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Abstract. This paper presents a micromechanical approach to overall viscoelastic properties 

of randomly fractured media. Unlike cracks, fractures can be viewed as interfaces that are 

able to transfer efforts. Their specific behavior under shear and normal stresses is a 

fundamental component of the deformation and fracture in brittle materials such as 

geomaterials.  Based on the implementation of the Mori-Tanaka linear homogenization 

scheme, the first part of the analysis is dedicated to derive close-form expressions for the 

homogenized elastic stiffness tensor of the fractured medium. The effective viscoelastic 

behavior is then assessed from the elastic homogenization in Laplace framework and making 

use of the correspondence principle.  In this context, a specific procedure for performing the 

inverse of Carson-Laplace transform is developed, allowing for the analytical derivation of 

homogenized relaxation and creep tensors. It is shown that the viscoelastic behavior can 

generally be described by means of a generalized Maxwell rheological model.  For practical 

implementation in structural analyses, an approximation of the effective behavior by a 

Burger–like model is formulated in the last part of the paper. 
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1  INTRODUCTION 

A main characteristic of many engineering materials such as rocks and more generally 

geomaterials, is the presence at different scales of discontinuities (cracks or fractures). The 

term “fracture” refers to a zone of small thickness along which the mechanicals properties of 

the matrix material are significantly degraded. Strength, deformability and conductivity of 

fractured media are strongly affected by the presence of these discontinuities (e.g. Barton et 

al., 1985; Maghous et al., 2008). 

Most of the theoretical or computational analyses investigating the mechanical behavior 

of cracked or fractured media have focused on the modeling of their instantaneous (elastic or 

plastic) response, whereas few works dealt with delayed (time-dependent) behavior of such 

materials are available in literature. In the framework of non-aging linear viscoelasticity, Le et 

al. (2008) proposed a reasoning to the multi-scales modeling of heterogeneous materials. 

Using the correspondence principle coupled with the Eshelby-based homogenization schemes, 

Le et al. establish an equivalent model to the viscoelastic heterogeneous material. However, 

this analysis was limited to classical heterogeneities. Nguyen (2010) and Nguyen et al. (2011, 

2013) were extend this approach to cracked media, developing a micromechanics-based 

model for viscoelastic medium where the heterogeneities are cracks. These authors 

formulated a three-dimensional Burger model to approximate the homogenized viscoelastic 

behavior. Nevertheless, the analysis has been restricted to viscoelastic materials with cracks 

(i.e., discontinuities without stress transfers reduced to cracks). The present paper is 

conceived as an extension of the Nguyen’s analysis, adding the behavior of fractures, studied 

by Maghous et al. (2011), that are discontinuities able to transfer stresses. 

2  ELASTIC BEHAVIOR OF FRACTURED MATERIALS 

To formulate the delayed behavior of the fractured material, the first step shall consist in 

formulating the instantaneous elastic behavior. The stating point is the micromechanics-based 

approach originally developed in Maghous et al. (2011) and extended later in Maghous et al. 

(2014)   to evaluate in the context of elasticity the homogenized behavior of a medium with 

an isotropic distribution of fractures (or discontinuities). The main features of the latter 

approach are briefly recalled in the sequel.  

It is first emphasized that fractures can be viewed as cracks that are able to transfer 

normal as well as tangential stresses. They are classically modeled as interfaces with attached 

orthonormal frame  , ',t t n  (see Fig. 1) and whose behavior is described by means of a 

relationship relating the stress vector T n   acting on the joint and the corresponding 

relative displacement [ ] :  

 [ ]             with  ' 'n tT k k k n n k t t t t         (1) 

The stiffness k  is defined by the scalars nk  and tk  referring to the normal and shear 

stiffness of the fracture, respectively.  
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Figure 1. Local frame for joint ω modeled as an interface 

The intact matrix is assumed to be linearly elastic with fourth-order stiffness tensor 
s
 

relating the local stress and strain: :s  . 

