
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JOÃO PABLO SILVA DA SILVA

SaSML: A UML-Based Domain-Specific
Modeling Language for Self-Adaptive

Systems Conceptual Modeling

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Marcelo S. Pimenta

Porto Alegre
December 05, 2018

CIP — CATALOGING-IN-PUBLICATION

Silva da Silva, João Pablo

SaSML:AUML-BasedDomain-SpecificModeling Language
for Self-Adaptive Systems Conceptual Modeling / João Pablo
Silva da Silva. – Porto Alegre: PPGC da UFRGS, 2018.

110 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Marcelo S. Pimenta.

1. Self-adaptive Systems. 2. Conceptual Modeling. 3. UML
Extensions. I. S. Pimenta, Marcelo. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

I dedicate this work to

my wife Larissa B. L. da Silva

and my son Joaquim L. da Silva.

ACKNOWLEDGMENT

I would like to thank my wife Larissa B. L. da Silva for supporting me at home

and making possible the work accomplishment.

I would like to thank my advisor Prof. Marcelo S. Pimenta for accepting the task of

guiding me during the doctoral course. I would like to express my gratitude to my fellow

students Ana C. T. Klock and João G. Faccin for presenting the papers in the conferences.

I would like to thank my coworkers Prof. Miguel da S. Ecar and Prof. Gilleanes T.

A. Guedes for engaging in writing and proofreading. I would like to express my gratitude

to my coworkers Prof. Carlos M. Betemps, Prof. Fabio N. Kepler, Prof. Elder de M.

Rodrigues, and Prof. Sam da S. Devincenzi and my students Gabriel B. Moro, Eduardo

F. Amaral, Luiz P. Franz, and Luciano A. M. de Paula for contributing to the research. I

am also grateful to my coworker Prof. Alice F. Finger for reviewing the formal models

produced in the research.

I would like to thank the Postgraduate Program in Computing (PPGC) of the Fed-

eral University of Rio Grande do Sul (UFRGS) for accepting me as a student. I would

like to express my gratitude to the Federal University of Pampa (Unipampa) for support-

ing the research project. Finally, I am also grateful to all volunteers for participating of

the empirical studies.

ABSTRACT

Self-adaptive Systems (SaSs) can autonomously decide how to adapt their behavior at

runtime in response to contextual changes. They operate under uncertainty conditions

and have intrinsic properties that have posed some challenges for software engineering.

In this work, we approach issues related to SaS conceptual modeling, which is challeng-

ing because it is needed to deal with requirements uncertainty, contextual changes, and

behavioral possibilities. Conceptual modeling is the act of creating models that describe

problems independently of the solutions for purposes of understanding and communica-

tion. Unified Modeling Language (UML) is a graphical General-Purpose Modeling Lan-

guage (GPML) that supports conceptual modeling through class diagrams. Once UML is

a GPML, it does not have primitives customized to model SaSs, therefore, the modeling

quality becomes dependent on the software engineers skills and abilities, which is not a

good software engineering practice. This complexity can be minimized by using Domain-

Specific Modeling Languages (DSMLs), which may be created by extending UML. Our

literature investigation revealed that UML has been extended to SaSs domain, however,

the SaSs higher-level abstractions have not been fully covered. We propose a UML-based

DSML for SaSs conceptual modeling called SaSML that introduces a new modeling el-

ement called Adaptive Behavior. Adaptive Behavior is a wrapper that encapsulates a

SaSs modeling schema, exposing only what needs to be defined at modeling time. SaSs

modeling schema applies a set of design patterns to capture the higher-level abstractions

related to SaSs domain. We carried out this work by establishing a conceptual and tech-

nological background, investigating the state-of-the-art of UML-based DSML for SaSs,

defining a SaSs modeling schema, specifying the Adaptive Behavior syntax, semantics,

and pragmatics, and evaluating SaSML through empirical techniques. The experiment

results provide statistical evidence that the Adaptive Behavior modeling element provides

an effective support for SaSs conceptual modeling, and it is able to synthesize the SaSs

modeling schema without losing expressiveness. Thus, we can conclude that SaSML con-

tributes to the SaSs conceptual modeling quality.

Keywords: Self-adaptive Systems. Conceptual Modeling. UML Extensions.

SaSML: Uma Linguagem de Modelagem de Domínio Específico Baseada em UML

para Modelagem Conceitual de Sistemas Autadaptativos

RESUMO

Sistemas Autoadaptativos (SAs) podem decidir autonomamente como adaptar seu com-

portamento em tempo de execução em resposta às mudanças contextuais. Eles operam

em condições de incerteza e possuem propriedades intrínsecas que impõem alguns de-

safios para a engenharia de software. Neste trabalho, abordamos questões relacionadas

à modelagem conceitual de SAs, a qual é desafiadora porque é preciso lidar com incer-

teza de requisitos, mudanças contextuais e possibilidades comportamentais. Modelagem

conceitual é o ato de criar modelos que descrevem problemas independentemente da so-

lução para fins de entendimento e comunicação. Unified Modeling Language (UML) é

uma Linguagem de Modelagem de Propósito Geral (LMPG) gráfica que suporta a mode-

lagem conceitual através dos diagramas de classe. Uma vez que a UML é uma LMPG,

ela não tem primitivas customizadas para modelar SAs, logo, a qualidade do modelo se

torna dependente das competências e habilidades dos engenheiros de software, o que não

é uma boa prática de engenharia de software. Essa complexidade pode ser minimizada

com Linguagens de Modelagem de Domínio Específico (LMDEs), as quais podem ser

criadas estendendo a UML. Nossa investigação da literatura revelou que a UML tem sido

estendida para SAs, no entanto, as abstrações de alto nível relacionadas aos SAs não tem

sido plenamente cobertas. Nós propomos neste trabalho uma LMDE baseada em UML

chamada SaSML que introduz um novo elemento demodelagem chamadoAdaptive Baha-

vior. O Adaptive Behavior é um empacotador que encapsula um esquema de modelagem,

expondo somente o que precisa ser definido em tempo de modelagem. O esquema de mo-

delagem aplica um conjunto de padrões de projeto para captura as abstrações de alto nível

relacionadas ao domínio de SAs. Este trabalho foi realizado estabelecendo a fundamenta-

ção teórica e tecnológica, investigando o estado da arte de LMDE baseadas em UML para

SAs, definindo o esquema de modelagem para SAs, especificando a sintaxe, semântica

e pragmática do Adaptive Behavior e avaliando a SaSML através de técnicas empíricas.

Os resultados evidenciaram que o Adaptive Behavior suporta a modelagem conceitual de

SAs e sintetiza o esquema de modelagem de SAs sem perder expressividade. Portanto,

concluímos que a SaSML contribui para a qualidade de modelos conceituais de SAs.

Palavras-chave: Sistemas Autoadaptativos, Modelagem Conceitual, Extensões UML.

LIST OF ABBREVIATIONS AND ACRONYMS

AAL Ambient Assisted Living

CASE Computer-Aided Software Engineering

DSML Domain-Specific Modeling Language

EJB Enterprise JavaBeans

ER Entity-Relationship

ERP Enterprise Resource Planning

FBTL Fuzzy Branching Temporal Logic

GPML General-Purpose Modeling Language

GQM Goal/Question/Metric

LO Learning Objects

MAPE Monitor-Analyze-Plan-Execute

MDD Model-Driven Development

MOF Meta Object Facility

MVC Model-View-Controller

OMG Object Management Group

PBL Problem-Based Learning

RE Requirements Engineering

SaS Sef-adaptive System

SLR Systematic Literature Review

UML Unified Modeling Language

Unipampa Federal University of Pampa

UFRGS Federal University of Rio Grande do Sul

WBS Work Breakdown Structure

LIST OF FIGURES

Figure 1.1 Research work methodology..21

Figure 2.1 SaSs intrinsic properties. ...23
Figure 2.2 SaSs architecture basic layout. ..25
Figure 2.3 Conceptual model space characterization..27
Figure 2.4 UML diagrams hierarchy...28
Figure 2.5 Conceptual model example specified in UML. ...28
Figure 2.6 DSML in comparison to GPML. ...29
Figure 2.7 Singleton structure. ..31
Figure 2.8 Façade structure. ..32
Figure 2.9 Private Class Data structure...32
Figure 2.10 Observer structure..33
Figure 2.11 State structure. ...33

Figure 3.1 SaSs properties versus engineering models...42
Figure 3.2 Customized diagrams versus extension mechanisms.45

