f (N), can be written as Eq. 2.6 and thus, its
dynamic must mimic the one-particle DF’s behavior. Also, the interaction forces between
particles tend to zero because the 1/N term in the potential. These – satisfactory –
assumptions makes Vlasov equation an appropriate choice for the kinetic equation1. The
collisionless Boltzmann transport equation, also know as the Vlasov equation, is

df
dt = ∂f

∂t
+ ~p

m
· ∇qf −∇qψ · ∇pf = 0. (2.7)

The time-reversibility of Vlasov equation, however, presents another issue. Since the
equation has the form of df/dt = 0, the distribution function evolves as an incompressible
fluid over the phase space, and then its entropy, as well as any local integral of the
DF, must remain constant [5]. Naturally, the fine-grained entropy remains constant as
the volume held by the particles in the phase space cannot increase, yet its dynamic
never ceases. On a coarse-grained scale, however, the system’s evolution may appear to
reach a stationary state – despite the continuum evolution – as the distribution function
stretches and folds over an extended volume of the µ phase space (see figure 1). In this
case, the coarse-grained entropy of the system will increase until the apparent stationary
state is achieved. Nonetheless, molecular dynamic simulations shall display some entropy
1 Even if its ‘discreteness’ doesn’t strictly classify it as a kinetic equation.
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Figure 1 – Snapshots of the phase space of a one-dimensional system composed of
N = 131072 non-interacting particles. The configuration space has periodic
boundary conditions. The distribution function evolves through the process of
filamentation and phase-mixing, and at some point, the resolution is no longer
sufficient to perceive the dynamics and the system appears to be stationary.
The times of the snapshots are: (a) t = 0; (b) t = 50 and (c) t = 1000.

production due to its coarse-grained nature, even if the entropy estimator is a fine-grained
one. That’s because the limited resolution of computers, or experiments for all that matter,
doesn’t allow the full fine-grained evolution to be seen. Take Gibbs entropy, for instance

SG = −kB
∫
f (N)({~xi}, t) ln f (N)({~xi}, t)dN~x (2.8)

where f (N)({~xi}, t) is the full DF for a system composed of N particles and dN~x =
d~x1 . . . d~xN . Since N must be finite, there would be some residual correlation between the
particles and the system’s entropy will eventually increase and reach a maximum. It should
not invalidate Vlasov equation though, unless it is proven that the entropy production
observed doesn’t have relation with the number of particles in the simulation, i.e., that the
entropy grows regardless of the finite-number-of-particle’s-residual-correlation. Otherwise,
it could be demonstrated that the entropy production scales with Nα, diverging in the
thermodynamic limit and, implying that the fine-grained entropy will remain constant as
it is required by Vlasov dynamics. The timescale of the relaxation time for many different
systems is briefly discussed by [1], while the timescale of the entropy production in SGS is
discussed by the author in the attached paper [4].
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3 Dynamical properties of LRI systems

Statistical mechanics, despite its successfulness for short-range interacting systems,
is by no means ‘traditional’ in which concern LRI systems. Nonetheless, any system at
equilibrium, for which the constraints are known, will provide the value of observables
if they average computation over the appropriate distribution function at the Γ phase
space is allowed. Still, this procedure has no indication of transient states or the timescale
in which the process takes places, and therefore, in order to study out-of-equilibrium
dynamics, specifically its approach of (quasi-) stationary states, one must make use of
kinetic theories. In the next sections, the basis of kinetic theory and the deduction of the
Vlasov equation will be presented.

3.1 Kinetic theory and reduced distribution functions
The solution of a kinetic equation determines the dynamical state of the distribution

function of one single particle. Consequently, the kinetic equation must be a closed equation
of the one-particle DF. Usually, two approaches can be used to derive a kinetic equation,
the first is the BBGKY hierarchy – proposed almost simultaneously by Bogoliubov (1946),
Born and Green (1949), Kirkwood (1946) and Yvon (1935) – which is largely used in
the Boltzmann transport equation derivation. The second one is more simple, relying on
Klimontovich’s equation, and will be seen at the next chapter.

In order to reduce the distribution function, one can start with the Liouville equation
and estimate how the chosen procedure will affect the dynamic or the value of the
observables. Consider a system composed of N identical particles interacting by a pairwise
potential Vij = V (|~qi − ~qj|). Its Hamiltonian is written as,

H =
N∑
i=1

p2
i

2m + 1
2

N∑
i=1

N∑
j 6=i

V (|~qi − ~qj|) (3.1)

where m is the mass of the particles and ~qi and ~pi are, respectively, the generalized
coordinate and momenta. Let its distribution function f (N)(~x1, . . . , ~xN) be governed by
the continuity equation. The Liouville equation is

∂f (N)

∂t
+

N∑
i=1

~pi
m
· ∇if

(N) −
N∑
i=1

N∑
j 6=i

(∇iVij) ·
∂f (N)

∂~pi
= 0 (3.2)

at which point it was inserted, into the continuity equation, the Hamiltonian’s equations
of motion and the usual notation ∇i = ∂/∂~qi was adopted.

As both Hamiltonian and Liouville equations are invariant with respect the permuta-
tion of any two particles, any reasonable DF must also satisfy this condition. In particular,
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the reduced s-particle distribution function is defined by the partial integration of the full
DF, i.e.,

f (s)(~x1, . . . , ~ws) = N !
(N − s)!

∫
dws+1 . . . dwNf (N)(~x1, . . . , ~xN , t). (3.3)

And as it is guaranteed that f (N) is completely symmetric with respect to the exchange of
any two particles, there’s no dilemma to which set of (N − s) particles will be integrated
to obtain the reduced s-particle DF. Further assuming that the full DF f (N) is normalized
to 1, will made f (s) normalized to∫

d~x1 . . . d~xs f (s) = N !
(N − s)! . (3.4)

The time evolution of the s-particle DF can be calculated by performing the corre-
sponding partial integration in the Liouville equation. Then, by also requiring that f (N)

vanishes at the boundary of the defined domain, i.e.,∫
d~xi

~pi
m
· ∇if

(N) = 0 and (3.5)∫
d~xi (∇iVij) ·

∂f (N)

∂~pi
= 0, (3.6)

the time evolution will be given by
∂f (s)

∂t
= −

s∑
i=1

~pi
m
· ∇if

(s) +
s∑
i=1

s∑
j 6=i

(∇iVij) ·
∂f (s)

∂~pi

+
s∑
i=1

∫
d~xs+1 (∇iVi,s+1) · ∂f

(s+1)

∂~pi
,

(3.7)

for s = 2, . . . , N − 1. If s = 1 the above equation holds true without the second term of
the right-hand side. Together, equations 3.2 and 3.7 (including the condition for s = 1)
constitute what is known as the BBGKY hierarchy: a set of N coupled integro-differential
equations, in which the time evolution of each f (s) is coupled to f (s+1), except by Liouville
equation itself, which is a closed equation for f (N).