The homogenized (effective) elastic behavior of the fractured medium is assessed 

applying the framework of Eshelby-based homogenization schemes (e.g. Dormieux et al., 

2006). For this purpose, an appropriate geometrical description of the fracture should be 

adopted. the fractures are represented by oblate spheroids with attached orthonormal frame 

 , ',t t n  (see Fig. 2). 

 

Figure 2. Local frame for joint ω modeled as an interface 

The radius of the oblate is r  and the half opening is 
3a .  The aspect ratio 

3Χ /a r  of 

such a penny-shaped crack is subjected to the condition 1  .  In the continuum 

micromechanics approach employed herein, a fracture represents an inhomogeneity 

embedded within the intact matrix. The matrix stiffness is 
s
 and the fracture stiffness is k . 

In this context, the elastic material takes the place of the matrix and the fractures takes the 

place of the heterogeneities. The volume fraction of fractures in the medium is denoted by f : 

4

3
f    (2) 

where 3r  is the crack density parameter defined by Budianski and O’Connell (1976), 

 being the number of cracks (fractures) per unit volume. Adopting a random distribution 

for fractures in the medium, the Mori-Tanaka scheme provides the fallowing homogenized 

stiffness tensor (Maghous et al., 2014): 

   
1

1 1

Χ 0
lim      hom

s j G s j G s j


 



   
               

   
∶ ∶ ∶ ∶  (3) 
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where  is the Hill’s tensor wrote in global coordinates (see Dutra ,2012). It depends on the 

aspect ratio X  of the oblate spheroid and its orientation n . The components of the Hill tensor 

of an oblate spheroid can be found in Handbooks (see for instance Nemat-Nasser and Hori 

1993; Mura, 1997). The symbol  denotes the integral over the spherical angular 

coordinates [0, ]  and [0,2 ]  : 

2

0 0
( , ) ( , ) sinf d d

 

           (4) 

where ( , )    represents the fracture distribution function (see for instance Advani and 

Tucker, 1987). In the case of isotropic distribution of fractures with the same radius and 

aspect ratio, this function reduces to the constant value of ( , ) 1 4    . Assuming an 

isotropic elasticity for the  matrix material, the four-order stiffness tensor 
s
 can be described 

by its bulk module 
sk  and shear module 

s : 

3  2 s s sk    (5) 

The fourth-order tensors and are defined as  1
3
1 1  and   . Tensor j  

represents a four-order behavior tensor related to the crack stiffness according to: 

4
3 X r  2 X r 

3
j n t tk k k

 
   

 
 (6) 

At the macroscopic level, the effective medium is elastically isotropic. Hence, 

hom hom

hom 3 2k    (7) 

where 
homk  and hom  are respectively the homogenized bulk and shear modulus. Their 

expressions have been derived analytically in Maghous et al. (2014) or Aguiar (2016): 

hom

1

2

1 3
hom

4

3

45

s

s

k k




 
 







 (8) 

 are coefficients that depending of matrix and fractures parameters:  

2

1

2 2

2

2

3

2 2

4 1 1 3 3

3      3      4       

12    16        12      9      3    9     

9      12      16      6   

288     384     48     64     4

s s s n s n s

s s s s n s n s s s

s s s t s t s

s s s s s s

k k r k r k

k k r k k r k k

k k r k r k

k k

     

        

     

            

   

     

   

     1 35 

 (9) 
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3  VISCOELASTIC BEHAVIOR OF FRACTURED MATERIALS 

The behavior of homogenized viscoelastic materials can be derived directly from a 

combination of the correspondence theorem (Le et al., 2008) with the Eshelby-based elastic 

homogenization. The correspondence principle consists in introducing the Carson-Laplace 

transform in order to formulate the viscoelastic problem in terms of an equivalent elastic 

problem in the Laplace-domain (Bland, 1960; Salençon, 2009). The Carson-Laplace 

transform *u  of function u  is defined by: 

   *u   ptp u t e dt







   (10) 

In the context of an isotropic viscoelastic-fractured material, the correspondence principle 

is used taking advantage of the homogenized elastic formulated in the previous section by Eq. 