Figure 4.1 SaSs conceptual modeling schema based on design patterns........................48
Figure 4.2 Blood pressure monitoring requirement conceptual model...........................50
Figure 4.3 Thermal comfort manager requirement conceptual model............................51
Figure 4.4 SaSML packages overview..52
Figure 4.5 Adaptive Behavior metamodel. ...54
Figure 4.6 Adaptive Behavior notation...55
Figure 4.7 Adaptive Behavior identifiers examples..55
Figure 4.8 Adaptive Behavior contexts examples. ...56
Figure 4.9 Adaptive Behavior behaviors examples. ...56
Figure 4.10 Relation between Adaptive Behavior notation and semantics.57
Figure 4.11 Adaptive Behavior mapping into SaSs modeling schema.58
Figure 4.12 TutorApp conceptual model specified in SaSML..60
Figure 4.13 TutorApp Req-4 conceptual model specified in UML.60
Figure 4.14 TutorApp Req-5 conceptual model specified in UML.61
Figure 4.15 TutorApp Req-6 conceptual model specified in UML.61

Figure 5.1 Focus group subjects profile..64
Figure 5.2 Adaptive Behavior expressiveness evaluation result.....................................72
Figure 5.3 Adaptive Behavior effectiveness evaluation result..73

LIST OF TABLES

Table 2.1 RELAX vocabulary overview. ..26
Table 2.2 AAL system requirement written in RELAX. ..26
Table 2.3 Profile and metamodel customizing options comparison.30

Table 3.1 Snowballing execution history. ...38
Table 3.2 SLR selected studies..39
Table 3.3 SaS properties addressed in the studies...41
Table 3.4 Engineering models addressed in the studies. ...42
Table 3.5 UML diagrams customized in the studies. ..44
Table 3.6 Mechanisms used to extend UML in the studies...44

Table 4.1 Blood pressure monitoring requirement for health care..................................49
Table 4.2 Thermal comfort manager requirement for smart offices.50
Table 4.3 TutorApp requirements specification. ...59

Table 5.1 Subjects quantity according to blocking criteria. ..71

CONTENTS

1 INTRODUCTION ..19
1.1 Motivation..19
1.2 Objectives...20
1.3 Hypothesis..20
1.4 Methodology ..21
1.5 Contributions ..22
1.6 Organization..22
2 CONCEPTUAL AND TECHNOLOGICAL BACKGROUND23
2.1 Self-adaptive Systems ...23
2.1.1 SaSs Requirements Specification Language..24
2.2 Conceptual Modeling..25
2.2.1 UML as Conceptual Modeling Language..27
2.3 Domain-Specific Modeling Languages..28
2.3.1 UML-Based DSML ...29
2.4 Design Patterns..31
2.4.1 Singleton Design Pattern..31
2.4.2 Façade Design Pattern..32
2.4.3 Private Class Data Design Pattern ...32
2.4.4 Observer Design Pattern ..33
2.4.5 State Design Pattern...33
2.5 Chapter Lessons ..34
3 UML-BASED DSML FOR SAS LITERATURE REVIEW35
3.1 Related Work...35
3.2 Review Protocol...36
3.2.1 Search Process ...36
3.2.2 Selection Process ...37
3.2.3 Data Extraction Strategy ..37
3.3 Review Results...38
3.3.1 What modeling issues have motivated UML customization?................................40
3.3.2 How UML has been customized to support SaSs modeling?43
3.4 Threats to Validity ..45
3.5 Chapter Lessons ..45
4 UML-BASED DSML FOR SAS CONCEPTUAL MODELING47
4.1 SaSs Conceptual Modeling Schema ..47
4.2 UML Extension for SaSs Conceptual Modeling ..50
4.2.1 Adaptive Behavior Syntax ...52
4.2.2 Adaptive Behavior Semantics..56
4.2.3 Adaptive Behavior Pragmatics ..57
4.3 Real Scenario Application..58
4.4 Chapter Lessons ..61
5 SASML EMPIRICAL EVALUATION ...63
5.1 Focus Group Sessions ...63
5.1.1 Focus Group Execution..64
5.1.1.1 First Session Execution...64
5.1.1.2 Second Session Execution ..65
5.1.1.3 Third Session Execution ...66
5.1.2 Threats to Validity..67
5.1.2.1 Conclusion Validity...67

5.1.2.2 Internal Validity ..67
5.1.2.3 Construct Validity ...68
5.1.2.4 External Validity ...68
5.2 Experiment with Subjects ..68
5.2.1 Experiment Planning..69
5.2.2 Experiment Execution..70
5.2.3 Results and Analysis ..71
5.2.3.1 Expressiveness Analysis ...71
5.2.3.2 Effectiveness Analysis ..73
5.2.4 Threats to Validity..74
5.2.4.1 Conclusion Validity...74
5.2.4.2 Internal Validity ..75
5.2.4.3 Construct Validity ...76
5.2.4.4 External Validity ...76
5.3 Chapter Lessons ..76
6 CONCLUSIONS ...79
6.1 Future Work ..80
REFERENCES...83
APPENDIX A— ACADEMIC WORKS ..91
APPENDIX B — FOCUS GROUP INSTRUMENTS..95
APPENDIX C— EXPERIMENTWITH SUBJECTS INSTRUMENTS................99
APPENDIX D— EXPERIMENTWITH SUBJECTS GUIDELINES103
APPENDIX E — EXPERIMENTWITH SUBJECTS RESULTS DATA..............105
APPENDIX F — ADAPTIVE BEHAVIOR MODELING PROCESS109

19

1 INTRODUCTION

Self-adaptive Systems (SaSs) can autonomously decide how to adapt their behav-

ior at runtime in response to contextual changes (ANDERSSON et al., 2009; BRUN et al.,

2009; CHENG et al., 2009). SaSs operate under uncertainty conditions (KRUPITZER et

al., 2015) and have intrinsic properties (SALEHIE; TAHVILDARI, 2009), such as self-

awareness, context-awareness, autonomic properties, and self-adaptiveness. These char-

acteristics have posed some challenges for SaSs developing and maintaining. In the last

years, software engineering research agendas have been formulated to address these chal-

lenges (MACÍAS-ESCRIVÁ et al., 2013). We have concerned with issues related to SaSs

conceptual modeling (SILVA et al., 2018a; SILVA et al., 2018b; SILVA et al., 2018c).

SaSs conceptual modeling is challenging because it is needed to deal with require-

ments uncertainty, contextual changes, and behavioral possibilities. Conceptual mod-

eling is the act of creating models that describe problems independently of the solu-

tions for purposes of understanding and communication (BATINI; CERI; NAVATHE,

1992; MYLOPOULOS, 1992; CHEN; THALHEIM; WONG, 1999). Conceptual mod-

els are useful for requirements analysis because they aid in understanding the situation

in which a problem occurs (BOURQUE; FAIRLEY, 2014). Unified Modeling Language

(UML) is a graphical General-Purpose Modeling Language (GPML) used by industry and

academy (BOOCH; RUMBAUGH; JACOBSON, 2005), which supports conceptual mod-

eling through class diagrams (GOGOLLA, 2011).

1.1 Motivation

Models are represented by languages and they are restricted by the expressiveness

power of these languages (THALHEIM, 2011). The model quality is directly related to

its capability in providing to all stakeholders the same understanding of what it represents

(HULL; JACKSON; DICK, 2011). In other words, a low expressiveness language makes

harder to represent a domain in a clear and objective way, impacting in the resulting con-

ceptual model comprehensibility.

UML is used by the software industry as modeling language to specify conceptual

models (STÖRRLE, 2017). Once it is a GPML, it does not have primitives customized to

express the abstraction related to SaSs domain. Therefore, SaSs conceptual model quality

heavily depends on the software engineers skills and abilities. This might result in model

20

misinterpretations, unnecessary complexity, bad concerns separation, and cohesion and

coupling problems. When it comes to SaSs, the exposure to quality risks increases because

of intrinsic characteristics in this class of system.

In a software engineering1 perspective, it would be useful to have a modeling lan-

guage able to provide customized support for SaSs conceptualmodeling. Domain-Specific

Modeling Languages (DSMLs) provides primitives to express higher-level abstractions

and constraints of a targeted domain (FRANK, 2011). A way for creating a DSML is ex-

tending UML by metamodel modifying or by profile creating, customizing it in order to

meet the modeling needs (STAHL et al., 2006).

In face of foregoing, we propose the following main question: How the UML

could be customized for SaSs domain in order to contribute to the SaSs conceptual

modeling quality? In this work, the model quality refers to the capability to express SaS

higher-level abstractions and constraints in a comprehensible way for all stakeholders.

1.2 Objectives

Our main goal is developing a UML-based DSML for SaSs conceptual modeling.

Hence, we propose SaSML, a UML extension that introduces a new modeling element

called Adaptive Behavior. Adaptive Behavior is a wrapper that encapsulates a SaSs mod-

eling schema, exposing only what needs to be defined at modeling time. SaSs modeling

schema applies a set of design patterns to capture the higher-level abstractions related to

SaSs domain. Our main goal is decomposed in the following specific goals:

• establishing the related conceptual and technological background;

• investigating the state-of-the-art of UML-based DSMLs for SaSs modeling;

• defining a generic schema that supports SaSs conceptual modeling;

• extending UML to provide proper support for SaSs conceptual modeling;

• evaluating the proposed SaSs modeling schema and UML extension.