So far, the BBGKY hierarchy doesn’t provide a closed equation for any reduced
s-particle DF. However, one can hope that cutting the hierarchy at some small value of
s could be sustained by the introduction of some degree of approximation. For certain
‘families’ of observables, the knowledge of the first few DFs f (s), even if not exact, can be
sufficient for the computation of its observables’ expectation values. For example, suppose
that some observable O is the sum of identical one-particle functions a,

O(~x1, . . . , ~xN) =
N∑
i=1

a(~xi). (3.8)

Its expectation value 〈O〉 is given by

〈O〉(t) =
∫

d~x1 . . . d~xN O(~x1, . . . , ~xN) f (N)(~x1, . . . , ~xN , t) (3.9)

=
∫

d~x1 . . . d~xN
N∑
i=1

a(~xi) f (N)(~x1, . . . , ~xN , t). (3.10)
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Reducing to the one-particle DF (see equation 3.3) and recalling the conditions of nor-
malization and permutation of the reduced s-particle DF, the expected value is given
by

〈O〉(t) =
N∑
i=1

∫
d~xia(~xi)

∫
d~x1 . . . d~xi−1d~xi+1 . . . d~xN f (N)(~x1, . . . , ~xN , t) (3.11)

=
N∑
i=1

∫
d~xia(~xi)

(N − 1)!
N ! f(~xi, t) (3.12)

=
∫

d~x1a(~x1)f(~x1, t). (3.13)

Notwithstanding the expected value being written in terms of the one-particle DF, it is
still dependent on f (2). To make a closed equation for f further approximations will be
necessary, though these will depend on the type of the system under consideration. A
common expression that facilitates additional approximations of f (2) is

f (2)(~x1, ~x2, t) = f(~x1, t) f(~x2, t) + g(2)(~x1, ~x2, t) (3.14)

where g(s), s = 2 in the above equation, is the correlation function of the s-particle DF
and is related to the deviation from the complete DF in its uncorrelated form. The time
evolution (equation 3.7) for the one-particle DF is then, written as

∂

∂t
f(~x1, t) + ~p1

m
· ∇1f(~x1, t)− (∇1V [f, t]) · ∂

∂~p1
f(~x1, t)

=
∫

d~x2 (∇1V12) · ∂
∂~p1

g(2)(~x1, ~x2, t)
(3.15)

where V [f, t] is the averaged two-particles interaction potential:

V [f, t] =
∫

d~x2V12f(~x2, t). (3.16)

A common approximation is to set g(2) = 0 when at the thermodynamic limit – it was
the one utilized by the author in the introduction, recall equation 2.6. This is satisfactory
in the limit N →∞ because as f (2) grows with N2, g(2) grows slowly, with N . Analogous
evaluations can be done for s > 2 arriving at similar results [2]. This last procedure finally
allows one to produce a kinetic equation, be it by setting g(2) = 0 or substituting the
right-hand side by the collisional term (as was also mentioned in the introduction).

3.2 Deduction of the Vlasov equation from Klimontovich’s
This section is dedicated to derive Vlasov equation in a more straightforward pro-

cedure than to derive it from BBGKY hierarchy. The deductions presented here will be
limited to a one-dimensional systems with periodic boundary conditions in the configuration
space. Although, it can easily be expanded for two or three dimensions.
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Let the Hamiltonian of a system composed of N particles be

H =
N∑
j=1

Pj
2 + U({Θj}) (3.17)

where Θj and Pj are, respectively, the canonical coordinate and momenta of the j’th
particle. Let the system be periodic in space with Θj ∈ [0, 2π) and the potential to be a
sum of pair interactions

U(Θ1, . . . ,ΘN) = 1
2

N∑
i=1

N∑
j 6=i

V (Θi −Θj). (3.18)

The discrete time-dependent density function of the above system is described by

fd(θ, p, t) = 1
N

N∑
i=1

δ(θ −Θj(t)) Θ(p− Pj(t)) (3.19)

where δ denotes the Dirac ‘delta’ function and (θ, p) are the Eulerian coordinates in the
phase space. By differentiating with respect to time, the density function assumes the
following form

∂

∂t
fd(θ, p, t) = − 1

N

N∑
i=1

Pj
∂

∂θ

(
δ(θ −Θj(t)) δ(p− Pj(t))

)

+ 1
N

N∑
i=1

∂U

∂Θj

∂

∂p

(
δ(θ −Θj(t)) δ(p− Pj(t))

)
,

(3.20)

at which point was introduced the Hamiltonian’s equations of motion. Using the following
property of the delta function: aδ(a− b) = bδ(a− b), equation 3.20 can also, be written as

∂

∂t
fd(θ, p, t) = − 1

N

N∑
i=1

p
∂

∂θ

(
δ(θ −Θj(t)) δ(p− Pj(t))

)

+ 1
N

N∑
i=1

∂v

∂θ

∂

∂p

(
δ(θ −Θj(t)) δ(p− Pj(t))

)
,

(3.21)

where

v(θ, t) = N
∫

dθ′dp′V (θ − θ′)fd(θ′, p′, t). (3.22)

After rearranging the terms, the formal expression for the Klimontovich equation is
obtained. It’s also important to note that this derivation is exact even for a finite number
N of particles.

∂fd
∂t

+ p
∂fd
∂θ
− ∂v

∂θ

∂fd
∂p

= 0. (3.23)

The Klimontovich equation is the equivalent of the Hamiltonian’s equations of motion,
i.e., it contains the information on the orbit of each and every particle, making it very diffi-
cult (if not impractical) to solve for a system of many particles. Alternatively, starting with
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an well defined set of initial conditions, all of them close to the same macroscopic state, one
could define an averaged one-particle distribution function, denominated f0, and performed
over the density of such initial macroscopic state, denominated fin({Θi(0)}, {Pi(0)}, t).

f0(θ, p, t) = 〈fd(θ, p, t)〉 (3.24)

=
∫ ∏

i

dΘi(0)dPi(0)fin({Θi(0), Pi(0)})fd(θ, p, t). (3.25)

In contrast to the equation 3.19 which is discrete, f0 is smooth, and its time evolution is
given again by an average over fin. It’s necessary to note at this point that the fluctuations
δf around the smooth distribution is defined as

fd(θ, p, t) = f0(θ, p, t) + 1√
N
δf(θ, p, t) (3.26)

The physical interpretation of the above equation is that, after integrating the quantity
δf , i.e., the difference between a singular distribution function containing Dirac ‘delta’
functions and the smooth distribution function, over a region large enough to contain
many particles but small compared to the total available space, its result will be of the
order 1/

√
N . That said, the introduction of the above equation (3.26) into equation 3.22

will result into the following

v(θ, t) = 〈v〉(θ, t) + 1√
N
δv(θ, t) (3.27)

where the first term is an average over fin and the second defines δv. Introducing the last
two expression (equations 3.26 and 3.27) into the Klimontovich equation (3.20) will result
in

∂f0

∂t
+ p

∂f0

∂θ
− ∂〈v〉

∂θ

∂f0

∂p

= − 1
N

(
∂δf

∂t
+ p

∂δf

∂θ
− ∂δv

∂θ

∂f0

∂p
− ∂〈v〉

∂θ

∂δf

∂p

)
+ 1
N

∂δv

∂θ

∂δf

∂p
.

