
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RICARDO GRUNITZKI

A Flexible Approach for Optimal Rewards
in Multi-Agent Reinforcement Learning

Problems

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Profa. Dra. Ana L.C. Bazzan

Porto Alegre
August 2018

CIP — CATALOGING-IN-PUBLICATION

Grunitzki, Ricardo

A Flexible Approach for Optimal Rewards in Multi-Agent Re-
inforcement Learning Problems / Ricardo Grunitzki. – Porto Ale-
gre: PPGC da UFRGS, 2018.

91 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Ana L.C. Bazzan.

1. Optimal reward problem. 2. Reward function design.
3. Multi-agent reinforcement learning. I. Bazzan, Ana L.C..
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Quando penso que já cheguei ao meu limite,

descubro que tenho forças para ir além.”

— AYRTON SENNA

ACKNOWLEDGMENTS

I would like to thank you all the people that helped me to make this research

possible.

Firstly, I express my gratitude to my advisor Ana L. C. Bazzan for her intellectual

and personal support through this entire process. Besides my advisor, a special thank

you to Professor Bruno C. da Silva who, even informally, played the role of co-advisor

masterfully.

I would like to extend my gratitude to the institution UFRGS and the people that

are part of it.

Thank you also to the Conselho Nacional de Desenvolvimento Científico e Tec-

nológico (CNPq) for founding my research.

I would like to thank you, my friends and colleagues, from MASLAB. In special,

to Gabriel Ramos, Fernando dos Santos and Liza Lemos for the mutual and immeasurable

support during the development of this thesis. I also would like to thank you all my

colleagues from UFRGS.

I would like to thank you all my friends. In particular, my home-mates Sergio

Montazolli, Pedro Heleno, Anderson Tavares and to Matthewzão and Eric whom we

shared good times during my days in Porto Alegre.

Last but not the least, I would like to thank you my parents, Marco and Claudete.

Without you, I would not have been able to.

ABSTRACT

Defining a reward function that, when optimized, results in rapid acquisition of an optimal

policy, is one of the most challenging tasks involved in applying reinforcement learning

algorithms. The behavior learned by agents is directly related to the reward function they

are using. Existing work on the Optimal Reward Problem (ORP) propose mechanisms to

design reward functions. However, their application is limited to specific sub-classes of

single or multi-agent reinforcement learning problems. Moreover, these methods identify

which rewards should be given in which situation, but not which aspects of the state or

environment should be used when defining the reward function.

This thesis proposes an extended version of the optimal reward problem (EORP) that: i)

can identify both features and reward signals that should compose the reward function;

ii) is general enough to deal with single and multi-agent reinforcement learning prob-

lems; iii) is scalable to problems with large number of agents learning simultaneously; iv)

incorporates a learning effort metric in the evaluation of reward functions, allowing the

discovery of reward functions that result in faster learning.

The method is evaluated on gridworld and traffic assignment problems to demonstrate

its efficacy in designing effective reward functions. The results obtained by the proposed

approach are compared to reward functions designed by a domain specialist and to a well-

known new design technique for multi-agent rewards called difference rewards. Results

show that EORP can identify reward functions that outperform these two types of reward

functions in the evaluated problems.

Keywords: Optimal reward problem. Reward function design. Multi-agent reinforce-

ment learning.

Uma Abordagem Flexível para Recompensas Ótimas em Problemas de

Aprendizado por Reforço Multiagente

RESUMO

Definir uma função de recompensa que, quando otimizada, resulta em uma rápida aquisi-

ção de política ótima é uma das tarefas mais desafiadoras envolvendo o uso de algoritmos

de aprendizado por reforço. O comportamento aprendido pelos agentes está diretamente

relacionado à função de recompensa que eles estão utilizando. Trabalhos existentes sobre

o Optimal Reward Problem (ORP) propõem mecanismos para projetar funções de recom-

pensa. Entretanto, a aplicação de tais métodos é limitada à algumas subclasses específicas

de problemas de aprendizado por reforço mono ou multiagente. Além do mais, os mé-

todos em questão apenas identificam “o quanto” que um agente deve ser recompensado

em cada situação, mas não “quais os” aspectos do estado ou ambiente que devem ser

utilizados na estrutura da função de recompensa.

Nesta tese, nós propomos melhorias no ORP tradicional, definindo uma versão estendida

do optimal reward problem (EORP) que: i) pode identificar tanto as características do

estado/ambiente quanto os sinais de recompensa que compõem a função de recompensa;

ii) é geral o suficiente para lidar com problemas de aprendizado por reforço mono e mul-

tiagente; iii) é escalável para problemas onde existem grandes quantidades de agentes

aprendendo simultaneamente; iv) incorpora uma métrica de esforço de aprendizagem na

avaliação das funções de recompensa, permitindo a descoberta de funções de recompensa

que resultam em um aprendizado mais rápido.

Para demonstrar a eficácia do nosso método em projetar funções de recompensa efetivas,

nós o avaliamos em dois cenários, onde os resultados são comparados com outras duas

funções de recompensa: uma definida manualmente por um especialista de domínio e uma

função do tipo difference rewards. Os resultados mostram que a nossa abordagem con-

segue identificar funções de recompensa que aprendem políticas de maior performance e

que resultam em menor tempo de aprendizagem.

Palavras-chave: Problema de recompensa ótima. Projeto de função de recompensa.

Aprendizado por reforço multiagente.

LIST OF ABBREVIATIONS AND ACRONYMS

CMOTP Coordinated Multi-Agent Object Transportation Problem

DR Difference Rewards

IRL Inverse Reinforcement Learning

MARL Multi-Agent Reinforcement Learning

ORF Optimal Reward Function

ORP Optimal Reward Problem

PBRS Potential-Based Reward Shaping

RL Reinforcement Learning

SOTP Single-Agent Object Transportation Problem

TAP Traffic Assignment Problem

LIST OF SYMBOLS

R Reward function

S Set of states

A Set of actions

Q Value function or Q-value

r Reward signal

Λ Maximum number of episodes

D Difference rewards function

G (z) System’s utility function

G (zi) System’s utility function of a hypothetical system without agent i

i Agent

I Set of agents

F Fitness function

h History generated by an agent

H Set of the histories generated by all agents in I

J Set of reward features

R∗ Optimal reward function

f1 Fitness goal function

f2 Learning effort goal function

R Space of reward functions

F Multi-objective evaluation function

s (j) Indicates whether the situation j is active in a given state

w (j) Reward signal of a given reward feature

P (j) Indicates whether feature j is used in a given reward function.

Φ Function that composes a reward function

LIST OF FIGURES

Figure 1.1 Object transportation domain. The learning task consists in agent 1
transport the object to the home base...14

Figure 1.2 Performance (# steps) of agent 1 when solving the object transportation
problem with reward functions R′ and R′′. ..15

Figure 2.1 Agent-environment interaction schema. ..23
Figure 2.2 Typical structure of a multi-agent system..23

Figure 3.1 Reinforcement Learning agent-environment interactions schema28

Figure 5.1 The CMOTP domain (adopted from Buşoniu, Babuška and Schutter
(2010))..44

Figure 5.2 The SOTP domain (adopted from Buşoniu, Babuška and Schutter (2010))..45
Figure 5.3 Performance (fitness) vs. time (episode) in CMOTP.....................................51
Figure 5.4 Network topology of scenario OW. ...56
Figure 5.5 Network topology of scenario ND...57
Figure 5.6 Network topology of scenario SF. ...58
Figure 5.7 Performance vs. time on scenario OW. ...71
Figure 5.8 Performance vs. time on scenario ND...72
Figure 5.9 Performance vs. time on scenario SF. ...72

Figure A.1 Domínio de transporte de objetos. A tarefa de aprendizagem consiste
em um agente aprender a transportar o objeto até na base.......................................83

Figure A.2 Desempenho do agente 1 ao resolver o problema de transporte coorde-
nado de objeto com as funções R′ e R′′. ..84

LIST OF TABLES

Table 1.1 Hypothetical situations in which to reward the agent.15

Table 3.1 Relevant aspects of ORP-based approaches..31

Table 5.1 Reward features of SOTP. ...47
Table 5.2 Reward features of CMOTP. ...47
Table 5.3 Fitness (f1) and effort (f2) yielded by (RB) and EORP.49
Table 5.4 Fitness (f1), effort (f2) and number of features (f3) obtained by (R∗1),

(R∗2), and (R∗3) ...50
Table 5.5 Fitness (f1) and effort (f2) produced by (R∗) and (R∗I)52
Table 5.6 Fitness (f1) and effort (f2) produced in SOTP. ..53
Table 5.7 OD-matrix of scenario OW..56
Table 5.8 OD-matrix of scenario ND. ...57
Table 5.9 OD-matrix of scenario SF. The rows are the origin and the columns are

the destinations. The number in the cells represent the amount of trips in
thousands...59

Table 5.10 Relevant aspects of scenarios OW, ND and SF. ..60
Table 5.11 Average travel time of OW scenario for edge-based-QL (standard devi-

ation in parentheses). ..64
Table 5.12 Average travel time (ATT) and standard deviation (in parentheses) for

route-based-QL in OW scenario. ..64
Table 5.13 Reward features for Edge-based-QL. ..66
Table 5.14 Fitness (f1) and effort (f2) in TAP...67
Table 5.15 Set of reward features (J) available for edge-based and route-based-QL.

The column φ describes the function of each reward feature. φ is composed
by variables present in scenario’s cost functions (see Equations 5.2 - 5.5) but
here its values are relative the edge or route that composes a given action a.
For this reason, the identifier a is used in variables such as ca, t0a, etc.67

Table 5.16 Optimal reward functions for edge-based and route-based-QL in the
three TAP scenarios. ...69

Table 5.17 Average travel time and standard deviation (in parentheses).70

Table A.1 Situações hipotéticas para recompensar o agente 1..84

CONTENTS

1 INTRODUCTION...13
1.1 Overview of Proposed Extended-Optimal Reward Problem..............................18
1.1.1 Automatic Reward Feature Selection ..18
1.1.2 Generality of Application ..18
1.1.3 Scalability in Multi-Agent Settings ...19
1.1.4 Learning Effort Evaluation ..19
1.2 Publications ...19
1.3 Organization of the Chapters ..21
2 BACKGROUND..22
2.1 Autonomous Agents and Multi-Agent Systems..22
2.2 Machine Learning...23
2.3 Reinforcement Learning...24
3 REWARD FUNCTION DESIGN ..27
3.1 Optimal Reward Problem ..27
3.2 Reward Shaping..31
3.3 Difference Rewards...33
3.4 Inverse Reinforcement Learning ...34
3.5 Discussion ..35
4 EXTENDED OPTIMAL REWARD PROBLEM ..36
4.1 Mathematical Formulation ..37
4.2 Evaluation Function F ...37
4.3 Reward Design SpaceR (J)...39
4.4 EORP Solver..41
5 EXPERIMENTAL RESULTS ...43
5.1 Coordinated Multi-agent Object Transportation Problem.................................43
5.1.1 Problem Statement and Scenario ...44
5.1.2 Learning Algorithm ...45
5.1.3 Basic Setup...46
5.1.4 Numerical Results..47
5.1.4.1 Automatic Reward Feature Selection ...47
5.1.4.2 Scalability in Multi-Agent Settings ..51
5.1.4.3 EORP in Single-Agent Settings ..52
5.2 Traffic Assignment Problem ..53
5.2.1 Problem Statement ...54
5.2.2 Scenarios ..56
5.2.3 Learning Algorithms..58
5.2.3.1 Edge-based Q-Learning ..60
5.2.3.2 Route-based Q-Learning...61
5.2.4 Basic Setup...61
5.2.4.1 EORP Settings ..62
5.2.4.2 Baseline Reward Functions...62
5.2.4.3 Q-Learning Settings..63
5.2.5 Numerical Results..65
5.2.5.1 EORP versus Difference Rewards ..65
5.2.5.2 Different Reward Feature Representations ...67
5.3 Discussion ..72
6 FINAL REMARKS...74
6.1 Conclusions..74

6.2 Future Work ..76
REFERENCES...78
APPENDIX A — UMA ABORDAGEM FLEXíVEL PARA RECOMPENSAS

ÓTIMAS EM PROBLEMAS DE MARL...82
A.1 Visão Geral do EORP ..87
A.1.1 Seleção automática de features ...87
A.1.2 Generalidade de Aplicação ...88
A.1.3 Escalabilidade em Problemas Multiagente ...88
A.1.4 Esforço de Aprendizagem...89
A.2 Publicações..89

13

1 INTRODUCTION

Reinforcement learning (RL) deals with problems where an agent tries to learn a

behavior through successive interactions with an environment (SUTTON; BARTO, 1998).

The behavior of an agent is represented by a policy that maps states to actions. The qual-

ity of an action taken by an agent during the RL process is evaluated based on a numerical

signal, known as reward (or reward signal), received from the environment after the agent

having performed such an action. A reward function determines the reward an agent will

receive from the environment. The designer1 of the RL system is responsible for specify-

ing a reward function which, when optimized by an agent, results in the behavior desired

by the designer, in the sense of being a behavior that solves the learning problem/task of

interest. The performance of an agent or collective of agents (known as multi-agent RL -

MARL) learning via RL is directly related to the reward function being optimized by the

agent because the reward function is the mechanism responsible for defining the goal of

the learning task.

The use of effective reward functions provides benefits to the agent that go be-

yond the acquisition of an optimal policy. Multiple reward functions, when optimized,

may produce a same optimal policy, but under different learning effort. As an example,

consider the episodic learning task illustrated in Figure 1.1 (for details, see Section 5.1).

In this task, introduced by Buşoniu, Babuška and Schutter (2010), for agent 1 to solve the

task it must:

i) find the object located in the maze;

ii) grasp the object; and

iii) transport the object to the home base.

The optimal solution for the task is represented by the red line, which takes 8

steps/movements. The authors of this scenario provide a reward function (Equation 1.1)

that when optimized can guide the agent to solve the task at an optimal time. This reward

function rewards the agent with a reward signal in the set {1.0, 0.1, 0} according to the

current state (s) of the agent. However, many more reward functions, such as the one

proposed in Equation 1.2, may also guide the learning of that same optimal policy for that

task.
1Whenever this thesis refers to a “designer”, it is not necessarily referring to a single person, but to the

team that is developing a reinforcement learning-based solution.

14

Figure 1.1: Object transportation domain. The learning task consists in agent 1 transport
the object to the home base.

home base

object

1

R′ (s) =

1, if the object is at the home base

0.1, if the object is grasped

0, otherwise

(1.1)

R′′ (s) =

1, if the object is at the home base

0, otherwise
(1.2)

In this task, the performance measure for the agent is given by the number of steps

it takes to accomplish the task. Figure 1.2 shows the performance of the agent learning

with the reward functions R′ and R′′. In the final episodes, both functions were able

to converge to the optimal solution of the task, leading to the conclusion that they are

equivalent in finding the optimal policy for this task. However, now, consider a second

performance measure, which does not only assess the quality of the learned behavior in

the final episode, but also the learning effort the agent spend along its lifetime to acquire

such behavior. The learning effort is represented by the accumulative amount of steps

(or decisions) taken by the agent along the episodes of its lifetime. In case of taking

into account the learning effort yielded by the reward functions R′ and R′′ to acquire the

optimal policy, they are no longer equivalent. By learning with the reward functionR′, the

agent takes≈ 50% fewer steps during its lifetime when compared toR′′. From episode 10

to 25, R′ had already found near-optimal solutions, while R′′ still learns poorer solutions

in that period. In other words, for the learning task illustrated in Figure 1.2, it is easier

for the agent to learn an optimal policy by being guided by the reward function R′ than

reward function R′′.

15

Figure 1.2: Performance (# steps) of agent 1 when solving the object transportation
problem with reward functions R′ and R′′.

0 10 20 30 40

0
50

10
0

15
0

20
0

episode

nu
m

be
r

of
 s

te
ps R'

R''

For a simple scenario like this, it would be more interesting for the designer to use

reward function R′ instead of R′′, since it provides faster learning convergence. However,

is R′ the most suitable reward function for the task? There is no direct answer to this

question because there are many more reward functions that can represent such a learning

task. Table 1.1 presents some of the hypothetical situations in which the designer may

consider to be interesting to reward the agent. In such case, finding of an adequate reward

function is hard due to the space of available reward functions being composed by any

combination of these situations and its respective rewards.

Table 1.1: Hypothetical situations in which to reward the agent.
Situation
1 if the object is at the home base
2 if the agent grasped the object
3 if the agent hit a wall
4 if the agent tried to go to a cell occupied by an object
5 if the agent chose to stand still

As demonstrated in the object transportation scenario, it is not easy for a designer

to define an effective reward function for a given problem. Although it is assumed that the

designer of an RL system has enough knowledge to design RL agents, the quality of the

behavior learned by such agents is very sensitive to basic choices made by the designer

regarding two reward function related design choices:

i) in which situation to reward the agent?

ii) how much to reward the agent in each situation?

Depending on the characteristics of the learning task, other issues may also arise. Single-

agent problems usually have fewer issues associated with reward function design than

multi-agent problems; in multi-agent problems, e.g., the strategy used by the system’s

16

designer may change according to the type of the learning task—cooperative, competitive

or mixed—and the number of learning agents. For instance, in multi-agent cooperative

tasks, the use of joint-actions and team rewards may be feasible, as long as the task has

few agents. In scenarios with a large number of agents this strategy can suffer from the

curse of dimensionality (SUTTON; BARTO, 1998).

The goals of a system’s designer in designing a given reward function R is that,

when an agent is optimizing R (i.e., learning with reward function R), such agent follows

some behavior or solves some task of interest to the system’s designer. An inappropri-

ately designed reward function may lead the agent to learn inappropriate behaviors, i.e.,

a behavior that is not of interest to the designer. Moreover, even though a given reward

function can guide the agent to an optimal policy, it is still possible that the learning effort

expended—regarding computational resources or time—to learn such a policy renders

the use of RL unfeasible. In the modeling stage of a reinforcement learning problem, the

system’s designer usually adopts the following strategy when creating reward functions:

i) to positively reward actions that lead the agent to desired states; and

ii) to negatively reward actions that lead the agent to undesired states.

Such strategy stimulates behaviors driven by extrinsic motivations, i.e., motivations gen-

erated by immediate rewards directly linked to the goals of the agent (BARTO; SINGH;

CHENTANEZ, 2004). Singh, Lewis and Barto (2009), Singh et al. (2010) argue that this

strategy may not be the best one. The authors show that agents could benefit by rewarding

intermediate states because this instigates behaviors driven by curiosity, novelty, surprise

and other internally-mediated features that are usually associated with intrinsic rewards.

To design reward functions with such properties, Singh, Lewis and Barto (2009)

introduced the Optimal Reward Problem (ORP). An ORP is composed of and specified by

two functions: i) A reward functionR that guides the learning process of the agent; and ii)

a fitness function F that evaluates the quality of the learned behavior. The fitness function

represents the desire of the system’s designer. Solving the ORP consists of finding the

Optimal Reward Function (ORF), R∗, that maximizes the fitness function. In Singh et

al. (2010), the ORP is (approximately) solved through a brute force strategy. Subsequent

works (SORG; LEWIS; SINGH, 2010b; NIEKUM; BARTO; SPECTOR, 2010; LIU et

al., 2012; LIU et al., 2014) proposed automated and more efficient methods for dealing

with ORP in single or multi-agent settings. Such methods present several limitations,

which only allow them to be applied in very specific learning tasks.

17

There are non-ORP strategies that can be used, at least partially, to handle de-

signing reward functions. The technique called difference rewards, presented by Tumer

and Agogino (2007), stimulates cooperation among a collective of agents through mod-

ifications in the basic structure of the reward function. However, its use is limited to

cooperative learning tasks were complete environment observation is available. Another

well-known type of technique is known as inverse RL, which identifies the reward function

that produces a behavior that was previously observed by a specialist. Since it requires a

set of observations of optimal behaviors, it is not possible to apply inverse RL to many

problems. Finally, techniques based on reward shaping aim at speeding up the learning

convergence by providing domain knowledge in the form of additional reward signals.

However, reward function design is not addressed in reward shaping technique.

Each of the methods previously mentioned present their own limitations that pre-

vent them from being applied to other types of learning problems from those they were

designed for. The literature has a gap regarding a general method that automates the re-

ward function design in different types of RL/MARL problems. To fill such a gap, the

following research question is considered in this thesis:

Research Question.

Is there a method that automates the reward function design process and that can be

applied to most types of reinforcement learning tasks?

In this thesis, the idea of an automated method refers to a method that can au-

tomatically find an adequate reward function for a task, given a set of appropriate inputs

provided by the system’s designer. When this thesis refers to types of reinforcement learn-

ing tasks, it is referring to mono and multi-agent tasks and their variants.

Among the existing methods, the one that best matches the research question of

this thesis is the ORP because it has already been developed to find the best reward func-

tion according to the preferences of the system’s designer. Based on the ORP, this thesis

seeks to address its research question through the following research hypothesis:

Research Hypothesis.

By providing the necessary modifications to the Optimal Reward Problem, it is

18

possible to construct an automatic method that can deal with reward function design

in most types of reinforcement learning problems.

The present thesis proposes a flexible approach for designing effective reward

functions, called the Extended Optimal Reward Problem (EORP). The term flexible refers

to the broad range of single and multi-agent problems in which the proposed approach can

be applied. The term effective refers to finding reward functions that, when optimized, re-

sults in a rapid acquisition of optimal policy.

1.1 Overview of Proposed Extended-Optimal Reward Problem

As the name suggests, the EORP proposed in this thesis is a more complete and

versatile version of the ORP, in which the main limitations of the traditional ORP are ad-

dressed. The following sections briefly introduce the main features of EORP that address

such ORP limitations.