1.3 Hypothesis

We advocate that SaSML contributes to the modeling quality by capturing the

higher-level abstractions related to SaSs domain. This hypothesis is supported by the
1Software engineering is “the application of a systematic, disciplined, quantifiable approach to the de-

velopment, operation, and maintenance of software” (BOURQUE; FAIRLEY, 2014, p. xxxi).

21

following arguments:

• the model quality is related to its communication capability (HULL; JACKSON;

DICK, 2011);

• models are restricted by the languages expressiveness power (THALHEIM, 2011);

• DSMLs provide higher-level abstractions formapping a targeted domain (FRANK,

2011).

1.4 Methodology

The Work Breakdown Structure (WBS)2 presented in Figure 1.1 describes our

work methodology. To achieve our objectives, we organized the research work in three

distinct steps: investigation step, development step, and evaluation step. In the investi-

gation step, we established the research conceptual and technological background, and

we investigated the state-of-the-art by running a Systematic Literature Review (SLR). In

the development step, we defined a modeling schema to capture the SaSs higher-level

abstractions, and we extended UML introducing a new modeling element to synthesize

schema in SaSs conceptual models. In the evaluation step, we evaluated the SaSs mod-

eling schema by running focus group sessions, and we evaluated the proposed UML ex-

tension by performing an experiment with subjects.

Figure 1.1: Research work methodology.
1. UML-Based
DSML for SaSs

1.1 Investigation Step

1.1.1 Conceptual and Tech-
nological Background

1.1.2 Systematic Literature
Review

1.2 Development Step

1.2.1 SaSs Modeling
Schema

1.2.2 UML Extension for
SaS

1.3 Evaluation Step

1.3.1 Focus Group Ses-
sions

1.3.2 Experiment with Sub-
jects

Source: The authors.

2AWBS is a work scope hierarchical decomposition to be performed by the project team to achieve the
project goals (PMI, 2013).

22

1.5 Contributions

The evaluation process results provide evidence that SaSML supports SaSs con-

ceptual modeling. The Adaptive Behavior modeling element is able to synthesize the

SaSs modeling schema without losing expressiveness. The design patterns usage in the

SaSs modeling schema development contributed to a more flexible and reusable model.

Moreover, we highlight the following complementary contributions:

• a metamodel and a process to support SaSs conceptual modeling published in 33rd

ACM/SIGAPP Symposium On Applied Computing (SILVA et al., 2018b);

• a literature investigation about UML-based DSMLs for SaSs modeling published

in 13th International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SILVA et al., 2018a);

• a UML profile for SaSs conceptual modeling published in XXXII Brazilian Sym-

posium on Software Engineering (SILVA et al., 2018c).

Additionally, we present in Appendix A the list of all academic works done during

the doctoral course.

1.6 Organization

The remainder of this thesis is organized as follows. We present in Chapter 2 the

conceptual and technological overview of SaSs, conceptual modeling, and UML-based

DSMLs, which provide the background required to understand the work motivation, ob-

jective, and methodology. We report in Chapter 3 the results of a SLR that aimed to

investigate how UML has been customized to create DSMLs that provide proper support

for SaSs modeling. We propose in Chapter 4 SaSML, a UML-based DSML that extends

UML introducing a new modeling element called Adaptive Behavior, which is able to

synthesize a SaSs modeling schema without lose expressiveness. We report in Chapter 5

the empirical techniques used to evaluate the SaSs modeling schema correctness and com-

pleteness, and the Adaptive Behavior modeling element expressiveness and effectiveness.

Finally, we summarize in Chapter 6 the work results and conclusions, moreover, we dis-

cuss some work limitations and propose future work.

23

2 CONCEPTUAL AND TECHNOLOGICAL BACKGROUND

In this chapter, we present the conceptual and technological background required

to understand the work motivation, objective, and methodology. We introduce in Sec-

tion 2.1 the SaSs definition and characteristics, and a language for SaSs requirements

specification. We present in Section 2.2 a conceptual modeling general review. We de-

scribe in Section 2.3 the DSMLs and how creating them from UML customization. We

explain in Section 2.4 some design patterns relevant to this work. Finally, we summarize

in Section 2.5 the chapter lessons.

2.1 Self-adaptive Systems

The specialized literature presents some definitions for SaSs (MACÍAS-ESCRIVÁ

et al., 2013). However, the term “self-adaptive” is usually employed to denote that a sys-

tem can autonomously decide how to adapt its behavior at runtime (OREIZY et al., 1999;

ANDERSSON et al., 2009). This type of system is able to perceive contextual changes

and (re)organize its features or services in response to these changes (BRUN et al., 2009;

CHENG et al., 2009). SaSs have been proposed for several domains, such as, automo-

tive, embedded, industrial, mobile, telecommunication, etc. The Software Engineering

for SaSs community keeps a repository1 of examples, problems, and solutions related to

SaSs.

As can be seen in Figure 2.1, SaSs have a set of intrinsic characteristics known as

Self-* properties, which are organized in a three levels structure (SALEHIE; TAHVIL-

DARI, 2009).

Figure 2.1: SaSs intrinsic properties.

Self-awareness Context-awareness

Self-configuring Self-optimizing Self-healing Self-protecting

Self-adaptiveness

Source: Adapted from Salehie and Tahvildari (2009).

The bottom row is the primitive level, which contains the self-awareness and con-

text-awareness properties (SALEHIE; TAHVILDARI, 2009). Both properties are aware-
1This exemplars repository is available at: <https://www.hpi.uni-potsdam.de/giese/public/selfadapt/

exemplars/>.

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

24

ness classes, where self-awareness refers to internal world and context-awareness refers to

external world (VASSEV; HINCHEY, 2015). A self-aware system must have information

about its internal state and it must also know its environment to determine how it is ex-

ternally perceived (LEWIS et al., 2011). A context-aware system uses context to provide

users with relevant information or services. Context is any information that can be used

to define entity situation. Entity is anything considered relevant to a system, including the

users and the system itself (DEY, 2001).

The middle row is themajor level, which contains the four autonomic properties:

self-configuring, self-healing, self-optimizing, and self-protecting (SALEHIE; TAHVIL-

DARI, 2009). Self-configuring is the capability to automatically configure the system

based on policies. Self-healing is the capability to automatically detect, diagnose, and

repair problems. Self-optimizing is the capability to continuously improve their perfor-

mance and efficiency. Self-protecting is the capability to automatically defends against

attacks and failures (KEPHART; CHESS, 2003).

The top row is the general level, which contains the self-adaptiveness global prop-

erty. Self-adaptiveness brings together all SaSs intrinsic characteristics (primitive and ma-

jor level properties) (SALEHIE; TAHVILDARI, 2009). This property is directly related

to SaSs definition itself.

A SaS makes decisions at runtime to control the dynamic behavior and it reasons

about its state and environment (BRUN et al., 2009). Feedback control is an essential

concept for self-adaptation because it guarantees that the observable output tracks the

desired behavior (MACÍAS-ESCRIVÁ et al., 2013). We illustrate in Figure 2.2 a SaSs

architecture basic layout, where an adaptation mechanism based on Monitor-Analyze-

Plan-Execute (MAPE) architecture can be seen. The mechanism monitors the contextual

information, analyzes data for changes, plans the adaptation, and executes the adaptation

(KRUPITZER et al., 2015).

2.1.1 SaSs Requirements Specification Language

Requirements Engineering (RE) for SaSs have attracted the researchers interest

because traditional approaches have not properly met the needs of this type of system

(BENCOMO et al., 2010; SAWYER et al., 2010). Regarding SaSs requirements speci-

fication languages, there is in literature a set of works with relevant contributions, such

as, Baresi and Pasquale (2010), Luckey et al. (2011), Luckey and Engels (2013), Souza et

25

Figure 2.2: SaSs architecture basic layout.

C
on

te
xt
ua
lI
nf
or
m
at
io
n

U
se
rs

Self-adaptive Systems
Feedback Loop

Monitoring Analyzing

Executing Planning

Managed Resources

Sensors Effectors

Source: Adapted from Krupitzer et al. (2015).

al. (2011), Souza et al. (2013), and Whittle et al. (2010). Among alternatives, we chose

the RELAX language to specify the requirements in this work. Despite some limitation,

RELAX meets our needs in terms of SaSs requirements specification.

RELAX is a language defined byWhittle et al. (2010) to express the uncertainty in

SaSs requirements. Requirements written in RELAX take the form of structured natural

language sentences enriched with operators and uncertainty factors. The RELAX vocab-

ulary is composed of modal, temporal, and ordinal operators, and a set of uncertainty

factors. The language has the syntax defined by a grammar and the semantics defined in

terms of Fuzzy Branching Temporal Logic (FBTL).