(7) to (9) expressed in the Laplace-domain. The homogenized viscoelastic relaxation tensor is 

the viscous counterpart of Eq. (7): 

* * * *3  2 hom hom hom homk     (11) 

where  and  are respectively the homogenized bulk modulus and shear modulus  

Carson-Laplace transforms: 

*
* * 1

*

2

* *
* * 1 3

*

4

3   

45

hom s

hom s

k k




 
 







 (12) 

It is observed that *

sk  and *

s  are respectively the bulk and shear moduli of matrix 

material in the operational space. Their values are dependent on the rheological model utilized 

adopted for the viscoelastic behavior of matrix material. If the Kelvin-Voigt rheological 

model (represented in the Fig. 3) is adopted for instance, moduli *

sk  and *

s  take the fallowing 

form: 

 

 

, , ,*

, , ,

, , ,*

, , ,

 

 

 

 

e v e

m s K s K s

s v e e

K s K s m s

e v e

m s K s K s

s v e e

K s K s m s

k p k k
k

p k k k

p

p

  


  




 




 

 (13) 
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Figure 3: Kelvin-Voigt rheological model 

The coefficients  are the viscous counterpart of Eq. (9): 

* * * * * * * *2

1

* *2 * * * * * * *2 * *

2

* * * * * * * *2

3

* * * * *

4 1 1

3      3      4       

12    16        12      9      3    9     

9      12      16      6   

288     384  

s s s n s n s

s s s s n s n s s s

s s s t s t s

s s

k k r k r k

k k r k k r k k

k k r k r k

k

     

        

     

     

   

     

   

  *2 * * * * *2 * *

3 3 1 3  48     64     45s s s sk          

 (14) 

where *

nk  and *

tk  are the Carson-Laplace transforms of normal and tangential stiffness of 

fractures. It is observed that no restriction has been introduced regarding the rheological 

model of fractures, For convenience, the following notations will be introduced in the 

subsequent analysis: 

* * *

* *

4
k k k

3

k

j n t

j t

 



 (15) 

A main issue of viscoelastic homogenization is connected with the ability to derive 

analytical expression for homogenized relaxation tensor from inverse Carson-Laplace 

transform of *

hom . For this purpose, a specific analytical procedure is developed in the next 

section. 

3.1 Procedure for inverse of Carson-Laplace transform 

Le et al. (2008) presented a procedure to obtain the inverse Carson-Laplace transform 

that is valid for generalized Maxwell and generalized Kelvin rheological models. The present 

approach has been developed independently of the latter procedure and covers a larger 

number of individual rheological models adopted for matrix material and fracture material, 

including Spring elastic model, Maxwell model, three-element standard model, Burger model 

or Generalized Maxwell model. For sake of simplicity, rheological models which do not 

exhibit instantaneous elasticity, such as the two-element Kelvin model, shall not be 

considered in the present analysis. 

It may be perceived from the analysis of Eq. (12) and Eq. (14) that the expressions of the 

bulk and shear moduli can always be written as a ratio of two polynomial functions of 

variable . Referring either to *

homk  or *

hom  by the generic relaxation function on *Rhom , it 

follows that: 
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*Rhom

A p

B p
  (16) 

where polynomials  A p  and  B p  can be generally expressed as  

 

   

0

0 1

A p  

B p        ;      1
k

n
k

k

k

n z
gk

k k n

k k

a p

b p p R b



 



   



 

 (17) 

It is observed that for most usual rheological models, *

sk  and *

s  (respectively 
*

jk  and 

*

j ) are polynomials of same degree with respect to variable p . Thus implying that the 

polynomials  A p  and  B p have the same degree. In the above definition Eq. (17) of 

polynomial of  B p , scalar 
kR  is the kth roots of  B p  and 

kg  is the degree of the kth root, 

while z  is the number of main poles of  B p . 