(3.28)

After averaging it over fin, the result will be

∂f0

∂t
+ p

∂f0

∂θ
− ∂〈v〉

∂θ

∂f0

∂p
= 1
N

〈
∂δv

∂θ

∂δf

∂p

〉
. (3.29)

because any average over fin by the terms containing δf or δv will yields zero, as these
depends on all of the Lagrangian variables of the initial state. Equation 3.29 is the
equivalent of equation 3.15 and it’s exact. The right-hand side of it usually correspond to –
after a suitable approximation – the collisional term of the Boltzmann transport equation
if short-ranged forces are acting. Otherwise, as the right-hand side is of order 1/N , at the
thermodynamic limit it can be neglected, leading to the Vlasov equation

∂f0

∂t
+ p

∂f0

∂θ
− ∂〈v〉

∂θ

∂f0

∂p
= 0. (3.30)

In the next section, it will be seen what are the effects in the system’s dynamics of
the introduction of terms like 1/

√
N , as in the equations 3.26 and 3.27.
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3.3 Kac’s prescription
The Kac’s prescription was first introduced in chapter 2 in the context of a re-scale

of mean-field models as a factor of 1/N into the potential, N being the number of particles.
The absolute weight of the mean-field term in Vlasov’s equation (third in the left-hand side
of equation 3.30) does depend on Kac’s re-scaling, however it affects only the dynamics’s
timescale. To clarify this, take as an example the following generic equation of motion

dqi
dt = 1

N
F (q1, . . . , qN) (3.31)

where F has the Kac’s scaling 1/N term. Now, if the system’s dynamics – governed by 3.31
– reach some final (quasi-) stationary state within a timescale that doesn’t depend on N , it’s
obvious that with the Kac’s re-scaling the system will achieve the same final state, going
through all the transient states, but

√
N faster. The consequence of this statement is that

for a system whose dynamic’s timescale doesn’t depend on N, its intensive thermodynamic
quantities (e.g., temperature, energy per particle) also doesn’t depend on N, after all, Kac’s
prescription does restore the system’s extensivity. It becomes clearer if the substitution
done to the time variable were to be made with the Hamiltonian H → NH , i.e., getting
rid of the 1/N term in the potential would be at the coast of measuring the energy in
units of NH .

In conclusion, the Kac’s prescription is an appropriate mathematical tool in deal-
ing with LRI interacting systems and the results derived from performing it are easily
transformed quantitatively to find out what they would be if the prescription were not
performed.
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4 Gravitational systems

4.1 SGS in one and two dimensions
The study of gravitational systems in one and two dimensions, apart from the

natural understanding from simplified toy models, can, sometimes, give insights into
3d gravitational structures – disk-like galaxies, for instance, are also reproduced in two-
dimensional simulations. They have the advantage of a infinite upper bound of the
potential, preventing the particles to escape its gravitational pull, and also avoiding the
singularity of 3d Newtonian forces. Besides the interest in self-gravitating systems (SGS) by
itself, simple dimensionality-reduced SGS constitute an ideal ground for studying statistical
mechanics of long-range interacting (LRI) systems, or in the case of this dissertation, to
corroborate the interpretation of the entropy production enunciated at the introduction.

4.1.1 Reduced Poisson equation

In order to study the entropy production of one- and two-dimensional SGS, it is
convenient to define dimensionless variables, essentially to decrease numerical errors in
molecular dynamics (MD) simulations, as well as to obtain an appropriate timescale. The
Poisson equation, in one dimension, after re-scaling the mass, length, velocity, potential,
mass density, and energy, respectively by the total mass of the system M , the arbitrary
length scale L0, the velocity unit V0 = (2πGML0)1/2, the potential unit ψ0 = 2πGML0,
the mass density unit ρ0 = M/L0, and the energy unit ε0 = MV 2

0 , is then, reduced to

∆ψ(x, t) = 2ρ(x, t) (4.1)

where ρ is the mass density. These re-scales are the equivalent to set the gravitational
constant G and the total mass of the system M to 1. Therefore, the dynamical time is
defined as

τd = (2πGρ0)1/2 . (4.2)

The one-dimensional SGS system derived from the 1d Poisson equation (4.1) consists of N
sheets of mass m = M/N uniformly distributed in the yz-plane moving in the x-axis, free
to pass one another. The extensivity of its internal energy is guaranteed by the constant
value of the system’s total mass, even in the thermodynamic limit N →∞, i.e., defining
the mass of each particle as m ∝ N−1 is the equivalent of the Kac re-scaling.

In two dimensions, the re-scale done to the Poisson equation is analogous to the one
made in one dimension, as it’s also the equivalent to set the gravitational constant G and
the total mass M to unity. The individual mass of the particles was kept as m = M/N , as
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well as the arbitrary length scale L0 and the energy unity ε0 = MV 2
0 , although the velocity

unit changed to V0 = (2GM)1/2 and the potential unit changed to ψ0 = 2GM . Then, the
reduced Poisson equation, considering only systems with azimuthal symmetry, is

∆ψ(~r, t) = 2πρ(~r, t) (4.3)

where ρ(~r, t) is the mass density, obtained after integrating the one-particle DF over the
velocity space. The dynamical time is defined as

τd = L0√
2GM

. (4.4)

The solutions of the one- and two-dimensional Poisson equation (respectively, the
equations 4.1 and 4.3) are easily obtained using Green’s function (see appendix A), as
for each one, the mass density of one single particle is a function of the Dirac ‘delta’
function. The solution of Green’s function for one and two dimensions, together with the
reduced Poisson equations, leads to the Hamiltonian for each model, which is utilized in
MD simulations. It is as follow [1, 6]

The one-dimensional reduced Hamiltonian is

H (x, p) =
N∑
i=1

p2
i

2m + m2

2

N∑
i=1

N∑
j 6=i
|xi − xj| . (4.5)

And the two-dimensional reduced Hamiltonian is

H (~r, ~p) =
N∑
i=1

p2
i

2m + m2

2

N∑
i=1

N∑
j 6=i

ln |~ri − ~rj| . (4.6)

4.1.2 Virial conditions for SGS

It’s well known that the virial theorem imposes that systems at equilibrium must
suffice some requirements of equipartition of energy. In what follows, for generic self-
gravitating systems, the virial condition will be the demonstrated. Consider the following
generic Hamiltonian of a sytem composed of N particles,

H =
N∑
i=1

~pi
2m + 1

2

N∑
i=1

N∑
j 6=i

V (~ri − ~rj) (4.7)

where ~q and ~p are, respectively, the generalized coordinate and momentum and V (~ri − ~rj)
is the pair interaction potential. Let the function I be defined as the virial function:

I =
〈

N∑
i=1

~ri · ~pi
〉
t

(4.8)

where the brackets 〈◦〉t denote a time average. For a system at equilibrium, it’s desired
that dI/dt = 0, then

d
dt

〈
N∑
i=1

~ri · ~pi
〉
t

=
〈

N∑
i=1

p2
i

m

〉
t

−
〈

N∑
i=1

~ri · ∇iṼ

〉
t

= 0 (4.9)
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where Ṽ = ∑N
k<j V (~rj − ~rk) is the second term of the right-hand side in the Hamiltonian

(equation 4.7). If Ṽ is a homogeneous function of order p, then

pṼ =
N∑
i=1

~ri · ∇iṼ . (4.10)

The insertion of the above equation into equation 4.9 yields

2K − pU = 0, (4.11)

where K and U are denoted as K = 1
N

〈∑N
i=1

p2
i

2m

〉
t
(the average of the kinetic energy per

particle) and U = 1
N

〈
Ṽ
〉
t
(the average of the potential energy per particle), both at a

stationary state.
In the one-dimensional SGS model presented in the previous section, the potential

is a homogeneous function of order p = 1. While for the two-dimensional SGS model
presented, the potential is logarithm and need some manipulation to turn it homogeneous
of order p = 0 [7]. The virial number R0 is a defined quantity that, when equals to unity,
guarantees that these conditions are fulfilled. For the SGS models described above, the
definitions of R0 is:

R0 ≡
2K
U

if d = 1 and, (4.12a)

R0 ≡ 2〈v2〉 if d = 2 (4.12b)

where, besides the already mentioned denotations of K and U , 〈v2〉 is the average velocity
squared per particle, also at some stationary state.

Given that the initial distributions suffice the conditions 4.12, its expected that
the system reaches a quasi-stationary state (qSS) as fast as it is possible. Otherwise, if
the initial distribution does not satisfy these condition, the system will undergo strong
oscillations, slowly approaching the qSS.

4.1.3 Molecular dynamics simulations

The simulations of self-gravitating systems were performed using molecular dynamics.
The collisional nature of MD is a fundamental condition, given the hypothesis of residual
correlation between the particles. In other words, if the entropy produced through the
evolution shall be related to the residual interactions, these must exist in the simulations.
In this regard, the methodology benefits from the Hamiltonian’s equations of motion,
which can be obtained from section 4.1.1, since these contain explicit interactions between
the pairs of particles.

In the beginning, the particles are distributed accordingly to the waterbag distribution,
satisfying the virial conditions 4.12. These distributions should be as close as possible to
equilibrium, rapidly reaching a quasi-stationary state, avoiding loss of resolution due to
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numerical imprecision resulting from strong oscillations. The initial particle distribution
has the form

f(~q, ~p) = ηΘ(qM − |~q|)Θ(pM − |~p|) (4.13)

where qM and pM are the boundary limits to the coordinates and momenta into the µ
phase space, Θ is the Heaviside function, and η is a constant of normalization whose value
is η = 4qMpM in one dimension and η = (πqMpM)−2 in two dimensions. The expected
energy per particle ε0, at the time t = 0, for these distributions are ε0 = p2

M
6 −

1
3 in one

dimension and ε0 = p2
M
4 −

1
8 in two dimensions. The virial conditions reduces to pM = 1 for

all dimensions.
The results of one- and two-dimensional MD simulations and the analysis of its

entropy production are described in the author’s attached paper.

4.2 SGS in three dimensions
The relaxation to quasi-stationary states of three-dimensional self-gravitating systems

is extremely difficult to study with MD simulations. Newton’s gravitational potential
has a characteristic form – with no lower bound but with an upper one – which allows
particles to gain enough energy to escape its gravitational pull. Furthermore, considering
the singularity of the potential when the distance |~ri − ~rj| → 0, there’s no limit to the
number of particles that can escape. Nonetheless, for initial distributions satisfying the
virial number R0 = −2K/U and considerable short simulation’s time, its dynamic can be
reasonable well represented by MD simulations.

Recalling section 4.1, the three-dimensional reduced Poisson equation is

∆ψ(~r, t) = 4πρ(~r, t) (4.14)

where, one more time, the mass density ρ(~r, t) is obtained after integrating the one-particle
DF over the velocity space. These re-scaling to dimensionless variables results in a
dynamical time τd equals to

τd =
(
L3

0
GM

)1/2

(4.15)

where, once again, L0 is an arbitrary length scale, G is the gravitational constant and
M = mN is the total mass of the system. The reduced Hamiltonian is

H (~q, ~p) =
N∑
i=1

p2
i

2m +
N∑
i=1

N∑
j 6=i

m2

|~ri − ~rj|
(4.16)

with an average potential energy per particle ε0 = 3p2
M

10 −
3
5 , at the time t = 0, for the

waterbag distribution 4.13 with a constant of normalization equal to η = (4π/3)−2(qMpM)−3.
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4.2.1 Fine and coarse-grained entropy in three-dimensional SGS

The entropy produced in three-dimensional molecular dynamics simulations, as in
the one- and two-dimensional cases, is discussed in the author’s attached paper. It’s
determined in there that the entropy production is originated from residual correlations
between the finite number of particles [4]. However, one may ask about accuracy by
reproducing an estimate of fine-grain entropy, after all, the estimator has been described
as a coarse-grained.

In order to establish a reference, the entropy produced during the MD simulations of
the three-dimensional model introduced in this chapter (equation 4.16) was also estimated
by a fine-grained entropy estimator, besides the coarse-grained one mentioned in the
attached paper. The fine-grained version is described in [8], where the entropy production
for three-dimensional SGS has a different interpretation. Figure 2 compare both of the
entropy estimators. It is worth noting that while the fine-grained estimator (ŝ) is Shannon’s
entropy, the coarse-grained one (s̄G) is Gibbs’s entropy. They differ only by the Boltzmann
constant.
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Figure 2 – Entropy production during the MD simulation of the three-dimensional SGS
model (equation 4.16). The entropy is estimated using two different methods.
Note that both curves are very similar, mostly if the slope is considered. The
parameters of the simulation are N = 131072 and R0 = 1.