We present in Table 2.1 an overview of the RELAX vocabulary according toWhit-

tle et al. (2010). To illustrate RELAX usage, we present in Table 2.2 an Ambient Assisted

Living (AAL) system requirement according to Whittle et al. (2010) definitions.

2.2 Conceptual Modeling

Conceptual modeling is the act of creating models that describe problem struc-

tures independently of the solution strategy (BATINI; CERI; NAVATHE, 1992; CHEN;

THALHEIM; WONG, 1999). It forms a common basis for developers and stakeholders,

integrating the domain expertise into software development (ROUSSOPOULOS; KARA-

GIANNIS, 2009). Conceptual models formally describe world aspects for purposes of

understanding and communication (MYLOPOULOS, 1992). In other words, conceptual

models map domain concepts and relations, reflecting real-world relationships and depen-

dencies (BOURQUE; FAIRLEY, 2014).

26

Table 2.1: RELAX vocabulary overview.
Modal Operators
SHALL A requirement must hold.
MAY..OR A requirement specifies one or more alternatives.
Temporal Operators
EVENTUALLY A requirement must hold eventually.
UNTIL A requirement must hold until a future position.
BEFORE | AFTER A requirement must hold before or after a particular event.
IN A requirement must hold during a particular time interval.
AS EARLY | LATE AS
POSSIBLE

A requirement specifies something that should hold as soon as
possible or should be delayed as long as possible.

AS CLOSE AS
POSSIBLE TO [f]

A requirement specifies something that happens repeatedly but
the frequency may be relaxed.

Ordinal Operators
AS CLOSE AS
POSSIBLE TO [q]

A requirement specifies a countable quantity but the exact count
may be relaxed.

AS MANY | FEW AS
POSSIBLE

A requirement specifies a countable quantity but the exact count
may be relaxed.

Uncertainty Factors
ENV Defines a set of properties that specify the system environment.
MON Defines a set of properties that can be monitored by the system.
REL Defines the relationship between the ENV and MON properties.
DEP Identifies the dependencies between the requirements.

Source: Whittle et al. (2010).

Table 2.2: AAL system requirement written in RELAX.
Req-1 The fridge SHALL detect and communicate information with AS MANY food

packages AS POSSIBLE.
ENV: Food locations, Food item information, and Food state.
MON: RFID readers, Cameras, Weight sensors.
REL: RFID tags provide Food locations, Food information, and Food state;

Cameras provide Food locations; and Weight sensors provide Food
information.

DEP: None.

Source: Whittle et al. (2010).

Conceptual models are abstract representations of a situation under investigation,

which have the following commonalities:

• they preserve the purpose, which is invariant and governs the modeling process;

• they are a mapping of an origin, reflecting the properties observed and envisioned;

• they are represented by languages and restricted by the languages expressiveness;

• they provide a worth based on their utility, capability, or quality properties (THAL-

HEIM, 2011).

The conceptual model space may be characterized through four different aspects:

its origins, concepts, representations, and comprehensions by related stakeholders. The

27

model elements should not be considered in isolation, but rather as a suite of abstractions

for theses aspects, as illustrated in Figure 2.3. Origins are defined through properties,

purpose, goals, and context. Concepts are described in terms of their definitions, applica-

bility, construction, and foundation. Representations are established through languages,

ontologies, pragmatics, reference models, and general culture. Comprehensions are ob-

tained from user profiles, intentions and portfolio, work and educational level, and cultural

units (THALHEIM, 2011).

Figure 2.3: Conceptual model space characterization.

Concept Space

Concept Definitions,
Concepts Applicability

Concept Construction,
Concept Foundation

Origin Space

Properties
Necessary

Purpose, Goals,
Culture, Context

Representation Space

Language,
Ontology

Pragmatics, Reference
Models, General culture

Comprehension Space

User Profiles and Intentions,
User Portfolio

Work and Educational Level,
Cultural Units

Source: Thalheim (2011).

2.2.1 UML as Conceptual Modeling Language

UML is a graphical GPMLbroadly used by industry and academy (BOOCH;RUM-

BAUGH; JACOBSON, 2005; STÖRRLE, 2017). As depicted in Figure 2.4, UML pro-

poses a set of diagrams organized in two groups. Structural diagrams allow to represent

the static system structure. Behavioral diagrams allow to represent the dynamic object

behavior in a system (OMG, 2017).

UML supports conceptual modeling through class diagrams (GOGOLLA, 2011),

which capture the system structure as classes, constraints, and relationships (OMG, 2017).

Classes are used to specify the domain entities. Attributes are used to specify the entities

properties. Associations, Aggregations, and Generalizations are used to specify relation-

ships among entities. Multiplicities are used to specify the relationships cardinality. We

present in Figure 2.5 a conceptual model example to illustrate the UML usage.

28

Figure 2.4: UML diagrams hierarchy.
UML

Structural Diagrams

Class

Component

Composite Structure

Deployment

Object

Package

Profile

Behavioral Diagrams

Activity

Communication

Interaction Overview

Sequence

State Machine

Timing

Use Cases

Source: Adapted from OMG (2017).

Figure 2.5: Conceptual model example specified in UML.

employees
1..*

company
1

company
1

products
1..*

products1..*

components1..*

Person

name:String

NaturalPerson

identification:Integer

Employee

LegalPerson

registration:Integer

Company

Produt

name:String

Component

description:String

works

makes

has

Source: The authors.

Employee class is a subclass of NaturalPerson class, which in turn is a subclass of

Person class. Company class is a subclass of LegalPerson class, which also is a subclass

of Person class. Employee class has a many-to-many association with Company class.

Company class has a one-to-many association with Product class. Product class has a

one-to-many aggregation association with Component class.

2.3 Domain-Specific Modeling Languages

DSMLs provide primitives to express higher-level abstractions and constraints of

a targeted domain. They promote modeling productivity because software engineers may

reuse concepts instead of specify them. Moreover, they contribute to quality because

29

concepts include implicit integrity constraints, which prevent construction of nonsensi-

cal models (FRANK, 2011). DSMLs2 have been used for expressing concepts of sev-

eral domains, such as, automotive, embedded, enterprise applications, industrial, mobile,

telecommunication, user interface design, testing, etc.

We illustrate in Figure 2.6 some benefits of DSMLs compared to GPMLs. GPMLs

provide software engineers with basic primitives, such as, class, attribute, etc. DSMLs,

in turn, provide them with customized primitives that capture domain expertise. Fur-

thermore, DSMLs usually have a specific graphical notation that maximize the models

comprehensibility (FRANK, 2011).

Figure 2.6: DSML in comparison to GPML.

0..* 0..* 1 0..*

0..* 0..*

DSML GPML

M1

M2

Server

name:String
OS:String
version:String

ERP

name:String
version:String

runs

DBMS-SRV

SAP-ERP

Class

name:String
isAbstract:Boolean

Attribute

name:String
has

DBMS-SRV

OS:String
version:String

SAP-ERP

OS:String
version:String

runs

Source: Adapted from Frank (2011). Icons made by Freepik from www.flaticon.com is licensed
by CC 3.0 BY.

2.3.1 UML-Based DSML

A way for creating a DSML is by extending the UML metamodel, modifying or

introducing the modeling elements in order to meet the modeling needs (STAHL et al.,

2006). There are two extension approaches that allow creating UML-based DSMLs:

• metamodel-based extends the UML metamodel by applying a language of the

higher-metalevel, for example, the Meta Object Facility (MOF);

• profile-based extends the UML metamodel by applying mechanisms defined by

UML itself, such as, stereotypes, tagged values, and constraints (STAHL et al.,

2006).
2DSMLs real examples are available at: <http://www.metacase.com/cases/dsm_examples.html>.

http://www.metacase.com/cases/dsm_examples.html

30

Metamodel-based extension approach allows to modify the UML syntax and se-

mantics (OMG, 2017), for example, it is possible to define a new syntax to represent

views in a Model-View-Controller (MVC) architecture or modify the attributes semantics

to represent primary and foreign keys in Entity–Relationship (ER) model.

Profile-based extension approach allows to extend UML with concepts coming

from a particular platform or domain (MALAVOLTA; MUCCINI; SEBASTIANI, 2015),

such as, embedded systems domain or Enterprise JavaBeans (EJB) platform, but it is not

allowed modifying existing metamodels (OMG, 2017).

We present in Table 2.3 a profile and metamodel customizing options comparison

according to Bruck and Hussey (2008).

