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Abstract

In this paper, we apply the lasso-type regression for the index tracking (IT) and long-short investing strate-
gies. Due to its capacity of both (1) performing variable selection in linear regression, and (2) being ad-
equate for high-dimensional problems, lasso becomes an interesting technique for portfolio selection. We
consider three market benchmarks (S&P 100 and Russell 1000, from the US stock market, and the Ibovespa
Index, from the Brazilian market), with data from 2010 to 2017. Also, to assess the quality of lasso-based
tracking portfolios, we also solved the IT problem using cointegration to have a basis for comparison of
the results obtained using lasso. The findings for IT showed similar performance between portfolios based
on lasso and cointegration. Nevertheless, portfolios lasso presented average monthly turnover at least 40%
smaller, which indicates a considerable advantage regarding transaction costs (represented by the turnovers)
in comparison with cointegration.
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Resumo

Nesse artigo, aplicamos o modelo de regressão lasso para as estratégias de investimento de index-tracking
(IT) e long-short. Devido à sua capacidade de (1) realizar seleção de variáveis em regressão linear, e (2) ser
adequado para problemas de alta dimensionalidade, o método lasso torna-se uma técnica interessante para
seleção de carteiras. Em nossa análise, consideramos três ı́ndices de mercado (S&P 100 e Russell 1000,
do mercado dos EUA, e ı́ndice Ibovespa, do mercado brasileiro), com dados de 2010 a 2017. Além disso,
para analisar a qualidade do método lasso para carteiras de index tracking, também resolvemos o problema
de IT usando cointegração, de forma a ter uma base para comparação dos resultados obtidos com lasso.
Os resultados para IT demonstram desempenho similar entre carteiras baseadas em lasso e cointegração.
Porém, carteiras utilizando lasso apresentaram turnover médio mensal pelo menos 40% menor, o que indica
uma vantagem considerável em termos de custos de transação em comparação com cointegração.
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1. Introduction1

Stock index tracking (IT) is a passive investment management that consists in building a portfolio of2

stocks to replicate (or track) as close as possible the performance of a market benchmark, such as the Stan-3

dard & Poor’s 100. Many methods have already been proposed in the literature to solve the IT problem, and4

most of them determine the tracking portfolio by minimizing its tracking error: the difference between the5

historical returns of the tracking portfolio and the index over time. Moreover, a natural extension of index6

tracking is the long-short strategy (also referred to as market neutral), which is a self-financing strategy7

that aims at exploring temporary market inefficiencies through buying undervalued stocks and short selling8

overvalued stocks (Alexander and Dimitriu, 2002). Even though such approach lacks a broader implemen-9

tation among many hedge funds due to its short exposure (Badrinath and Gubellini, 2011), it is an attractive10

tool for investors as a result of its self-financing and market neutral characteristics. Thus, in this paper, we11

present an implementation of the so-called Lasso-type regression (least absolute shrinkage selection opera-12

tor) to solve both the IT and long-short investing problems, due to its capacity of both performing variable13

selection in linear regressions and providing good-quality solutions for high-dimensional datasets.14

Different formulations for the IT problem have been proposed in the literature, such as optimization15

(Konno and Wijayanayake, 2001; Mezali and Beasley, 2013), optimization combined with simulation16

(Consiglio and Zenios, 2001), heuristic methods (Beasley et al., 2003; Scozzari et al., 2013), cointegra-17

tion (Alexander, 1999; Alexander and Dimitriu, 2005), and lasso-type regression (Wu et al., 2014; Yang18

and Wu, 2016). In spite of their methodological distinctions, however, past studies usually carry out their19

analysis considering a standard feature, which is the use of a cardinality constraint to limit the size of the20

tracking portfolios and diminish transaction costs. Therefore, such constraint requires a methodology that21

performs variable selection to determine the combination of stocks that minimizes the difference between22

the performance of the portfolio and index.23

The lasso approach has been introduced by Tibshirani (1996) and is a method that makes variable se-24

lection automatically in linear regression modeling through the generation of sparse estimates of the coef-25

ficients (Zeng et al., 2012). Additionally, it is a method successfully used in statistical modeling especially26

with high-dimensional datasets. Such features make this technique interesting for the index tracking prob-27

lem, mainly as a result of the need to impose a cardinality constraint on the size of the tracking portfolios as28

well as the possibility of forming efficient portfolios to track larger indexes that are composed by hundreds29

or even thousands of stocks.30

Regarding the studies that employed lasso for the IT problem, Wu et al. (2014) proposed the so-called31

Nonnegative Lasso, which consists of computing the lasso regression constrained by having all coefficients32

equal or larger than zero, thereby avoiding short positions in the portfolios. Later, Yang and Wu (2016) ex-33

tended this approach and introduced the Nonnegative Adaptive Lasso. Nevertheless, the studies mentioned34

above focus on the introduction of two statistical approaches, while their empirical analysis to the index35

tracking problem is quite limited.36

Thus, our study differs from the previous literature as we focus on the financial environment and apply37

the lasso-type regression to different markets using diversified sample sizes. More specifically, we use38

three datasets in our empirical tests: S&P 100 and Russell 1000 (US stock market – respectively, databases39

with 102 and 907 stocks), and the Ibovespa Index (Brazilian stock market – dataset with 55 stocks). Also,40

because the most widely used approach to solve the index tracking and long-short strategies is cointegration41

(for instance, Alexander and Dimitriu, 2005; Li and Bao, 2014), we also solve the IT problem using this42

approach, as we seek to have a basis for comparison and validation of the results obtained using lasso.43

Finally, we extrapolate index tracking and also use the lasso regression to construct long-short market44

neutral strategies, since the process for obtaining portfolios long-short is very similar to the index tracking45

one. Such strategy aims at building market-neutral portfolios, thus having low correlation with the market46

benchmark. Moreover, portfolios long-short are self-financed, which is done by short selling overvalued47

stocks and assuming long positions in undervalued stocks among the index constituents3.48