The first step of the inverse procedure consists in introducing the Laplace transform of 

homR  defined as *

hom( )F p R p . This operation allows to easily splitting the relaxation 

function into an instantaneous part and a delayed part: 

 
 

 

1

0 0

10 0

0

1
 

 

n
k

k k

k

b a a b p
a b

F p
pb B p





  
 


 (18) 

It is observed that 
0 0b   does not correspond to any usual rheological model. Using the 

expression Eq. (17) of  B p  into Eq. (18) yields: 

 
 

,0

1 10 

igz
i k

k
i k i

Da
F p

pb p R 

 


  (19) 

where: 

 

 

 

 

 
 ,

1

!

i

i

i

i

g k
g

i k ig k

i p R

C p
D p R

g k B pp







 
  

    

 
(20) 

and  

    1

0 0

10

1
 

n
k

k k

k

C p b a a b p
b





     (21) 

We now proceed to the inverse of Laplace transform of  F p , whose expression is given 

by Eq. (19). It can be readily shown that: 
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 ,  1 10

1 10

 
1 !

i

i

gz
i k R tk

hom

i k

Da
R F p t e Y t

b k

 

 

 
   

  
  (22) 

where  Y t  is the Heaviside step function at origin.  

Although the proposed procedure includes the situation of polynomial  B p  having 

multiple roots, this situation does not occur for usual rheological models. It will be therefore 

assumed in what follows that the polynomial  B p  admits only simple roots ( 1kg  ). Eq. 

(22) reduces thus to: 

  0

10

 k

n
R t

hom k

k

a
R D e Y t

b 

 
  
 

  (23) 

with 

 
 

  

 

 

k

k

k

k

p R

p R

C p C p p R
D

B p B p

p




 
   
    
    

 
 

 (24) 

The present reasoning has been developed for isotropic homogenized materials whose 

relaxation tensor *

hom  can be expressed by Eq. (11). The procedure can be applied to obtain 

the inverse Carson-Laplace transform of  the bulk and shear moduli separately.  

4  EXACT HOMOGENIZED VISCOELASTIC MODEL 

Before further developments, it is useful to first recall the viscoelastic generalized 

Maxwell model. The latter is characterized by assembling several Maxwell elements in 

parallel together with a spring (Fig. 4). 

 

Figure 4: Generalized rheological model of Maxwell 

The relaxation function 
G MaxR 

associated with the generalized Maxwell model reads: 
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0

1

 

k

k

E
n t

G Max k

k

R t E E e Y t


 
 
 





 
  
 
 

  (25) 

which is formally identical to the homogenized relaxation of the fractured medium expressed 

by Eq. (23) medium, with: 

0
0

0

     ;           ;         k k
k k k k

k k

a E D
E E D R

b R



        (26) 

This means that in the context of adopted framework, the overall viscoelastic behavior of 

the fractured medium can always be exactly described by an appropriate generalized Maxwell 

model. The homogenized isotropic behavior is characterized by: 

3  2 hom hom homk    (27) 

where generalized Maxwell models can be associated with the bulk and the shear moduli 

as shown in Fig. 5. 

 

Figure 5: Generalized rheological Maxwell models for viscoelastic bulk and shear moduli. 

Accordingly, 
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 (28) 

with the following relationships: 

0
0

0

0
0

0

     ;           ;         

     ;           ;         

k e k
e e k k vk k

k k k kk v k

k k

e
e e vk k

k k k kv

k k

a k D
k k D R k

b k R

a D
D R

b R

 
 

 


  



      

      

 (29) 
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In the above expressions, superscripts k  and   are used to refer to bulk modulus and shear 

modulus, respectively. Parameter n  in the sum operation is the number of Maxwell branches 

assembled in parallel with the spring. It depends on the rheological models adopted to 

describe the individual behaviors of matrix material and fracture material. For instance, if the 

Kelvin-Voigt model is used for both bulk and shear moduli of the matrix, and the fractures are 

assumed to behave elastically (i.e., modeled by means of springs for shear and normal 

behaviors), ( )A p  and ( )B p  are polynomials of degree four. Consequently, the value of n  in 

Eq. (23) is equal to four, which coincides of the number of roots of polynomial ( )B p . 