Table 2.3: Profile and metamodel customizing options comparison.
Customizing Option Profile-based Metamodel-based
Keyword support Yes Yes
Icon support Yes Yes
Restrict or constrain existing types Yes Yes
Extend existing types Yes Yes
Add new types that do not extend an existing type No Yes
Remove existing type No Yes
Add new properties Yes Yes
Remove existing properties No No
Restrict/constrain existing properties Yes Yes
Add new operations No Yes
Remove existing operations No Yes
Restrict/constrain existing operations Yes Yes
Reuse UML concepts Yes Yes
Restrict multiplicity Yes Yes
Remove existing constraints No Yes
Add new constraints Yes Yes
First class extensibility No Yes
Validation No Yes
Programmatic usage Awkward Easy
Efficiency of running code Not optimal Very efficient
Cost of development Medium Highest
Ability to evolve Easy Difficult
Deploy so end users can work with Easy Easy
Dependency on UML implementation No No

Source: Adapted from Bruck and Hussey (2008).

31

2.4 Design Patterns

Design patterns are tested and proven reusable solutions to common problems in

software design (GAMMA et al., 1994; FREEMAN et al., 2004; SHALLOWAY; TROTT,

2004). A design pattern is not a finished design, but it is a schema for how to solve a

problem, which can be applied in different situations (SHVETS, 2018). A schema can

be defined as an understandable representation of an idea in the form of a model (CAM-

BRIDGE, 2018; OXFORD, 2018). Each design pattern can be classified according to its

purpose:

• creational design patterns, which deal with object creation process;

• structural design patterns, which deal with class and object relationships;

• behavioral design patterns, which deal with objects communication (GAMMA

et al., 1994).

There is a wide variety of design patterns for the most varied problems. The choice

of a design patterns requires a analysis process that allow understanding the problem to

be solved. In addition, it is also necessary understand the design pattern purpose and how

it can solved the problem under analysis (GAMMA et al., 1994).

2.4.1 Singleton Design Pattern

Singleton is a creational design pattern, which ensures that a class has only one

instance, providing a global access point to it. We illustrate in Figure 2.7 the Singleton

structure. A singleton class has a private constructor to avoid external instantiation. The

single instance is created on the first access and stored in a private static attribute. The

instance is accessed through a public static method (SHVETS, 2018).

Figure 2.7: Singleton structure.

1

-instance
1

Singleton

-Singleton():Sigleton
+getInstance():Singleton

provides

Source: Adapted from Shvets (2018).

32

2.4.2 Façade Design Pattern

Façade is a structural design pattern, which provides a higher-level interface to a

complex subsystem, making it easier to use. We illustrate in Figure 2.8 the Façade struc-

ture. A façade class is a wrapper that encapsulates the subsystem, capturing the compo-

nent complexity and collaborations and delegating to the appropriate methods (SHVETS,

2018).

Figure 2.8: Façade structure.
subsystem

1

-classOne
1

1
-classTwo

1
1 -classThree

1

Façade

+doIt():Void
ClassTwo

ClassOne

ClassThree
wraps

wraps

wraps

Source: Adapted from Shvets (2018).

2.4.3 Private Class Data Design Pattern

Private Class Data is a structural design pattern, which controls the access to class

attributes by separating data from methods that use it. We illustrate in Figure 2.9 the

Private Class Data structure. The data class contains all attributes that need hiding. The

main class instantiates data class, initializing data class through its constructor (SHVETS,

2018).

Figure 2.9: Private Class Data structure.

1

-data1

MainClass

+MainClass(attributeOne:Object, attributeTwo:Object):MainClass

DataClass

-attributeOne:Object
-attributeTwo:Object

+DataClass(attributeOne:Object, attributeTwo:Object):DataClass
+getAttributeOne():Object
+getAttributeTwo():Object

has

Source: Shvets (2018).

33

2.4.4 Observer Design Pattern

Observer is a behavioral design pattern, which defines a relationship between ob-

jects in such a way when one object changes state, all related objects are notified automat-

ically. We illustrate in Figure 2.10 the Observer structure. The subject class represents the

core abstraction, whereas the observer class represents the variable abstraction. A subject

notifies the known observers every time that its state changes. A observer can access the

subject when needed (SHVETS, 2018).

Figure 2.10: Observer structure.

-subject
1

-observers
*

Subject

+attach(observer:Observer):Void
+getState():Object
+setState(state:Object):Void

Observer

+update():Voidnotifies

Source: Shvets (2018).

2.4.5 State Design Pattern

State is a behavioral design pattern, which uses an object-oriented state machine

to alter the object behavior when its internal state changes. We illustrate in Figure 2.11

the State structure. The machine class is a wrapper that encapsulates a state machine. It

knows the possible states and it implements the transitions rules. The state class defines

the default behavior and each state subclass overrides the methods needed to provide the

specific behavior. All requests to the machine class are delegated to the current state object

(SHVETS, 2018).

Figure 2.11: State structure.

-machine
1

-states
1..*

Machine

-current:State

+goNext():Void
+setState(state:State):Void

State

+goNext(machine:Machine):Void

≪singleton≫
StateOne

≪singleton≫
StateTwo

manages

Source: Shvets (2018).

34

2.5 Chapter Lessons

In this chapter, we present the conceptual and technological overview of SaSs,

conceptual modeling, and UML-based DSMLs, which provide the background required

to understand the work motivation, objective, and methodology. The chapter main points

are:

• SaSs can autonomously decide how to adapt their behavior at runtime in response

to contextual changes;

• RELAX is a language to express the uncertainty in SaSs requirements through a

set of operators and uncertainty factors;

• conceptual models map domain concepts and relations, reflecting real-world rela-

tionships and dependencies;

• DSMLs provide primitives to express higher-level abstractions and constraints of

a targeted domain;

• one of the ways to create DSMLs is by extending the UMLmetamodel, modifying

or introducing the modeling elements;

• design patterns are tested and proven reusable solutions to common problems in

software design.

In next chapter, we report the results of a SLR that aimed to investigate how UML

has been customized to create DSMLs for SaSs modeling.

35

3 UML-BASED DSML FOR SAS LITERATURE REVIEW

In this chapter, we report the results of a SLR that aimed to investigate how UML

has been customized to create DSMLs that provide proper support for SaSs modeling. We

present in Section 3.1 some studies that report related SLRs. We describe in Section 3.2

the protocol that guided our work. We report in Section 3.3 the results obtained with the

protocol execution. We discuss in Section 3.4 threats to the SLR validity. Finally, we

summarize in Section 3.5 the chapter lessons.

3.1 Related Work

We searched in scientific literature secondary studies1 that investigated UML-

based DSMLs for SaSs. As a result, we found 10 secondary studies published between

2008 and 2016 that somehow approached the theme.

Van Velsen et al. (2008) carried out a literature review to discover how the user-

centered evaluations of personalized systems have been conducted and how they can be

improved. Weyns et al. (2012) performed a study to understand and characterize the use of

formal methods in SaSs. Patikirikorala et al. (2012) investigated the design of SaSs using

control engineering approaches. Becker, Luckey and Becker (2012) provided a literature

review of the state-of-the-art in performance engineering for SaSs. Mohabbati et al. (2013)

aimed to identify and characterize the existing research on service-orientation and software

product line engineering.

Weyns and Ahmad (2013) provided a comprehensive study that identifies claims

and evidence for architecture-based self-adaptation. Yang et al. (2014) carried out a liter-

ature review of requirements modeling and analysis for SaSs. Yuan, Esfahani and Malek

(2014) performed a systematic survey of the state-of-the-art of self-protecting software

systems using a classifying taxonomy. Brings, Salmon and Saritas (2015) proposed a

search strategy for a systematic review on uncertainty. Siqueira et al. (2016) performed a

literature review to characterize the challenges for testing adaptive systems.

Analyzing these secondary studies, we noticed that most of them have relevant

contributions. However, we also perceived that they did not answer our main question.

1According to Jalali and Wohlin (2012), research literature may be divided into primary studies, which
are new studies on a specific topic, or secondary studies, which summarize the research current state on a
specific topic.

36

Hence, we carried out a new SLR to investigate how UML has been customized to create

DSMLs for SaSs modeling.

3.2 Review Protocol

We performed this SLR according to guidelines presented by Kitchenham and

Charters (2007). As a first step, we established the research questions that guided all

the review process. Firstly, we would like to understand the challenges related to SaS

modeling and how they have been addressed. Secondly, we would like to understand the

customization processes and what UML primitives have been extended. Thus, we defined

the following research questions:

• RQ-1: What modeling issues have motivated UML customization?

• RQ-2: How UML has been customized to support SaSs modeling?

3.2.1 Search Process

We applied in this SLR the snowballing technique2 to discover studies. Accord-

ing to the technique, we started by establishing an initial studies list, which was used as

starting point for snowballing. To achieve it, we retrieved all papers published in Inter-

national Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS).We chose SEAMS as the source because it is one of themain scientific events of

the Software Engineering for Self-Adaptive Systems Community. After retrieving studies

from SEAMS, we defined the initial studies list by applying the inclusion criteria.