1.1.1 Automatic Reward Feature Selection

The first limitation of existing works is related to the automatic selection and iden-

tification of situations (or state features) in which the agent must be rewarded. Existing

approaches consider that the designer defines all the situations that may be rewarded. The

method only adjusts the reward signal for each situation. However, some problems may

present many situations that could potentially contribute to the reward function (see Ta-

ble 1.1). If the designer chooses an inappropriate set, it can impact the quality of the

reward function found by solving the ORP. The proposed approach can identify automat-

ically both situations and reward signals that are relevant for the optimal reward function.

The designer should just provide the set of potential situations to reward as input.

1.1.2 Generality of Application

The second limitation of existing works is the lack of generality for dealing with

RL problems that may be both single or multi-agent setting. MARL settings were ad-

19

dressed by Liu et al. (2014). However, their method is limited to common-payoff tasks

and model-based algorithms. The approach proposed in this thesis is general for dealing

with any MARL problem (including single-agent RL problems) because it uses an evo-

lutionary strategy that is independent of the RL problem and can deal with single/multi-

agent tasks that use both model-free and based methods.

1.1.3 Scalability in Multi-Agent Settings

The third limitation of existing works is associated with scalability issues. In Liu

et al. (2014), for each learning agent, a private reward function is optimized in order

to deal with a specific task. However, in problems with a large number of agents, the

optimization may not converge to desired solutions due to the slow convergence of op-

timization methods in high-dimensional search spaces. The approach presented in this

thesis scales because EORP optimizes a unique reward function for all agents that share

a common task. Therefore, for a given problem, regardless of the number of agents, the

dimensionality of the search problem is always the same.

1.1.4 Learning Effort Evaluation

The fourth limitation of existing approaches is related to the evaluation of an ORF.

The space of reward functions may contains multiple reward functions that produce the

same behavior, but that differ in learning effort required to acquire an optimal policy. The

proposed approach takes into account the trade-off between fitness and learning effort

spent in the learning process. Therefore, functions found by the EORP aim at producing

the best behavior (fitness) in the best learning time (effort).

1.2 Publications

The scientific contributions that lead to this thesis are:

GRUNITZKI, R.; SILVA, B. C. da; BAZZAN, A. L. C. A flexible approach for

designing optimal reward functions. In: DAS, S. et al. (Ed.). Proceedings of the

16th International Conference on Autonomous Agents and Multiagent Sys-

20

tems (AAMAS 2017). São Paulo: IFAAMAS, 2017. p. 1559–1560. Disponível em:

<http://ifaamas.org/Proceedings/aamas2017/pdfs/p1559.pdf>.

GRUNITZKI, R.; SILVA, B. C. da; BAZZAN, A. L. C. Towards designing optimal

reward functions in multi-agent reinforcement learning problems. In: Proc. of the

2018 International Joint Conference on Neural Networks (IJCNN 2018). Rio

de Janeiro: [s.n.], 2018.

In Grunitzki, Silva and Bazzan (2017), the EORP and its evaluation in a coor-

dinated multi-agent object transportation problem is presented. Analysis of the method

in a traffic assignment problem, as well as a comparison to a method for reward design

in multi-agent settings (namely, difference rewards) is presented in Grunitzki, Silva and

Bazzan (2018).

In addition to these works, others have been developed throughout the PhD course

that lead to this thesis:

GRUNITZKI, R.; BAZZAN, A. L. C. Comparing two multiagent reinforcement

learning approaches for the traffic assignment problem. In: Intelligent Systems

(BRACIS), 2017 Brazilian Conference on. [S.l.: s.n.], 2017.

BAZZAN, A. L. C.; GRUNITZKI, R. A multiagent reinforcement learning ap-

proach to en-route trip building. In: 2016 International Joint Conference on Neu-

ral Networks (IJCNN). [S.l.: s.n.], 2016. p. 5288–5295.

GRUNITZKI, R.; BAZZAN, A. L. C. Combining car-to-infrastructure communi-

cation and multi-agent reinforcement learning in route choice. In: BAZZAN, A.

L. C. et al. (Ed.). Proceedings of the Ninth Workshop on Agents in Traffic and

Transportation (ATT-2016). New York: CEUR-WS.org, 2016. ISSN 1613-0073.

Disponível em: <http://ceur-ws.org/Vol-1678/paper12.pdf>.

GRUNITZKI, R.; RAMOS, G. d. O.; BAZZAN, A. L. C. Uma ferramenta para alo-

cação de tráfego e aprendizagem de rotas em redes viárias. In: Anais do XXVIII

Congresso de Pequisa e Ensino em Transportes (ANPET 2014). [s.n.], 2014.

ISBN 978-85-87893-17-8. Disponível em: <www.inf.ufrgs.br/maslab/pergamus/pubs/

grunitzki+2014-anpet.pdf>.

RAMOS, G. de. O.; GRUNITZKI, R. An improved learning automata approach

for the route choice problem. In: KOCH, F.; MENEGUZZI, F.; LAKKARAJU, K.

http://ifaamas.org/Proceedings/aamas2017/pdfs/p1559.pdf
http://ceur-ws.org/Vol-1678/paper12.pdf
www.inf.ufrgs.br/maslab/pergamus/pubs/grunitzki+2014-anpet.pdf
www.inf.ufrgs.br/maslab/pergamus/pubs/grunitzki+2014-anpet.pdf

21

(Ed.). Agent Technology for Intelligent Mobile Services and Smart Societies.

[S.l.]: Springer Berlin Heidelberg, 2015, (Communications in Computer and Infor-

mation Science, v. 498). p. 56–67. ISBN 978-3-662-46240-9.

RAMOS, G. de. O.; GRUNITZKI, R.; BAZZAN, A. L. C. On improving route

choice through learning automata. In: Proceedings of the Fifth International Work-

shop on Collaborative Agents – Research & Development (CARE 2014). [s.n.],

2014. p. 1–12. Disponível em: <http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+

2014care.pdf>.

GRUNITZKI, R.; RAMOS, G. d. O.; BAZZAN, A. L. C. Individual versus differ-

ence rewards on reinforcement learning for route choice. In: Intelligent Systems

(BRACIS), 2014 Brazilian Conference on. [S.l.: s.n.], 2014. p. 253–258.

All above publications are in some way related to the research theme of this thesis.

In Grunitzki, Ramos and Bazzan (2014a), the use of MARL and difference rewards in

traffic assignment problems are investigated. The use of learning automata for dealing

with this same problem is addressed in Ramos, Grunitzki and Bazzan (2014), Ramos

and Grunitzki (2015). A macroscopic simulator for dealing with traffic assignment in a

multiagent perspective is presented in Grunitzki, Ramos and Bazzan (2014b). Grunitzki

and Bazzan (2016) investigate the use of car-to-car communication in a MARL setting

for the traffic assignment problem. A strategy in which the agents build the route along

the trip is investigated in Bazzan and Grunitzki (2016). This strategy is compared to a

strategy in which the agents learn to select a route from a set of pre-computed routes in

Grunitzki and Bazzan (2017).

1.3 Organization of the Chapters

The rest of this thesis is organized as follows. Chapter 2 introduces the basic con-

cepts of multi-agent systems and multi-agent reinforcement learning. The related work on

reward function design is presented and discussed in Section 3. The proposed approach

appears in Chapter. 4. Chapter 5 performs experimental evaluations of the EORP. The

conclusions and future work are presented in Chapter 6.

http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2014care.pdf
http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2014care.pdf

22

2 BACKGROUND

This chapter introduces the basic concepts of autonomous agents and multi-agent

systems (Section 2.1), machine learning (Section 2.2), and reinforcement learning and its

main elements (Section 2.3).

2.1 Autonomous Agents and Multi-Agent Systems

There is no canonical definition for the term agent accepted by the whole commu-

nity: there are many debates and controversies regarding the various definitions presented

in the literature. Despite this, the different definitions—such as the ones presented by

Jennings (2000) and Wooldridge (2009)—have the term “autonomy” as a central con-

cept underlying the idea of an agent. According to Wooldridge (2009), this difficulty of

definition is associated with the fact that various attributes of the agent are of different

importance and change as a function of the domain. This is understandable since in some

applications the ability to learn behaviour from experiences is of fundamental importance,

but for others, learning is undesirable. In many domains, agent’s behaviors can be pre-

programmed. However, some tasks are so complex that programming behaviors a priori

become impractical. In such situations, would be interesting to provide to agents the abil-

ity to learn1 a solution autonomously. Given this scenario, this thesis adopts the following

concept of agents:

An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design
objectives (WOOLDRIDGE, 2009).

This interaction process between agent and environment is illustrated in Figure 2.1.

Note that an agent situated in its environment takes sensory inputs from the environment,

and produces as output actions that affect the environment. In most environments, an

agent will not have full control over its environment. That means that the same action

taken twice in apparently identical circumstances may have different effects. This prob-

lem becomes even harder when multiple agents are interacting in the same environment.

In such multi-agent systems, the outcomes of an agent’s action are influenced by the en-

vironmental noise and also by the actions performed by the other agents.

1When the agent has a model about the environment dynamics, it can also plan over such model to find
a solution (policy). Thus, in some cases, the use of planning methods would also be practical. However,
planning is not covered in this thesis.

23

Figure 2.1: Agent-environment interaction schema.

Agent

Environment

action
output

sensor
input

The typical structure of a multi-agent system, suggested by Jennings (2000), is

illustrated in Figure 2.2. The system is composed of multiple agents that can act in the

environment and interact with one another through communication. The agents have

their own sphere of influence, meaning that they will have control over different parts

of the environment. These spheres of influence may have intersections that give rise

to dependency relationships between agents. For the schema in Figure 2.2, consider that

agent a2 and a3 are trying to cross a door that is too narrow for both to pass simultaneously.

The relationship between these two agents could be a power relationship, where one agent

is the boss of another, and such boss decides who must pass first (WOOLDRIDGE, 2009).

Figure 2.2: Typical structure of a multi-agent system.

Sensors

Actuators

?

Perceptions

Reasoning

Actions

E
nvironm

ent

a1
a2

a3

Environment

The following sections introduces a few techniques.

2.2 Machine Learning

Machine learning is the field of computer science that gives the ability to learn

with data, without being beneficially programmed. In other words, machine learning

progressively improve the performance of a specific task. Russell and Norvig (2010)

classify the type of the learning in three categories:

i) unsupervised learning;

24

ii) supervised learning; and

iii) reinforcement learning.

In unsupervised learning, the agent learns patterns in the input even though no

explicit feedback is supplied. The most common unsupervised task is clustering. In su-

pervised learning, the agent has access to some examples of input-output pairs and learns

a function that maps inputs to outputs. The most common supervised tasks are classi-

fication and regression. In reinforcement learning, the agent acquires information about

its current state, making reinforcement learning somewhat related to supervised learn-

ing. However, it is different from supervised learning because the information acquired

by a reinforcement learning agent is not the correct ground truth label on action to be

performed at that state.

The focus of this work is on reinforcement learning. For this reason, supervised

and unsupervised learning will not be discussed in detail in this thesis. In the next section,

reinforcement learning is detailed.

2.3 Reinforcement Learning

Reinforcement learning deals with the problem of an agent learning a behavior

to accomplish a task through successive interactions with the environment (SUTTON;

BARTO, 1998). Such behavior involves the mapping of situations (states) to actions, in

a way that maximizes some numerical utility or reward. Unlike other machine learning

methods, an RL agent is not told which action to take in each situation. Rather, it must

discover which actions maximize its cumulative reward by trying them out.

On single-agent RL tasks, the reward signal received by the agent is influenced

only by the consequences of its actions and some noise due to the environment dynam-

ics. However, with multiple agents, the learning task becomes more difficult because the

actions of other agents also influence the reward received by an agent. Multiagent RL

techniques emerged to handle these types of problems. Approaches such as joint-action

learning (CLAUS; BOUTILIER, 1998), nash Q-Learning (HU; WELLMAN, 2003), and

gradient ascent algorithms (GRUNITZKI; RAMOS; BAZZAN, 2014a) were initially in-

troduced as proper solutions for MARL problems. Although such approaches present

convergence guarantees to optimal solutions2, their application is limited to a small set of

2Given some particular conditions of each algorithm.

25

problems such as games of few agents (normally only two) and few actions.

In the multiple independent learners (MIL) strategy, the agents’ decision-making

process are implemented in an individual manner, i.e., joint-actions are not considered

(CLAUS; BOUTILIER, 1998). This way, an agent understands the learning and behav-

ioral changing of the other agents as a changing in environment dynamic. The agent’s

decision-making process in this setting, and also in single agent reinforcement learning,

can be modeled as a Markov decision-process (MDP). An MDP is a tuple< S,A, T,R >,

where:

• S is the set of environment states where the agent may be situated in;

• A is the set of actions that the agent can execute. A (s) is the set of available actions

at a specific state s;

• T : S × A ← Π (S) is the transition function, where Π (S) is a probability distri-

bution over S; and

• R : S ×A→ < is the reward function that returns a reward R (s, a) = r for taking

action a ∈ A (s) in state s ∈ S.

The objective of an RL agent is to find a policy π : S → A that maximizes its

expected cumulative reward. To maximize the reward received throughout all interac-

tions, the agent must select each action according to a strategy that balances exploration

(gaining of knowledge) and exploitation (usage of knowledge). A well-known exploration

strategy is the ε-decreasing, which consists in choosing random actions (exploration) with

probability ε ∈ [0, 1] or choosing best actions (exploitation) with probability 1 − ε. This

way, in the beginning, ε has a high exploration, and decreases exponentially along the

episodes, as in:

ελ = ε× (∆ε)λ (2.1)

where ∆ε represents a decay rate in the interval [0, 1]; and λ ∈ Λ is an episode.

Value functions are functions of states (or of state-action pairs) that estimate how

good is for the agent to be in a state. The notion of “how good” is given is terms of

future reward that can be expected. The Q-learning algorithm, proposed by Watkins and

Dayan (1992), is a traditional algorithm used to learn value functions independently to the

policy being followed. Its update rule is shown in Equation 2.2, where < s, a, s′, r > is

an experience tuple, meaning that the agent performed action a in state s, reaching s′, and

26

receiving reward r. Action a′ is one of the possible actions on s′, α ∈ (0, 1] is the learning

rate, and γ ∈ (0, 1] is the discount factor. Q (s, a) is an entry indexed by state s and action

a in the MDP, which stores the value functions (or Q-values) of each state-action pair.

The Q-value Q (s, a) is the expected discounted return for executing action a at state s

and following the policy π thereafter.

Q (s, a)← (1− α)Q (s, a) + α
[
r + γmax

a′
Q (s′, a′)

]
(2.2)

27

3 REWARD FUNCTION DESIGN

A reward functionR is the RL element that defines and represents a specific learn-

ing task (NG; HARADA; RUSSELL, 1999). The system’s designer is responsible for

setting such function that guides the learning process. There is no general rule for the

definition of a reward function. In practice, the system’s designer defines a reward func-

tion empirically, based on his or her intuition about the answers for the questions “when

to reward the agent?” and “by how much to reward the agent?”. The literature presents

methods that support, at least partially, the system’s designer in such a task. The follow-

ing sections present the main methods related to reward function design. At the end of

this chapter (in Section 3.5), a general discussion about such methods is provided.

3.1 Optimal Reward Problem

In the standard view of the reinforcement learning, the agent’s behavior is eval-

uated through reward signals, which are external from the agent. A critic transforms

the actions of the agent in reward signals, as illustrated in the left panel of Figure 3.1.

However, this traditional RL framework should not be considered to encompass an en-

tire animal or agent. The work of Sutton and Barto (1998) points out that an RL agent

represents the learning component of the brain. The remaining physical components are

separated from the learning component but are still part of the broader agent animal. In

Barto, Singh and Chentanez (2004), the classical RL framework is extended according to

this concept, as illustrated in the right panel of Figure 3.1. In particular, the environment

is factored into two components: the internal environment and the external environment.

The animal takes actions in the physical word, for example, by applying torque to its arms,

while the RL agent itself makes decisions, such as the decision to move in a particular di-

rection. The internal environment is responsible for physically sensing the environment

and converting those sensations into signals that the RL agent can interpret. A designer is

typically responsible for specifying the entire animal, including its internal environment.

In practice, however, the existence of an external critic in the environment to send the

appropriate reward signals to the agent is not common. Instead, a designer builds an au-

tonomous critic. Furthermore, the interpretation of any external signal as a reward signal

is part of agent design. Thus the critic is built along with the other components of the

agent, and it is better considered to be a part of the animal.

28

Figure 3.1: Agent-environment interactions; adapted from Barto, Singh and Chentanez
(2004). Left panel: traditional RL framework. Right panel: intrinsically motivated RL
framework.

IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT 2

study and others in Section VII.

II. COMPUTATIONAL REINFORCEMENT LEARNING

Rewards—more specifically, reward functions—in RL de-
termine the problem the learning agent is trying to solve. RL
algorithms address the problem of how a behaving agent can
learn to approximate an optimal behavioral strategy, called
a policy, while interacting directly with its environment.
Roughly speaking, an optimal policy is one that maximizes
a measure of the total amount of reward the agent expects to
accumulate over its lifetime, where reward is delivered to the
agent over time via a scalar-valued signal.

In RL, rewards are thought of as the output of a “critic” that
evaluates the RL agent’s behavior. In the usual view of an RL
agent interacting with its environment (left panel of Figure 1),
rewards come from the agent’s environment, where the critic
resides. Some RL systems form value functions using, for
example, Temporal Difference (TD) algorithms [45], to assign
a value to each state that is an estimate of the amount of reward
expected over the future after that state is visited. For some
RL systems that use value functions, such as systems in the
form of an “actor-critic architecture” [4], the phrase “adaptive
critic” has been used to refer to the component that estimates
values for evaluating on-going behavior. It is important not
to confuse the adaptive critic with the critic in Figure 1. The
former resides within the RL agent and is not shown in the
figure.

The following correspondences to animal reward processes
underly the RL framework. Rewards in an RL system cor-
respond to primary rewards, i.e., rewards that for animals
exert their effects through processes hard-wired by evolution
due to their relevance to reproductive success. Value functions
are the basis of secondary (or conditoned or higher-order)
rewards, whereby learned predictions of reward act as reward
themselves. The value function implemented by an adaptive
critic therefore corresponds to a secondary, or learned, reward
function. As we shall see, one should not equate this with
an intrinsic reward function. The local landscape of a value
function gives direction to an RL agent’s preferred behavior:
decisions are made to cause transitions to higher-valued states.
A close parallel can be drawn between the gradient of a value
function and incentive salience [20].

III. THE PLACE OF INTRINSIC MOTIVATION IN
REINFORCEMENT LEARNING

How is intrinsic motivation currently thought to fit into
the standard RL framework?2 Barto et al. [3] used the term
intrinsic reward to refer to rewards that produce analogs of
intrinsic motivation in RL agents, and extrinsic reward to refer
to rewards that define a specific task or rewarding outcome as
in standard RL applications. Most of the current approaches to
creating intrinsically motivated agents are based on defining

2While we acknowledge the limitation of the RL approach in dealing with
many aspects of motivation, this article nevertheless focuses on the sources
and nature of reward functions for RL systems. We believe this focus allows
us to clarify issues facing not only the computational community but other
communities as well that are concerned with motivation in biological systems.

special types of reward functions and then employing stan-
dard RL learning procedures, an approach first suggested by
Schmidhuber [32] as a way to create an artificial analog of
curiosity.

�����

�����������

�������������

�������

������

!"#$%&'()!&*+%,&-$&#)

.&#$%&'()!&*+%,&-$&#)

/%+01)

23)45$&#)

2$6'%7)8+5&'(9) 8#'#$9)

8$&9'0,&9)410,&9)

:$1+9+,&9)

;;4&+-'(<<)

Fig. 1. Agent-environment interactions in reinforcement learning; adapted
from [3]. Left panel: Primary reward is supplied to the agent from its
environment. Right panel: A refinement in which the environment is factored
into and internal and external environment, with all reward coming form the
former. See text for further discussion

But let us step back and reconsider how intrinsic motivation
and RL might be related. As Sutton and Barto [47] point
out (also see [3], [40]), the standard view of the RL agent,
and its associated terminology—as represented in the left
panel of Figure 1—is seriously misleading if one wishes
to relate this framework to animal reward systems and to
the psychologist’s notions of reward and motivation. First,
psychologists distinguish between rewards and reward signals.
For example, Schultz [38], [39] writes that “Rewards are
objects or events that make us come back for more” whereas
reward signals are produced by reward neurons in the brain.
What in RL are called rewards would better be called reward
signals. Rewards in RL are abstract signals whose source and
meaning are irrelevant to RL theory and algorithms; they are
not objects or events, though they can sometimes be the result
of perceiving objects or events.

Second, the environment of an RL agent should not be
identified with the external environment of an animal. A less
misleading view requires dividing the environment into an
external environment and an internal environment. In terms
of animals, the internal environment consists of the systems
that are internal to the animal while still being parts of
the RL agent’s environment. The right panel of Figure 1
refines the usual RL picture by showing the environment’s
two components and adjusting terminology by using the labels
“RL Agent” and “Reward Signals.” Further, we label the RL
Agent’s output “Decisions” instead of “Actions,” reflecting
the fact that actions that effect the external environment are
generated by an animal’s internal environment, for example,
by its muscles, while the RL Agent makes decisions, such as
the decision to move in a certain way. In this article, however,
we retain the usual RL terms agent, reward, and action, but
it is important not to interpret them incorrectly. Similarly,
an “environment” in what follows should be understood to
consist of internal and external components. Note that these
refinements do not materially change the RL framework; they
merely make it less abstract and less likely to encourage
misunderstanding.