3In addition to this approach, long-short also may be developed by pairs trading or trading strategies that involve a stock and
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Overall, the lasso-based index tracking performed well regarding returns and tracking error in all an-49

alyzed cases, especially for the US market. Furthermore, as we compare the results for index tracking50

obtained using lasso with those obtained using cointegration, we notice very similar performance in all51

cases. However, despite having comparable cumulative returns and volatility, portfolios lasso have average52

monthly turnover at least 40% smaller than the average monthly turnovers of portfolios using cointegration,53

which implies transaction costs at least about 40% lower for portfolios using lasso. Such outcome is inter-54

esting since the reduced turnover implies a substantial difference in transaction costs, thereby fulfilling the55

expectations regarding a passive investment: to diminish costs while keeping a satisfactory performance.56

As a result, the contribution of this paper is twofold. First, we add to the index tracking literature by57

widely testing a statistical model (lasso) that has only been used a few times in past research (and with58

limited empirical analysis). To expand previous studies, we adopt market benchmarks with different sizes59

(from 55 to 907 stocks) as well as from distinct financial environments (US and Brazil). Also, we compute60

index tracking portfolios using an alternative approach (cointegration), so that we can compare and validate61

the results obtained using lasso. Second, the empirical testing also presents innovations as we use lasso62

to explore a market neutral long-short strategy. Consequently, we also contribute to the finance studies by63

showing how a different statistical approach can be consistently used for long-short, considering the more64

substantial simplicity in the use of lasso relative to cointegration (which is a two-step method that requires65

a more extended analysis, as referred in Section 3.2).66

This study is organized as follows. Initially, Section 2 describes the method associated with the lasso-67

type regression. Then, Section 3 presents the methodology of the study, including the guidelines for the68

index tracking and long-short investing strategies, as well as the description of the cointegration approach69

based on simulations. Finally, Section 4 describes the empirical tests and our results, and Section 5 con-70

cludes the study.71

2. Lasso – Least Absolute Shrinkage and Selection Operator72

2.1. Lasso: General Concepts73

As Konzen and Ziegelmann (2016) point out, the central goal of a linear regression analysis consists of
estimating the coefficients for the model yi = β0 +Xᵀ

i β+ εi, where yi ∈ R is the dependent variable to be
predicted, Xi = (x1i, . . . ,xki)

ᵀ ∈ Rk is the vector of independent variables, the union of β0 and β is the set
of predictors (β0,β1, . . . ,βk)

ᵀ, and εi is the error term – considering a model with variables j ∈ 1..k, and
time frame i ∈ 1..N. To compute such model, some approaches are available; among them, one of the most
popular is OLS (Ordinary Least Squares), which is based on the minimization of the sum of the squared
residuals (SSR) as follows:

β̂OLS = argmin
β0,β1,...,βk

∑
i∈N

(
yi−β0−

k

∑
j=1

β jx ji

)2
(1)

However, as pointed out by Tibshirani (1996), the OLS approach presents some inconsistencies, spe-74

cially as we increase the number of independent variables and move to high-dimensional models4. For this75

reason, Tibshirani (1996) cites two specific techniques that attempt to overcome the OLS inconsistencies:76

subset selection and ridge regression.77

Nonetheless, both techniques have downsides as well. In the case of subset selection, the procedure78

consists basically in the use of discrete choice to drop or add variables to the model as one aims at locating79

the best combination of input information for the model. Thus, the ideal situation in this case would be to80

an ETF (Exchange-Traded Funds) (Avellaneda and Lee, 2010).
4According to Tibshirani (1996), the OLS estimates has basically two issues: (1) prediction accuracy, which results in

parameters with large variance, and (2) interpretation, which is the case especially in large models since the method does not
perform variable selection and thus make the interpretation of the results more difficult and inaccurate.
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test all 2k possible combinations of the variables (Konzen and Ziegelmann, 2016). Yet, such analysis has a81

strong drawback in terms of computing time necessary to test all combinations5.82

Regarding the ridge regression, Tibshirani (1996) points out its stability in terms of coefficients, in com-
parison to subset selection, as ridge regression consists of a continuous process that shrinks the regression
coefficients. To carry out such process, the model receives a penalty on the sum of the squared residuals:

β̂Ridge = argmin
β0,β1,...,βk

∑
i∈N

(
yi−β0−

k

∑
j=1

β jx ji

)2
(2)

Subject to:
k

∑
j=1

β
2
j ≤ t (3)

t ≥ 0 (4)

which is equivalent to:

β̂Ridge = argmin
β0,β1,...,βk

[
∑
i∈N

(
yi−β0−

k

∑
j=1

β jx ji

)2
+λ

k

∑
j=1

β
2
j

]
(5)

In Equations (2)-(4), the parameter t ≥ 0 works as a control for the penalty, which means t has the same83

role as λ in Equation (5). In the case of Equation (5), increasing λ strengthens the shrinkage process, while84

setting λ = 0 results in β̂Ridge = β̂OLS.85

Different from subset selection, however, the ridge regression approach does not involve variable selec-86

tion. As Nasekin (2013) highlights, the regression analyses usually face a situation where many independent87

variables are irrelevant for the model and may actually decrease its prediction power. As a result, Tibshirani88

(1996) proposes the so-called lasso approach, which consists of a shrinkage method that aims at combining89

features from both the subset selection and the ridge regression. In this sense, the lasso-type regression90

imposes a penalty on the coefficients (similar to the ridge regression); meanwhile, its estimating procedure91

works similarly to calculating the subset selection process continuously. Thus, the method results in the92

shrinkage of some of the coefficients while setting others to zero, achieving the final goal of performing93

variable selection in the regression model.94

Tibshirani (1996) defines the lasso estimates in the form of the following optimization problem6:

β̂lasso = argmin
β0,β1,...,βk

∑
i∈N

(
yi−β0−

k

∑
j=1

β jx ji

)2
(6)

Subject to:
k

∑
j=1
|β j| ≤ t (7)

t ≥ 0 (8)

where the variables and parameters have the same definitions from the models for β̂OLS and β̂Ridge. Addi-
tionally, we have the assumption that xki are standardized, thus resulting in ∑i∈N xki = 0 and (1/N)∑i∈N x2

ki =
1 for each k. However, even though Equations (2) and (6) are similar, their Constraints (3) and (7) (which are

5It is possible to find some algorithms in the literature to solve the subset selection problem, such as forward and backward
elimination (Hastie et al., 2009), and the Dantzig Selector (Candes and Tao, 2007).