Since the initial studies list has been defined, we performed the backward and the

forward steps according to the snowballing technique. For each entry in initial studies

list, we retrieved all papers that it cited (backward snowballing) and all papers that cite it

(forward snowballing). The retrieved studies were verified to eliminate redundancies and

ensure information completeness. We reapplied inclusion criteria in the retrieved papers

to select new studies for the list. These steps (backward and forward snowballing) were

iterated until no more new studies were found. Hence, in each iteration, we selected new

relevant studies from the retrieved studies.

2Snowballing refers to using study references and citations to identify additional studies (WOHLIN,
2014).

37

3.2.2 Selection Process

We selected the relevant studies by applying the inclusion and exclusion criteria in

the retrieved studies list.

The inclusion criteria acted as the first filter, accepting studies directly related

to the research objective. As stated previously, the inclusion criteria was applied in each

snowballing round by a peer review process. We accepted studies that received “Yes” in

all of the following questions:

• Is there in the abstract any mention to UML extensions?

• Is there in the abstract any mention to SaSs properties3?

The exclusion criteria acted as the second filter, excluding studies that did not

meet some general requirements. Differently from inclusion criteria, the exclusion criteria

were applied in the backward and the forward output, also by a peer review process. We

rejected studies that received “No” in at least one of the following criteria:

• Is the study a full primary study?

• Is the study written in English?

• Does the study have at least six pages?

• Is not the study a repeated publication?

We noted that, in some cases, a study has more than one version (conference and

journal, for example). In these cases, we considered the study as a repeated publication

and selected the more complete version.

3.2.3 Data Extraction Strategy

The data extractionwas performed by a peer review process, inwhich the reviewers

read the selected studies and collected the following data:

• addressed SaSs properties;

• approached engineering models;

• customized UML diagrams;

• applied extension mechanisms.

After extraction, we tabulated the data to summarize the basic information about

each study, ordering by publication year. The data were analyzed to answer the research

questions based on the following simple strategy:
3According to the set of intrinsic characteristics presented in Figure 2.1.

38

• to answer the RQ-1, we related SaSs properties with engineering models;

• to answer the RQ-2, we related UML diagrams with extension mechanisms.

3.3 Review Results

We ran the snowballing technique on January 8-10, 2018. We present in Table 3.1

the snowballing execution history. Iteration 0 refers to the initial studies list definition,

which is composed of all papers published in SEAMS between 2006 and 2017. Iterations

1 to 6 refer to the execution of backward and forward snowballing. As an output, we

retrieved 786 studies, of which 26 were accepted by applying the inclusion criteria.

Table 3.1: Snowballing execution history.
Iteration Retrieved Selected
Iteration 0 222 2
Iteration 1 59 4
Iteration 2 69 2
Iteration 3 31 6
Iteration 4 254 9
Iteration 5 100 3
Iteration 6 51 0
Total 786 26

Source: The authors.

After finishing the backward and the forward execution, we concluded the selec-

tion process by applying the exclusion criteria. As an output, we rejected 10 from 26

studies previously accepted, therefore, we accepted 16 primary studies4 for this SLR,

which are presented in Table 3.2. Since the relevant studies list has been defined, we

performed data extraction and we analyzed the results to answer the research questions.

Sheng and Benatallah (2005) propose a UML profile for the context-aware ser-

vices modeling. The profile extends the class diagram to model context, context-aware

objects, and context-aware mechanisms. Ayed, Delanote and Berbers (2007) present a

UML profile to specify adaptation in context-aware systems. The profile allows creating

analysis and design models based on Model-Driven Development (MDD) principles.

Simons and Wirtz (2007) propose a UML profile to specify context models in

mobile distributed systems. The profile allows modeling types of context items, the asso-

ciation among them, and the contextual situations related to the system. Fuentes, Gamez

and Sanchez (2008) present a UML profile to design pervasive applications. The profile
4All retrieved studies, with their respective status, are available at <https://goo.gl/xkVjTi>.

https://goo.gl/xkVjTi

39

Table 3.2: SLR selected studies.
Year Title Authors
2005 ContextUML: A UML-Based Modeling Language

for Model-Driven Development of Context-Aware
Web Services Development

SHENG; BENATALLAH

2007 MDD Approach for the Development of
Context-Aware Applications

AYED; DELANOTE;
BERBERS

2007 Modeling context in mobile distributed systems
with the UML

SIMONS; WIRTZ

2008 Aspect-Oriented Executable UML Models for
Context-Aware Pervasive Applications

FUENTES; GAMEZ;
SANCHEZ

2008 PCP: Privacy-aware Context Profile towards
Context- aware Application Development

KAPITSAKI; VENIERIS

2010 Making control loops explicit when architecting
self-adaptive systems

HEBIG; GIESE; BECKER

2011 Adapt Cases: Extending Use Cases for Adaptive
Systems

LUCKEY et al.

2012 Specifying security requirements of context aware
system using UML

ALMUTAIRI; BELLA;
ABU-SAMAHA

2012 Extended UML for the Development of
Context-Aware Applications

BENSELIM;
SERIDI-BOUCHELAGHEM

2012 Extending UML to model Web 2.0-based
context-aware applications

HSU

2013 High-quality specification of self-adaptive software
systems

LUCKEY; ENGELS

2013 Modelling context-aware RBAC models for mobile
business processes

WENZL; STREMBECK

2015 An Extension of UML Activity Diagram to Model
the Behaviour of Context-Aware Systems

AL-ALSHUHAI; SIEWE

2016 FAME: A UML-based framework for modeling
fuzzy self-adaptive software

HAN et al.

2017 Towards A UML Profile for Context-Awareness
Domain

BENSELIM;
SERIDI-BOUCHELAGHEM

2017 Heavyweight extension to the UML class diagram
metamodel for modeling context aware systems in
ubiquitous computing

BOUDJEMLINE et al.

Source: The authors.

supports the aspect-oriented modeling, which allows encapsulating crosscutting concerns,

such as context-awareness, into well-localized modules.

Kapitsaki and Venieris (2008) propose a UML profile to specify privacy issues in

context-aware systems. The profile enables modeling context items and specifying users

information access constraints. Hebig, Giese and Becker (2010) present a UML profile

to make explicit the control loops in SaSs architectures. The profile enables designing

control loops and their interactions at architectural level.

Luckey et al. (2011) propose a UML profile to formalize and to explicit the adap-

40

tivity in use case models. The profile, besides the use case diagram, also extends the class

and sequence diagrams. Almutairi, Bella and Abu-Samaha (2012) present a UML exten-

sion to model the context-aware systems security requirements. The extension customizes

the use case diagram tomake UMLmore applicable for the mobility and security functions

modeling.

Benselim and Seridi-Bouchelaghem (2012) present a UML profile to specify con-

textual elements of context-aware applications. The profile allows creating analysis and

design models, which separate the context elements from general aspects of the system.

Hsu (2012) proposes a UML profile to specify in a conceptual level the context-aware

application structural properties. The profile allows creating analysis and design models

that consider context-aware aspects in a Web 2.0 architecture.

Luckey and Engels (2013) propose a UML extension to specify the SaSs structural

and behavioral concerns. The extension customizes the activity and component diagrams

to allow separating the adaptation logic from software features. Wenzl and Strembeck

(2013) present a UML extension to model context constraints. The extension customizes

the activity diagram to address the context-awareness in the process modeling.

Al-alshuhai and Siewe (2015) propose a UML extension to represent context as-

pects in the system behavior. The extension customizes the activity diagram to enable

the context-aware process modeling. Han et al. (2016) present a UML profile to model

static and dynamic aspects in SaSs. The profile extends the use case, class, and sequence

diagrams to capture the fuzzy behavior in requirements, analysis, and design models.

Benselim and Seridi-Bouchelaghem (2017) present a UML profile to specify con-

textual elements in context-aware applications. The profile extends the use case, activ-

ity, and sequence diagrams to capture contextual information in ubiquitous environments.

Boudjemline et al. (2017) propose a UML extension to model context-aware systems in

ubiquitous computing. The extension customizes the class diagram to provide a universal

model capable of dealing with the context-awareness concerns.

3.3.1 What modeling issues have motivated UML customization?

SaSs have intrinsic properties organized in a three levels hierarchy, as presented in

Figure 2.1. The primitive level has self-awareness and context-awareness properties. The

major level has the four autonomic properties: self-configuring, self-healing, self-opti-

mizing, and self-protecting. The general level has self-adaptiveness property (SALEHIE;

41

TAHVILDARI, 2009). We present in Table 3.3 the SaSs properties addressed in each

selected study. We observe that 9 studies address context-awareness property, 1 study

address self-configuring property, 1 study address self-protecting property, and 6 studies

address self-adaptiveness property.