This refined view better reflects the fact that the sources of

In the classical RL framework there is only one function (the reward function)

which represents two purposes:

1. defining the preferences of agent’s designer;

2. guiding the behavior of the agent.

The use of a single reward function confounds these two purposes (BARTO; SINGH;

CHENTANEZ, 2004; SINGH; BARTO; CHENTANEZ, 2004). By definition, this stan-

dard RL framework assumes that the goals of both agent and designer should be the same.

For example, in a hypothetical learning task in which a dog is trained to shake hands, it

receives food every time it accomplishes the task—that is, shaking hands with its owner.

The fitness of the owner is related to the accomplishment of the shaking hand task, while

the reward given to the agent is the food. The owner’s goal is to maximize the number

of shaking hands. On the contrary, the dog’s goal is to maximize the amount of food

received. Although there is a synergy between reward and fitness functions, one does not

necessarily represent the objective of the other. In this analogy, the dog does not want

to maximize the number of shaking hands, and the owner does not want to maximize

the given food. However, the synergy between both enables the correct learning of this

behavior.

In Singh, Lewis and Barto (2009), Sorg, Lewis and Singh (2010b), the authors

suggest that both reward function and fitness function must be separated. During the mod-

eling stage of an RL problem, it is assumed that the designer knows the fitness function

because such function measures what the designer expects the agent to do. However, the

correct definition of reward functions is not so direct in complex problems. The authors

present the Optimal Reward Problem (ORP), that is, the problem of finding an Optimal

29

Reward Function (ORF) that, when maximized by the agent, also maximizes the fitness

function.

The ORP is formally defined as follows. At each time step, an agent G receives an

observation o ∈ O from its environmentM, takes action a ∈ A, produces a history h, and

repeats this process for a certain time horizon. A reward function R represents the agent’s

goals. The designer’s goals are represented by a fitness function F , which produces a

cumulative return, FR (h) for a reward function R over a history h. The ORF is given

in Equation 3.1, where R∗ is an ORF that maximizes the designer’s expected fitness F

of an agent G in some environment M, and the maximization is over the set of reward

functions R. The expectation operator is denoted by E. The notation h ∼ M〈G (R)〉

denotes that h is a sample history generated when agent G acts in environmentM, using

reward function R.

R∗ = arg max
R∈R

E [FR (h) |h ∼M〈G (R)〉] (3.1)

This ORP formulation presents minimal assumptions about the agent and comes

with a simple guarantee: an ORF performs at least as well as the objective reward function—

the conventional choice—as long as the objective reward function is in the search set R

(SORG, 2011). This guarantee holds whether or not the reward function of the agent and

the fitness function of the designer are the same (SORG; LEWIS; SINGH, 2010a). By

including the constraint that R ∈ R, the proof is straightforward.

In practice, it is not easy to exactly find R∗. It must be approximated, as done

in existing works. The work of Singh, Lewis and Barto (2009), Singh et al. (2010) fo-

cuses on the theoretical formulation of ORP. For solving it, a brute force strategy is used,

which consists of the discretization of the space of reward functions. The following works

on ORP introduce methods to find approximate solutions to the ORP. In Niekum, Barto

and Spector (2010), a genetic programming method is proposed. Sorg, Lewis and Singh

(2010b) propose a gradient-based method for online solving of ORP. Both approaches

perform well in finding approximated solutions for the problem when compared against

a force brute strategy. Although there is no direct comparison of these methods, the main

difference between them is that the gradient-based updates the reward function during the

learning process, while the genetic programming-based needs to test a given reward func-

tion in a complete learning process to adjust it. In theory, the gradient-based may be faster

than the genetic programming method. However, experimentation must be performed to

support this hypothesis.

30

All works discussed so far were developed for single-agent RL problems. The

first work to deal with the ORP in a multi-agent perspective is the one presented by Liu

et al. (2014). In this work, the algorithm proposed by Sorg, Lewis and Singh (2010b)

is extended for multi-agent cooperative settings (specifically, common-payoff or team).

In this multi-agent ORP, the team reward function is used as the fitness function. Each

agent learns an individual reward function that guides its behavior. The obtained results

showed that this approach could improve the performance of the agents when compared

to traditional approaches that use only the shared team-reward function. The explanation

for this is that the learning of individual rewards stimulates the specialization of the agents

in different roles.

The approach of (LIU et al., 2014) assumes that each agent has a perfect model

of the dynamics of the environment and use upper confidence bound on trees (UCT)

algorithm to plan. Agents do not know which action other agents will take, but they can

observe how other agents have acted in the past. The current state of other agents is

available for all agents. During the learning process, each agent updates its environment

model based on the actions performed by the other agents. These actions are used in the

proposed architecture during the joint-action planning. The actions of other agents are

estimated based on probability distributions acquired from the past.

The original work of (SINGH; LEWIS; BARTO, 2009) inspired all ORP-based

methods presented so far. Each of them proposes some improvements and modifications

to the original ORP structure to allow for its application in some specific task. Table 3.1

provides a comparison of such approaches regarding:

• solver: the algorithm used to solve the ORP;

• technique: refers to the applicability of the method to learning or planning settings;

• single-agent: applicability to single-agent problems;

• multi-agent: applicability to multi-agent problems;

• RF update: refers to the strategy adopted to update/evolve the reward function (RF)

during the optimization process. Consider that when an agent is born/created it

receives a reward function, which can be updated on or off-line. On-line update

means that the structure of the reward function changes while it is in use by the

agent(s) in its(their) lifetime. Off-line update means that the structure of the reward

function does not chance while the agent(s) is(are) using it;

31

• reward scope: represents the scope in which the reward signal is propagated to

the agents. Individual scope represents the problems in which each agent receives

private reward signals after executing its actions. Different from team scope, where

the entire team of agents is rewarded with the same reward signal after they have

executed their actions.

• environment observation: refers to the nature of environment information used by

the reward function. Partial environment observation represents the information

the agent can observe in its current state. Complete environment observation rep-

resents all the information present in the environment, even if such environment

information can not be physically observable by the agent from its current state.

• task type: could be competitive and/or cooperative in the multi-agent case.

Table 3.1: Relevant aspects of ORP-based approaches.
Aspect Singh et al. (2010) Niekum et al. (2010) Sorg et al. (2010) Liu et al. (2014)
solver brute force genetic programming gradient ascent gradient ascent

technique learning learning planning planning
single-agent 3 3 3 7
multi-agent 7 7 7 3
RF update off-line off-line on-line on-line

reward scope individual individual individual team
env. observation partial partial complete complete

task type competitive
competitive cooperative

The existing ORP techniques encompass a not-so-narrow range of application.

However, for each type of problem, it is necessary to use a different technique. For

example, the work of Liu et al. (2014) applies to multi-agent cooperative tasks, but it is

not applicable to single-agent or planning tasks. Besides this, there are some gaps in the

application of these methods. For instance, no method deals with learning technique in

multi-agent settings. Another gap is the application in multi-agent competitive settings.

3.2 Reward Shaping

In RL, the value functions are usually initialized with random values, i.e., opti-

mistic or pessimistic expectations of reward to be received in each state-action pair. Dur-

ing the modeling phase of RL agents, the designer often has knowledge about the learning

domain that can be given to a learning agent during its learning process. Knowledge-

based RL mechanisms such as potential-based reward shaping (PBRS) (NG; HARADA;

32

RUSSELL, 1999; WIEWIORA; COTTRELL; ELKAN, 2003; DEVLIN et al., 2014) deal

with such incorporation of domain knowledge into RL agents, aiming at guiding domain

exploration. The major advantage of such knowledge incorporation is the possibility of a

reduction in the number of sub-optimal decisions taken by the agent and, consequently,

an alleviation in the impact of the explosion of the state-action space.

A potential function maps states to potential numerical values that represent the

designer’s preference of agent being in a given state. For instance, it is a common strat-

egy to define high potential values to goal states and, this way, decrement the potentials

linearly according to the distance of other states to the goal. This strategy encourages the

agent to visit the states more related to the goal. Domain knowledge can be represented

by the PBRS function F (s, s′) defined in Equation 3.2, which is given by the difference

between: i) a potential function of next state, Φ (s′), discounted by γ; and ii) a potential

function of the current state, Φ (s).

F (s, s′) = γΦ (s′)− Φ (s) (3.2)

The use of PBRS does not require major modifications to the standard RL frame-

work. In a traditional algorithm such as Q-learning, the incorporation of PBRS in its

update rule is given by Equation 3.3. Note that when an agent takes an action a in state s

and transits to state s′, it receives an extra reward signal given by F (s, s′) that is summed

with the one provided by the reward function R (s, a).

Q (s, a)← (1− α)Q (s, a) + α
[
R (s, a) + F (s, s′) + γmax

a′
Q (s′, a′)

]
(3.3)

The work of Ng, Harada and Russell (1999) proves that the policy acquired by an

agent learning with PBRS is equivalent to the one obtained by an agent learning without

PBRS. Further work by Wiewiora, Cottrell and Elkan (2003) demonstrates that the use of

PBRS without value functions initialization is equivalent to the use of value functions ini-

tialization without PBRS. However, Devlin and Kudenko (2012) prove that such a claim

only holds when the PBRS function is deterministic.

Note that PBRS was developed for the purpose of accelerating learning in a par-

ticular environment. The kind of reward provided by PBRS has been explicitly developed

with the intention of not changing the long-term behavior of an agent. On the other hand,

ORP is conceptually different. The work of Sorg, Lewis and Singh (2010b) shows that it

33

is sometimes beneficial to modify the long-term behavior of an agent. ORP can be used to

improve the performance of agents. Besides this, PBRS does not handle with the problem

of finding good reward functions. Reward shaping assumes an existing reward function

and focuses on providing extra knowledge in the form of addictive reward signals that do

not change the optimal policy of the agent.

3.3 Difference Rewards

In multi-agent cooperative problems, it is normal to design reward functions that

provide rewards based on a system’s performance measure of the problem. However, ac-

cording to Tumer and Agogino (2007), in some domains, such reward structure leads to

slow learning. Given that reinforcement learning agents aim to maximize their individual

rewards, a critical task is to create “good” agents’ rewards, or rewards that when pursued

by all the agents of a RL system lead to good system’s performance. The system’s per-

formance can be measured by a system’s utility function G (z), where z is a variable that

represents the state-action pairs of all agents in the system.

Difference Rewards are functions proposed by Tumer and Agogino (2007), which

aim at providing reward signals that are both sensitive to the agents’ actions and aligned

with the system’s performance. Consider the difference rewards as in Equation 3.4, where

z−i is the state-action pairs for a theoretical system without the contribution of agent i.

All components of z that are affected by agent i are replaced with the fixed constant ci.

Di ≡ G (z)−G (z−i + ci) (3.4)

Using a null vector in ci is equivalent to taking agent i out of the system. Intu-

itively this causes the second term of the difference rewards to evaluate the performance

of the system without i and, therefore,D evaluates the agent’s contribution to the system’s

performance. According to Tumer and Agogino (2007), there are two advantages using

Equation 3.4 for rewarding:

1. the second term removes a significant portion of the impact of the other agents in

the system and provides an agent with a “cleaner” signal than G. This benefit has

been dubbed learnability in previous works (AGOGINO; TUMER, 2005; TUMER;

WOLPERT, 2004);

2. the second term does not depend on the actions of agent i. In other words, any

34

action taken by agent i that improves D also improves G. This term measures the

alignment between two rewards. It has been dubbed factoredness in previous works

(AGOGINO; TUMER, 2005; TUMER; WOLPERT, 2004).

Difference rewards can be applied to any linear or nonlinear system’s utility func-

tions. However, its effectiveness depends on the domain, and on the interaction among

the agents’ utility function (TUMER; AGOGINO, 2007).

3.4 Inverse Reinforcement Learning

Inverse reinforcement learning deals with the problem of identifying the reward

function that can explain the observed behavior of an agent. Consider the simple case

where the state space is finite, the environment model is known, and the agent’s policy is

observed. Formally, given a finite state space S, a set of k actions A, transition function

T , a discount factor γ, and a policy π; the problem consists in finding the set of reward

functions R+ ∈ R, where R is the space of reward functions, such that π is an optimal

policy for the MDP < S,A, T, γ, R+ >.

IRL is considered as a reverse procedure of RL because it assumes that the ex-

pert’s demonstration is generated by an optimal policy π∗, generated according to some

unknown reward function R+. The objective of IRL is to learn this unknown reward

function.

The original algorithms for IRL formulate the problem as a linear programming

procedure with constraints corresponding to the optimal condition. According to Zhifei

and Er Meng Joo (2012), three settings (presented below) are the most common in IRL

problem formulations. Among these, the last one is the closest to practical problems

because, usually, only the expert’s demonstrations are available rather than a specific

policy.

1. finite-state MDP with known optimal policy;

2. infinite-state MDP with known optimal policy; and

3. infinite-state MDP with unknown optimal policy, but demonstrations are given.

There are several domains in which IRL has been applied, from which it is impor-

tant to highlight: simulated highway driving (ABBEEL; NG, 2004; SYED; SCHAPIRE,

35

2008), aerial imagery based navigation (RATLIFF; BAGNELL; ZINKEVICH, 2006),

parking lot navigation (ABBEEL et al., 2008), urban navigation (ZIEBART et al., 2008),

human path planning (MOMBAUR; TRUONG; LAUMOND, 2009) and quadruped loco-

motion (KOLTER; ABBEEL; NG, 2008). Problems such as these are abundant in experts

demonstrations, which makes it possible to apply IRL. Unfortunately, this is not always

the case, because in many problems the behavior that represents the optimal policy is not

known. In such situations, the application of IRL is unfeasible.

3.5 Discussion

This thesis proposes a general method for finding effective reward functions, i.e.,

a method that applies to a wide range of RL/MARL tasks. None of existing methods

completely meets the requirements of this thesis because they were developed for very

specific purposes, in particular:

• reward shaping can speed-up the RL process by providing extra rewards to agents,

but does not deal with the task of designing the reward functions.

• difference rewards makes several assumptions about the use of global information

for solving cooperative problems, in multi-agent settings.

• inverse RL is quite versatile about its application, but it is not always possible to

obtain a set of expert demonstrations it requires.

• existing ORP-based approaches are not general enough to deal with the diversity of

existing RL/MARL tasks, such as multi-agent non-cooperative tasks

Among the above methods, the ORP-based ones best fit the reward function design

goals of this thesis. For this reason, the mathematical formulation for finding optimal

reward functions proposed in this thesis is strongly inspired in the traditional ORP and its

variants.

36

4 EXTENDED OPTIMAL REWARD PROBLEM

This thesis proposes a new formulation to design reward functions and fill some of

the gaps in the field. As mentioned in Chapter 3, none of the existing methods for reward

function designing is general enough to handle different settings. Instead, they are aimed

at designing reward functions for particular kinds of problems. This thesis seeks to put

together the best of each existing method in a single one, allowing it to find optimal reward

functions that, when optimized, results in behavior expected by the system’s designer in

the most diverse type of problems.

The term “optimal” concerts to the EORP formulation, which is optimal. None

of the arguments of such formulation depends on the search procedure (solver). Finding

the true globally-optimal reward functions depends on the solver used to solve the EORP,

which may not be able to provide guarantees of finding globally-optimal reward functions.

Besides this, this thesis is concerned with the reward functions that confer advantages over

others and not with absolute optimality. Similarly, the fact that optimization is at the core

of the RL framework does not imply that what an RL system learns is optimal. What

matters is the process of improving, not the final results.

The formulation proposed in this thesis is called Extended-Optimal Reward Prob-

lem (EORP) because it is strongly inspired by the traditional ORP (defined in Equa-

tion 3.1, Section 3.1). The main characteristics of EORP are summarized below.

i) Automatic selection of both features and reward signals that compose the ORF;

ii) Generality of application for dealing with both single and multi-agent problems;

iii) Scalability to problems with a large number of agents; and

iv) Ability to find ORFs that speed up convergence.

Throughout this chapter, it will be detailed how EORP handles each of these char-

acteristics. The rest of this chapter is organized as follows. Section 4.1 presents the

mathematical formulation of EORP. The evaluation function is presented in Section 4.2.

The reward design space is presented in Section 4.3. Section 4.4 presents a EORP solver.

37

4.1 Mathematical Formulation

The EORP is given by Equation 4.1, where H is the set of all histories generated

by the agents i ∈ I learning with a reward function R. The two major modifications in

this formulation with respect to the ORP, are the introduction of:

i) a reward design space, R (J), where J is the of reward features defined by the

system’s designer; and

ii) a function F , called the evaluation function, which extends fitness functions by

allowing for multiple designer objectives.

These two functions are discussed in details in following sections.

R∗ = arg max
R∈R(J)

E [FR (H) |H ∼M〈I (R)〉] (4.1)

4.2 Evaluation Function F

As seen in Chapter 3, Equation 3.1, a fitness function F expresses the goal of

the designer through a real scalar. By maximizing F , agents improve their behavior. In

the space of reward functions, more than one function R ∈ R can produce the same

fitness F , but under different learning effort. A very intuitive example of this behavior is

presented in the object transportation domain (Figure 1.1) on page 14. For the designer,

it is interesting to identify the reward function that, when optimized, causes the agent to

learn to solve a task more rapidly. Another situation that can arise is when another reward

function R′ ∈ R produces a fitness value slightly worse than R, but with lower learning

effort. In situations like this, it may be attractive to the designer to give up a bit of fitness

for better learning effort. Recall that the traditional ORP does not assist the designer in

these decisions because it is only aimed at maximizing fitness.

In the EORP framework, it is considered that the designer may have multiple goals

to be maximized, such as fitness and learning effort. Equation 4.1 introduces a multi-

objective evaluation function F , which evaluates the n goals produced by H and returns

a n-dimensional vector. Its general formulation is given in Equation 4.2:

F (H) = [f1 (H) , . . . , fn (H)] (4.2)

38

where {f1, . . . , fn} are goal functions provided by the designer of the system; a goal

function f : H → R maps the quality of a set of histories H into a numerical signal.

Consider the example of the evaluation function in Equation 4.3, which is com-

posed by two goal functions: fitness (f1) and learning effort (f2). The fitness function

measures the quality of the final behavior learned by the agents, while the learning effort

function evaluates the amount of effort they spent (e.g. time until convergence) during

their learning period. These functions represent the desire of some designer for a given

learning task. By solving an EORP that uses such an evaluation function, the ORFs

yielded are the ones that produce a high fitness at a low learning effort.

F (H) = [f1 (H) ,−f2 (H)] (4.3)

To model a fitness function, consider the following notation. At each episode λ,

each agent i ∈ I learns a policy that optimizes a given reward function R ∈ R, and

in the process generates a history hi. Consider g1 (hi) the fitness produced by i over its

history hi. For MARL tasks, consider the average fitness produced by all agents, as in

Equation 4.4.

f1 (H) =

∑
i∈I
g1 (hi)

|I|
(4.4)

The effort function for an agent i is given by g2 (hi). For a collective of agents I ,

consider the average effort produced by all agents, as in Equation 4.5.

f2 (H) =

∑
i∈I
g2 (hi)

|I|
(4.5)

By inserting multiple goals, such as f1 and f2, the optimization problem turns into

a multi-objective optimization problem. The solution for this is a set of Pareto-optimal

solutions1 (ORFs) that considers the trade-off between possibly conflicting objectives.

The formulation in this thesis considers that each goal function is equally impor-

tant to the designer. For this reason, it was opted not to use techniques for converting

the multi-objective optimization problem into a single objective optimization problem—

which is much simpler to solve. Techniques such as assigning weights or providing some

ranking order for prioritizing goals (and then convert it to a single-objective optimization

1A solution is called Pareto-optimal if none of the objective functions can be improved in value without
degrading some of the other objective values. Without additional subjective preference information, all
Pareto-optimal solutions are considered equally good (as vectors cannot be ordered completely).

39

problem) can be applied in the EORP. However, that has the drawback that it loses infor-

mation about how good one particular objective function is with respect to the others. The

EORP is not modeled as a single-objective problem to allow the designer to more easily

quantify the trade-offs in satisfying the different goal functions.

4.3 Reward Design SpaceR (J)

The reward design space R (J) represents the set of all possible reward functions

spanned by a given set of reward features J . A reward feature can be seen as a situation

(or state feature) in which the agent may be rewarded. In approaches such as Singh et

al. (2010), Niekum, Barto and Spector (2010), Sorg, Lewis and Singh (2010b), Liu et al.

(2014), the designer defines a fixed set of features that will compose the reward function,

and the ORP solver only adjusts the reward signal of each reward feature. However, a

reward feature can be represented at different levels of abstractions. For instance, imagine

a maze problem in which an agent starts at a random position and must reach an exit door.

During its movement, it may face three kinds of obstacles: trees, cliffs, and walls. Three

reward features that indicate situations in which the agent may be rewarded in this task

can be postulated:

1. reaching the exit door;

2. reaching an obstacle; and

3. otherwise.

Each type of obstacle is associated with different possible consequences to the agent:

• if it falls in a cliff, it dies and a new episode starts;

• if it hits a tree, it does not move in that time step.

Both obstacles are represented with the single reward feature “reaching an obstacle”.

However, it could be interesting to use different rewards signals to differentiate the situa-

tions of hitting a tree and falling in a cliff. This could be achieved by adding extra reward

features to the reward design spaceR (J):

1. reaching the exit door;

2. reaching a three;

40

3. falling in a cliff; and

4. otherwise.

Note that now the reward feature “reaching an obstacle” was decomposed into two reward

features that better specify the type of obstacle the agent is facing.