6To keep the description of the lasso-type regression short, we omit the explanation regarding the properties of β̂lasso. For
instance, we refer the reader to Zhao and Yu (2006) and Konzen and Ziegelmann (2016) for a complete description of the lasso’s
consistency.

4



applied on penalty parameter t) are slightly different. As a consequence of Constraint (7), the optimization
in Equations (6)-(8) takes the following form using the Lagrangian:

β̂lasso = argmin
β0,β1,...,βk

[
∑
i∈N

(
yi−β0−

k

∑
j=1

β jx ji

)2
+λ

k

∑
j=1
|β j|

]
(9)

As Tibshirani (1996) and Hastie et al. (2009) point out, the model in Equation (6) might be re-parametrized95

by standardizing the predictors, so that the solution for β0 is β0 = ȳ; thereby, we can suppose ȳ = 0, thus96

omitting β0. Furthermore, in a similar way to the ridge regression, parameter t in Constraint (7) works as97

the penalty imposed on the coefficients. Nevertheless, while the ridge regression imposes a penalty of L298

norm with ∑
k
j=1 β2

j , the lasso regression is characterized by a penalty of L1 norm with ∑
k
j=1 |β j| (Hastie99

et al., 2009).100

In Equations (6)-(8), as t ≥ 0 represents the penalty on the coefficients and works as a control of the101

amount of shrinkage applied on the estimates, Tibshirani (1996) defines β̂0
j as the full least square estimates102

(OLS coefficients) and t0 = ∑
k
j=1 |β̂0

j |. Therefore, setting t ≤ t0 leads to a shrinkage of the solutions in103

convergence to zero, with some coefficients equal to zero. On the other hand, for t ≥ t0, the lasso regression104

estimates will be equal to the OLS estimates. For instance, letting t = t0/2 has the effect of (roughly)105

shrinking the OLS coefficients by 50% on average (Hastie et al., 2009). For this reason, the parameter t106

should be selected in a dynamic process to minimize an estimate of the expected prediction error.107

Finally, concerning Equation (9), it is worth noting that λ = 0 (in the same way as t ≥ t0) results in108

lasso coefficients equal to the OLS ones. Moreover, increasing λ implies a larger penalty that forces the109

coefficients to converge towards zero. Hence, the choice for λ (or, equivalently, the choice for t) becomes an110

important step for the lasso-type regression to achieve good quality results (Nasekin, 2013), and is related111

to the calculation of the prediction error. As Tibshirani (1996) emphasizes, one option is to choose the112

value of the penalty parameter to minimize the prediction error, which is based on the construction of a113

cross-validation style statistic. In this study, we opted to employ the K-fold cross-validation method since114

it is traditionally used in the literature (Hastie et al., 2009).115

2.2. K-fold Cross-validation116

Hastie et al. (2009) describe the K-fold cross-validation as the simplest and most used method to estimate the117

prediction error. According to Efron and Tibshirani (1993), starting from a simple regression model, the pre-118

diction error (PE) consists of the expected squared difference between a future response and its prediction119

from the model: PE = E(yi− ŷi)
2. Then, the in-sample mean squared error is MSE = (1/N)∑i∈N(yi− ŷi)

2.120

However, a more realistic application would be to split the data into training and testing samples, thus121

using the fitted model from the training sample to estimate the MSE of the testing sample (Efron and122

Tibshirani, 1993; Tibshirani, 1996). Based on this idea, Efron and Tibshirani (1993) presented the following123

Algorithm 1 for cross-validation:124

Algorithm 1 K-fold Cross-validation (Efron and Tibshirani, 1993)

Step 1: Split the data into K roughly equal-sized parts

Step 2: For the k-th part, fit the model to the other K−1 parts of the data, and calculate the prediction error
of the fitted model when predicting the k-th part of the data

Step 3: Do the above for k ∈ 1, . . . ,K parts, and combine the K estimates of prediction error

For instance, if we set K = 5, then for each k ∈ 1..K, the model will be fitted for the data of all K− 1
parts, and the fitted model will be used to verify the MSE of the k-th part of the sample. As described by
Efron and Tibshirani (1993), if we let k(i) be the part containing the i-th observation of the data, and define
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ŷ−k(i)
i as the fitted value for the i-th observation (estimated with the fitted model with the k(i)-th part of the

data removed), then the cross-validation estimate for the prediction error (or cross-validated MSE) will be
as follows:

CVMSE =
1
N ∑

i∈N

(
yi− ŷ−k(i)

i

)
(10)

In the lasso-type estimation, the K-fold cross-validation is used to compute the CVMSE statistic in125

Equation (10) employing different values for λ. Hence, the chosen value for λ will be the one that results126

in the least value for the cross-validation error. As λ increases, the results should present an increasing127

number of coefficients equal to zero, which tends to lead to larger error; then, the best value for λ, as128

already mentioned, is the one that minimizes the cross-validated error. In our empirical tests described in129

Section 4, we use K = 10, i.e. 10-fold cross-validation, based on Breiman and Spector (1992) and Kohavi130

(1995), who claim that K = 5 or K = 10 are satisfactory choices to solve the lasso-type regression in general131

cases.132

3. Methodology of the Study133

In this Section, first we present the basic methodology for the portfolio selection using both index tracking134

and long-short investing strategies (Sections 3.1.1 and 3.1.2). Later, we describe the essential guidelines to135

solve the index tracking portfolio selection using cointegration (Section 3.2).136

3.1. Index Tracking and Long-Short Investing Strategies137

3.1.1. Index Tracking138

According to most of the past literature, index tracking portfolios are commonly evaluated by their
tracking error (TE), which is defined as the standard deviation of the difference between portfolio and index
returns in a specific time interval (Beasley et al., 2003; Guastaroba and Speranza, 2012):