Table 3.3: SaS properties addressed in the studies.

Co
nt
ex
t-a
w
ar
en
es
s

Se
lf-
co
nf
ig
ur
in
g

Se
lf-
pr
ot
ec
tin
g

Se
lf-
ad
ap
tiv
en
es
s

Sheng and Benatallah (2005) 3

Ayed, Delanote and Berbers (2007) 3

Simons and Wirtz (2007) 3

Fuentes, Gamez and Sanchez (2008) 3

Kapitsaki and Venieris (2008) 3

Hebig, Giese and Becker (2010) 3

Luckey et al. (2011) 3

Almutairi, Bella and Abu-Samaha (2012) 3

Benselim and Seridi-Bouchelaghem (2012) 3

Hsu (2012) 3

Luckey and Engels (2013) 3

Wenzl and Strembeck (2013) 3

Al-alshuhai and Siewe (2015) 3

Han et al. (2016) 3

Benselim and Seridi-Bouchelaghem (2017) 3

Boudjemline et al. (2017) 3

Source: The authors.

Models are abstractions of reality (BOOCH; RUMBAUGH; JACOBSON, 2005).

They help to cope with complexity, focusing on a determined perspective and hiding non

relevant details. During development, several models are created to express aspects of the

software in different perspectives (SOMMERVILLE, 2010). We highlight the following

models to develop a software: requirements, analysis, design, coding, testing, and deploy-

ment. We present in Table 3.4 the models engineering addressed in each selected study.

We note that 4 studies address requirements models, 12 studies address analysis models,

13 studies address design models, and 2 studies address coding models.

We present in Figure 3.1 a cross analysis that relates the SaSs properties with en-

gineering models. We emphasize that each study can count more than once. From SaSs

properties angle, we notice that the most addressed properties are context-awareness and

self-adaptiveness. From engineering models perspective, we observe that the most ad-

dressed engineering models are analysis and design models. The cross analysis shows that

42

Table 3.4: Engineering models addressed in the studies.

Re
qu
ire
m
en
ts

A
na
ly
sis

D
es
ig
n

Co
di
ng

Sheng and Benatallah (2005) 3 3

Ayed, Delanote and Berbers (2007) 3 3

Simons and Wirtz (2007) 3 3

Fuentes, Gamez and Sanchez (2008) 3 3

Kapitsaki and Venieris (2008) 3 3

Hebig, Giese and Becker (2010) 3

Luckey et al. (2011) 3 3 3

Almutairi, Bella and Abu-Samaha (2012) 3

Benselim and Seridi-Bouchelaghem (2012) 3 3

Hsu (2012) 3 3

Luckey and Engels (2013) 3 3

Wenzl and Strembeck (2013) 3

Al-alshuhai and Siewe (2015) 3

Han et al. (2016) 3 3 3

Benselim and Seridi-Bouchelaghem (2017) 3 3 3

Boudjemline et al. (2017) 3 3

Source: The authors.

context-awareness analysis and design, followed by self-adaptiveness design and analysis

are widely exploited in the studies.

Figure 3.1: SaSs properties versus engineering models.
Properties 4 13 15 1

Context-awareness

Self-configuring

Self-protecting

Self-adaptiveness

Models

17

1

2

12

Re
qu
ire
me
nts

An
aly
sis

De
sig
n

Co
din
g

2

2

8

1

4

7

1

1

5 1

Source: The authors.

43

Therefore, according to these SLR results, we notice that issues related to con-

text-awareness and self-adaptiveness analysis and design have motivated the creation of

UML-based DSMLs for SaSs. We also highlight that there are gaps in relations between

SaSs properties and engineeringmodels. We did not find studies that address issues related

to self-healing or self-protecting (from SaSs properties perspective) and testing or deploy-

ment (from engineering models perspective). Moreover, there are gaps for self-config-

uring and self-protecting requirements, self-configuring analysis, and context-awareness,

self-configuring, and self-protecting coding.

3.3.2 How UML has been customized to support SaSs modeling?

Diagrams are graphical presentations of a set of elements (BOOCH;RUMBAUGH;

JACOBSON, 2005). There is in UML 2.5, a set of fourteen diagrams organized into two

groups, as presented in Figure 2.4. Structural diagrams (class, component, composite

structure, deployment, object, package, and profile) allow representing the static system

structure. Behavioral diagrams (activity, communication, interaction overview, sequence,

state machine, timing, and use cases) allow representing the dynamic object behavior in

a system (OMG, 2017). We present in Table 3.5 the UML diagrams customized in each

selected study. We observe that 10 studies customize class diagram, 3 studies customize

component diagram, 4 studies customize use case diagram, 5 studies customize activity

diagram, and 5 studies customize sequence diagram.

We explain in Section 2.3 the mechanisms to extend UML: metamodel-based ex-

tends the UML metamodel by applying a language of the higher-metalevel; profile-based

extends the UML metamodel by applying mechanisms defined by UML itself (STAHL et

al., 2006). We present in Table 3.6 the mechanisms used to extend UML in each study. We

note that 5 studies report metamodel-based extensions and 11 studies report profile-based

extensions.

We present in Figure 3.2 a cross analysis that relates the customized diagrams

with extension mechanisms. We note that each study can count more than once. From

UML diagrams perspective, we notice that the most customized structural diagram is class

diagram and themost customized behavioral diagrams are activity and sequence diagrams.

From extension mechanisms angle, we observe that the most used mechanism is profile-

based. The cross analysis shows that the class diagram customization through the profile-

based mechanism has been widely used.

44

Table 3.5: UML diagrams customized in the studies.

Cl
as
s

Co
m
po
ne
nt

U
se
Ca
se

A
ct
iv
ity

Se
qu
en
ce

Sheng and Benatallah (2005) 3

Ayed, Delanote and Berbers (2007) 3 3

Simons and Wirtz (2007) 3

Fuentes, Gamez and Sanchez (2008) 3 3 3 3

Kapitsaki and Venieris (2008) 3

Hebig, Giese and Becker (2010) 3

Luckey et al. (2011) 3 3 3

Almutairi, Bella and Abu-Samaha (2012) 3

Benselim and Seridi-Bouchelaghem (2012) 3

Hsu (2012) 3

Luckey and Engels (2013) 3 3

Wenzl and Strembeck (2013) 3

Al-alshuhai and Siewe (2015) 3

Han et al. (2016) 3 3 3

Benselim and Seridi-Bouchelaghem (2017) 3 3 3

Boudjemline et al. (2017) 3

Source: The authors.

Table 3.6: Mechanisms used to extend UML in the studies.

M
et
am

od
el
-b
as
ed

Pr
of
ile
-b
as
ed

*Sheng and Benatallah (2005) 3

Ayed, Delanote and Berbers (2007) 3

Simons and Wirtz (2007) 3

Fuentes, Gamez and Sanchez (2008) 3

Kapitsaki and Venieris (2008) 3

Hebig, Giese and Becker (2010) 3

Luckey et al. (2011) 3

Almutairi, Bella and Abu-Samaha (2012) 3

Benselim and Seridi-Bouchelaghem (2012) 3

Hsu (2012) 3

Luckey and Engels (2013) 3

Wenzl and Strembeck (2013) 3

Al-alshuhai and Siewe (2015) 3

Han et al. (2016) 3

Benselim and Seridi-Bouchelaghem (2017) 3

Boudjemline et al. (2017) 3

* Defined according to UML 1.x.
Source: The authors.

45

Figure 3.2: Customized diagrams versus extension mechanisms.
Mechanisms 10 3 4 5 5

Metamodel-based

Profile-based

Diagrams

6

21

Cla
ss

Co
mp
on
en
t

Us
e C

as
e

Ac
tiv
ity

Se
qu
en
ce

1

9

1

2

1

3

3

2 5

Source: The authors.

Therefore, according to these SLR results, we notice that the profile-based mech-

anism has been used to customize the class diagram, providing proper support to SaSs

modeling. We point out that none of the studies propose customizations for composite

structure, deployment, object, or package structural diagrams and communication, inter-

action overview, state machine, or timing behavioral diagrams.

3.4 Threats to Validity

A threat to SLR validity is that the searching process may not find some relevant

studies. We mitigated this by applying the snowballing technique, which had its effective-

ness demonstrated by Jalali and Wohlin (2012). Other threat is that the selection process

may produce false-positives and false-negatives. We mitigated this by ensuring that each

paper was screened by at least two researchers. Another threat is that conceptual back-

ground and interpretation capability may affect researchers decisions in data extraction

step. We mitigate this by applying Delphi method (LINSTONE; TUROFF, 1975) to ob-

tain consensus about the extracted data.