In problems like this, the decision about which reward features to include in the

reward function is a hard one. This becomes even harder with the increase in the number

of reward features available in the learning problem. The choice of reward features that

indicates that the agent will reach an goal state (e.g., reward feature 1) is more direct for

the designer. However, the problem may present several other reward features related to

intermediate states (e.g., reward features 2, 3 and 4), in which their relevance is not so

direct. By using the EORP, the designer must only define the set of potential reward fea-

tures. Solving the EORP will automatically discover the most appropriate combinations

to be used in the reward function.

In EORP, the designer defines the set of potential situations to reward and the

method selects the ones that compose an optimal reward function as well as the respective

reward weights of each feature. The potential reward features are identified by the EORP

because in many problems there are costs associated with the use of each of them. For

instance, in the robotic example provided before, the use of particular reward features

could be associated with the monetary cost of sensors and its energy consumption costs to

identify if a given obstacle is a tree or a wall. By just considering reward functions that use

all potential reward features provided by the designer and assigning a zero reward weight

to the non-used ones, it results in robotic agents that spend too much energy and costs

too much money. This strategy (of selecting reward features) is similar to what is done,

e.g., in most works on feature selection: a designer pre-defines a set of potentially useful

features for a regressor, and a method selects amongst them. Note that when manually

specifying a reward function (as is done in standard RL settings), a designer also needs to

pre-define and specify reward features—this is not a bottleneck particular to the EORP.

Thus, this thesis does not address the problem of automatic extraction of reward features

from the environment. It considers that the designer always has enough knowledge to

define a proper set of potential features.

Formally, the set of hypothetical reward functions J is composed by reward fea-

tures j ∈ J that a system’s designer considers that can be included in a reward function.

41

A general reward function R ∈ R (J) is given as in:

R =
∑
j∈J

s (j)w (j)P (j) (4.6)

where for each feature j:

• s (j) ∈ {0, 1} indicates whether the situation j is activate/active in state s;

• w (j) ∈ R and −1 ≤ w (j) ≤ 1 represents the contribution to the reward signal of

reward feature j; and

• P (j) = {x ∈ N | 0 ≤ x ≤ 1} is an indicator function reflecting whether or not j is

used to compose R.

Consider the hypothetical search space in:

R (J) ⊂ R2|J | =
[
w (j1) , . . . , w

(
j|J |
)
, P (j1) , . . . , P

(
j|J |
)]

(4.7)

This search space contains |J | indicator function P (j) and |J | reward signals w (j). The

number of decision variables of an EORP with such a search space is 2|J |. The EORP

optimizes a single reward function that is used by the set I of learning agents. This way,

independently of the amount of agents in the learning problem, the dimensionality D of

the optimization problem is always given by the number of reward features in J , such that

D (R (J)) = 2|J |.

4.4 EORP Solver

Having defined the reward design spaceR and the multi-objective evaluation func-

tion F , the next step is to solve the EORP by finding the set of Pareto-optimal solutions,

R∗ ∈ R (J), that maximize F . Any multi-objective optimization algorithm that deals

with real and integer decision variables can be selected in an agnostic manner with respect

to the learning problem. The search method is completely independent of the learning

problem. Therefore, the EORF criterion can be applied to model-free/based RL prob-

lems. This optimization produces only one EORP solution per set of agents so that every

agent will learn a policy by maximizing such a function.

In this thesis, it was opted to use a multi-objective version of the Covariance Ma-

trix Adaptation Evolutionary Strategy (CMA-ES) (IGEL; HANSEN; ROTH, 2007). This

42

method creates a population of candidate solutions (reward functions) that are evaluated

and evolved according to their resulting value of F . Each candidate is evaluated on the

learning problem at hand. The method stops when a stopping criterion is satisfied. This

thesis considers the CMA-ES stops you after a maximum number of evaluation of the

objective function.

Several other multi-objective solvers could be used. Genetic Algorithms (FastPGA,

NSGAII, NSGAIII) and multi-objective particle swarm optimization are a few examples.

In this thesis, it was opted for using CMA-ES because it has been shown successful in

solving many RL applications. As it was capable of identifying solutions close to the

optimal ones in all experiments in this thesis.

43

5 EXPERIMENTAL RESULTS

This thesis uses two MARL domains to evaluate the proposed EORP. In the first

domain, called Coordinated Multi-agent Object Transportation Problem (CMOTP, pre-

sented in Section 5.1), two agents must coordinate their actions to solve a cooperative

task. In such domain, the following characteristics of EORP are evaluated:

• the automatic selection of reward features (Section 5.1.4.1);

• the scalability of the resulting optimization process in a cooperative scenario (Sec-

tion 5.1.4.2);

• the comparison of ORFs obtained by EORP against a reward function provided by

the designers of the problem; and

• the application of EORP in single agent RL problems (a single-agent variant of

CMOTP is provided in Section 5.1.4.3).

The second domain, called Traffic Assignment Problem (TAP, presented in Sec-

tion 5.2), presents a MARL task in a non-cooperative setting, which involves thousands

of selfish agents learning simultaneously. In this domain, the following characteristics of

EORP are evaluated:

• The scalability of EORP in a non-cooperative scenario (Section 5.2.5.1);

• The ORFs obtained by EORP and compare them against a difference rewards tech-

nique and a deterministic method for the problem (Section 5.2.5.1);

• The use of different variable representation for reward features (Section 5.2.5.2);

• The application of EORP in different domain instances (Section 5.2.5.2); and

• The use of EORP in learning algorithms with different MDP representation for a

same learning task (Section 2.3).

5.1 Coordinated Multi-agent Object Transportation Problem

This section is organized as follows. The problem statement and learning scenario

are presented in Section 5.1.1. The learning algorithm used to solve CMOTP is presented

44

in Section 5.1.2. Section 5.1.3 presents and discusses the basic setup of the learning

algorithm. Finally, Section 5.1.4 discusses the obtained results.

5.1.1 Problem Statement and Scenario

The coordinated multi-agent object transportation problem (CMOTP), introduced

in Buşoniu, Babuška and Schutter (2010), is an abstraction of a task involving the coordi-

nated transportation of an object by two agents. The authors propose the CMOTP in the

scenario represented in Figure 5.1, where two agents (circles) must travel on a grid 7× 6

and transport the object (rectangle) to the home base (dashed line) as fast as possible. The

task involves the avoidance of obstacles (grey cells) and coordinated moves.

Figure 5.1: The CMOTP domain (adopted from Buşoniu, Babuška and Schutter (2010)).

home base

object

1 2

The agents start from the positions indicated in Figure 5.1. At each time step,

they can move one cell to the left, right, up, down or stand still. The movements in

the grid involve constraints: i) if an agent chooses to move to a cell that is not empty,

it does not move; ii) if both agents try to go to the same cell, they do not move. Both

agents are needed to move the object. The object only moves when both agents already

grasped the object and pull it in the same direction. It can only be grasped from its left

or right side. When an agent reaches a cell immediately to the left or the right of the

object, it automatically grasps it. Once grasped, the object cannot be released. The task is

accomplished when the object is taken to the home base.

This scenario presents two coordination issues. The first is to decide which agent

will first pass through the narrow corridor. The second is to determine whether they should

transport the target around the left or right side of the obstacle situated below the object.

A single-agent version of this problem, called single-agent object transportation

45

problem (SOTP), is also evaluated in this thesis. In this alternative problem, illustrated

in Figure 5.2, agent 2 is removed from the scenario, and it is assumed that agent 1 has

enough power to move the object alone.

Figure 5.2: The SOTP domain (adopted from Buşoniu, Babuška and Schutter (2010)).

home base

object

1

5.1.2 Learning Algorithm

The agents learn their policies independently from each other (BUŞONIU; BABUSKA;

SCHUTTER, 2008). The decision making process of the agents is modeled as a finite

Markov Decision Process, composed of a set of states S and a set of actions A. For

each state-action pair, Q (s, a) represents the expected future reward that follows from

executing action a in state s. The goal is to find a policy that maximizes the reward

of the agent over its lifetime. In the CMOTP, state variables correspond to the coordi-

nates pi,X ∈ {1, 2, . . . , 7}, pi,Y ∈ {1, 2, . . . , 6} of each agent i, and a variable indicating

whether a given agent i is currently grasping the object (and if so, from which side):

gi ∈ {FREE, GRASPING-LEFT, GRASPING-RIGHT}, for each agent i ∈ I . Therefore,

each state s ∈ S is a 6-dimensional vector s = [p1,X , p1,Y , g1, p2,X , p2,Y , g2]. At each state

s, the agents can execute an action a ∈ A = {LEFT, RIGHT, UP, DOWN, STAND-STILL}.

The complete state space has |X| = (7× 6× 3)2 = 15876 elements. Some states are

not valid because events such as collisions prevent certain combinations from occurring.

The Q-values of each agent are updated via Q-learning (WATKINS; DAYAN, 1992), as

in Equation 2.2.

The action selection is performed according to the ε - decreasing strategy ελ =

ε0∆ελ, where the exploration probability is initialized as ε0 and exponentially decreases

after each episode λ by a factor ∆ε. Through this strategy, agents choose actions randomly

46

(exploration) with probability ε, and greedily (exploration) with probability 1− ε.

The reward function proposed by CMOTP’s authors (Buşoniu, Babuška and Schut-

ter (2010)) is presented in Equation 5.1. This function only rewards actions immediately

related to the goal of the task; i.e., grasping the object and placing it at the home base.

Agents do not have incentives or punishments for taking actions that are not directly re-

lated to the goal. It is worth mentioning that in Buşoniu, Babuška and Schutter (2010) the

focus of the work is to demonstrate coordinated behavior in MARL and not the design of

optimal reward functions (according to the EORP criterion), as in this thesis. Neverthe-

less, this function is used as a baseline reward function for comparison purposes in the

experiments of this thesis.

RB (s, a) =

1, if the object is at the home base

0.1, if the agent grasped the object

0, otherwise

(5.1)

5.1.3 Basic Setup

For both SOTP and CMOTP, consider the following fitness and effort functions.

The fitness function of each agent i is given by f1 (hi) = tλ, where t is the amount of

time steps the agent spent to accomplish the task in episode λ. This function considers

only the fitness produced in the last episode of the agent’s lifetime. The effort function

is given by f2 (hi) =

∑Λ
λ=0 tλ
|Λ|

, which represents the average number of time steps spent

during the lifetime of the agent. The reward design space used in SOTP is defined by

R (JS) ⊂ R13, where the set of reward features JS is defined in Table 5.1. For CMOTP

domain, the reward design space is defined byR (J) ⊂ R19, where J is the set of reward

features defined in Table 5.2. These spaces capture the most common situations faced

by the agents. In both R (JS) and R (J) the reward feature called “otherwise” is always

used, i.e., its corresponding indicator feature P is always activate. This feature represents

any situations not directly represented in the search space. This is the reason for SOTP

and CMOTP having, respectively 13 and 19 decision variables.

Learning policies in CMOTP requires setting some parameters: the learning rate

(α), the discount factor (γ), the exploration rate (ε0 and ∆ε), and the learning horizon (Λ).

These parameters were experimentally set to: α = 0.8, γ = 0.99, ε0 = 1, ∆ε = 0.99,

47

Table 5.1: Reward features of SOTP.
JS Description
j0 if the object is at the home base
j1 if the agent grasped the object
j2 if the agent hit a wall
j3 if the agent cannot move the object alone
j4 if the agent tried to go to a cell occupied by an object
j5 if the agent chose to stand still
j6 otherwise

Table 5.2: Reward features of CMOTP.
J Description
j0 if the object is at the home base
j1 if the agent grasped the object
j2 if the agent hit a wall
j3 if the agent cannot move the object alone
j4 if the agent tried to go to a cell occupied by an agent
j5 if the agent tried to go to a cell occupied by an object
j6 if other agent tried to go to a same cell
j7 if the agent chose uncoordinated action to move the object
j8 if the agent chose to stand still
j9 otherwise

Λ = 1000. Learning policies that optimize the reward function in Equation 5.1 yields a

baseline solution for CMOTP (RB). The corresponding performance results are reported

in Table 5.3. These results represent the average value and standard deviation of f1 and

f2 over 30 runs. CMA-ES was used with population sizes of 20 elements throughout all

experiments in this thesis.

5.1.4 Numerical Results

Section 5.1.4.1 discusses the reward features automatically selected in CMOTP.

Section 5.1.4.2 demonstrates the scalability of EORP by comparing it with a strategy

that optimizes one reward function per learning agent. Finally, in Section 5.1.4.3, it is

demonstrated that EORP is also capable of dealing with single-agent problems.

5.1.4.1 Automatic Reward Feature Selection

The baseline reward function RB (Equation 5.1) is composed of three features.

However, many other features can compose the reward function. In Table 5.2, several

situations that may be faced by CMOTP agents are presented. For the designer, it is not

48

easy to manually determine which features and respective reward signals best represent

the learning task. The objective of the first experiment is to show that EORP helps the

designer in this task.

The experiment consists in, given the set of potential features in Table 5.2, find-

ing which features and reward signals produce at least one optimal reward function, R∗,

that solves the task with maximum fitness and minimum effort. Table 5.3 presents the

results obtained by solving the EORP and compare them with the performance resulting

from using the baseline reward function. In the 30 repetitions, the EORP generated 102

Pareto-optimal ORFs from which R∗ was selected for comparison purposes. From the

ORFs that produced the best fitness value, R∗ is the one that also produced the best effort

among these. The column R∗ in Table 5.3 represents the average fitness, average effort,

and frequency with which each feature was used in the 102 Pareto-optimal solutions. The

solution produced by the EORP, R∗, perform better than the baseline regarding both fit-

ness and effort. The fitness produced by R∗ is closer to the optimal solution for CMOTP,

which is 12 steps. A reduction of ≈ 30% in the learning effort is also observed when

compared to the baseline reward function. Seven features were automatically selected by

the solver to compose R∗. The features directly related to the success of the task, j0 and

j1, are the only ones to receive positive reward signals. Furthermore, as shown in the R∗

column of Table 5.3, these features were used by almost all computed solutions. The rest

of the features utilized in R∗ are associated with negative reward signals that punish those

situations. The three unused features, j3, j6 and j7, are also the least frequently used in

R∗.

This experiment shows that EORP can identify the features and reward signals

that compose an ORF which, when optimized, produces maximum fitness and minimum

effort. In simulated scenarios such as CMOTP, it is feasible to assume that it is accept-

able to use as many reward features as necessary since there is a low computational cost

associated with the use of each feature. However, in real scenarios, this does not hold

because there may be other costs or constraints related to the use of each feature. For

instance, how could a physical robot differentiate if it hit a wall, object or another robot?

It could do so by having additional sensors embedded in its hardware, but doing so results

in monetary, energetic and processing costs. Therefore, in certain situations, it may be

worthwhile to use the minimum amount of features in an ORF.

The next experiment demonstrates that EORP can also find a solution that uses

the minimum amount of features. To make this possible, a third objective function

49

Table 5.3: Fitness (f1) and effort (f2) yielded by the baseline (RB) and solutions obtained
by EORP. Column R∗ represents the average fitness and effort for the solutions produced
in all runs, as well as the frequency with which each feature was used. Column R∗

represents the results obtained by the solutions with the lowest fitness and effort.
RB R∗ R∗

f1 17.83 ± 1.74 12.4 ± 0.72 12.76 ± 0.85
f2 37.97 ± 3.03 26.83 ± 1.29 28.98 ± 2.54
j0 1 0.77 97.1%
j1 0.1 0.86 100%
j2 - -0.47 60.2%
j3 - - 28.2%
j4 - -0.08 57.3%
j5 - -0.28 49.5%
j6 - - 28.2%
j7 - - 47.6%
j8 - -0.59 71.8%
j9 0 -0.23 100%

was added to the evaluation function F . Consider the evaluation function F (H) =

[f1 (H) , f2 (H) , f3 (H)], where f3 (H) =
∑|J |

k=1 P (jk) represents the amount of indi-

cator features P (jk) used in a given potential solution. Note how the use of a more

general formulation of the designer’s objective, via a multi-objective evaluation function,

instead of a single fitness function, allows the designer to easily specify multiple, possibly

conflicting objectives that an optimal reward function is supposed to meet.

By considering this new evaluation function, the set of Pareto-optimal solutions

produced in 30 runs is composed of 350 elements. Between these solutions (that take

into account the trade-off between three goals: fitness, effort, and amount of activated

features), this thesis is interested in the ones that use the minimum amount of features

and that produce high fitness and low effort. Table 5.4 shows the performances of the

three selected reward functions with such characteristics. The reward functions R∗1, R∗2
and R∗3 use, respectively, one, two and three features and are in the Pareto-optimal set.

All three functions performed better in the CMOTP domain than the baseline RB, which

uses features j1, j2 and j9. A t-test conducted with 95% of confidence interval shows

that, regarding fitness, the three solutions are equivalent. Regarding effort, only reward

function R∗1 does not overcome the baseline.

The reward function R∗1 uses only one feature, j9, which is mandatory by defini-

tion. The reward signal associated with this feature by optimizing the EORP criterion

punishes the agent at each step. Agents learning with this function thus attempt to mini-

mize the punishment received during their lifetime. As there is no direct incentive (posi-

50

tive reward) for reaching the goal state, the agent takes longer to learn its behavior. In the

reward function R∗2, a second feature, j1, which rewards the goal state positively, is used.

The use of j1 reduces the learning effort by ≈ 55% when compared with R∗1. The same

occurs with R∗3, which uses a third feature, j8, to punish the agent when it chooses the

action stand-still, resulting in a reduction of learning effort of 9% compared to R∗2.

Table 5.4: Fitness (f1), effort (f2) and number of features (f3) obtained by solutions that
use one (R∗1), two (R∗2), and three (R∗3) features.

R∗1 R∗2 R∗3
f1 13.68 ± 0.96 13.78 ± 0.98 13.76 ± 1.01
f2 77.54 ± 4.15 34.89 ± 2.21 31.67 ± 1.86
f3 1 2 3
j1 - 0.73 0.66
j8 - - -0.54
j9 -0.18 -0.1 -0.08

To show the effects of a high learning effort, Figure 5.3 presents the convergence

curve for the solutions with the highest (R∗1) and lowest (R∗; see Table 5.3) learning effort

obtained by EORP, as well as the one yielded by the baseline (RB). Error bars are omitted

to make the graph less cluttered, but variance can be inferred by analyzing the amplitude

with which the curves vary. The reward function R∗ results in faster convergence. This

function uses 7 features to reward the agent. It makes it able to identify state-action pairs

that must be avoided. Thus, even with a high exploration rate in early episodes, the agent

learns its behavior faster. The function R∗1 results in slow convergence due to its use of a

relatively poorer/less informative set of reward features. For instance, if an agent learning

with R∗ hits a wall, it receives an immediate punishment that differentiates this action

from others. If the same situation occurs with an agent learning under R∗1, the reward

signal received is the same that it would receive by having performed any other action.

So, immediately it does not know whether it is appropriate to hit a wall. This is why even

though it yields better fitness than the baseline, the convergence of R∗1 is very slow. RB

results in smoother convergence than others because it only rewards states directly related

to the goal. Any action that leads the agent to non-goal related states has a neutral reward

(zero). This avoids the propagation of noise generated by random actions to the rest of

the MDP but makes it difficult for agents to learn appropriate behaviors. This is why the

baseline reward function produces worse fitness than the reward functions identified by

optimizing EORP.

This experiment shows that the quality of the learned behavior is directly related to

the features and reward signals used in the constructed reward functions. The adequate use

51

Figure 5.3: Performance (fitness) vs. time (episode) in CMOTP.

0 200 400 600 800 1000

10
50

20
0

10
00

episode

fit
ne

ss
RM

B

RM,1
*

RM
*

of features and reward signals improves both fitness and effort associated with learning a

task. Although reward functions with fewer features do converge to desirable behavior,

convergence speed is negatively impacted. It is up to the system’s designer to determine

the feasibility of using solutions with more features. In real word problems, for instance,

even with energy and monetary costs associated with the use of additional features, the

benefits gained regarding convergence time can make those costs acceptable.

5.1.4.2 Scalability in Multi-Agent Settings

This experiment demonstrates that EORP is scalable in the presence of multi-

ple learning agents. As shown before, the EORP optimizes a single reward function

R∗ ∈ R (J) per collective of agents I , resulting in a search space dimensionality given by

D (R (J)) = 2|J |. The existing approaches for dealing with ORP in multi-agent settings

optimize one reward function, R∗i ∈ R∗I per agent i ∈ I , such that R∗I ⊂ R. The di-

mensionality of the resulting ORP is given by D (R (J) , I) = (2|J |)× |I|. Note that the

number of decision variables increases according to the number of learning agents. In the

search space of CMOTP, for instance, presented in Table 5.2, the optimization problem

is composed by D (RM) = 9 + 10 = 19 decision variables, whilst in approaches such

as Liu et al. (2014), which optimize one reward function per agent, the search space is

composed by D (RM , I) = (9 + 10)× 2 = 38 decision variables.

In Table 5.5, the performance of both strategies is compared. The results presented

for the strategy that uses a single reward function, R∗ for all agents were discussed be-

fore. The strategy that uses one reward function per agent, R∗I (where R∗i=1 and R∗i=2

are, respectively, the reward functions of agent 1 and 2) yield worse performance when

compared to R∗. A t-test with 95% of confidence interval was conducted and showed

that R∗ overcomes R∗I in both fitness and effort. The learning effort presented by R∗I is

≈ 221% higher than when using R∗. The reward functions R∗i=1 and R∗i=2 use different

52

Table 5.5: Fitness (f1) and effort (f2) produced by systems that use a single (R∗) or
multiple (R∗I) reward functions when solving CMOTP. Columns R∗i=1 and R∗i=2 represent,
respectively, the reward functions of agent 1 and 2.