T E =
1
T

[
T

∑
t=1

(rp
t −Rt)

2

]1/2

(11)

where T is the time frame (for instance, one month), t ∈ 1..T corresponds to each business day in our139

dataset, rp
t is the portfolio daily return, and Rt is the index daily return.140

Concerning the lasso regression, the IT problem is implemented as follows. The dataset contains a time
series of daily log returns for the market index and N stocks, where rl

jt represents the daily log return of the
j-th stock on the t-th day, and Rl

t represents the index daily log return. Then, we implement Equation (9) in
the following equivalent form:

β̂lasso = argmin
β0,β1,...,βN

[
∑
t∈T

(
Rl

t −β0−
N

∑
j=1

β jrl
jt

)2
+λ

N

∑
j=1
|β j|

]
(12)

where Rl
t = log(Pt/Pt−1), Pt is the index price on the t-th day, rl

jt = log(p j,t/p j,t−1), and p jt is the stock141

price of the j-th stock, j ∈ 1..N.142

The value for λ is computed using K-fold cross-validation according to Algorithm 1, with K = 10, i.e.143

10-fold cross-validation. After computing Equation (12), the IT portfolio is defined by normalizing the144

coefficients β j, j ∈ 1..N, to sum up to one; as a result, the stock weight of the j-th asset in the portfolio145

equals the normalized value of the j-th coefficient.146

Finally, concerning the lasso predictors, we set up two definitions. First, we impose a constraint on the147

number of lasso coefficients that may take value different from zero, which means to restrict the size of each148

portfolio. Second, in contrast with prior literature (Wu et al., 2014; Yang and Wu, 2016), we do not impose149
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a nonnegative constraint on the parameters. Hence, we allow the IT portfolios to have short positions.150

Usually, IT models avoid short positions due to liquidity and cost issues because shorting stocks might be151

difficult as a result of the potential lack of stocks available for rent, thereby leading to larger transaction152

costs. However, because the indexes selected for the empirical tests in our study are composed by the most153

liquid stocks in the markets, we opt to allow portfolios to have short positions. Furthermore, our results154

already account for the larger costs associated with short selling, as explained in Section 4.155

3.1.2. Long-Short156

Alexander and Dimitriu (2005) describe the long-short strategy as a natural extension of the IT optimization157

using cointegration. However, in the case of long-short, we take the original index returns and use it to build158

enhanced indexes by adding (index plus) and subtracting (index minus) an annual excess return equal to α%.159

For instance, if we set α = 5%, then the construction of the index plus consists in adding an annual excess160

return of 5% (uniformly distributed over daily returns) to the original index daily returns. Likewise, the161

index minus is constructed by subtracting 5% from the original index returns. Once the indexes plus/minus162

are built, we estimate the long-short portfolio with lasso by using Equation (12) to calculate two models,163

the first of them using the index plus instead of the original index time series, and the second one using the164

index minus. For each regression, the coefficients should be used to form a portfolio normalized to sum up165

to one (similar to the index tracking methodology). As a result, the outcomes will be two portfolios (plus166

and minus), and the final wight of the ith stock in the long-short portfolio will be the difference between its167

weights in the portfolios plus and minus.168

According to Alexander and Dimitriu (2005), the conceptual background that supports the choice for169

long-short strategy is its self-financing characteristic, since investing in the long-short portfolio is the equiv-170

alent to selling the short portfolio (constructed using the index minus) to obtain the resources necessary to171

buy the long portfolio (constructed using the index plus). Then, portfolios long-short are expected to pro-172

duce positive, low-volatility returns that are uncorrelated with market returns. As a result, such strategy173

follows Roll (1992) and Stucchi (2015), who argue that indexes may be inefficient, thus giving the investor174

the possibility of forming portfolios to outperform the market.175

3.2. Cointegration Approach based on Simulations for Index Tracking176

The concept of cointegration was introduced by Granger (1981) in time-series analysis and formalized by177

Engle and Granger (1987). Since then, empirical studies (Alexander et al., 2002; Alexander and Dimitriu,178

2005) have shown that financial assets can be found to be cointegrated quite often, and this has motivated179

an alternative approach to equity trading and portfolio construction. By using all information embedded in180

prices, it may be possible to detect a long-run equilibrium between a portfolio and a benchmark, which then181

can be used to indicate the optimal strategic asset allocation.182

Cointegration is a statistical feature which defines that a set of time series that are integrated of order 1,183

i.e. I(1), can be linearly combined to produce one time series which is stationary, I(0). Formally, if we set184

S1,t ,S2,t , . . . ,Sn,t to be a sequence of I(1) time series, and if there are nonzero real numbers β1,β2, . . . ,βn185

such that β1S1,t ,β2S2,t , . . . ,βnSn,t becomes I(0), then S1,t ,S2,t , . . . ,Sn,t are said to be cointegrated (Hamilton,186

1994).187

When applied to prices in a stock market index, cointegration occurs when there is at least one portfolio188

has a stationary tracking error, i.e., when there is a mean reversion tendency in the price spread between189

the portfolio and the index. This property does not provide any information for forecasting the individual190

prices in the system, or the position of the system at some point in the future, but it provides the valuable191

information that, irrespectively to its position, the prices of the portfolio and the index will stay together on192

a long-run basis.193

The design for the use of cointegration in asset allocation is based on a two-step approach as follows.
The first step for the selection of a tracking portfolio requires the analysis to confirm that each price series
is I(1) in a predefined time frame of in-sample data. Then, we estimate the linear regression in Equation
(13) (given a predefined in-sample calibration period) to infer the portfolio weights. The estimation may
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be carried out using OLS or an alternative approach such as non-negative least squares (NNLS), hence
ensuring non-negativity on the regression coefficients. The linear regression consists of:

log(Pt) = β0,t +
n

∑
i=1

βi,t log(pi,t)+ εt (13)

where Pt denotes the index price on the t-th day, pi,t denotes the stock price of the i-th stock, i ∈ 1..N, and194

εt is a zero-mean “tracking error”. By normalizing the cointegration coefficients βi (for i ∈ 1..N) to sum up195

to one, we determine the proportional weights of the i-th stock in the portfolio.196