Consequently, the equivalent generalized Maxwell model has four branches in parallel with a 

spring. Changing the rheological model matrix material or fracture material will result in a 

different number of branches of the equivalent generalized Maxwell model. 

5  SIMPLIFIED HOMOGENIZED MODEL 

The whole homogenized viscoelastic behavior determined in the previous section can be 

described by means of Generalized Maxwell models shown in figure 4. However, it may be 

suitable to formulate an approximate model that would be more tractable for practical 

implementation in structural analyses. In the context of micromechanics approaches, Nguyen 

et al. (2011) developed a simplified Burger model to approximate the homogenized 

viscoelastic properties of a medium with cracks (i.e., discontinuities which do not able to 

transfer efforts). This section aims at extending the latter work to fractured viscoelastic 

material  

Owing to isotropy at macro-scale, it is possible develop the reasoning separately for the 

bulk modulus and the shear modulus. For sake of simplicity, the approximate model shall be 

only detailed for the bulk modulus. The results regarding the shear modulus are summarized 

in Appendix once that the procedure to the shear module is similar. It Follows from Eq. (12) 

and Eq. (14) that 

 * * *

* * * *

1

4      3 4 1 1 1  s s

hom s s

k Q

k k k

 



 
    (30) 

with: 

 * * *

*

*

1

4    3 4 s s sk k
Q

 




  (31) 

Assuming for instance a Burger model for the behavior of the matrix material together 

with a Maxwell model for the fracture material, the coefficients *

sk , *

s , 
*

jk  and 
*

j  take the 

values: 

* e v e v * e v e v

, , , , , , , ,

* e v * e v

, , , ,

1 1 1 1 1 1 1 1
     ;     

       

1 1 1 1 1 1
                           ;     

   

s M s M s K s K s s M s M s K s K s

j M j M j j M j M j

k k p k k p k p p

k k p k p

    

  

     
 

   

 (32) 
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It should be kept in mind that the Carson-Laplace transform of the relaxation function  

BurK  associated with the Burger model shown in Fig. 6 is computed as: 

* e v e v

, ,Bur ,Bur ,

1 1 1 1

   Bu M Bur M K K Burrk k pk k pk
  


 (33) 

 

Figure 6: Burger rheological model approximating the homogenized the bulk modulus 

Comparing Eq. (30) and Eq. (33) indicates that is impossible establish a direct 

relationship between the exact model and that associated with the Burger model. The idea to 

solve this problem consists in expanding in series Eq. (30) and Eq. (33) to formulate an 

approximation of *

homk  given in Eq. (30) by the Burger model represented in Eq. (33). The 

approximate model is chosen such that it represents a good approximation at short 0t   and 

long t    times. The series expansion of *Q  at 0p   ( )t   yields: 

 * 0 0 2

0 1  Q Q Q p O p    (34) 
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Developing  *Q  at the neighbor of p    ( 0)t   yields: 

* 1
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Expanding the equation of *

sk  on Eq. (32) leads to: 

 *

, , ,

* 2

, , ,
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v e e

s M s M s K s

e v v
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 (38) 

Introducing the previous equations within Eq. (30), one obtains: 

   

 

0 0
00 1
0*

, , , ,

0 1
0* 2

, , , ,

11 1 1
0 :      1

11 1 1 1 1
:      1

v v e e
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Q Q
p Q O p
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Q Q
p Q O

k k p k k k p

 
 

  
          

  

    
                 

 (39) 

These equations must be compared with the series expansion of the Eq. (33): 
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The parameters defining the Burger model are thus obtained from the comparison between 

Eq. (39) and Eq. (40): 
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where 
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 (42) 

which defines entirely the bulk modulus of the Burger model approximating the 

homogenized material. To complete the approach, it is necessary solve the same problem 

regarding the approximation of homogenized shear modulus by a Burger model: 

* e v e v

, ,Bur , ,

1 1 1 1

   Bu M Bur M K Br ur K Burp p    
  


 

(43) 

where the homogenized coefficients are provide in appendix. 