R∗
R∗I

R∗i=1 R∗i=2 R∗i=1 R∗i=2

f1 12.4 ± 0.72 13.47 ± 1.01 13.79 ± 1.02
f2 26.83 ± 1.29 59.33 ± 4.53 57.97 ± 11.98
j0 0.77 0.79 0 85.7% 89.3%
j1 0.86 - 0 42.9% 67.9%
j2 -0.47 -0.68 -1 28.6% 39.3%
j3 - - - 53.6% 42.9%
j4 -0.08 - - 32.1% 46.4%
j5 -0.28 -0.84 -1 28.6% 42.9%
j6 - -0.23 - 60.7% 50%
j7 - - -1 39.3% 64.29%
j8 -0.59 -0.79 - 75% 50%
j9 -0.23 -0.21 -1 100% 100%

sets of features and reward signals for each agent. From the 6 features used in R∗i=1, only

one rewards positively agent 1 (j0) in a goal related feature. All others are used to pun-

ish it in non-goal related features. The reward function R∗i=2 associates neutral reward

signals with the two goal-related features, and 4 features to punish agent 2 with negative

rewards. Columns R∗i=1 and R∗i=2 represent the average fitness and effort for the solutions

produced, as well as the frequency with which each feature was used. Except for feature

j9 (which is mandatory), only feature j0 was used by all computed solutions. The fre-

quency of use of different reward feature indicates that reward functions obtained by R∗I ,

in general, use a different set of features for each agent. Instead of improving the fitness

and effort, this strategy results in worse overall performance.

5.1.4.3 EORP in Single-Agent Settings

In the experiments shown so far, EORP was applied to multi-agent settings. To

demonstrate that the optimization criterion is general enough for dealing with both multi

and single-agent settings, the present experiment applies EORP to the SOTP. It is consid-

ered the reward design space composed by the reward features presented in Equation 5.1

and the evaluation function introduced in Equation 4.3.

Table 5.6 presents the results obtained by EORP and compare them against the

baseline reward function (Equation 5.1). Column R∗S presents the average results of all

solutions produced over 30 runs. The solution identified by EORP can achieve the optimal

fitness for the problem (8 steps) in all cases. This is the reason why the standard deviation

53

is zero in line f1. The same occurs for the baseline reward function. A t-test with 95% of

confidence was conducted to compare the effort resulting from the use of R∗S and RB. R∗S
overcomes RB regarding effort, and R∗S uses all features available in the reward design

space. The two features directly related to the goal of the task (j0 and j1) are the only

ones to be rewarded positively in R∗S . Column R∗S shows that these features are also used

by all solutions produced over 30 runs. All other features used in R∗S are associated with

punishments to the agent. This is different from RB, which provides the agent with a zero

reward in all situations except the ones represented by the features j0 and j1.

Table 5.6: Fitness (f1) and effort (f2) produced by the baseline (RB) and ORF (R∗S) in
SOTP. The results are averages over 30 runs. Column R∗S represents the average fitness
and effort of the solution produced over all runs, as well as the frequency with which each
feature is used. Column R∗S represents the results obtained by the solutions with lowest
fitness and effort.

RB R∗S R∗S
f1 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0
f2 11.1 ± 0.35 10.87 ± 0.4 10.71 ± 0.04
j0 1 0.86 100%
j1 0.1 0.73 100%
j2 - -0.32 48%
j3 - -0.44 44%
j4 - -0.63 44%
j5 - -0.74 64%
j6 0 -0.31 100%

The experiments conducted above, designed to evaluate EORP in single-agent sce-

narios, indicate that the optimized reward functions are similar in performance to what is

achieved by the baseline reward function, which was manually designed by an expert.

This suggests that RB captures well the relevant reward features for solving the SOTP

task efficiently both regarding fitness and effort. Note that although the baseline (provided

a priori by a designer) performed well, EORP was capable of autonomously identifying

equally effective reward functions, which suggests that it does, indeed, apply not only to

multi-agent settings but also to single-agent cases where hard-coded solutions expertly

constructed by a designer are available.

5.2 Traffic Assignment Problem

This section is organized as follows. Section 5.2.1 presents the problem statement.

The three scenarios used in the experiments are presented and discussed in Section 5.2.2.

54

Section 5.2.3 presents the two learning algorithms used for solving the TAP. The basic

settings of each algorithm are represented in Section 5.2.4. Experimental results are dis-

cussed in Section 5.2.5.

5.2.1 Problem Statement

The traffic assignment is an important stage in the task of modeling and simulating

a transportation system. A transportation system can be represented as a composed of two

parts: supply and demand. Traffic assignment methods connect the physical infrastructure

(supply) to road users (demand) that are going to use it, i.e., it assigns trips to each edge

of the road network (ORTÚZAR; WILLUMSEN, 2011). This thesis addresses the traffic

assignment problem (TAP) in a decentralized perspective, in which road users (agents)

must learn individually the best route that satisfies their origin and destination constraints.

The supply part of a transportation system can be modeled as a graph G (V,E),

where:

• V is a set of vertices that represent network intersections;

• E is a set of edges (or links) between these vertices, which represent the road sec-

tions; and

• ce of an edge e ∈ E represents a form of travel cost associated with the crossing of

the edge e.

The travel cost of an edge may be represented by several metrics: travel time, fuel

spent and travel distance are good examples of measures used in the literature. These

metrics are usually abstracted by functions known as volume-delay functions (VDF). A

good example of VDF, which is widely used in the literature, is the one proposed by

Bureau (1964):

ce = t0e

[
1 +A

(
Ve
Ce

)B]
(5.2)

where:

• ce represents the travel cost in terms of time for crossing edge e;

• t0e is the travel time per unit of time under free-flow conditions (free-flow travel

time) of edge e;

55

• Ve is the flow of vehicles (vehicles per unit of time) using edge e;

• Ce is the edge capacity; and

• A and B are parameters specifically defined for each edge, related to its physical

characteristics.

The second part of the transportation system, the demand, represents the users of

the infrastructure. The demand can be represented by an origin-destination matrix (OD-

matrix). An OD-matrix T contains I lines (origin zones) and J columns (destination

zones). Each element Tij represents the number of trips from vertex i to vertex j in a

given time interval. It is said that i ∈ I and j ∈ J form an OD-pair.

Solving the TAP consists of connecting the supply and demand by assigning routes

to each road user. Each route consists of a set of edges, forming a route between an origin

and a destination vertex. Thus, a route p is defined by a sequence of connected vertices

(v0, v1, v2, . . .). The route cost function (c (p)) defined in Equation 5.3 represents the sum

of travel time costs ce of all edges e ∈ Ep for a given route p, where Ep is the set of

connected edges that composes p.

c (p) =
∑
e∈Ep

ce (5.3)

The user equilibrium (UE) is a solution concept for the TAP proposed by Wardrop

(1952). It is commonly used to evaluate the quality of an assignment. An UE assignment

is reached when no road user may lower their travel cost through unilateral action. As a

performance measure, it is considered the average travel time (ATT), as in Equation 5.4:

ATT =
∑
i∈I

c (pi)

|I|
(5.4)

This measure represents the average travel times (in minutes) of the routes used by the

agents. The present thesis uses the ATT under UE condition as a baseline solution of a

TAP.

This section is organized as follows. Section 5.2.1 presents the problem statement.

The three scenarios used in the experiments are presented and discussed in Section 5.2.2.

Section 5.2.3 presents the two learning algorithms used for solving the TAP. The basic set-

tings of each algorithm is represented in Section 5.2.4. Experimental results are discussed

in Section 5.2.5.

56

5.2.2 Scenarios

Three TAP scenarios that differ regarding network topology and number of agents

are used. The first scenario, called OW, was proposed in Ortúzar and Willumsen (2011,

Chapter 10). The network topology of this scenario is illustrated in Figure 5.4, where

the values over the edges are their free-flow travel times. The road network contains 13

vertices and 24 two-way edges. The demand is composed by a constant flow of 1700 trips

distributed over the 4 OD-pair presented in Table 5.7. The OW cost function is given as

in Equation 5.5:

ce = t0e + Ve × a (5.5)

where:

• ce is the travel time in minutes to cross edge e;

• t0e is the free-flow travel time for edge e;

• Ve is the flow using e; and

• a is the increment that linearly increases the travel time in a minutes per vehicle

using e.1

Figure 5.4: Network topology of scenario OW.
A

B

C F I L

D G J

E H K M

7

5

15

11

11

11

9

7

9

7

13

3

13

3

7

7

9

9

9

9

12

12

2

2

Table 5.7: OD-matrix of scenario OW.
Origin Destination Trips

A L 600
A M 400
B L 300
B M 400

1OW scenario uses a fixed increment of 0.02 minutes in all of its edges.

57

The second TAP scenario is an adaptation of a scenario presented by Nguyen and

Dupuis (1984), called scenario ND. The original road network was modified so that all

roads are two-way to provide more options for routes. The resulting graph, represented

in Figure 5.5, has 13 vertices and 38 edges. The demand, presented in Table 5.8, is

composed of 2000 trips distributed over 4 OD-pairs. The VDF of the ND scenario is

defined as in Equation 5.5. The complete description of the values of the parameters of

each link (parameters t0e and a) are available in Nguyen and Dupuis (1984).

Figure 5.5: Network topology of scenario ND.

1

2

3

4 5 6 7 8

9 10 11

12

13

Table 5.8: OD-matrix of scenario ND.
Origin Destination Trips

1 2 400
1 3 800
4 2 600
4 3 200

The third and larger TAP scenario used in this thesis is the Sioux Falls (SF) net-

work. This is a well-known transportation problem used in the literature as a testbed for

traffic assignment methods2. The road network, shown in Figure 5.6, has 24 vertices and

76 edges, where the values over the edges are their free-flow travel times. The demand,

presented in Table 5.9, is comprised of 360600 trips distributed among 528 OD-pairs. The

cost function of scenario SF is defined as in the VDF of Equation 5.2, where the values of

parameters A and B are respectively defined in 0.15 and 4 for every link of this network.

Relevant aspects of these three scenarios are summarized in Table 5.10. This table

also presents for each scenario, its ATT under UE condition. The ATTs under UE condi-

tion are obtained through the method of successive averages (ORTÚZAR; WILLUMSEN,
2All data sets containing network, demand, cost function and solutions of scenario SF are available at

<http://github.com/bstabler/TransportationNetworks>.

http://github.com/bstabler/TransportationNetworks

58

Figure 5.6: Network topology of scenario SF.

13 24 21 20

23 22

14 15 19

17

12 11 10 16 18

9 8 7

3 4 5 6

1 2

4 3 6
2 2

4

5

4 3

5 3

4

2

8 2

4

6

3

6 5

4

4

3

10 3

3 5 2

4 6

5 2

4 2 4
4

6

5

2011, Chapter 10) (MSA). This method is a well-known centralized and deterministic

method for solving the TAP that provides convergence guarantees to an approximated UE

solution. Note that, from the point of view of MARL, the SF network seems to present

more challenging issues than others, since it corresponds to a larger network topology,

and has demand up to 200 times bigger and better distributed over its OD-pairs. This

large demand for scenario SF provides a highly competitive environment for the agents,

which must compete for the most attractive edges.

5.2.3 Learning Algorithms

The present thesis uses two MARL approaches that were previously discussed

in the work of Grunitzki and Bazzan (2017) for solving the TAP. These approaches are

called edge-based-QL and route-based-QL. They both model the agent’s decision-making

process as an MDP. The main difference between these two approaches is that the edge-

based-QL does not restrict the agents’ search space. Rather, it enables agents to experi-

ence all possible routes available in the road network. Consequently, it makes the learning

task more complex due to the larger search space it provides. On the other hand, the route-

based-QL restricts the search space of the agents to a subset of precomputed routes, which

requires prior knowledge about the road network to compute such routes.

59

Table 5.9: OD-matrix of scenario SF. The rows are the origin and the columns are the
destinations. The number in the cells represent the amount of trips in thousands.

OD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 0 1 1 5 2 3 5 8 5 13 5 2 5 3 5 5 4 1 3 3 1 4 3 1
2 1 0 1 2 1 4 2 4 2 6 2 1 3 1 1 4 2 0 1 1 0 1 0 0
3 1 1 0 2 1 3 1 2 1 3 3 2 1 1 1 2 1 0 0 0 0 1 1 0
4 5 2 2 0 5 4 4 7 7 12 14 6 6 5 5 8 5 1 2 3 2 4 5 2
5 2 1 1 5 0 2 2 5 8 10 5 2 2 1 2 5 2 0 1 1 1 2 1 0
6 3 4 3 4 2 0 4 8 4 8 4 2 2 1 2 9 5 1 2 3 1 2 1 1
7 5 2 1 4 2 4 0 10 6 19 5 7 4 2 5 14 10 2 4 5 2 5 2 1
8 8 4 2 7 5 8 10 0 8 16 8 6 6 4 6 22 14 3 7 9 4 5 3 2
9 5 2 1 7 8 4 6 8 0 28 14 6 6 6 9 14 9 2 4 6 3 7 5 2

10 13 6 3 12 10 8 19 16 28 0 40 20 19 21 40 44 39 7 18 25 12 26 18 8
11 5 2 3 15 5 4 5 8 14 39 0 14 10 16 14 14 10 1 4 6 4 11 13 6
12 2 1 2 6 2 2 7 6 6 20 14 0 13 7 7 7 6 2 3 4 3 7 7 5
13 5 3 1 6 2 2 4 6 6 19 10 13 0 6 7 6 5 1 3 6 6 13 8 8
14 3 1 1 5 1 1 2 4 6 21 16 7 6 0 13 7 7 1 3 5 4 12 11 4
15 5 1 1 5 2 2 5 6 10 40 14 7 7 13 0 12 15 2 8 11 8 26 10 4
16 5 4 2 8 5 9 14 22 14 44 14 7 6 7 12 0 28 5 13 16 6 12 5 3
17 4 2 1 5 2 5 10 14 9 39 10 6 5 7 15 28 0 6 17 17 6 17 6 3
18 1 0 0 1 0 1 2 3 2 7 2 2 1 1 2 5 6 0 3 4 1 3 1 0
19 3 1 0 2 1 2 4 7 4 18 4 3 3 3 8 13 17 3 0 12 4 12 3 1
20 3 1 0 3 1 3 5 9 6 25 6 5 6 5 11 16 17 4 12 0 12 24 7 4
21 1 0 0 2 1 1 2 4 3 12 4 3 6 4 8 6 6 1 4 12 0 18 7 5
22 4 1 1 4 2 2 5 5 7 26 11 7 13 12 26 12 17 3 12 24 18 0 21 11
23 3 0 1 5 1 1 2 3 5 18 13 7 8 11 10 5 6 1 3 7 7 21 0 7
24 1 0 0 2 0 1 1 2 2 8 6 5 7 4 4 3 3 0 1 4 5 11 7 0

This thesis considers each learning agent as a road user associated with a trip in an

OD-matrix. The origin node in the OD-matrix represents the initial state (s−) of the agent,

i.e., the state where the agent is created at the beginning of each learning episode. The

destination node in the OD-matrix represents the agent’s terminal state (s+), i.e., the goal

state of the agent. Each agent can learn a route between its origin and destination. For

both edge-based-QL and route-based-QL, the learning process is organized in episodes

(trials) and time steps (time unit). An episode λ ends in tmax time steps or when all agents

reach their terminal state (whichever comes first).

Following the standard practice in the literature (which abstracts the network as

a graph), each unit of time step t ≤ tmax represents a hop in the graph. For instance,

the route p = (v0, v1, v2) that connects v0 to v2 requires t = (|p| − 1) time steps to be

traveled.

The following sections present the details of edge-based-QL (Section 5.2.3.1) and

route-based-QL (Section 5.2.3.2), which will be used as RL algorithms in the TAP exper-

60

Table 5.10: Relevant aspects of scenarios OW, ND and SF.
Feature OW scenario ND scenario SF scenario
Trips 1700 2000 360600
OD-pairs 4 4 528
Vertices 13 13 24
Edges 24 38 76
ATT UE ≈ 67.16 ≈ 50.28 ≈ 20.78

iments of this thesis

5.2.3.1 Edge-based Q-Learning

This approach is called “edge-based” because it assumes that agent’s actions cor-

respond to edges of a road network. When an agent is learning with this method, it can

find a policy from the set of all routes available in the search space. The agent’s MDP is

modeled as follows. A state s is a vertex v ∈ V of the road network in which the agent

is located. Each state s ∈ S has a set of available actions A (s), which is represented by

the outgoing edges of the corresponding vertex of s. The reward received by the agent is

given by a reward function R(s, a) that rewards the agent after performing an action.

If it is allowed for agents to drive in loops, this approach may present infinity

routes p ∈ P from an initial state s− to a terminal state s+. To handle this, the agent’s

search space is limited by a maximum number of time steps tmax. Thus, if the agents do

not find a route from s− to s+ in tmax time steps, the current episode is stopped. Even

though the stopped route belongs to an invalid set of routes Pinvalid, it is also a possible

solution experienced by the agent. In this manner, the set of all possible routes for an

edge-based-QL agent is defined as in Equation 5.6:

P(s−,s+,tmax) = Pvalid ∪ Pinvalid (5.6)

where:

• Pvalid =
{
p

(s−,s+)
i,j (ti)

}
| i = 1, . . . ,M ; j = 1, . . . , Ni, where M is the current

simulation time step, and Ni is the number of routes from s− to s+ in ti steps; and

• Pinvalid =

{
p
(S,Vti)
i,j (t′i)

}
| i = 1, . . . ,M ′; j = 1, . . . , N ′i , where M ′ is the current

simulation time step, and N ′i is the number of routes from si to vt′i in t′i steps.

An important property of P for this approach is that: Pvalid ∩ Pinvalid = ∅.

61

5.2.3.2 Route-based Q-Learning

Different from edge-based-QL, in route-based-QL the agent’s action represents

a route connecting its origin to its destination. The search space P is restricted to a

predefined subset of possible solutions, as shown by Equation 5.7:

P(s−,s+) = {p1, . . . , pj} (5.7)

where j is the index of the j-th lowest cost route. This subset of routes is preprocessed

before the learning process begins. Thus, each agent receives |P| precomputed routes

from s− to s+.

The set of actions is defined according to the number of predefined routes used. A

parameter K = |P| must be defined to determine the number of routes to be calculated.

These routes are the K-lowest cost routes of the agent’s OD-pair under no congestion.

These routes are computed in the graph using the algorithm K Shortest Loopless Paths

(YEN, 1971), which can find the K shortest routes without loops for an OD-pair.

The agent’s MDP is modeled as follows. The state set of the agent contains only

the initial and terminal states. At its initial state, the agent hasA (s−) = |P| actions. Each

action is a route that connects s− to s+. When the agent reaches the terminal state, it is

rewarded.

In this approach, an episode finishes when all agents reach a terminal state. The

tmax parameter is disregarded here because by construction no route has loops. This

approach presents a major advantage when compared against edge-based-QL, which is

the extra parameter (|P|). Furthermore, even though the search space restriction can

simplify the learning process, it may underestimate the ability of the agent to learn the

most appropriated policies if the search space (i.e., the set of k shortest routes used to

form the action set P) was set incorrectly.

5.2.4 Basic Setup

This section presents the basic setup of EORP (Section 5.2.4.1), baseline reward

functions (Section 5.2.4.2) and learning algorithms (Section 5.2.4.3) that are common to

all TAP experiments. Specific settings of each experiment will be presented along the

experiments (Sections 5.2.5.1 and 5.2.5.2).

62

5.2.4.1 EORP Settings

The multi-objective evaluation function is given as in Equation 5.8:

F (H) = [−f1 (H) ,−f2 (H)] (5.8)

where the fitness function (f1) and learning effort function (f2) are defined as follows.

The fitness function of each agent i is given by g1 (hi) = c (pi), which represents the

negative cost of of the route pi, learned by the agent i. This function considers only the

fitness produced in a given (the current) episode. By using this function, the fitness is

maximized when the travel time of the agent is minimized. The average fitness produced

by all agents (f1) is given as in Equation 4.4 (Page 38).

The effort function of an agent is given by g2 (hi) =

∑
λ∈Λ

tλ

|Λ| , which represents the

average number of decisions taken by the agent i during its lifetime. Consider the average

effort produced by all agents (f2), as in Equation 4.5 (Page 38).

The CMA-ES algorithm was used and empirically defined with a population size

of 20 elements and stopping criteria of 1000 evaluations.

5.2.4.2 Baseline Reward Functions

Along with TAP experiments, two baseline strategies for reward function design

are used for comparison purposes. The first strategy, called expert-designed (ED), repre-

sents the most direct strategy adopted by a MARL system’s designer. This thesis uses the

ED reward functions presented in Grunitzki and Bazzan (2017), which are also similar

to the ones presented in other works that apply MARL algorithms for solving the TAP

(GRUNITZKI; RAMOS; BAZZAN, 2014a; GRUNITZKI; BAZZAN, 2016; BAZZAN;

GRUNITZKI, 2016; RAMOS; GRUNITZKI, 2015; RAMOS; GRUNITZKI; BAZZAN,

2014). In this strategy, the travel time resulting by an agent’s action is used as a reward

signal. For edge-based-QL, the ED reward function is given by Equation 5.9:

RED = −ce (5.9)

By learning with this reward function, at each action performed, the agent is rewarded by

the negative travel cost (ce) of the traveled edge corresponding to agent’s action.