The second step is to apply the unit root test on the series of residuals ε̂t resulting from Equation (13) to
confirm that the linear combination of the price series of N stocks I(1) is a stationary combination with order
I(0). To confirm if such stationary combination occurs, we apply the Augmented Dickey-Fuller (ADF) test
on ε̂t to test the null hypothesis of no cointegration, where γ is the coefficient of the lagged fitted error term
ε̂t−1 in Equation (14). If we let q be the order of the autoregressive (AR) process, ε̂t be the estimated error
term from Equation (13), and ∆ε̂t be the change between two error terms, then the ADF regression takes
the following form:

∆ε̂t = γε̂t−1 +
q

∑
i=1

φi∆ε̂t−i +ut . (14)

By rejecting the null hypothesis, we confirm the time series of estimated residuals is stationary, thereby197

attesting that the variables used on the regression are cointegrated. We consider the critical values suggested198

by MacKinnon (2010) at 1% level of significance for the ADF test. Then, as the null hypothesis is rejected,199

the portfolio obtained from Equation (13) consists in a valid portfolio to track the market benchmark.200

Finally, as described by Alexander and Dimitriu (2005), cointegration fits in the context of portfolio201

selection and IT strategy due to its features as an appropriate method for long-run asset price dynamics.202

However, a drawback of past studies lies in the issues relative to asset selection to compose each portfolio,203

which is usually exogenous to the portfolio optimization process, since the OLS method does not make204

variable selection. Thus, we seek to mitigate the difficult concerning portfolio selection through the use205

of a series of simulations to form each cointegrated portfolio, as we aim at making the portfolio selection206

endogenous to the solving process. In this process, to obtain the portfolio for each in-sample subset, first we207

form a sequence of M different portfolio candidates, where each portfolio is composed by s stocks randomly208

selected, i.e. s corresponds to the limit size of each portfolio. Second, after constructing M different209

portfolio candidates and discarding the ones that do not meet the cointegration requirements previously210

described, we select the portfolio whose estimation of Equation (13) resulted in the smallest fitted sum of211

the squared residuals7.212

4. Empirical Tests213

4.1. Database and Testing Setup214

We select three databases: the S&P 100 (one of the main benchmarks in the US market) and 101 stocks;215

the Ibovespa index (reference benchmark in the Brazilian market) and 55 stocks; and the Russell 1000216

index (composed approximately by the 1,000 largest firms in the US equity market) and 907 stocks. All217

three datasets were extracted from software Economatica, a financial database widely used in Brazil by218

both market participants and academicians. Our database includes daily stock prices from January 2010219

to September 2017, and contain 1,921 trading days. Prices are adjusted for (1) splits, mergers, and other220

corporate actions and (2) the payment of dividends.221

7In this study, we select M=50,000, so that we form 50 thousand distinct portfolios to select the best one based on the sum
of the squared residuals. We use 50,000 because this was the maximum number of different combinations that we were able to
form. As M increases, there is a larger use of physical memory (RAM) by the CPU, thus imposing a limit on the number of M.
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For each dataset, we select two sizes for the tracking portfolios. To track the S&P 100, we form portfo-222

lios limited to 15 and 25 stocks; regarding the Ibovespa index, we estimate portfolios up to 8 and 12 stocks;223

finally, regarding the Russell 1000, we form portfolios limited to 30 and 40 stocks. Additionally, to com-224

pute the tests, we choose in-sample intervals equal to 480 data points (similar to Alexander and Dimitriu,225

2002), each data point being one business day, whereas out-of-sample intervals equal 60, 120, and 240 data226

points (which means to perform portfolio updates roughly every three months, six months, and one year –227

i.e. quarterly, semiannual, and annual updates). Consequently, we obtain a total number of 24 portfolios in228

the case of quarterly updates, 12 portfolios with semiannual updates, and 6 portfolios for annual updates.229

Moreover, we also consider a buy-and-hold case in which we do not update the portfolios over time.230

Concerning the lasso-type regression, the empirical analysis consists in evaluating Equation (12) with231

index and stocks daily returns. In contrast, the tests based on cointegration are estimated with index and232

stocks daily prices as described in Section 3.2. Finally, we highlight that the results presented in the next233

Sections already account for transaction costs as we compute the daily returns in the rolling window projec-234

tions (Han, 2005; Do and Faff, 2012) as ri,t = log( pi,t
pi,t−1

)+ log(1−C
1+C)−d, where C represents the transaction235

costs, and d refers to the costs related to short positions. In our empirical tests, we set c = 0.5% (which236

refers mainly to brokerage fees), and d = 2% per year (which refers basically to rental costs). Both costs237

are discounted from the return of stock i every day the portfolio is updated.238

4.2. Index Tracking Using Lasso – Indices S&P 100 and Ibovespa239

We start the empirical analysis using lasso regression to solve the index tracking problem for S&P 100 and
Ibovespa. The portfolios were compared using the following performance measures: (i) Annual average
returns; (ii) Cumulative returns; (iii) Annual volatility; (iv) Daily TE average; (v) Daily TE volatility; and
(vi) Monthly average turnover, which defined as follows:[

np

∑
p=2

(
∑

N
i=1 |x

p
i − xp−1

i |
2

)]
× 1

f
(15)

where np is the number of portfolios estimated per portfolio size and updating frequency (for instance, con-240

sidering quarterly updates, we form a total of 24 portfolios), p and p−1 are time instants where sequential241

rebalancing were carried out, and f equals 3 for quarterly rebalancing, 6 for semiannual rebalancing, and242

12 for annual rebalancing.243

The results are in Table 1 and Figure 1. Concerning the S&P 100, we can initially notice in Table 1244

the good quality of the results in terms of tracking performance specially in the case of portfolios up to 15245

stocks and quarterly update, and up to 25 stocks and semiannual update, as they present cumulative returns246

very close to the index. Also, we can observe the outstanding results of portfolios buy-and-hold, considering247

that these portfolios are held constant throughout the entire out-of-sample interval (roughly 5.5 years); in248

both cases (portfolios up to 15 and 25 stocks), the choice for buy-and-hold results in annual average returns249