Part III

Final considerations
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5 Conclusion

The role of the entropy production in the out-of-equilibrium dynamics of self-
gravitating systems was explored. In Chapter 3 it was seen the basis for which the
kinetic theory was built and even with a solid understanding of it, the solution of kinetic
equations depends too much on assumptions. Despite reproducing many observed physical
phenomena with success, one may question if the current acceptable approach for some
theory really is correct. Recently it was inferred that the Vlasov equation isn’t adequate to
reproduce the dynamics of self-gravitating systems because of its entropy production during
the violent relaxation phase. The authors of the attached paper went over the entropy
production for the initial stages of the evolution of SGS in one, two and three dimensions.
They have determined that the entropy observed does not invalidate the Vlasov equation,
on the contrary, its timescale was associated with a power law of the number of particles –
Nα, where α assumes the values 0.10, 0.15 and 0.20 for respectively three, two and one
dimension, though it’s not clear at which conditions determines the value of the exponent
α. This last statement strongly implies that at the thermodynamic limit, when N →∞,
the correlations will vanish and the lifetime of the entropy production will be infinite,
meaning it has to be conserved as is required by Vlasov dynamics. Nonetheless, molecular
dynamics simulations of SGS do display some entropy production due to its residual
correlations and one may question if reliable models of Vlasov dynamics could afford
not to keep the entropy constant through the evolution. This could implicate that for
models far from the thermodynamic limit, some observables derived from a coarse-grained
procedure within the Vlasov’s formalism could be wrong. The authors compared the
evolution of observables from simulations with both collisional and collisionless methods.
They observed no significant difference between the two. As collisionless simulations are
effective solutions to Vlasov’s equation, it’s a clear evidence of the equivalence between
the averages over fine- and coarse-grained distribution functions.
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APPENDIX A – Solutions of Green’s
function for the Poisson equation

A Green’s function is the impulse response of a non-homogeneous linear differential
operator L acting over a subset of RN. In other words, it is any solution of

LG(~x, ~x0) = δ(~x− ~x0) (A.1)

where ~x is a vector of dimension d = N and δ(~x − ~x0) is the Dirac delta function in d

dimensions. In particular, the Green’s function for the Poisson equation requires it to be
harmonic in ~x everywhere but ~x0, and zero on the boundary ∂D of the domain D, i.e., ∆G(~x, ~x0) = δ(~x− ~x0)

G
∂D

= 0
(A.2)

where ∆ is the Laplacian. Let ~x0 = 0 and then, G(~x, 0) ≡ G(|~x|). Integrating it over the
space S of a (hyper-)sphere of radius ε, S = ~x : r = |~x| < ε, yields∫

|~x|<ε
∆G(r)dd~x ≡

∫
|~x|=ε
∇G(r)dd−1~x

≡ Sd−1ε
d−1 ∂G

∂r

∣∣∣∣∣
r=ε

= 1
(A.3)

at which point was applied the Green’s theorem and the right-hand side of equation A.2
was integrated to 1. Sd−1 is defined as the ‘surface area’ of the (d−1)-dimensional (hyper-)
sphere [9]. Solving the above equation (A.3) for G(r), recalling that limr→∞G(r) = 0,
results in

G(~x, ~x0) = −1
(d− 2)Sd−1 |~x− ~x0|d−2 . (A.4)

In one dimension, the solution of the Green’s function for the Laplace operator is
trivial and can be obtained just substituting the values in equation A.4 (the surface of a
0-sphere has length S0 = 2), resulting in

G(x, x0) = 1
2 |x− x0| . (A.5)

While for two dimensions, the solution needs to be worked from equation A.3. S1 = 2π
and then,

G(~x, ~x0) = 1
2π ln |~x− ~x0| (A.6)

because ∂rG(r) needs to be equal to (2πr)−1. Note that the solutions, both for one and
two dimensions, are distinctly different from the familiar three-dimensional gravitational
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potential. The particles attract each other more as they get further apart. For three
dimensions, S2 = 4π, and just substituting the values in equation A.4 results in

G(~x, ~x0) = −1
4π |~x− ~x0|

. (A.7)

Notice that all of the performed solutions match its reduced Poisson equation (subsection
4.1.1 and section 4.2) so that the constants are dropped. Using Green’s function second
identity, the generic Poisson equation, ∆ψ(~x) = f(~x), can be solved as∫

G(~x, ~x0)∆ψ(~x)dd~x ≡
∫
ψ(~x)∆G(~x, ~x0)dd~x

=
∫
G(~x, ~x0)f(~x)dd~x

(A.8)

so that, the Poisson equation solution is∫
ψ(~x)δ(~x− ~x0)dd~x =

∫
G(~x, ~x0)f(~x)dd~x (A.9)

ψ(~x) =
∫
G(~x0, ~x)f(~x0)dd~x0 (A.10)

where the property G(~x0, ~x) = G(~x, ~x0) has been used. And because f(~x0) usually is a
function of the mass density written as the Dirac delta function, the Poisson equation
solution is just the product of G(~x, ~x0) with the constants of f(~x).
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ANNEX A – Published paper on the subject

In this last part of the dissertation, the author’s accepted manuscript of the published
paper on the subject, named “Entropy production and Vlasov equation for self-gravitating
systems” is attached. In there, it is to be found all of the development that leads to the
conclusion.

http://iopscience.iop.org/article/10.1088/1751-8121/aaea0c
http://iopscience.iop.org/article/10.1088/1751-8121/aaea0c
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The evolution of a self-gravitating system to a non-equilibrium steady state occurs through a
process of violent relaxation. In the thermodynamic limit the dynamics of a many body system
should be governed by the Vlasov equation. Recently, however, a question was raised regarding the
validity of Vlasov equation during the process or violent relaxation. In this paper we will explore
the entropy production during the relaxation process using N-body molecular dynamics simulations.
We will show that the entropy production time grows as Nα, with α > 0 and in the limit N → ∞,
entropy will remain constant, consistent with the Vlasov equation. Furthermore, we will show that
the mean field dynamics constructed on the basis of the Vlasov equation is in excellent agreement
with the full molecular dynamics simulations, justifying the applicability of Vlasov equation during
the violent relaxation phase of evolution.

I. INTRODUCTION

Long range (LR) interacting systems are distinct from
systems which interact through short-range forces. While
the latter achieve thermodynamic equilibrium irrespec-
tive of the initial condition, the final state to which LR
interacting systems evolve depends strongly on the initial
condition. Self-gravitating systems (SGS) are paradig-
matic of systems with LR interactions. It is known that
SGS reach their quasi-stationary states (qSS) by process
of violent relaxation [1–4], in which some particles gain
energy from the rest of the system through parametric
resonances [4–7]. The process usually results in a violent
relaxation to a qSS. It has been well accepted that in the
thermodynamic limit the dynamical evolution of the one-
particle distribution function (DF) should be described
by the Vlasov equation. Recently, however, this belief
has been questioned [8] based on the investigation of the
entropy production during the process of violent relax-
ation. The authors of the reference [8] observed for many
different initial conditions a strong entropy increase dur-
ing the process of violent relaxation which can not be ac-
counted for in the framework of Vlasov equation, which
requires that entropy must remain constant during the
dynamical evolution.