We proceed now to the assessment of accuracy of the approximate Burger model through 

comparison with the exact homogenized relaxation bulk modulus given by Eq. (30). For 

illustrative purposes, the following data will be considered: 
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Figure 7 displays the variations of these moduli normalized by their initial value as a 

function of time. The maximum relative gap is not exceeding 11%, thus showing that the 

simplified model can provide an accurate approximation for all range of time. 

 

Figure 7: Homogenized bulk modulus versus time:  

comparison of exact and approximate Burger predictions.  

Although the approach has been presented in the particular case defined by a Burger 

model for matrix material and a Maxell model for fracture material (Burger-Maxwell), a 

general procedure to formulate the approximate homogenized model has been developed for a 

large class of rheological models for matrix and fractures (see Table 1). However, the 

approximate homogenized rheological model is formulated considering it is similar to that 

adopted for the matrix material. 

Table 1 presents the parameters required to define the individual rheological model for 

matrix or fractures. Subscript s   refers to matrix while j   refers to fractures.  

Table 1: Definition of parameter used for individual models 

Model Required parameters 

Crack 
 

Spring , ,  ;  e e

M Mk    

Maxwell , , , ,  ;  ;      ;     e v e v

M M M Mk k      

Kelvin-Voigt , , , , , ,  ;  ;      ;     ;      ;    e e v e e v

M K K M K Kk k k         

Burger , , , , , , , , ;   ;    ;     ;    ;    ;     ;  e e v v e e v v

M K M K M K M Kk k k k            

 

The model proposed in Nguyen et al. (2011) for a cracked medium is retrieved by 

considering the following parameters given in Table 2: 
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Table 2: Definition of parameter used to retrieve the 

 approximate model formulated in Nguyen (2011) 

Model Used parameters 

Maxwell , , , ,  ;     ;    ;   e v e v

K K K Kk k             

Kelvin-Voigt , ,  ;   v v

M Mk       

 

Table 3 summarizes the different cases covered by the present modeling, as well as the 

maximum relative gap between the homogenized exact relaxation function and approximate 

equivalent model. 

Table 3: Comparison of the exact and approximate homogenized bulk moduli 

Matrix 

Model 

Fracture 

Model 

Number of Branches 

(Generalized Maxwell) 
Equivalent 

approximate 

model 

Maximum Error in  

approaches Model 

Bulk Shear 

Maxwell 

Crack 2 3 

Maxwell 

~0,00% 

Spring 3 5 ~0,00% 

Maxwell 4 6 ~0,00% 

Kelvin-

Voigt 

Crack 5 6 

Kelvin-Voigt 

~0,00% 

Spring 5 8 0,09% 

Maxwell 7 11 11,76% 

Kelvin-Voigt 6 10 0,04% 

Burger 

Crack 6 8 

Burger 

~0,00% 

Spring 7 12 0,48% 

Maxwell 8 13 10,76% 

Kelvin-Voigt 8 14 3,12% 

Burger 10 16 9,22% 
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6  CONCLUSIONS 

Starting from the results established in the context elastic homogenization, the effective 

viscoelastic properties of a fractured medium have been formulated model. The approach is 

based upon the combination of correspondence principle and an Eshelby-based 

homogenization (Mori-Tanaka) scheme. The specific inverse Carson-Laplace transform 

developed in this paper allows for the analytical derivation of the homogenized relaxation 

tensor of fractured medium. It can easily be applied for a large class of rheological models 

used to describe the individual viscoelastic behavior of matrix material or fracture material.  

It has been shown that the overall viscoelastic behavior can always be described by an 

appropriate generalized Maxwell rheological model. This difference is observed in the 

number of branches of the model and in the value of the parameters. 

Finally, an approximate model that would be more suitable for practical implementation 

in structural analyses has been formulated. Despite the approximate model is identified from 

the short and long time-term regimes, it provides accurate approximation in between these 

limit cases. 
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APPENDIX: COEFFICIENTS OF THE APPROACH RHEOLOGICAL 

MODEL OF BURGER 

Expression of the relaxation function in shear associated with the approximate model is 

provided herein. The principle of determination is quite to that followed for the bulk 

relaxation modulus. 
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