(respectively 12.41% and 12.48%) very close to the index average annual return (11.43%).250

TABLE 1 HERE

Additionally, increasing the size of the portfolios from 15 to 25 stocks results in smaller portfolios’251

average tracking error for all updating frequencies (comparing portfolios with the same updating frequency),252

as it would be naturally expected (intuitively, larger portfolios should track the index more accurately).253

Moreover, increasing the size of the portfolios also results in larger correlation with the benchmark index254

and smaller average monthly turnover.255

Regarding the Ibovespa index, first we highlight the considerably larger volatility of the Brazilian index256

in comparison with the S&P 100. In fact, Table 1 shows that the Ibovespa has annual volatility equal to257

23.05%, almost twice as large as the annual volatility of the S&P 100 (12.47%). The consequence of such258

volatility is noticed in the portfolios’ average tracking error, where the values for the Ibovespa tracking259
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portfolios are in general twice as large as the values of the portfolios tracking the S&P 100. Nonetheless,260

we may also see the good quality results for Ibovespa tracking portfolios in terms of cumulative returns,261

specially in the case of portfolios up to 8 and 12 stocks with semiannual and annual updating frequency.262

In those cases, the difference between the portfolio’s cumulative return and the index’s cumulative return263

remains below 10 percentage points.264

Furthermore, we point out to the fact that increasing the number of stocks in the portfolio results in265

smaller values for portfolios’ average tracking error, annual volatility and average monthly turnover, as266

well as larger correlation with the index. Such results are in line with the conclusions drawn from the S&P267

100 tracking portfolios.268

(a) S&P 100

(b) Ibovespa

Figure 1: Out-of-sample forecast per index and portfolio updating frequency

4.3. Index Tracking in a High-dimensional Dataset – Index Russell 1000269

According to the literature on lasso (for example, Tibshirani, 1996; Nasekin, 2013; Konzen and Ziegel-270

mann, 2016), a common characteristic of this statistical approach is its capability to solve especially high-271

dimensional problems. Such feature is a result of the capacity of the lasso regression to perform variable272

selection through its penalty function imposed on the coefficients, which leads the model towards a shrink-273

age process that selects only the most relevant coefficients in the regression.274

For this reason, we also opted to carry out an empirical analysis of index tracking using a larger market275

benchmark: the Russell 1000, which is theoretically composed approximately by the 1,000 largest firms276

listed in the US equity market. In our specific analysis, the dataset for the Russell 1000 has a total of 907277

stocks, thereby imposing a challenge for the index tracking problem since the Russell 1000 constituents278

have minimal concentration in the index portfolio.279
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We describe the results for the tracking portfolios in Table 2 and Figure 2. Initially, we can infer from280

Table 2 once again the good quality of the tracking solutions in terms of both the average annual returns281

and the cumulative returns. In the case of portfolios using quarterly updates, the cumulative returns are282

very low and the tracking performance is poorer relatively to the other updating frequencies, since the283

more frequent portfolio updates resulted in larger transaction costs that penalized the portfolio’s cumulative284

performance. However, as the update interval increases, the results become consistent for all remaining285

portfolios (semiannual and annual updates, as well as the buy-and-hold strategy). Also, increasing the size286

of each portfolio (per updating frequency) resulted in lower portfolios’ average tracking error and annual287

volatility, as well as larger correlation with the index. Such findings are in accordance with the results for288

the S&P 100 and the Ibovespa, where we also obtained slightly better performance with larger tracking289

portfolios.290

TABLE 2 HERE

Figure 2: Out-of-sample forecast per index and portfolio updating frequency

4.4. Validation of the Lasso-type Regression: Comparison with Cointegration Based on Simulations291

As discussed in the previous subsections, the application of lasso regression to solve the index tracking292

problem resulted in promising conclusions regarding the capacity of this method to perform portfolio se-293

lection. Still, a comparison with another statistical method might be useful as an attempt to shed some294

light in the discussion related to the previous findings. So, due to the extensive use of cointegration in the295

previous literature on index tracking, we also opted to estimate the tracking portfolios using this method, as296

we sought to have a basis for comparison and validation of the results obtained using lasso.297

To carry out the cointegration tests, we followed the methodology described in Section 3.2. Also, we298

highlight that the use of the OLS regression would most likely result in negative and positive OLS estimates,299

i.e. long and short positions in each portfolio. Nevertheless, none of the portfolios obtained using lasso300

presented short positions. For this reason, we chose to estimate cointegration using non-negative least301

squares, thereby avoiding short positions in the cointegrated portfolios.302

The results for cointegration (hereafter, referred to as OLS-NN) and lasso are described in Table 3 and303

Figures 3 and 4. Initially, Table 3 has a summary of the results using lasso and OLS-NN for each of the304

three indexes. As a result, for all three indexes, we can notice very similar performance among portfolios305

lasso and portfolios OLS-NN, observing either cumulative returns, tracking error or the volatility results.306

TABLE 3 HERE

As the findings for portfolios OLS-NN and lasso are hardly distinguishable in terms of overall perfor-307

mance, we turn our attention to the portfolio concentration and average monthly turnover, because both308
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measures might be translated into portfolio risk and costs. Figure 3 compares the concentration of the stock309

weights in the portfolios for each index. In this analysis, we consider all 24 portfolios obtained per index310

and size of portfolio, so that we are able to verify the concentration of the stock weights.311

In Figure 3a, we can see that the tracking portfolios for the S&P 100 have slightly lower average weights312

using lasso, if we compare portfolios with the same size. Nonetheless, portfolios lasso also present more313

extreme (outliers) weights, which justifies the larger annual volatility values for lasso portfolios in Table 3.314

Moreover, similar conclusions can be drawn from the results for the Ibovespa (Figure 3b) and the Russell315

1000 (Figure 3c). Overall, portfolios lasso have a larger number of stocks with weights recognized as316

outliers, supporting the fact that those portfolios resulted in larger volatility for all three indexes.317