For a d-dimensional system of particles interacting
through a LR force, most of the contribution to the
force acting on a given particle comes from the interac-
tion with distant particles. In the thermodynamic limit,
when N → ∞, the pairwise interaction with the nearby
particles can be neglected and the total force acting on a
particle can be calculated using the mean-field potential.
The probability DF of a many particle system can then
be written in terms of a product on one-particle DFs

f (N)({w} , t) =
N∏

i=1

f(wi, t) (1)

∗ levin@if.ufrgs.br

which satisfy the collisionless Boltzmann, or Vlasov,
equation [9–12],

(
∂

∂t
+

p
m

· ∇q −∇qψ · ∇p

)
f (q,p, t) = 0 (2)

where q and p are respectively the generalized coordi-
nate and momentum, m is the particle’s mass, f is the
one-particle DF, and ψ ≡ ψ(q, t) is the mean-field in-
teraction potential. The advantage of working with LR
systems is that the 2dN -dimensional phase space of sys-
tems with short range interactions effectively collapses
to a 2d-dimensional µ phase space which can be more
easily visualized and studied. Since Vlasov equation is
time-reversible, its microscopic dynamics needs to be rec-
onciled with the Clausius second law of thermodynam-
ics. In fact, Boltzmann solved a similar problem for
systems with short-range interacts by postulating that
the entropy is a logarithm of the total number of mi-
crostates compatible with a given macrostate, irrespec-
tive of whether these microstates can be reached from a
given initial condition or not [13]. On the other hand,
the Gibbs entropy,

SG = −kB
∫
f (N) ({w} , t) ln f (N) ({w} , t) dNw (3)

where the integral is performed over all the phase space
and dNw ≡ {dw1, ..., dwN}, is conserved by the Liou-
ville/Vlasov dynamics. Since the Liouville and Vlasov
equations can be written as df (N)/dt = 0, the prob-
ability DF evolves as an incompressible fluid over the
phase space, and any local integral of DF is conserved by
the flow [14]. The evolution of the probability DF never
stops, continuing on smaller and smaller length scales.
Therefore, only on a coarse-grained scale it is possible to
say that a system evolves to a stationary state and that
the entropy “increases” [15–17]. This behavior is illus-
trated in Figure 1, which shows the evolution of µ phase
space of a one dimensional system of non-interacting
particles confined in a box with periodic boundary con-
ditions, starting from an initial waterbag distribution.
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FIG. 1. Snapshots of the phase space of a one dimensional
system of N = 131072 non-interacting particles with periodic
boundary conditions: the fine-grained probability DF evolves
through the process of filamentation and phase-mixing. At
some point the resolution is no longer sufficient to perceive dy-
namics, and the system appears to be stationary. The times of
plots are: (a) t = 0, (b) t = 10, (c) t = 100 and (d) t = 1000.

Clearly for this non-interacting system there is no doubt
of validity of Vlasov equation. The initial distribution
is seen to evolve through a process of filamentation and
phase space mixing. During the dynamics, the initial dis-
tribution stretches and folds over an extended volume of
the µ phase space, (Figures 1b and 1c). On a fine-grained
scale the phase space volume occupied by the particles
remains constant. On a coarse-grained scale, however,
it appears that the evolution reaches a stationary state
(Figure 1d), in which phase space volume occupied by the
particles is larger than the volume of the original distri-
bution. In Figure 2 we also show the “violent relaxation”
of the second moment of the particle distribution func-
tion as it evolves to equilibrium from t = 0. Note that
the violent relaxation time does not depend on the num-
ber of particles, for sufficiently large system sizes, as was
also observed for systems of interacting particles [18].

For LR systems the entropy can be rewritten in terms
of one-particle distribution function, Eq. 1, and can be
calculated using an entropy estimator [19–21]

s̄Gk
−1
B =

1

N

N∑

i=1

ln
(
Nr2di V2d

)
+ γ (4)

where ri is the distance in the µ phase space from particle
i to its nearest neighbor, V2d is the volume of a hyper-
sphere of 2d dimensions, γ is the Euler-Mascheroni con-
stant, kB is the Boltzmann constant and N the number
of particles. The quantity s̄Gk

−1
B is, in fact, a coarse-
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FIG. 2. Violent relaxation of the second moment of the par-
ticle distribution, from initial to final stationary state. Note
that for sufficiently large system sizes, the relaxation time is
independent of the number of particles in the system.

grained estimator of Shannon entropy per particle, which
is distinguished from Gibbs entropy by the constant kB .
This facilitates comparison with [8], which also estimates
Shannon entropy.

Figure 3a shows the entropy production (per particle)
for a one dimensional non-interacting particle system of
Fig. (1) with various number of particles N . As ex-
pected, in spite of the system dynamics being governed
by Vlasov equation, the coarse-grained entropy is not to
conserved. On the other hand if the time is rescaled with
N1/2 we see that the entropy productions curves all col-
lapse onto a universal curve. Figures 4a and 5a show
the entropy production for a system of non-interacting
particles in two and three dimensions, respectively. A
perfect data collapse is again found, if time is rescaled
with Nα, where the exponent α is α = 1/2d. Therefore,
the entropy production time for non-interacting particles
in d dimensions scales as τ× ∼ N1/2d, and diverges in the
thermodynamic limit, implying that the fine-grained en-
tropy will remain constant, as is required by the Vlasov
equation. The fact that the coarse-grained entropy in-
creases with time, does not invalidate in any sense Vlasov
equation which is exact for these no-interacting systems.
Indeed, as we already saw in Figure 2 a calculation of ob-
servables such as ⟨x2⟩ can be equally well performed us-
ing either a fine-grained distribution function or a coarse-
grained one, in spite of the fact that coarse-grained en-
tropy increases with time.

In the remaining of this paper the entropy production
of SGS will be investigated. The objective is to verify
that in the thermodynamic limit, Vlasov equation does
describe the dynamical evolution of a self-gravitating sys-
tem, including the violent relaxation phase. The paper
is organized as follow: Sec. II gives a brief review of
one and two dimensional SGS; Sec. III focuses on three
dimensional SGS, the entropy production, and others ob-
servables; Sec. IV discuses the results and presents the
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FIG. 3. (a) Entropy production per particle in a one dimen-
sional system of non-interacting particles of Figure 1; and
(b) is the data collapse. For this non-interacting system the
collapse appears to be exact, showing that the entropy pro-
duction time scales with Nα, α = 0.5. Therefore, in the limit
N → ∞, the entropy will remain constant, as is required by
Vlasov equation.

conclusions.

II. ENTROPY PRODUCTION IN
SELF-GRAVITATING SYSTEMS

The difficulty with studying three dimensional self-
gravitating systems is that they are intrinsically unstable.
Since the Newton gravitational potential is unbounded
from below and is bounded from above, some particles
can gain enough energy from the rest of the system to
completely escape its gravitational attraction [16, 22].
This makes it very difficult to perform any kind of statis-
tical analysis of the 3d gravitational clusters, except for
very special virial initial conditions, studied in Section III
[16]. Therefore, most of our analysis will be performed
using one and two dimensional self-gravitating systems,
for which the gravitational potential is unbounded from
above, preventing particle evaporation. The SGS MD
simulations were performed in CUDA/C++ language,
at constant energy, with rescaled dimensionless vari-
ables, i.e., the equivalent of considering the system’s to-

tal mass and the gravitational constant equals to unity.
For one dimensional SGS, the numerical method applied
was a fourth order implementation of the symmetric B3A
method of Runge-Kutta-Nystroem with six stages from
the C++ BOOST/odeint library [23]. The error in en-
ergy was kept smaller than 2.0 × 10−7 %. For two and
three dimensional SGS, it was applied the CUDA algo-
rithm of clustering tiles into thread blocks [24] with the
improvement of loop unrolling. The numerical method
was a fourth order symplectic integrator from [25] and the
error in the energy was kept smaller than 1.0× 10−3 %.