The expert-designed reward function for route-based-QL is defined as in Equa-

63

tion 5.10:

RED =
∑
e∈Ep

−ce (5.10)

where Ep is the set of edges that composes route p. This is similar to the reward function

in Equation 5.9. The difference is that in route-based-QL the feedback received by an

agent’s action refers to the negative travel cost of a route and not of a single edge.

The second baseline reward function design strategy is the difference rewards. For

both edge-based and route-based-QL, the DR function in given as in Equation 5.11:

RDR ≡ G (z)−G (z−i + ci) (5.11)

where:

• G (z) =

∑
i∈I

c(pi)

|I| represents the average travel time of the traveled routes of all agent

in I; and

• G (z−i) represents the average travel time of the routes of all agent in I \ i, i.e., the

travel time of agent i is disregarded from the average travel time in G (z−i).

5.2.4.3 Q-Learning Settings

The Q-learning algorithm and exploration strategy adopted in the learning meth-

ods has four parameters to be set: learning rate (α), discount factor (γ), number of

episodes (Λ) and exploration rate (ε). The number of episodes was empirically set as

1000. The exploration policy utilized is the ε-decreasing, with ε = 1.0 and ∆ε = 0.99.

This basic setup is used by both algorithms.

The rest of the parameters (α, γ and |P|) are defined on a case basis. In both

learning algorithms, the performance measure considered is the ATT obtained by the

expert-designed reward functions. All the reported experiments were repeated 30 times.

For discovering the best combination of α and γ for the edge-based-QL, different

combinations of values in the interval α, γ ∈ [0, 1] were tested. The tmax parameter was

defined as 100 since the optimal travel times are known (from the literature). The results

obtained regarding ATT for OW scenario are presented in Table 5.11. The performance

of edge-based-QL is more sensitive to γ than to α. This can be explained by the fact that

actions (edges that depart from a given state) that can be taken at states (nodes) are very

important in this problem since the agent is trying to make a series of decisions in order

64

to minimize the travel time in the whole route. Therefore the discount rate must be high.

In the remaining of this paper, experiments regarding the edge-based-QL use α = 0.5 and

γ = 0.99. The same experiment was conducted for edge-based-QL in scenarios SF and

ND. The algorithm presented similar behavior regarding its values of parameters.

Table 5.11: Average travel time of OW scenario for edge-based-QL (standard deviation
in parentheses).

α
0.1 0.3 0.5 0.7 0.9

γ

0.1 451.291 (11.114) 342.678 (7.726) 331.193 (10.156) 333.187 (7.491) 338.804 (7.184)
0.3 282.363 (5.499) 219.678 (3.847) 209.316 (3.841) 205.834 (4.028) 204.814 (3.721)
0.3 142.116 (2.506) 122.841 (1.372) 118.985 (1.044) 116.592 (1.625) 116.155 (2.037)
0.7 81.277 (1.542) 76.089 (1.175) 75.352 (0.845) 75.204 (0.681) 75.475 (0.814)
0.9 67.754 (0.223) 67.314 (0.022) 67.316 (0.026) 67.335 (0.041) 67.407 (0.067)

0.99 67.281 (0.142) 67.154 (0.024) 67.153 (0.018) 67.152 (0.043) 67.155 (0.026)

The route-based-QL has two parameters to be set: α and |P| (number of pre-

computed routes). In order to find the best combination for them, experiments in the OW

scenario were performed evaluating the performance of the algorithm regarding ATT for

the intervals of values of α and |P| presented in Table 5.12. The learning rate seems to

play a minor role. On the other hand, the amount of pre-computed routes has a noticeable

influence. Low values of |P| cause agents to compete for few routes. This allocates too

much traffic flow in some edges, whilst others areas of the road network are underutilized.

As the number of pre-computed routes increases, the ATT decreases. Student’s t-tests

were applied to these data and showed that for |P| = 8 and |P| = 10 the ATTs are

equivalent. For the OW network, the combination of values of parameters was defined as

α = 0.3 and |P| = 10. Similar behavior was observed in the ND scenario. In the SF

scenario, the best combination was α = 0.9 and |P| = 10. The rest of this thesis uses

these values of parameters for route-based-QL along all experiments

Table 5.12: Average travel time (ATT) and standard deviation (in parentheses) for route-
based-QL in OW scenario.

α
0.1 0.3 0.5 0.7 0.9

P

2 83.937 (0.002) 83.952 (0.086) 83.933 (0.011) 83.993 (0.222) 83.954 (0.065)
4 71.763 (0.005) 71.525 (0.181) 71.574 (0.138) 71.922 (0.462) 72.039 (0.440)
6 67.370 (0.009) 67.302 (0.006) 67.336 (0.088) 67.354 (0.058) 67.721 (0.417)
8 67.143 (0.005) 67.159 (0.035) 67.205 (0.0148) 67.267 (0.176) 67.505 (0.353)
10 67.151 (0.007) 67.162 (0.008) 67.241 (0.190) 67.286 (0.236) 67.577 (0.377)

65

5.2.5 Numerical Results

The TAP experiments extend the analysis provided in Section 5.1.4.2 to show that

EORP also scales to multi-agent problems that include thousands of learning agents. In

the experiments presented in Section 5.2.5.1, an extensive comparison of EORP against

DR was provided. Such analysis uses the edge-based-QL learning with EORP reward

functions that only consider reward features that assume binary values (activated or deac-

tivated). A more general performance comparison of edge-based-QL and route-based-QL

under the guidance of reward functions provided by ED, DR and EORP reward func-

tions is presented in Section 5.2.5.2. This latter experiment considers that EORP reward

features may be represented by both binary or real values.

5.2.5.1 EORP versus Difference Rewards

The experiment presented in this section also appears in Grunitzki, Silva and Baz-

zan (2018). This experiment evaluates the performance edge-based-QL in solving the

TAP under the guidance of reward functions provided by difference rewards and EORP.

First, the experiment-specific settings are presented. For EORP, consider the re-

ward design space defined by R (J) ⊂ R7, where J is the set of reward features defined

in Table 5.13. This space captures some of the most common situations faced by the

agents in the TAP. Note that it is just using reward features that have binary representa-

tion, i.e., reward features that just assume the values “activated” or “deactivated”. The

feature called “otherwise” is mandatory because it rewards the agent in the case of no

reward feature being active. This specific reward feature represents any situations not di-

rectly represented in the reward design space. The reward function structure is thus given

by

R =
∑
j∈J

s (j)w (j)φ (j)P (j) (5.12)

where φ (j) is a potential function representing the travel time on the edge associated with

situation j ∈ J . This potential function is used because, in the TAP, the quality of a route

is measured by its travel cost instead of by the number of edges (hops) as in CMOTP.

This experiment only uses the scenario ND (Section 5.2.2) in the evaluation be-

cause, here, it is wanted to find reward functions that best solve the learning task of an

specific scenario—the use of reward functions that best solve the three TAP scenarios pre-

sented in Section 5.2.2 is discussed in Section 5.2.5.2. For comparison purposes, consider

66

Table 5.13: Reward features for Edge-based-QL.
J Description
j0 if the edge takes the agent directly to its destination vertex
j1 if the edge brings the agent back to its origin vertex
j2 if the edge was already traveled by the agent
j3 otherwise

the difference rewards function RDR, defined as in Equation 5.11.

Solving the EORP in scenario ND resulted in 26 Pareto-optimal ORFs from which

it was selected a reward functionR∗ (as seen in Table 5.14) for comparison to theRDR. In

Table 5.14, it is possible to observe that R∗ uses three features that reward the agent neg-

atively. Only ≈ 4% of the solutions use feature j2. Regarding fitness, both R∗ and RDR

reached solutions closer to the one obtained by the MSA (50.28). Thus, the collective

of agents learning with each one of the functions in Table 5.14 is converging to policies

close to the user equilibrium. However, a t-test conducted with 95% of confidence in-

terval has shown that R∗ overcomes RDR regarding f1. Regarding learning effort (f2),

R∗ yield results that are slightly superior (≈ 0.25%) to RDR. This experiment showed

that, even in this problem with 2000 agents, EORP is capable of providing solutions at

least as good as those produced by the difference rewards function but without requiring

a designer to manually determine that such a function (or a variant of it) is indeed the

most appropriate. In other words, the space of solutions that may be found by solving

EORP include well-known manually-constructed in the literature, but is more general in

that it allows for more fine-tuned functions to be discovered if one exists that results in a

better trade-off between the objectives specified by the designer. Also, the resulting traf-

fic assignment is very close to the equilibrium solution identified by the MSA. Moreover,

most importantly, the resulting ORFs do not make the assumptions about the availability

of global information such as the difference rewards method.

The following experiment extends the EORP to the same assumptions made by the

difference rewards method and checks if EORP can find functions that perform better than

DR. For this, consider φ = G (z) − G (z−i) in the composition of the reward function.

Now the traditional difference rewards function belongs to the reward design space of

EORP— in particular, consider a reward function that is just composed by the feature

j3. By solving this optimization problem, EORP found 76 solutions from which the R∗DR
was selected for comparison purposes. Note in Table 5.14 that this function significantly

reduces both fitness and learning effort when compared to RDR.

All R∗, RDR and R∗DR have yield results that are close to the user equilibrium of

67

the TAP and very similar regarding fitness and learning effort. However, it is important to

note that R∗ does not assume the use of global information as in RDR and R∗DR. Besides

this, this experiment also shows that by providing global information to the EORP, it can

automatically identify a more efficient variant of the standard difference rewards function.

Table 5.14: Fitness (f1) and effort (f2) in TAP.
R∗ RDR R∗DR

f1 50.32 ± 0.04 50.35 ± 0.05 50.3 ± 0.07
f2 4901.22 ± 2.88 4913.43 ± 2.89 4868.96 ± 2.25
j0 -0.23 88.43% - -0.25 100%
j1 -0.57 23.8% - - 2.63%
j2 - 3.85% - -0.44 97.37%
j3 -0.34 100% - 0.03 100%

5.2.5.2 Different Reward Feature Representations

Table 5.15 presents the set of reward features (column “J”) manually extracted for

edge and route-based-QL. Edge-based-QL has more reward features available than route-

based-QL because edge-based-QL abstracts less environment information in its action

structure. It provides an environment richer in agent and environment information, which

can be used to generate reward features. The reward design space represented by these

reward features captures the most common situations faced by the road users.

Table 5.15: Set of reward features (J) available for edge-based and route-based-QL. The
column φ describes the function of each reward feature. φ is composed by variables
present in scenario’s cost functions (see Equations 5.2 - 5.5) but here its values are relative
the edge or route that composes a given action a. For this reason, the identifier a is used
in variables such as ca, t0a, etc.
J Description φ Edge-based Route-based
j0 edge takes the agent to its origin vertex? ca 3 7

j1 edge takes the agent to its destination vertex? ca 3 7

j2 edge was already traveled by the agent? ca 3 7

j3 traveled distance t0a 3 3

j4 travel cost under free-flow condition t0a 3 3

j5 flow of vehicles Va 3 3

j6 travel time ca 3 3

This experiment presents reward features with different representation. The re-

ward features considered so far represent “true” or “false” expressions. In other words,

such kind of reward feature can be activated or not in a given state. The reward features

from j0 to j2 in Table 5.15 are good examples of such type of reward features. For in-

stance, for an edge-based-QL agent, the reward feature j0 is only “activated” when the

68

action taken by the agent leads it back to its initial state. In all other actions taken by such

agent, this reward feature will be “deactivated” (s (j0) = 0) in the environment.

The second type of reward features considered in this experiment represents re-

ward features that are always present in any state. The reward features from j3 to j6, in

Table 5.15, are good examples of such kind of reward features. Note that they are not rep-

resented by true or false statements. They, instead, are always present in agents’ lifetime,

independently of their actions. For instance, the reward feature j3 represents the travel

distance spent by an agent following its action. This reward feature is always activated

(s (j3) = 1) in the environment. If this reward feature is used to compose a given reward

function, the reward signal produced by such a reward feature will be given according to

the distance traveled by the agent in its last action. The traveled distance is given by the

function φ.

The use of these two kind of reward features requires minor modifications to the

EORP. Independently of a reward feature j having binary or real representation, its repre-

sentation is abstracted by the functions s (j) and φ (j). Table 5.15 uses a specific function

φ, according to each reward feature. For instance, the function of j3 is given by the travel

distance function, while the function of j5 is given by the flow of vehicles function. For

the reward features with binary representation, the travel cost ca of the executed action a

(that can represent an edge or route depending on the learning algorithm being used) is

used as a function because this function represents the goal of the learning task.

The reward design space of edge and route-based-QL is given by R (J) ⊂ R|J |,

where J is the set of reward features available for each algorithm. The reward function

R =
∑
j∈J

s (j)w (j)P (j)φ (j) (5.13)

differs from the one used in Equation 5.12 because, in this new reward function structure,

the reward signal is composed by all the reward features activated in a given state, rather

than just by the first one activated in J , as in Equation 5.12.

Another characteristic that differentiates this experiment from the previous is the

nature of designed reward functions. In the previous experiment, the reward functions

are designed for best solving a specific scenario (scenario ND). The current experiment,

by contrast, intends to find an optimal reward function that best solves the three TAP

instances presented in Section 5.2.2. Therefore, each potential ORF is evaluated regarding

fitness and effort produced in all three scenarios.

69

The multi-objective evaluation function used by both MARL algorithm is given

by

F (H) = [f1 (H) ,−f2 (H)] (5.14)

where:

• f1 (hi) = −c (pi) is the fitness function of each agent i, which represents the neg-

ative cost of its learned route pi. This function considers only the fitness produced

in a given episode. By using this function, the fitness is maximized when the travel

time of the agent is minimized; and

• f2 (hi) =
∑|Λ|
λ=0 tλ
|Λ| is the learning effort function, which represents the average num-

ber of decisions taken during the lifetime of the agent.

By solving the EORP for edge-based-QL, it produced 25 Pareto-optimal reward

functions, from which the reward function in Table 5.16 was arbitrarily selected for com-

parison purposes. For route-based-QL, the EORP returned just a single reward func-

tion because in edge-based-QL the learning agents always performs just one action per

episode, resulting in a learning effort always equals to 1.

Table 5.16: Optimal reward functions for edge-based and route-based-QL in the three
TAP scenarios.

Edge-based-QL Route-based-QL
Scenario OW ND SF OW ND SF

f1 67,305 50,322 21,918 67,172 50,255 20,559
j0 0.52 n/a
j1 -0.55 n/a
j2 -0.58 n/a
j3 - -
j4 0 -0.28
j5 - -
j6 -1 -0.61

Table 5.17 presents the performance of edge-based-QL and route-based-QL under

the guidance of reward functions obtained by ED, DR, and the EORP previously presented

in Table 5.16. The reward functions are evaluated in the three scenarios discussed in

Section 5.2.2. Two analysis are performed in this experiment. The first analyses compares

the obtained results of all methods regarding obtained ATT. On the other hand, in the

second analysis, the convergence curves of each algorithm are compared. The results

concerning ATT for each approach as well as the ATT under UE condition are presented

in Table 5.17.

70

Table 5.17: Average travel time and standard deviation (in parentheses).

Method Scenario
OW ND SF

Edge-based-QL-EORP 67,305 (0,036) 50,322 (0,047) 21,918 (0,089)
Edge-based-QL-DR 66,980 (0,025) 50,349 (0,053) 21,880 (0,120)
Edge-based-QL-ED 67,150 (0,017) 50,236 (0,40) 21,940 (0,097)
Route-based-QL-EORP 67,172 (0,071) 50,255 (0,005) 20,559 (0,059)
Route-based-QL-DR 66,991 (0,118) 50,028 (0,002) 20,729 (0,098)
Route-based-QL-ED 67,156 (0,014) 50,256 (0,006) 20,594 (0,067)
User equilibrium ≈ 67.163 ≈ 50.277 ≈ 20.785

In the OW scenario, all methods achieved ATTs closer to the one obtained under

UE condition. However, for both learning algorithms, the DR reward function yielded

results slightly better. Since the OW scenario has few options of routes to the two des-

tination nodes in its OD-matrix (nodes L and M), it creates a lot of competition among

selfish-agents for specific parts of the road network. In such situations, the DR function

is capable of achieving better ATTs because it elicits cooperation among agents. Such

cooperation reduces the competition for the most attractive edges and benefits the system

as a whole.

For the ND scenario, again all approaches achieved ATTs closer to the one un-

der UE solution. The DR function achieved ATT better than UE just in route-based-QL

because this scenario is more challenging than the OW one: the network topology and de-

mand of scenario ND are larger than in the OW scenario, which makes the learning task

harder to edge-based-QL due to the larger search space and more noisy reward signals.

In the SF scenario, the learning algorithm played a major role in the ATT than

the reward function. Regardless of the reward function used, route-based-QL was able

to yield ATT at least as good as the one obtained under UE. For EORP and DR reward

functions, the ATTs were even better than the one under UE. The massive demand and

number of OD-pairs make the reward signals extremely noisy for the agents. However,

even under such circumstances, the search space restriction provided by route-based-QL

made it possible for the agents to learn more appropriate routes. For edge-based-QL, the

three reward functions yielded ATTs worse than the ones obtained by route-based-QL.

This is because the larger network topology of scenario SF increases the search space in

the case of edge-based-QL.

The results presented so far indicate that with respect to the achieved ATT, the

three reward functions are robust in solving the TAP. In larger scenarios, as in the SF

presented here, independent of the reward function to be used, the edge-based-QL ends

71

up limiting the learning capacity of agents. It is harder for the learning agents to learn

optimal policies in the larger and highly dynamic search space provided by edge-based-

QL. To overcome such limitation, the results in this thesis suggest that in larger scenarios

it is more appropriate to use route-based-QL than edge-based-QL.

In order to better evaluate the reward functions discussed so far, the learning

curves—ATT convergence along episodes—of the learning methods and reward func-

tions are presented in Figure 5.7 (for the OW scenario), Figure 5.8 (for the ND scenario),

and Figure 5.9 (for the SF scenario). In the three scenarios, it is possible to observe that

route-based-QL converges faster than edge-based-QL independently of the reward func-

tion being used. In the early episodes, edge-based-QL agents have no knowledge of their

MDP, and the exploration rate is very high. Consequently, agents have a high probabil-

ity of converging to undesired behaviors (routes). Despite this, after some episodes, the

learning curves of both methods converge to similar solutions in all scenarios.

In the first experiment, it has been shown that the three used reward functions are

robust in guiding the learning process of TAP agents. In small scenarios such as OW and

ND, the DR function was able to yield slightly better ATTs. Despite this, it was evident

that the learning algorithm has considerable more influence on the performance of the

agents than the reward functions used. The second experiment also concludes that all

reward functions have similar performance regarding convergence.

The three reward functions evaluated here are very similar concerning their ob-

tained ATT and convergence time. However, EORP and DR reward functions are not so

trivial to be applied in TAP. EORP reward functions require much work during the defi-

nition and resolution of the EORP, while DR functions assume a communication channel

among agents by which they obtain the necessary information for the calculation of the

system’s performance. The expert-designed reward function seems to be a more adequate

reward function for the TAP because its definition is more straightforward than others.

Figure 5.7: Performance vs. time on scenario OW.

1 5 10 50 100 500 1000

10
0

50
0

20
00

episode

fit
ne

ss

Edge−based−QL−ED
Edge−based−QL−DR
Edge−based−QL−EORP
Route−based−QL−ED
Route−based−QL−DR
Route−based−QL−EORP

72

Figure 5.8: Performance vs. time on scenario ND.

1 5 10 50 100 500 1000

50
10

0
50

0

episode

fit
ne

ss
Edge−based−QL−ED
Edge−based−QL−DR
Edge−based−QL−EORP
Route−based−QL−ED
Route−based−QL−DR
Route−based−QL−EORP

Figure 5.9: Performance vs. time on scenario SF.

1 5 10 50 100 500 1000

1e
+

02
1e

+
04

1e
+

06

episode

fit
ne

ss

Edge−based−QL−ED
Edge−based−QL−DR
Edge−based−QL−EORP
Route−based−QL−ED
Route−based−QL−DR
Route−based−QL−EORP

5.3 Discussion

The EORP was evaluated in two different domains. The first domain, called the

coordinated multi-agent object transportation problem, provides a task with two agents

(a single-agent variant of this problem was also considered). Regarding this domain, this

thesis showed that:

• The use of multiple goal functions (fitness, learning effort and so on) in the eval-

uation of optimal reward functions provided by EORP is beneficial for the agents

because it results in agents that learn optimal policies faster. A reward design space

may present several reward functions that yield an optimal policy for a given prob-

lem. The traditional ORP is not able to find the one that results in faster learning

because ORP does not take into account the trade-off between multiple designer

goals. In EORP, the trade-off of multiple designer goal functions is considered.

For this reason, EORP shows to be superior to ORP in the finding optimal reward

functions.

• The automatic selection of reward features is helpful for the system’s designer. Se-

lecting the most appropriate set of reward features to compose a reward function is

not an easy task due to a large number of potential reward features the problem may

provide. By giving an appropriate set of reward features to the EORP, it was able to

73

find optimal reward functions that overcome the expert-designed reward functions

of CMTOP regarding both fitness and learning effort.

• Optimizing a single reward function that is used by a set of agents with a common

task scales better than by optimizing one reward function per learning agent. Opti-

mizing a single reward function per set of agents results in an optimization problem

with lower dimensionality, which is easier to be solved.

• EORP is general enough to deal with both single and multi-agent reinforcement

learning problems.