(a) S&P 100 - Portfolios up to 15 and 25 stocks

(b) Ibovespa - Portfolios up to 8 and 12 stocks

(c) Russell 1000 - Portfolios up to 30 and 40 stocks

Figure 3: Distribution of the stock weights in the portfolios per index, size of portfolio and statistical model

Nonetheless, despite the slightly better results of OLS-NN portfolios regarding the concentration of318

stock weights in the portfolios, we see a remarkable advantage of portfolios using lasso by observing Figure319

4. Here, we compare the average monthly turnover and the portfolios’ average tracking error (organized320

by index and size of portfolios). Thus, the figure shows that the average tracking error per portfolio is321

slightly smaller for portfolios using OLS-NN. For instance, portfolios OLS-NN using the S&P 100 and322

limited to 15 stocks have average tracking error equal to 0.032%, 0.023%, and 0.016% respectively in the323

cases of quarterly, semiannual, and annual updating frequencies; in the meantime, portfolios lasso have324

average tracking error equal to 0.040%, 0.029%, and 0.020%. However, as we observe the average monthly325

turnover, the values for portfolios lasso are at least 50% inferior: 6.0%, 4.3%, and 3.3%, against 25.7%,326

12.4%, and 6.6% for portfolios OLS-NN.327

The complete list of results for average monthly turnover is presented in Table 3, and the same pattern328

mentioned above for the S&P 100 can be noticed in the results relative to the Ibovespa and the Russell329

1000. As a result, Figure 4 shows that, on the one hand, portfolios formed using lasso and OLS-NN330

are very similar concerning overall performance (represented by average tracking errors). On the other331

hand, the substantial difference regarding average monthly turnovers implies that portfolios using lasso332

have considerably lower costs. Thus, we can infer from these results the good quality of the lasso regression333

solutions for index tracking; although lasso portfolios have slightly inferior performance in some cases, this334

approach resulted in portfolios with overall costs at least 40% lower than portfolios OLS-NN.335
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(a) S&P 100

(b) Ibovespa

(c) Russell 1000

Figure 4: Comparison between Average Monthly Turnover and Portfolios’ Average Predicted Tracking Error

4.5. Results for Long-Short Using Lasso336

As described in Section 3.1.2, the goal of long-short strategy is to explore temporary market failures by337

assuming long positions in undervalued stocks and short positions in overvalued stocks among the index338

constituents. The selection of those stocks is made through the use of benchmarks plus and minus obtained339

by adding/subtracting an annual percentage α% to the index (uniformly distributed over daily returns). To340

estimate the long-short portfolios, we selected α = 2.5% for each of the three indexes. Moreover, we also341

calculated long-short portfolios limited to 50 stocks based on the S&P 100 (maximum of 25 stocks for342

each of the portfolios long and short separately), portfolios limited to 30 stocks based on the Ibovespa, and343

limited to 80 stocks based on the Russell 1000.344

The results are presented in Tables 4 and 5. Since all portfolios naturally have stocks with short positions345

and increasing volatility (in comparison with tracking portfolios), we diminished the updating frequency346

and adopted monthly, bimonthly and quarterly updating intervals. Additionally, even though short positions347

increase transaction costs, we emphasize all results already account for transaction and management costs.348
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Initially, we observe consistent results using both indexes concerning the American market. In Table 4,349

we notice positive average annual returns for the portfolios based on the S&P 100 and Russell 1000 regard-350

less of the updating frequency, with best results for monthly and bimonthly updates. Concerning the S&P351

100, some portfolios had negative cumulative returns in 2013, 2015, and 2017; and regarding the Russell352

1000, the negative returns are restricted to 2015 and 2017. Nonetheless, the positive average annual returns353

are a consistent result, especially if we consider portfolios long-short are theoretically zero-cost portfo-354

lios8. Furthermore, the correlation between each portfolio long-short and the index is very close to zero355

in all cases (except for a few portfolios with the Ibovespa), thus stressing the market-neutral characteristic356

produced by this investing strategy.357

TABLE 4 HERE

TABLE 5 HERE

5. Conclusions358

In this study, our goal was to extend the use of lasso regression to solve the index tracking optimiza-359

tion problem and the long-short investing strategy. Hence, we selected a wide variety of datasets from360

different market environments (United States and Brazil) as well as with distinct sizes (ranging from 55361

to 907 stocks). Thus, we aimed at assessing the performance of the lasso regression to solve the index362

tracking problem in different financial environments (US and Brazil), as well as in the case of using a363

high-dimensional dataset (index Russell 1000, with a database composed by 907 stocks).364

The results described in Section 4 showed overall good quality solutions in all the tests carried out. In365

the case of index tracking, we noticed the capacity of lasso to form portfolios that tracked consistently both366

the American and the Brazilian indexes. Then, regarding the comparison between lasso and cointegration,367

the outcomes showed that portfolios lasso had monthly turnovers at least 40% smaller than the turnovers of368

cointegrated portfolios. Such results pointed us towards the conclusion that portfolios lasso had, in general,369

transaction costs at least 40% lower than portfolios using cointegration, in spite of the similar performance370

of both methods.371
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Table 1: Overall results for index tracking using lasso - S&P 100 and Ibovespa1

S&P 100
Portfolios up to 15 stocks

S&P 100 Quarterly Semiannual Annual Buy-and-Hold
Average Annual Return 11.43% 10.88% 13.93% 14.18% 12.41%
Cumulative Return 106.04% 103.08% 138.48% 140.38% 119.62%
Portfolios’ Average Tracking Error - 0.040% 0.029% 0.020% 0.008%
Annual Volatility 12.47% 14.56% 14.47% 14.49% 14.52%
Correlation - 0.930 0.936 0.937 0.939
Average Monthly Turnover - 6.05% 4.31% 3.29% 0.00%

Portfolios up to 25 stocks
S&P 100 Quarterly Semiannual Annual Buy-and-Hold

Average Annual Return 11.43% 7.49% 11.67% 13.23% 12.48%
Cumulative Return 106.04% 66.84% 109.78% 127.74% 118.35%
Portfolios’ Average Tracking Error - 0.031% 0.022% 0.016% 0.007%
Annual Volatility 12.47% 14.48% 14.17% 14.15% 14.19%
Correlation - 0.932 0.949 0.956 0.956
Average Monthly Turnover - 5.70% 4.27% 3.19% 0.00%