A. Virial condition

To study entropy production, all the MD simulations
start with initial waterbag distribution which satisfies the
virial condition, R0 = 2K/(2 − d)U = 1.0, where K is
the initial kinetic energy, U is the gravitational potential
energy, and d is the space dimension. Such distributions
are expected to be as close to stationary as possible, with-
out being an exact solution of Vlasov equation [11, 26],
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FIG. 4. (a) Entropy production in a two dimensional system
of non-interacting particles in a box with periodic boundary
conditions; and (b) is the data collapse. Like Figure 3, the
collapse appears to be exact, showing that the entropy pro-
duction time scales with Nα, α = 1/4. Therefore, in the limit
N → ∞, the entropy will remain constant, as is required by
Vlasov equation.
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FIG. 5. (a) Entropy production for a three dimensional sys-
tem of non-interacting particles inside a box with periodic
boundary conditions; and (b) is the data collapse. If the en-
tropy production time is scaled with Nα, α = 1/6 a perfect
data collapse is observed.

and should rapidly relax to the qSS [27]. This allows us
to reduce the loss of resolution due to numerical impre-
cision resulting from strong oscillations and diminishes
the system size necessary to observe the finite size scal-
ing of the entropy production time. The initial particle
distribution has the form,

f(q,p) = ηΘ(qM − |q|)Θ(pM − |p|) (5)

where qM and pM are, respectively, the boundary lim-
its of coordinates and momenta in the µ phase space,
η is a constant of normalization whose value in 1d is
η = (4qMpM )−1; in 2d is η = (πqMpM )−2; in 3d
η = (4π/3)−2(qMpM )−3, and Θ is the Heaviside func-
tion. In this paper, the distances will be measured in
units of qM , mass of particles in the units of total mass
M , and the time in the units of dynamical time τd, so
as to make equations of motion dimensionless. This is
equivalent to setting qM = 1.0, total mass to M = 1,
and the Newton gravitational constant to G = 1. The
energy per particle at time t = 0 is then ϵ0 =

p2
M

6 + 1
3

in one dimension, ϵ0 =
p2
M

4 − 1
8 in two dimensions, and

ϵ0 =
3p2

M

10 − 3
5 in three dimensions, and the virial condition

reduces to pM = 1 for all d, see [6, 28].

B. Gravitation in one dimension

One dimensional SGS consists of point particles of
mass m moving along the x-axis, free to pass through
one another. The reduced Poisson equation assumes the
following form

∇2ψ(x, t) = 2 ρ(x, t) (6)

where ψ(x, t) is the reduced gravitational potential and
ρ(x, t) is the reduced mass density. The reduced variables
are: the dynamical time scale τd =

√
2πGρ0 where G is

the Newton gravitational constant; ρ0 = M/L0 is the
mass density; L0 is an arbitrary length scale which we
take to be qM = 1; M = mN is the system’s total mass,
which we set to 1; and V0 =

√
2πGML0 is a velocity scale.

The mass density of the i’th particle is ρ(x, xi) = mδ(x−
xi). The reduced gravitational potential at position x
produced by N particles is

ψ(x, t) =
1

N

N∑

i

|x− xi| (7)

Note that the binary interaction between any two par-
ticles vanishes as 1/N2. In the thermodynamic limit,
therefore, the dynamics of a 1d SGS should be governed
by the Vlasov equation. The evolution of the particle
distribution over the reduced µ phase space is shown
in Figure 6. Once again we see the characteristic fila-
mentation structure, which results in an effective gain
of the phase space volume accessible to the particles, in
the coarse-grained sense. The evolution of the coarse-
grained entropy is shown in Figure 7a for different system
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FIG. 6. Snapshots of the phase space of a 1d self-gravitating
system of section II B. N = 131072 and R0 = 1.0. The times
are: (a) t = 0, (b) t = 10.0, (c) t = 100.0 and (d) t = 1000.0.
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FIG. 7. (a) Entropy production for a 1d self-gravitating sys-
tem of section II B; and (b) is the time rescale. The early
stages evolution indicate that the entropy production time
grows as Nα, α = 0.20, therefore taking an infinite amount of
time when N → ∞. Different from non-interacting particles,
scaling with N appears to hold only at early times.

sizes. In Figure 7b we show that if the time is rescaled
with Nα, with α = 0.2, we can collapse the entropy pro-
duction onto a single curve. This implies that in the
thermodynamic limit N → ∞, the time scale for the
entropy production will diverge, and the entropy will re-
main constant consistent with the Vlasov dynamics. This
is similar to what was found for non-interacting particles,
however, in the case of SGS the exponent α is smaller,
implying that for systems with not too many particles the
loss of fine-grained resolution happens very fast, leading
to rapid entropy production.

C. Gravitation in two dimensions

For a two dimensional SGS, the dimensionless Poisson
equation is

∇2ψ(r, t) = 2π ρ(r, t) (8)

where ψ(r, t) is the two dimensional gravitational po-
tential and ρ(r, t) is the mass density. The dynamical
time scale is τd = L0/

√
2GM , where once again, G is the

Newton gravitational constant; M is the system’s total

mass, which we set to 1; and L0 is an arbitrary length
scale which we set to qM = 1. The mass density ρ(r, t)
is obtained by integrating the probability DF over the
momentum. For N particle system the gravitational po-
tential at position r is given by the solution of Poisson
equation

ψ(r, t) =
1

N

N∑

i

ln |r− ri| . (9)

The evolution of the configuration space is shown in Fig-
ures 8 and of coarse-grained entropy and its rescaled form
are shown in Figures 9a and 9b. Once again we obtain a
reasonable data collapse for early times, with the expo-
nent α = 0.15.

D. Entropy production in 3d

It is very difficult to study entropy production in 3d
SGS because of a very rapid loss of resolution, which
requires a very large number of particles to detect the
scaling structure of the entropy production time. Nev-
ertheless, in Fig. 10a we see that if the dynamical time
is rescaled by Nα, the early time region of the entropy
production curves collapses onto a single curve, show-
ing that, at least in the early stages of the simulation,
i.e., during the period of violent relaxation, there is a
reasonably good scaling of entropy with the number of
particles. The exponent α ≈ 0.1 for 3d systems, how-
ever, is lower than for 1d and 2d SGS. Nevertheless, in
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FIG. 8. Snapshots of the configuration space of a 2d
self-gravitating system of section II C. N = 131072 and
R0 = 1.0. The times are: (a) t = 0, (b) t = 10.0, (c) t = 32.0
and (d) t = 100.0.
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FIG. 9. (a) Entropy production in a 2d self-gravitating system
with N particles, section II C; and (b) if the time is rescaled
with Nα, α = 0.15, the curves can be reasonably collapsed to
a single curve for short times. In the thermodynamic limit,
therefore, the entropy production will be zero, consistent with
the Vlasov equation.

the limit N → ∞ the entropy production will require in-
finite amount time, consistent with the Vlasov dynamics.