The second domain, called the traffic assignment problem, provides non-

cooperative tasks that involve thousands of learning agents. In this domain, the present

thesis showed that:

• The performance of EORP designed reward functions is at least as good as the one

obtained by the difference rewards function. However, EORP reward functions do

not make use of global information in its internal structure (i.e., reward features

and reward signals only use information observable to the agent), as occurs in the

difference rewards function. The EORP was able to find in its rich reward design

space reward functions that result in the desired behavior, but without making use

of global information.

• By providing the same assumptions of use of global information in the internal

structure of the reward function to the EORP, EORP was shown to be able to find

reward functions that overcome the traditional difference rewards function in terms

of both fitness and learning effort. This finding also suggests that the traditional

difference rewards function may not be the best reward function to stimulate coop-

erative behavior between agents.

• EORP deals with the different representation of reward features. A reward design

space that contains reward features that have both binary and numeric representa-

tion was provided to the EORP. The method was able to combine both types of

reward features in optimal reward functions that, when optimized by agents, re-

sulted in solutions closer to the optimum for the evaluated scenarios. It enables

that the EORP to deal with the diversity of state information present in application

domains.

74

6 FINAL REMARKS

6.1 Conclusions

This thesis presented a novel and general method for reward function design in the

context of reinforcement learning. A reward function is the element in the reinforcement

learning framework that defines the goal of learning agents. The designer of the rein-

forcement learning system is the responsible for defining a reward function that, when

optimized by learning agent(s), results in agents learning a desired behavior. The litera-

ture presents no general rule for the designing reward functions as well as no guarantees

that the designed reward function is the most appropriated for a given task. The use of

an inappropriate reward function may lead the agent to learning inappropriate behaviors

and, consequently, rendering ineffective the application of reinforcement learning in such

a problem.

The literature presents some methods to assist the designer in the task of designing

effective reward functions. Existing work on the Optimal Reward Problem (ORP) pro-

pose mechanisms to automatically design reward functions. However, their application is

limited to specific sub-classes of single or multi-agent reinforcement learning problems.

Moreover, such methods identify which rewards should be given in which situation, but

not which aspects of the state or environment should be used when defining a reward

function.

The method proposed in this thesis is called extended-optimal reward problem

(EORP) because it is strongly inspired in the ORP. The EORP is a more complete and

also more versatile version of the ORP, in which the main limitations of the traditional

ORP are addressed. The EORP provides four main contributions compared to the tra-

ditional ORP. All contributions were experimentally validated on two different domains:

the object transportation problem and the traffic assignment problem.

The first contribution of this thesis is the automatic selection and identification of

situations (or state features) to reward. Existing approaches consider that the designer

defines all the situations in which the agents must be rewarded, and the method only ad-

justs the reward signal for each situation. However, some problems may present many

situations that could potentially contribute to the reward function. If the designer chooses

an inappropriate set of reward features, that can impact the quality of the reward function

found by solving the ORP. The EORP can automatically identify both situations and re-

75

ward signals that are relevant for the optimal reward function. The designer should just

provide the set of potential situations to reward as input. Through experiments in the

object transportation domain, this thesis shows that agents can benefit from the correct

selection of reward features provided by the EORP. Reward functions obtained by the

EORP were capable of improving both the quality of the learned behavior as well as the

learning effort when compared to an expert-designed reward function.

The second contribution of this thesis is the generality of application of our for-

mulation for dealing with RL problems that may be either single and multi-agent setting.

In the object transportation domain, it was demonstrated that the EORP was capable of

designing reward functions that lead the agents to learning optimal policies in both single

and multi-agent cooperative settings. The applicability of EORP in multi-agent competi-

tive tasks with more than 2 agents was demonstrated in the traffic assignment domain.

The third contribution of this thesis is associated with scalability issues. Existing

works on ORP optimize a private reward function for each learning agent in order to

deal with a specific task. It was shown that in problems with a large number of agents,

the optimization might not converge to desired solutions due to the slow convergence of

optimization methods in high-dimensional search spaces. EORP scales well because it

optimizes a unique reward function for all agents that share a common task. Experiments

performed in the traffic assignment domain showed that EORP was able to find effective

reward functions even in the presence of thousands of agents because the dimensionality

of the search problem in EORP is not dependent of the number of learning agents.

The fourth contribution of this thesis is related to the evaluation of a reward func-

tion. The space of reward functions may contains multiple reward functions that produce

the same behavior, but that differ in the learning effort required to acquire such an op-

timal policy. The EORP takes into account the trade-off between fitness and learning

effort spent in the learning process. Therefore, functions found by the EORP aim at

producing the best behavior (fitness) in the best learning time (effort). Experiments con-

ducted in the object transportation domain showed that by considering multiple designer

goal-functions, the EORP is capable of providing agents that converge faster to optimal

policies. In the object transportation domain, this thesis compared the reward functions

provided by EORP against an expert-defined reward function and showed that EORP was

capable of providing agents with better learning capabilities. In the traffic assignment do-

main, such a comparison was extended to compare EORP against a method present in the

literature called difference rewards. Experiments performed in different traffic assignment

76

scenarios show that the EORP can find reward functions that overcome the difference re-

wards technique in performance but without making use of global information. When the

same assumptions made by difference rewards are provided to EORP, EORP was also ca-

pable of significantly improving both fitness and learning effort with respect to the classic

DR method.

6.2 Future Work

As future work, the present thesis outlines the following directions:

• Propose a theoretical analysis of the EORP. This thesis extensively evaluates the

EORP, but just experimentally. No theoretical analysis of the model has been per-

formed so far. In future work, two theoretical analysis are intended. The first aims

at finding (if possible) the convergence bounds of EORP. The second analysis con-

cerns the complexity analysis of time and memory of EORP.

• Investigate the choice of optimization solver. This thesis used the CMA-ES algo-

rithm for solving EORP because it has been shown successfully in solving many

applications in the literature (and also in the experiments of this thesis). However,

several other solvers such as genetic algorithms (FastPGA, NSGAII, NSGAIII) or

multiobjective particle swarm optimization could be used as EORP solver. It is part

of the future work of this thesis to provide analyses about the right selection of the

optimization solver as well as a runtime analysis.

• Investigate the effects of turning EORP into a single-objective optimization prob-

lem. The EORP is modeled as a multi-objective optimization problem that con-

siders the trade-off among multiple goal-functions (fitness, learning effort, etc.) de-

fined by the system’s designer. This strategy adopted in EORP gives more flexibility

to the system’s designer during the selection of which optimized reward function to

be used in a given problem. However usually the system’s designer uses some rank-

ing to select among a set of optimized reward functions. By converting the EORP

into a single-objective optimization problem that considers some raking among the

multiple-objectives, the EORP can explore the use of more efficient solvers. The

advantages and disadvantages of using this strategy will be better investigated ad a

future work.

77

• Automatic extraction of reward features. The EORP considers that the system’s

designer provides the EORP with a set with reward features that can potentially

compose a reward function. It is also assumed that the system’s designer has enough

domain knowledge to extract such a set of reward features. The EORP selects

from such set the one(s) that will compose the reward function. A future work

of this thesis intends to investigate the development of an EORP that, given the

observations of an agent and environment variables, could automate the extraction

of potential reward features.

78

REFERENCES

ABBEEL, P. et al. Apprenticeship learning for motion planning with application to
parking lot navigation. In: 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems. [S.l.]: IEEE, 2008. p. 1083–1090. ISBN 978-1-4244-2057-5.

ABBEEL, P.; NG, A. Y. Apprenticeship learning via inverse reinforcement learning. In:
Twenty-first international conference on Machine learning - ICML ’04. New York,
New York, USA: ACM Press, 2004. p. 1. ISBN 1581138285.

AGOGINO, A.; TUMER, K. Multi–agent reward analysis for learning in noisy domains.
In: DIGNUM, F. et al. (Ed.). AAMAS ’05: Proceedings of the 4th International Joint
Conference on Autonomous Agents and Multiagent Systems. New York, NY: [s.n.],
2005. II, p. 81–88.

BARTO, A. G.; SINGH, S.; CHENTANEZ, N. Intrinsically motivated learning of
hierarchical collections of skills. In: Proc. 3rd Int. Conf. Development Learn. [S.l.:
s.n.], 2004. p. 112–119.

BAZZAN, A. L. C.; GRUNITZKI, R. A multiagent reinforcement learning approach to
en-route trip building. In: 2016 International Joint Conference on Neural Networks
(IJCNN). [S.l.: s.n.], 2016. p. 5288–5295.

BUREAU, o. P. R. Bureau of Public Roads: Traffic Assignment Manual. [S.l.], 1964.

BUŞONIU, L.; BABUSKA, R.; SCHUTTER, B. D. A comprehensive survey of
multiagent reinforcement learning. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on, IEEE, v. 38, n. 2, p. 156–172, 2008.

BUŞONIU, L.; BABUŠKA, R.; SCHUTTER, B. D. Multi-agent reinforcement learning:
An overview. In: Innovations in Multi-Agent Systems and Applications-1. [S.l.]:
Springer, 2010. p. 183–221.

CLAUS, C.; BOUTILIER, C. The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of the Fifteenth National Conference on
Artificial Intelligence. [S.l.: s.n.], 1998. p. 746–752.

DEVLIN, S.; KUDENKO, D. Dynamic potential-based reward shaping. In: Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent
Systems. [S.l.]: International Foundation for Autonomous Agents and Multiagent
Systems, 2012. p. 433–440.

DEVLIN, S. et al. Potential-based difference rewards for multiagent reinforcement
learning. In: INTERNATIONAL FOUNDATION FOR AUTONOMOUS AGENTS
AND MULTIAGENT SYSTEMS. Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems. [S.l.], 2014. p. 165–172.

GRUNITZKI, R.; BAZZAN, A. L. C. Combining car-to-infrastructure communication
and multi-agent reinforcement learning in route choice. In: BAZZAN, A. L. C. et al.
(Ed.). Proceedings of the Ninth Workshop on Agents in Traffic and Transportation
(ATT-2016). New York: CEUR-WS.org, 2016. ISSN 1613-0073. Disponível em:
<http://ceur-ws.org/Vol-1678/paper12.pdf>.

http://ceur-ws.org/Vol-1678/paper12.pdf

79

GRUNITZKI, R.; BAZZAN, A. L. C. Comparing two multiagent reinforcement learning
approaches for the traffic assignment problem. In: Intelligent Systems (BRACIS), 2017
Brazilian Conference on. [S.l.: s.n.], 2017.

GRUNITZKI, R.; RAMOS, G. d. O.; BAZZAN, A. L. C. Individual versus difference
rewards on reinforcement learning for route choice. In: Intelligent Systems (BRACIS),
2014 Brazilian Conference on. [S.l.: s.n.], 2014. p. 253–258.

GRUNITZKI, R.; RAMOS, G. d. O.; BAZZAN, A. L. C. Uma ferramenta para
alocação de tráfego e aprendizagem de rotas em redes viárias. In: Anais do XXVIII
Congresso de Pequisa e Ensino em Transportes (ANPET 2014). [s.n.], 2014.
ISBN 978-85-87893-17-8. Disponível em: <www.inf.ufrgs.br/maslab/pergamus/pubs/
grunitzki+2014-anpet.pdf>.

GRUNITZKI, R.; SILVA, B. C. da; BAZZAN, A. L. C. A flexible approach for
designing optimal reward functions. In: DAS, S. et al. (Ed.). Proceedings of the
16th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2017). São Paulo: IFAAMAS, 2017. p. 1559–1560. Disponível em:
<http://ifaamas.org/Proceedings/aamas2017/pdfs/p1559.pdf>.

GRUNITZKI, R.; SILVA, B. C. da; BAZZAN, A. L. C. Towards designing optimal
reward functions in multi-agent reinforcement learning problems. In: Proc. of the 2018
International Joint Conference on Neural Networks (IJCNN 2018). Rio de Janeiro:
[s.n.], 2018.

HU, J.; WELLMAN, M. P. Nash q-learning for general-sum stochastic games. J. Mach.
Learn. Res., v. 4, p. 1039–1069, 2003.

IGEL, C.; HANSEN, N.; ROTH, S. Covariance matrix adaptation for multi-objective
optimization. Evolutionary computation, MIT Press, v. 15, n. 1, p. 1–28, 2007.

JENNINGS, N. R. On agent-based software engineering. Artificial Intelligence,
v. 117, n. 2, p. 277 – 296, 2000. ISSN 0004-3702. Disponível em: <http:
//www.sciencedirect.com/science/article/pii/S0004370299001071>.

KOLTER, J. Z.; ABBEEL, P.; NG, A. Y. Hierarchical apprenticeship learning with
application to quadruped locomotion. In: PLATT, J. C. et al. (Ed.). Advances in Neural
Information Processing Systems 20. [S.l.]: Curran Associates, Inc., 2008. p. 769–776.

LIU, B. et al. Optimal Rewards for Cooperative Agents. Autonomous Mental
Development, IEEE Transactions on, v. 11, n. 4, 2014. Disponível em: <http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6920028>.

LIU, B. et al. Optimal rewards in multiagent teams. In: 2012 IEEE International
Conference on Development and Learning and Epigenetic Robotics, ICDL 2012.
[S.l.: s.n.], 2012. ISBN 9781467349635.

MOMBAUR, K.; TRUONG, A.; LAUMOND, J.-P. From human to humanoid
locomotion? An inverse optimal control approach. Autonomous Robots, v. 28, n. 3, p.
369–383, apr 2009. ISSN 0929-5593.

www.inf.ufrgs.br/maslab/pergamus/pubs/grunitzki+2014-anpet.pdf
www.inf.ufrgs.br/maslab/pergamus/pubs/grunitzki+2014-anpet.pdf
http://ifaamas.org/Proceedings/aamas2017/pdfs/p1559.pdf
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6920028
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6920028

80

NG, A. Y.; HARADA, D.; RUSSELL, S. Policy invariance under reward transformations:
Theory and application to reward shaping. In: In Proceedings of the Sixteenth
International Conference on Machine Learning. [S.l.]: Morgan Kaufmann, 1999. p.
278–287.

NGUYEN, S.; DUPUIS, C. An efficient method for computing traffic equilibria in
networks with asymmetric transportation costs. Transportation Science, Informs, v. 18,
n. 2, p. 185–202, 1984.

NIEKUM, S.; BARTO, A.; SPECTOR, L. Genetic Programming for Reward Function
Search. IEEE Transactions on Autonomous Mental Development, v. 2, n. 2, p. 83–90,
2010. ISSN 1943-0604.

ORTÚZAR, J. d. D.; WILLUMSEN, L. G. Modelling transport. 4. ed. Chichester, UK:
John Wiley & Sons, 2011.

RAMOS, G. de. O.; GRUNITZKI, R. An improved learning automata approach for the
route choice problem. In: KOCH, F.; MENEGUZZI, F.; LAKKARAJU, K. (Ed.). Agent
Technology for Intelligent Mobile Services and Smart Societies. [S.l.]: Springer
Berlin Heidelberg, 2015, (Communications in Computer and Information Science,
v. 498). p. 56–67. ISBN 978-3-662-46240-9.

RAMOS, G. de. O.; GRUNITZKI, R.; BAZZAN, A. L. C. On improving route choice
through learning automata. In: Proceedings of the Fifth International Workshop on
Collaborative Agents – Research & Development (CARE 2014). [s.n.], 2014. p. 1–12.
Disponível em: <http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2014care.pdf>.

RATLIFF, N. D.; BAGNELL, J. A.; ZINKEVICH, M. A. Maximum margin planning. In:
Proceedings of the 23rd international conference on Machine learning - ICML ’06.
New York, New York, USA: ACM Press, 2006. p. 729–736. ISBN 1595933832. ISSN
17458358.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. Third.
[S.l.]: Prentice Hall, 2010. (Prentice Hall series in artificial intelligence). ISBN
9780136042594.

SINGH, S.; LEWIS, R. L.; BARTO, A. G. Where do rewards come from. In:
Proceedings of the annual conference of the cognitive science society. [S.l.: s.n.],
2009. p. 2601–2606.

SINGH, S. et al. Intrinsically motivated reinforcement learning: An evolutionary
perspective. Autonomous Mental Development, IEEE Transactions on, IEEE, v. 2,
n. 2, p. 70–82, 2010.

SINGH, S. P.; BARTO, A. G.; CHENTANEZ, N. Intrinsically motivated reinforcement
learning. In: Advances in Neural Information Processing Systems 17 (NIPS 2004).
[S.l.: s.n.], 2004. v. 17, p. 1281–1288.

SORG, J.; LEWIS, R.; SINGH, S. Internal Rewards Mitigate Agent Boundedness. In:
Proceedings of the 27th International Conference on Machine Learning (ICML-10).
[S.l.: s.n.], 2010. p. 1007–1014. ISBN 9781605589077.

http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2014care.pdf

81

SORG, J.; LEWIS, R. L.; SINGH, S. P. Reward Design via Online Gradient Ascent. In:
LAFFERTY, J. D. et al. (Ed.). Advances in Neural Information Processing Systems
23. [S.l.]: Curran Associates, Inc., 2010. p. 2190–2198.

SORG, J. D. The optimal reward problem: Designing effective reward for bounded
agents. Tese (Doutorado) — The University of Michigan, 2011.

SUTTON, R.; BARTO, A. Reinforcement Learning: An Introduction. Cambridge,
MA: MIT Press, 1998.

SYED, U.; SCHAPIRE, R. E. A Game-Theoretic Approach to Apprenticeship Learning.
Advances in Neural Information Processing Systems 20, v. 20, p. 1–8, 2008.

TUMER, K.; AGOGINO, A. Distributed agent-based air traffic flow management.
In: Proceedings of the 6th international joint conference on Autonomous
agents and multiagent systems. New York, NY, USA: ACM, 2007. p. 1–8. ISBN
978-81-904262-7-5.

TUMER, K.; WOLPERT, D. A survey of collectives. In: TUMER, K.; WOLPERT, D.
(Ed.). Collectives and the Design of Complex Systems. [S.l.]: Springer, 2004. p. 1–42.

WARDROP, J. G. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers, Part II, v. 1, n. 36, p. 325–362, 1952.

WATKINS, C. J. C. H.; DAYAN, P. Q-learning. Machine Learning, Kluwer Academic
Publishers, Hingham, MA, USA, v. 8, n. 3, p. 279–292, 1992. ISSN 0885-6125.

WIEWIORA, E.; COTTRELL, G.; ELKAN, C. Principled methods for advising
reinforcement learning agents. In: Proceedings of the Twentieth International
Conference on Machine Learning. [S.l.: s.n.], 2003. p. 792–799.

WOOLDRIDGE, M. J. An Introduction to MultiAgent Systems. Chichester: John
Wiley & Sons, 2009. 461 p. Second edition.

YEN, J. Y. Finding the k shortest loopless paths in a network. Management Science,
v. 17, n. 11, p. 712–716, 1971. Disponível em: <http://pubsonline.informs.org/doi/abs/
10.1287/mnsc.17.11.712>.

ZHIFEI, S.; Er Meng Joo. A review of inverse reinforcement learning theory and recent
advances. In: 2012 IEEE Congress on Evolutionary Computation. [S.l.]: IEEE, 2012.
p. 1–8. ISBN 978-1-4673-1509-8.

ZIEBART, B. D. et al. Maximum entropy inverse reinforcement learning. AAAI
Conference on Artificial Intelligence, p. 1433–1438, 2008. ISSN 10450823.

ZINKEVICH, M. Online convex programming and generalized infinitesimal gradient
ascent. In: In Proceedings of the Twentieth International Conference on Machine
Learning. Menlo Park, USA: AAAI Press, 2003. p. 928–936.

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.17.11.712
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.17.11.712

82

APPENDIX A — UMA ABORDAGEM FLEXÍVEL PARA RECOMPENSAS

ÓTIMAS EM PROBLEMAS DE APRENDIZADO POR REFORÇO

MULTIAGENTE

O aprendizado por reforço lida com problemas onde um agente tenta aprender

um comportamento através de sucessivas iterações com o ambiente (SUTTON; BARTO,

1998). O comportamento do agente é representado por uma política que mapeia estados

do ambiente para ações, com base na expectativa de recompensa a ser recebida em cada

par estado-ação. A qualidade de uma ação tomada por um agente durante o processo de

aprendizagem por reforço é avaliada com base em um sinal numérico, conhecido como

recompensa, recebido do ambiente após o agente ter executado tal ação. A função de

recompensa determina o valor do sinal de recompensa que um agente irá receber do am-

biente. É responsabilidade do projetista1 do sistema baseado em aprendizado por reforço

especificar uma função de recompensa que, quando otimizada por um agente, resulte no

aprendizado de uma política ótima—a qual representa a forma com que o agente deve se

comportar no ambiente. O desempenho do agente ou coletivo de agentes (quando o prob-

lema possui mais de um agente aprendendo simultaneamente, chamamos de aprendizado

por reforço multiagente - MARL) aprendendo através de aprendizado por reforço, está

diretamente relacionado com a função de recompensa sendo otimizada por ele(s), pois

este é o mecanismo responsável por definir o objetivo da tarefa de aprendizagem.

O uso de funções de recompensa efetivas proporciona benefícios aos agentes

que vão além da aquisição de uma política ótima. Múltiplas funções de recompensa,

quando otimizadas, podem produzir uma mesma política ótima, porém com diferente

esforço de aprendizagem ao agente. Considere como exemplo a tarefa episódica apresen-

tada na Figura A.1. Nesta tarefa, introduzida inicialmente por (BUŞONIU; BABUŠKA;

SCHUTTER, 2010), o agente 1 deve encontrar o objeto localizado no labirinto, agarra-lo e

transporta-lo até a base (uma completa descrição desta tarefa é apresentada na Seção 5.1).