IBOVESPA
Portfolios up to 8 stocks

Ibovespa Quarterly Semiannual Annual Buy-and-Hold
Average Annual Return 6.87% 6.98% 10.02% 10.04% 11.46%
Cumulative Return 25.30% 14.43% 36.80% 35.44% 37.51%
Portfolios’ Average Tracking Error - 0.083% 0.060% 0.044% 0.019%
Annual Volatility 23.05% 29.25% 29.22% 29.65% 29.33%
Correlation - 0.943 0.942 0.941 0.930
Average Monthly Turnover - 4.88% 3.63% 2.94% 0.00%

Portfolios up to 12 stocks
Ibovespa Quarterly Semiannual Annual Buy-and-Hold

Average Annual Return 6.87% 5.06% 7.75% 9.32% 10.92%
Cumulative Return 25.30% 4.32% 20.75% 30.12% 40.76%
Portfolios’ Average Tracking Error - 0.069% 0.048% 0.035% 0.016%
Annual Volatility 23.05% 28.07% 27.87% 27.93% 28.29%
Correlation - 0.954 0.956 0.958 0.952
Average Monthly Turnover - 4.46% 3.24% 2.49% 0.00%
1 Average Annual Return refers to the average of the cumulative returns for each year from 2011 to

2017. Cumulative Return refers to the return calculated cumulatively during the entire out-of-sample
period. Portfolios’ Average Tracking Error refers to the average of the tracking error calculated for each
portfolio according to Equation (11). Annual Volatility refers to σ×

√
252, where σ is the standard

deviation of daily returns verified during the entire out-of-sample period. Correlation refers to the
correlation between daily returns of each strategy and daily returns of the index during the entire out-
of-sample period. Average Monthly Turnover is calculated according to Equation (15).
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Table 2: Overall results for index tracking using lasso - Russell 1000

Russell 1000
Portfolios up to 30 stocks

Russell 1000 Quarterly Semiannual Annual Buy-and-Hold
Average Annual Return 12.03% 7.63% 14.04% 14.39% 13.57%
Cumulative Return 109.86% 64.80% 133.51% 138.65% 128.43%
Portfolios’ Average Tracking Error - 0.038% 0.027% 0.019% 0.008%
Annual Volatility 12.70% 15.67% 15.12% 14.89% 14.70%
Correlation - 0.916 0.937 0.947 0.947
Average Monthly Turnover - 8.38% 6.25% 4.52% 0.00%

Portfolios up to 40 stocks
Russell 1000 Quarterly Semiannual Annual Buy-and-Hold

Average Annual Return 12.03% 2.63% 11.95% 13.68% 13.57%
Cumulative Return 109.86% 23.71% 109.31% 129.61% 128.43%
Portfolios’ Average Tracking Error - 0.034% 0.025% 0.018% 0.008%
Annual Volatility 12.70% 16.17% 15.05% 14.82% 14.70%
Correlation - 0.880 0.930 0.946 0.947
Average Monthly Turnover - 8.53% 6.40% 4.60% 0.00%
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Table 4: Overall results for Long-Short using lasso per market
benchmark1

S&P 100 - Portfolios up to 50 stocks
Monthly Bimonthly Quarterly

Average Annual Return 3.31% 3.85% 2.48%
Cumulative Return 23.71% 28.44% 17.66%
Annual Volatility 8.52% 8.43% 8.44%
Correlation 0.009 -0.004 -0.066
Skewness 0.265 0.206 0.284
Kurtosis 1.369 0.936 1.583

IBOVESPA - Portfolios up to 30 stocks
Monthly Bimonthly Quarterly

Average Annual Return 2.04% 2.72% -3.66%
Cumulative Return 14.20% 18.17% -24.98%
Annual Volatility 16.61% 17.10% 15.75%
Correlation -0.007 0.003 0.019
Skewness -0.133 -0.104 -0.158
Kurtosis 1.547 1.912 1.740

RUSSELL 1000 - Portfolios up to 80 stocks
Monthly Bimonthly Quarterly

Average Annual Return 4.78% 4.08% 2.44%
Cumulative Return 34.88% 29.43% 16.44%
Annual Volatility 9.91% 9.80% 9.68%
Correlation 0.115 0.074 0.016
Skewness 0.222 0.133 0.078
Kurtosis 2.627 1.913 2.492
1 Average Annual Return, Cumulative Return, Annual Volatil-

ity, and Correlation are calculated as indicated in Table 1.
Skewness (Kurtosis) refers to the skewness (kurtosis) be-
tween daily returns of each strategy and daily returns of the
index during the entire out-of-sample period.

Table 5: Cumulative return per year for Long-Short strategy1

S&P 100 Ibovespa Russell 1000
Mont. Bimont. Quart. Mont. Bimont. Quart. Mont. Bimont. Quart.

2011 2.0% 1.5% 1.5% -0.9% -0.9% -0.9% 1.3% 1.0% 1.0%
2012 9.3% 7.6% 2.9% -4.9% -3.8% -11.0% 24.0% 18.9% 11.4%
2013 1.8% 1.8% -2.1% 1.0% 5.5% -16.7% 7.9% 9.9% 6.8%
2014 6.1% 11.9% 11.8% 2.0% -0.5% 3.0% 4.0% 5.6% 4.9%
2015 -3.1% -2.3% 0.0% 11.1% 21.8% 8.6% -8.1% -9.1% -12.3%
2016 14.4% 12.8% 7.8% 7.7% -1.5% -9.6% 7.3% 4.2% 3.7%
2017 -7.3% -6.3% -4.6% -1.7% -1.5% 1.1% -3.0% -1.9% 1.6%
Average 3.3% 3.9% 2.5% 2.0% 2.7% -3.7% 4.8% 4.1% 2.4%
1 The Cumulative Return per year refers to the return calculated cumulatively during each year of the

out-of-sample period.
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