III. 3D SGS: EVOLUTION OF OBSERVABLES

In view of the very fast loss of resolution and rapid
entropy production in 3d SGS, the authors of Ref. [8]
argued that Vlasov equation is not appropriate to de-
scribe the violent relaxation of these systems. Based on
our finite size analysis, however, we see that this conclu-
sion is incorrect, since in the infinite N limit, the time
for the entropy production diverges, and the fine-grained
entropy will remain constant as is required by the Vlasov
equation. Nevertheless, one might question whether for
systems with large, but finite N , Vlasov dynamics can
provide an accurate description of the temporal evolu-
tion of 3d SGS and, in particular their relaxation to the
qSS. Unfortunately, it is very difficult to explicitly solve
the Vlasov equation for 3d SGS, however, we can explore
the validity of the assumptions underlying Vlasov equa-
tion by performing simulations in which each particle in-
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FIG. 10. (a) Entropy production in a three dimensional self-
gravitating system and (b) its dynamical time rescale, α =
0.10.

teracts with the mean gravitational potential produced
by all other masses. Such simulations will eliminates the
correlational (or collisional) effects and provides an in-
direct way of solving the Vlasov equation. We shall call
such simulations “collisionless MD”. For spherically sym-
metric particle distributions, the mean-field can be easily
calculated by replacing each particle by a spinning spher-
ical shell of radius and angular momentum same as the
real particle. For the shell system, the force is purely
radial, so that the angular momentum of each shell is
conserved. The dynamics of each shell then reduces to
its radial coordinate, and the force on each shell can be
easily calculated using the Gauss law [6]. Clearly if both
collisional (simulation which is based on explicit binary
interaction between the particles) and collisionless sim-
ulations will result in the same dynamical evolution of
observables of a system, it will provide a very clear in-
dication of validity of Vlasov dynamics for systems with
large but finite number of particles, in spite of the en-
tropy production.

One particularly relevant quantity to study in MD sim-
ulations is the evolution of the “envelope” of the particle
distribution defined in terms of the root-mean-squared
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(rms) of the particle coordinates [6]

re =

√
5

3
⟨r · r⟩ . (10)

The factor of 5/3 is included so that at t0, the enve-
lope is precisely qM . The other interesting quantity to
consider is the average kinetic energy of the particles.
We will compare the evolution of both the envelope and
the kinetic energy using both collisional and collisionless
MD simulations for initial distribution with virial num-
ber R0 = 0.5 and a number of particles N = 131072.
This virial number was chosen to force the system to un-
dergo strong oscillations, rapid entropy production, while
preserving the spherical symmetry of the initial distribu-
tion [28]. Figure 11 shows the time evolution of the enve-
lope, while Figure 12 shows the evolution of the kinetic
energy per particle. We see that both collisional and col-
lisionless simulations lead to almost identical evolution
of both observables, in spite of a rapid entropy produc-
tion. A small deviation in the final qSS, is due to slightly
different initial conditions, due to random number gen-
erator.

Therefore, we conclude that for 3d SGS the relevant
observables can be equally well calculated using either
the exact fine-grained distribution f(p,q, t) obtained
from the solution of the Vlasov equation, or an effec-
tive coarse-grained distribution in which the f(p,q) is
coarse-grained over some microscopic length scale,

fcg(q,p, t) =
1

(∆p∆q)d

∫

∆p,∆q

f(q′,p′, t) dq′dp′ . (11)

While the entropy calculated using the fine-grained dis-
tribution is strictly conserved, the entropy calculated us-
ing the coarse-grained distribution will grow and saturate
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FIG. 11. Envelope of the particle distribution. Both colli-
sional and collisionless simulations follow identical dynami-
cal evolution, implying that Vlasov equation accounts per-
fectly well for the violent relaxation phase, N = 131072 and
R0 = 0.5.
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FIG. 12. Kinetic energy per particle. Both collisional and
collisionless simulations have almost identical dynamics. A
small difference between the curves is due to slightly different
initial conditions in the two simulations verified using different
seeds for the pseudo-random number generator in the MD
simulations. N = 131072 and R0 = 0.5.

as is observed in the collisional MD simulations. The role
of “coarse-graining” in the MD simulations comes from
the residual correlations between the masses and the nu-
merical error. Nevertheless, the agreement between col-
lisionless and collisional simulations implies that the av-
erage of observables calculated using either fine-grained
or coarse-grained distributions are identical in the ther-
modynamic limit,

⟨O(t)⟩ =
∫
O(q,p)f(q,p, t)dqdp =

∫
O(q,p)fcg(q,p, t)dqdp. (12)

The fine-grained distribution function obtained from the
solution of the Vlasov equation can, therefore, be used to
account for the violent relaxation in SGS with large but
finite number of particles.

IV. CONCLUSIONS

We have explored the entropy production in SGS in
one, two, and three dimensions. We find that the en-
tropy production time scales as N → ∞, with α = 0.20,
0.15, and 0.1, respectively. It is not clear what precisely
determines the value of the exponent α, it decreases with
the dimensionality of configuration space and may also
be related to the Lyapunov spectrum. [29] The loss of
resolution happens very fast for 3d SGS. Contrary to the
suggestion of reference [8], this however does not imply a
failure of Vlasov equation to describe the process of vio-
lent relaxation. Indeed Vlasov dynamics is entropy con-
serving. This, however, is only valid in the limit N → ∞.
For finite systems, therefore, there will be a rapid loss of
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resolution which can be associated with the entropy pro-
duction. Indeed within the Vlasov formalism, we can de-
fine a coarse-graining procedure, associated with the loss
of resolution, which will also result in the growth of en-
tropy. Such coarse-graining is very similar to the Boltz-
mann definition of entropy which counts the total num-
ber of microstates compatible with a given macrostate,
irrespective of whether these microstates can be reached
from a given initial condition or not. Comparing the
collisionless and collisional MD simulations we saw that
the dynamics of observables in systems with relatively
small number of masses N is equally well described by
either of the two simulation methods. The collisionless
simulations are effectively a solution of the Vlasov equa-
tion, while collisional simulations include residual cor-
relations which lead to the entropy production in a fi-
nite N system, the equivalence of the two methods im-

plies that the evolution of the observables in SGS can
be equally well calculated either using exact fine-grained
distribution function or using its coarse-grained version.
The same conclusion was also reached by analyzing non-
interacting particle systems for which Vlasov equation is
exact. We thus conclude that conservation of fine-grained
entropy by Vlasov equation does not invalidate it in any
way from providing an accurate description of violent re-
laxation dynamics that leads to quasi stationary states
with increased coarse-grained entropy.
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