A solução ótima para a tarefa é representada pela linha vermelha, a qual resolve a tarefa

em apenas 8 passos/movimentos. Os autores do cenário apresentam a função de recom-

pensa definida na Equação A.1 para resolver a tarefa. Esta função consegue guiar o agente

no processo de aprendizagem da solução da tarefa em tempo ótimo. Apesar da existência

desta função proposta pelos autores do cenário, muitas outras funções de recompensa,

1Nesta tese, sempre que nos referimos ao “projetista”, nós não estamos necessariamente nos referindo a
uma única pessoa, mas ao time que está desenvolvendo a solução baseada em aprendizado por reforço.

83

como a apresentada na Equação A.2, são capazes de guiar o aprendizado de uma política

ótima para esta tarefa.

Figure A.1: Domínio de transporte de objetos. A tarefa de aprendizagem consiste em um
agente aprender a transportar o objeto até na base.

base

objeto

1

R′ =

1, se o objeto chegou na base

0.1, se o objeto foi agarrado

0, caso contrário

(A.1)

R′′ =

1, se o objeto chegou na base

0, caso contrário
(A.2)

Na Figura A.2, nós podemos observar o desempenho do agente 1 aprendendo com

ambas as funções R′ e R′′. Nos episódios finais, ambas as funções se mostram capazes

de resolver a tarefa no tempo mínimo. Porém, agora vamos considerar uma segunda

métrica de desempenho, chamada esforço de aprendizagem. O esforço de aprendizagem

para adquirir uma política ótima nesta tarefa é representada pelo número acumulativo

de passos (ou decisões) gastos pelo agente ao longo dos episódios de sua vida. Se nós

também considerarmos o esforço de aprendizagem, as funções de recompensa R′ e R′′

deixarão de ser equivalentes. Ao aprender com a função de recompensa R′ o agente gasta

≈ 50 menos passos ao longo de sua vida quando comparado a função R′′.

Para este cenário que utilizamos como exemplo, pode ser que seja mais interes-

sante para o projetista utilizar a funçãoR′ ao invés da funçãoR′′, já que ela converge mais

rapidamente. No entanto, vale argumentar seR′ é realmente a função de recompensa mais

adequada para esta tarefa? Não há uma resposta direta para esta pergunta porque existem

muitas outras funções de recompensa capazes de representar a tarefa de aprendizagem

84

Figure A.2: Desempenho do agente 1 ao resolver o problema de transporte coordenado
de objeto com as funções R′ e R′′.

0 10 20 30 40

0
50

10
0

15
0

20
0

episódio

nú
m

er
o

de
 p

as
so

s

R'

R''

em questão. Na Tabela A.1, nós apresentamos algumas das situações hipotéticas em que

o projetista poderia considerar ser interessante (para o sucesso da tarefa) recompensar o

agente. Em uma situação como essa, encontrar uma função de recompensa adequada não

é uma tarefa simples, pois o espaço de funções de recompensa disponíveis é composto

por qualquer combinação destas situações e suas respectivas recompensas.

Table A.1: Situações hipotéticas para recompensar o agente 1.
Situação
1 se o objeto chegou na base
2 se o agente agarrou o objeto
3 se o agente bateu na parede
4 se o agente tentou ocupar uma célula ocupada por um objeto
5 se o agente escolheu ficar na mesma célula

Como demonstrado no exemplo do transporte coordenado de objeto, definir a

função de recompensa mais adequada não é uma tarefa fácil para o projetista. Embora

seja assumido que o projetista tem conhecimento suficiente para projetar funções de rec-

ompensa para os agentes, o desempenho resultante é sensível às escolhas básicas tomadas

pelo projetista em questões relacionadas ao projeto de funções de recompensa, como:

• em quais situações recompensar?

• quanto recompensar em cada situação?

Além destas questões, dependendo das características da tarefa de aprendizagem, outras

questões ainda podem aparecer. Por exemplo, problemas de aprendizagem por reforço

monoagente costumam apresentar menos questões associadas com o projeto de funções de

recompensa do que problemas de caráter MARL. Em problemas MARL, a estratégia para

a modelagem de função de recompensa utilizada pelo projetista pode mudar de acordo

com o tipo de tarefa de aprendizagem—cooperativa, competitiva ou mista—e também

85

pela quantidade de agentes aprendendo. Por exemplo, em tarefas multiagente de caráter

competitivo, o uso de ações conjuntas e recompensa de time pode ser mais interessante

desde que o problema tenha poucos agentes, pois em cenários com grandes quantidades

de agentes esta estratégia pode sofrer com o aumento da dimensionalidade (BUŞONIU;

BABUSKA; SCHUTTER, 2008).

Uma função de recompensa inadequada pode levar o agente ao aprendizado de um

comportamento inapropriado. Além disso, mesmo que uma função de recompensa possa

guiar o agente a aprender uma política ótima, pode ser que o esforço de aprendizagem

gasto—no que se refere a esforço computacional ou de tempo—para aprender tal política,

torne o uso da abordagem baseada em aprendizado por reforço infactível. Durante o está-

gio de modelagem de uma problema de aprendizado por reforço, o projetista do sistema

geralmente adota a seguinte estratégia:

• recompensar positivamente as ações que levam o agente a estados desejados;

• recompensar negativamente as ações que levam o agente a estados indesejados.

Tal estratégia estimula comportamentos dirigidos por motivações extrínsecas, i.e., mo-

tivações geradas por recompensas imediatas diretamente relacionadas aos objetivos do

agente (BARTO; SINGH; CHENTANEZ, 2004). Porém, Singh, Lewis and Barto (2009),

Singh et al. (2010) argumentam que esta estratégia pode não ser a melhor. Os autores

mostram que os agentes podem ser beneficiados ao serem recompensados em estados

intermediários, ou seja, estados que não estão diretamente relacionados ao objetivo da

tarefa, porque isso instiga comportamentos impulsionados por curiosidade, novidade, sur-

presa e outras características internamente mediadas que são normalmente associadas com

motivações intrínsecas.

Para projetar funções de recompensa com estas características, Singh, Lewis and

Barto (2009) introduziram o optimal reward problem (em português, problema de recom-

pensa ótima - ORP). Um ORP é composto e especificado por duas funções: i) uma função

de recompensa R que guia o processo de aprendizagem do agente; e ii) uma função de

fitness F que avalia a qualidade do comportamento aprendido pelo agente. A função

de fitness representa os desejos do projetista do sistema na tarefa de aprendizagem em

questão. Resolver o ORP consiste em encontrar a função de recompensa ótima (ORF),

R∗, que maximiza a função de fitness. Em Singh et al. (2010), o ORP é aproximadamente

resolvido através de uma estratégia de busca baseada em força bruta. Trabalhos subse-

quentes a este (SORG; LEWIS; SINGH, 2010b; NIEKUM; BARTO; SPECTOR, 2010;

86

LIU et al., 2012; LIU et al., 2014) propuseram métodos automáticos e mais eficientes

para lidar com o ORP em problemas de caráter tanto mono quanto multiagente. Estes

métodos apresentam diversas limitações, as quais restringem a sua aplicação à tarefas de

aprendizagem bastante específicas.

Além destes dos métodos baseados em ORP, ainda existem algumas estratégias

não baseadas em ORP que podem ser utilizadas (ao menos parcialmente) para lidar com

funções de recompensa. A técnica chamada difference rewards, apresentada por Tumer

and Agogino (2007), estimula a cooperação entre um coletivo de agentes através de mod-

ificações na estrutura básica da função de recompensa. Entretanto, o seu uso está limi-

tado a tarefas cooperativas, onde é necessário ter completa observação do sistema. Outra

estratégia bastante conhecida é o RL inverso (IRL), o qual identifica a função de recom-

pensa que produz um comportamento que foi previamente observado por um especialista.

Não é possível generalizar o uso de IRL em função da necessidade de um conjunto sufi-

cientemente grande de observações. Por fim, técnicas baseadas em reward shaping (NG;

HARADA; RUSSELL, 1999) visam a aceleração do processo de aprendizagem através do

fornecimento de conhecimento de domínio na forma de sinais adicionais de recompensa.

Cada um dos métodos anteriormente mencionados possui suas próprias limitações

que impedem que eles sejam aplicados em outros tipos de problemas, além dos quais eles

foram projetados. A literatura apresenta espaço para um método geral que automatize a

tarefa de projeto de funções de recompensa nos mais diversos tipos de problema de apren-

dizagem. Para preencher esta lacuna, nesta tese, nós pretendemos responder a seguinte

questão de pesquisa:

Questão de Pesquisa.

Existe um método que automatize o processo de projeto de funções de recompensa e

que possa ser aplicado nas mais diversas tarefas de aprendizagem?

A nossa ideia de método automático se refere a um método que, dado um con-

junto de entradas previamente definidas pelo projetista do sistema, o método possa en-

contrar automaticamente a(s) função(ões) de recompensa mais apropriada(s) para a tarefa

de aprendizagem. Quando nos referimos as mais diversas tarefas de aprendizagem, nós

estamos nos referindo a problemas mono e multiagente e suas variantes.

Entre os métodos existentes, o que melhor se adequa a nossa questão de pesquisa

é o ORP, pois ele já foi desenvolvido para encontrar a melhor função de recompensa

87

que atenda as preferências do projetista do sistema. Com base no ORP, nesta tese, nós

endereçamos a nossa questão de pesquisa através da seguinte hipótese:

Hipótese de Pesquisa.

Fornecendo as modificações necessários ao optimal reward problem, é possível

proporcionar um método automático que pode lidar com projeto de funções de

recompensa nos mais diversos tipos de problemas de aprendizagem por reforço

Para validar esta hipótese, nesta tese nós propomos uma abordagem flexível para

projetar funções de recompensa efetivas, chamada ORP estendido (em inglês, extended-

optimal reward problem - EORP). O termo flexível refere-se a ampla gama de problemas

mono e multiagente no qual a nossa abordagem pode ser aplicada. Já o termo efetivo

significa encontrar funções de recompensa que, quando otimizadas, resultam em rápida

aquisição de política ótima.

A.1 Visão Geral do EORP

O EORP, inicialmente apresentado em (GRUNITZKI; SILVA; BAZZAN, 2017),

endereça as principais limitações dos métodos existentes. A seguir, apresentamos como

tais limitações são endereçadas no EORP.

A.1.1 Seleção automática de features

Uma feature em projeto de funções de recompensa representa uma situação em que

o agente possa ser recompensado. As abordagens existentes consideram que o projetista

do sistema conhece e define todas as situações em que os agentes devem ser recompen-

sados. O método, por sua vez, apenas se encarrega de definir o sinal de recompensa rece-

bido em cada uma destas situações. Uma desvantagem desta estratégia é que as tarefas de

aprendizagem podem apresentar muitas situações onde o agente pode potencialmente ser

recompensado. Se o projetista escolher um conjunto inadequado de features, isso pode

impactar negativamente na qualidade do comportamento aprendido pelo agente.

O EORP diminui a responsabilidade do projetista em definir esse conjunto de fea-

tures. Ele permite que o projetista defina apenas um conjunto com todas as situações onde

88

o agente pode ser potencialmente recompensado e o método, por sua vez, se encarrega de

descobrir qual é a melhor combinação de features e seus respectivos sinais de recompensa

que melhor definem a função de recompensa ótima. No EORP, uma feature não utilizada

é removida da função de recompensa, ao invés de simplesmente atribuir a ela um sinal de

recompensa que anule o seu uso. O EORP funciona desta forma porque o uso de features

pode estar associado a outros custos. Por exemplo, num robô, o uso de uma feature que

indica se ele bateu numa parede ou em uma porta fechada pode depender de sensores, os

quais resultam em custos como o de energia e também monetário.

A.1.2 Generalidade de Aplicação

Todos os métodos existentes foram projetados para problemas bastante específi-

cos. Isto acaba restringindo muito a gama de problemas em que cada um deles pode

ser aplicado. O EORP possui uma formulação bastante geral que permite que ele seja

aplicado nos mais diversos tipos de tarefa de aprendizagem por reforço (tarefas compet-

itivas, cooperativas e mistas), desde que modificações mínimas em sua estrutura sejam

feitas. Isso é possível devido a estratégia evolucionária utilizada que é independente do

problema de aprendizagem e que pode lidar com configurações tanto mono quanto multi-

agente.

A.1.3 Escalabilidade em Problemas Multiagente

A escalabilidade é outra limitação das abordagens existentes. Grande parte das

abordagens existentes para projeto de funções de recompensa, foi desenvolvida para prob-

lemas monoagente. A única que se tem conhecimento, até o momento em que este texto

é preparado, que lida com problemas multiagente é o trabalho de Liu et al. (2014). A

abordagem apresentada pelos autores otimiza uma função de recompensa por cada agente

que aprende por reforço. Se o problema possui 10 agentes, dez funções distintas são

otimizadas. Em problemas com grandes quantidades de agentes, esta estratégia pode não

convergir para a solução desejada devido à baixa convergência dos métodos de otimiza-

ção em espaços de busca com alta dimensionalidade. O EORP se mostrou escalável por

otimizar uma única função de recompensa a qual é individualmente utilizada por cada

agente que compartilha uma tarefa em comum. Sendo assim, para um determinado prob-

89

lema de aprendizagem, independente do número de agentes com tarefa de aprendizagem

em comum, a dimensionalidade do problema de busca será sempre a mesma.

A.1.4 Esforço de Aprendizagem

O esforço de aprendizagem se refere a forma com que uma função de recompensa

ótima é avaliada. No espaço de funções de recompensa pode conter múltiplas funções

de recompensa que produzem um mesmo comportamento desejado, mas que diferem no

esforço de aprendizagem exigido para se chegar em tal comportamento. Na nossa abor-

dagem, durante a avaliação de uma função de recompensa, levamos em consideração o

balanço entre qualidade de comportamento aprendido e esforço de aprendizagem gasto

para atingir tal comportamento. Portanto, as funções de recompensa encontradas através

do EORP buscam produzir o melhor comportamento no melhor (menor) esforço de apren-

dizagem.

A.2 Publicações

As contribuições científicas que levaram a esta tese são:

GRUNITZKI, R.; SILVA, B. C. da; BAZZAN, A. L. C. A flexible approach for

designing optimal reward functions. In: DAS, S. et al. (Ed.). Proceedings of the

16th International Conference on Autonomous Agents and Multiagent Sys-

tems (AAMAS 2017). São Paulo: IFAAMAS, 2017. p. 1559–1560. Disponível em:

<http://ifaamas.org/Proceedings/aamas2017/pdfs/p1559.pdf>.

GRUNITZKI, R.; SILVA, B. C. da; BAZZAN, A. L. C. Towards designing optimal

reward functions in multi-agent reinforcement learning problems. In: Proc. of the

2018 International Joint Conference on Neural Networks (IJCNN 2018). Rio

de Janeiro: [s.n.], 2018.

Em Grunitzki, Silva and Bazzan (2017), nós apresentamos o EORP e o avaliamos

na variação multiagente de dois agentes do problema de transporte coordenado de objetos.

A análise no problema de alocação de tráfego, o qual possui milhares de agentes, bem

como a comparação com um método para projeto de função de recompensa em problemas

http://ifaamas.org/Proceedings/aamas2017/pdfs/p1559.pdf

90

multiagente, chamado difference rewards é apresentada em Grunitzki, Silva and Bazzan

(2018).

Além destes trabalhos que são diretamente no tema do EORP, outras pesquisas

também foram desenvolvidas ao longo da tese. São elas:

GRUNITZKI, R.; BAZZAN, A. L. C. Comparing two multiagent reinforcement

learning approaches for the traffic assignment problem. In: Intelligent Systems

(BRACIS), 2017 Brazilian Conference on. [S.l.: s.n.], 2017.

BAZZAN, A. L. C.; GRUNITZKI, R. A multiagent reinforcement learning ap-

proach to en-route trip building. In: 2016 International Joint Conference on Neu-

ral Networks (IJCNN). [S.l.: s.n.], 2016. p. 5288–5295.

GRUNITZKI, R.; BAZZAN, A. L. C. Combining car-to-infrastructure communi-

cation and multi-agent reinforcement learning in route choice. In: BAZZAN, A.

L. C. et al. (Ed.). Proceedings of the Ninth Workshop on Agents in Traffic and

Transportation (ATT-2016). New York: CEUR-WS.org, 2016. ISSN 1613-0073.

Disponível em: <http://ceur-ws.org/Vol-1678/paper12.pdf>.

GRUNITZKI, R.; RAMOS, G. d. O.; BAZZAN, A. L. C. Uma ferramenta para alo-

cação de tráfego e aprendizagem de rotas em redes viárias. In: Anais do XXVIII

Congresso de Pequisa e Ensino em Transportes (ANPET 2014). [s.n.], 2014.

ISBN 978-85-87893-17-8. Disponível em: <www.inf.ufrgs.br/maslab/pergamus/

pubs/grunitzki+2014-anpet.pdf>.

RAMOS, G. de. O.; GRUNITZKI, R. An improved learning automata approach

for the route choice problem. In: KOCH, F.; MENEGUZZI, F.; LAKKARAJU, K.

(Ed.). Agent Technology for Intelligent Mobile Services and Smart Societies.

[S.l.]: Springer Berlin Heidelberg, 2015, (Communications in Computer and Infor-

mation Science, v. 498). p. 56–67. ISBN 978-3-662-46240-9.

RAMOS, G. de. O.; GRUNITZKI, R.; BAZZAN, A. L. C. On improving route

choice through learning automata. In: Proceedings of the Fifth International

Workshop on Collaborative Agents – Research & Development (CARE 2014).

[s.n.], 2014. p. 1–12. Disponível em: <http://www.inf.ufrgs.br/maslab/pergamus/

pubs/Ramos+2014care.pdf>.

http://ceur-ws.org/Vol-1678/paper12.pdf
www.inf.ufrgs.br/maslab/pergamus/pubs/grunitzki+2014-anpet.pdf
www.inf.ufrgs.br/maslab/pergamus/pubs/grunitzki+2014-anpet.pdf
http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2014care.pdf
http://www.inf.ufrgs.br/maslab/pergamus/pubs/Ramos+2014care.pdf

91

GRUNITZKI, R.; RAMOS, G. d. O.; BAZZAN, A. L. C. Individual versus differ-

ence rewards on reinforcement learning for route choice. In: Intelligent Systems

(BRACIS), 2014 Brazilian Conference on. [S.l.: s.n.], 2014. p. 253–258.

Todos estes trabalhos estão, de alguma forma, relacionados ao tema de pesquisa

desta tese. Em Grunitzki, Ramos and Bazzan (2014a), nós investigamos o uso e MARL e

difference rewards no problema de alocação de tráfego. O uso de learning automata para

lidar com este mesmo problema de aprendizagem é endereçado em Ramos, Grunitzki

and Bazzan (2014), Ramos and Grunitzki (2015). Um simulador microscópico para lidar

com o problema de alocação de tráfego em uma perspectiva multiagente é apresentado

em Grunitzki, Ramos and Bazzan (2014b). Em Grunitzki and Bazzan (2016), nós in-

vestigamos o uso de comunicação car-to-car em MARL para o problema de alocação de

tráfego. Uma estratégia na qual os agentes constroem a sua rota ao longo da sua viagem

é investigada em Bazzan and Grunitzki (2016). Esta mesma estratégia é comparada com

uma segunda estratégia, na qual os agentes aprendem a selecionar a melhor rota a partir

de um conjunto de rotas pré-computadas, em Grunitzki and Bazzan (2017).

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Overview of Proposed Extended-Optimal Reward Problem
	1.1.1 Automatic Reward Feature Selection
	1.1.2 Generality of Application
	1.1.3 Scalability in Multi-Agent Settings
	1.1.4 Learning Effort Evaluation

	1.2 Publications
	1.3 Organization of the Chapters

	2 Background
	2.1 Autonomous Agents and Multi-Agent Systems
	2.2 Machine Learning
	2.3 Reinforcement Learning

	3 Reward Function Design
	3.1 Optimal Reward Problem
	3.2 Reward Shaping
	3.3 Difference Rewards
	3.4 Inverse Reinforcement Learning
	3.5 Discussion

	4 Extended Optimal Reward Problem
	4.1 Mathematical Formulation
	4.2 Evaluation Function F
	4.3 Reward Design Space R(J)
	4.4 EORP Solver

	5 Experimental Results
	5.1 Coordinated Multi-agent Object Transportation Problem
	5.1.1 Problem Statement and Scenario
	5.1.2 Learning Algorithm
	5.1.3 Basic Setup
	5.1.4 Numerical Results
	5.1.4.1 Automatic Reward Feature Selection
	5.1.4.2 Scalability in Multi-Agent Settings
	5.1.4.3 EORP in Single-Agent Settings

	5.2 Traffic Assignment Problem
	5.2.1 Problem Statement
	5.2.2 Scenarios
	5.2.3 Learning Algorithms
	5.2.3.1 Edge-based Q-Learning
	5.2.3.2 Route-based Q-Learning

	5.2.4 Basic Setup
	5.2.4.1 EORP Settings
	5.2.4.2 Baseline Reward Functions
	5.2.4.3 Q-Learning Settings

	5.2.5 Numerical Results
	5.2.5.1 EORP versus Difference Rewards
	5.2.5.2 Different Reward Feature Representations

	5.3 Discussion

	6 Final Remarks
	6.1 Conclusions
	6.2 Future Work

	References
	Appendix A — Uma Abordagem Flexível para Recompensas Ótimas em Problemas de MARL
	A.1 Visão Geral do EORP
	A.1.1 Seleção automática de features
	A.1.2 Generalidade de Aplicação
	A.1.3 Escalabilidade em Problemas Multiagente
	A.1.4 Esforço de Aprendizagem

	A.2 Publicações