3.5 Chapter Lessons

In this chapter, we report the results of a SLR that aimed to investigate how UML

has been customized to create DSMLs that provide proper support for SaSs modeling. The

chapter main points are:

46

• the most addressed SaSs properties are context-awareness and self-adaptiveness;

• the most addressed engineering models are analysis and design models;

• the most customized structural diagram is the class diagram;

• the most customized behavioral diagrams are activity and sequence diagrams;

• the most used extension mechanism is profile-based;

• context-awareness and self-adaptiveness analysis and design are widely exploited;

• profile-based class diagram extensions has been widely used;

• there are SaSs properties not covered by any of the selected studies;

• none of the studies integrate the context-awareness and self-adaptiveness model-

ing.

In next chapter, we propose a UML-based DSML for SaSs conceptual modeling

called SaSML that introduces a new modeling element called Adaptive Behavior. Adap-

tive Behavior integrates the context-awareness and self-adaptiveness modeling, synthe-

sizing a SaSs modeling schema without lose expressiveness.

47

4 UML-BASED DSML FOR SAS CONCEPTUAL MODELING

In this chapter, we propose SaSML, a UML extension that introduces a newmodel-

ing element called Adaptive Behavior, which is able to synthesize a SaSsmodeling schema

without losing expressiveness. We define in Section 4.1 a SaSs modeling schema based

on design patterns. We specify in Section 4.2 a UML extension for SaSs conceptual mod-

eling. We illustrate in Section 4.3 the UML extension usage in a real scenario. Finally,

we summarize in Section 4.4 the chapter lessons.

4.1 SaSs Conceptual Modeling Schema

We advocate that SaSs modeling complexity can be minimized by using a DSML,

therefore, we propose SaSML, a UML-based DSML for SaSs conceptual modeling. Be-

sides capturing higher-level abstractions and constraints, we would also like to capture

the essence of a modeling strategy for SaSs conceptual modeling. Thus, before specifying

SaSML, we proposed a SaSs conceptual modeling schema, i.e., an understandable repre-

sentation of a SaSs conceptual modeling idea in the form of a model. Differently from the

studies presented in Chapter 3, our intention was to identify the essential concepts related

to SaSs domains, establishing the necessary communication to support self-adaptiveness.

For scope definition purposes, we took as basis for our work the SaSs definition

presented in Section 2.1). In other words, our SaSs modeling schema supports adaptation

based on behavior (re)organization in response to contextual changes. Thus, we started

the schemamodeling by analyzing the SaSs definition to identify the essential abstractions

to be expressed in a conceptual model. A SaS can autonomously decide how to adapt its

behavior at runtime in response to contextual changes (ANDERSSON et al., 2009; BRUN

et al., 2009; CHENG et al., 2009). As a result, we extracted two main abstractions:

• context, which is needed to monitor the environment situations and to trigger be-

havior adaptations;

• behavior, which is needed to define the system behaviors and to implement adap-

tation mechanisms.

Next, we analyzed the context and behavior definitions to identify the requirements

for SaSs conceptual models. Context is any information that can be used to define the

situation of an entity (DEY, 2001). Situation is a specific state of affairs (COSTA et al.,

2006). Entity is anything considered relevant to a system, including the users and the

48

system itself (DEY, 2001). Behavior is a set of actions of an individual in response to

stimuli provided by the environment in which one lives (MINTON; KHALE, 2014).

From this analysis process, we enunciated the following requirements for SaSs

conceptual models:

1. a model should define the domain entities relevant to the system;

2. a model should define the information that defines the entities situation;

3. a model should define the mechanisms to manage the behavior adaptation process;

4. a model should define the behavior that the system may have at runtime;

5. a model should define the monitoring mechanisms to trigger the behavior adapta-

tions.

The analysis these requirements revealed to us the possibility to based our SaSs

modeling schema on design patterns. As seen in Section 2.4, design patterns are tested

and proven reusable solutions to common problems. Their usage contribute to a more

flexible and reusable SaSs modeling schema. Thus, we searched for proper design pat-

terns to model each one of the proposed requirements. We took as reference the catalog

presented by Shvets (2018), which extends the catalog presented by Gamma et al. (1994).

We selected design patterns according to their capabilities to solve the modeling prob-

lems related to requirements. As an outcome, we applied four design patters to create the

modeling schema presented in Figure 4.1.

Figure 4.1: SaSs conceptual modeling schema based on design patterns.

0..*
entity
1

1
context

1

1..*

managers1..*

1..*

context 1
1

behaviors
1..*

Entity

EntityOne

Context

ContextOne Manager

ManagerOne

Behavior

BehaviorOne

BehaviorTwo

Private Class Data Observer

State

Singleton
has

belongs
notifies

monitors

manages

Source: The authors.

We applied the Private Class Data pattern to address the first and second require-

ments. It allowed us to encapsulate contextual information in a data class, associating it

to its respective entity class. Hence, it is possible to keep the entity cohesion and to define

sets of related contextual information. The Private Class Data pattern usage can be seen

in the left side of Figure 4.1. The relevant domain entities to the system should be mod-

eled as main classes without contextual information. The contextual information should

49

be modeled as data classes. Each entity may have one or many contexts, but a context

belongs to only one entity.

We applied the State pattern to address the third and fourth requirements. It al-

lowed us to define the system behaviors as a set of states and to create an adaptation

mechanism based on a state machine. The State pattern usage can be seen in the right side

of Figure 4.1. The mechanism to manage the adaptation process might be modeled as a

wrapper class, which knows all possible system behaviors. The behaviors that the system

may have at runtime might be modeled as a polymorphic hierarchy. The Singleton pattern

ensures a single instance of each possible system behavior.

We applied the Observer pattern to address the fifth requirement. It allowed us

to define a dynamic context monitoring mechanism to trigger the adaptation process at

runtime. The Observer pattern usage can be seen in the center of Figure 4.1. Each Context

class might be modeled as a subject class, registering at least one Manager class. Manager

classes might be modeled as observer classes, keeping a reference to all relevant contexts.

Next, we illustrate the modeling schema usage by modeling a blood pressure mon-

itoring requirement for health care system. The requirement presented in Table 4.1 is

written in RELAX and it specifies the system desired behavior for some possible situa-

tions.

Table 4.1: Blood pressure monitoring requirement for health care.
Req-2 The system SHALL monitor the blood pressure IN every hour to ensure the

patient wellness. It MAY call the medical support whenever the blood pressure
is very low or very high, OR it MAY advise the medicine intake whenever the
blood pressure is high, OR it MAY recommend the rest whenever the blood
pressure is low.
ENV: Patient blood pressure.
MON: Sphygmomanometer.
REL: Sphygmomanometer provides Patient blood pressure.
DEP: None.

Source: The authors.

The analysis process of this requirement resulted in the conceptual model presented

in Figure 4.2, which was made based on the modeling schema. Patient is an entity that has

BloodPressure as contextual information. BloodPressureManager is the adaptation mech-

anism wrapper and it is registered in BloodPressure context as an observer to be notified

whenever the situation changes. Additionally, BloodPressureManager knows BloodPres-

sure situation and the set of system behaviors. MedicalCalling, MedicineAdvising, and

RestRecommendation are system possible behaviors.

50

Figure 4.2: Blood pressure monitoring requirement conceptual model.

0..*
entity
1

1
pressure

1

1..*
managers

1..*

1..*
pressure
1

1

behaviors
1..*

Entity

Patient

Context

BloodPressure

Manager

BloodPressureManager

Behavior

≪Singleton≫
MedicalCalling

≪Singleton≫
MedicineAdvising

≪Singleton≫
RestRecommendation

belongs

has

notifies

monitors

manages

Source: The authors.

Now, we illustrate the modeling schema usage by modeling a thermal comfort

manager requirement for a smart office system, which is specified in Table 4.2.

Table 4.2: Thermal comfort manager requirement for smart offices.
Req-3 The system SHALL manage the office temperature AS EARLY AS POSSIBLE

to ensure the environment thermal comfort. It MAY turn on the heating when-
ever the office inside and outside temperatures are low, OR it MAY open the
ventilation whenever the office outside temperature is mild, OR it MAY turn on
the refrigeration whenever the office inside and outside temperatures are high.
ENV: Office inside and outside temperature.
MON: Thermostat.
REL: Thermostat provides Office inside and outside temperature.
DEP: None.

Source: The authors.

We present in Figure 4.3 the conceptual model obtained from modeling schema

application. Office is an entity that has InsideTemperature and OutsideTemperature as

contextual information. TemperatureManager is the adaptation mechanism wrapper and

it is registered in InsideTemperature and OutsideTemperature contexts as an observer to be

notified whenever the situation changes. Additionally, TemperatureManager knows Insid-

eTemperature and OutsideTemperature situation and the set of system behaviors. Heating,

Refrigeration, and Ventilation are system possible behaviors.

4.2 UML Extension for SaSs Conceptual Modeling

Themodeling schema presented previously captures the SaSs higher-level abstrac-

tions and constraints, and the necessary communication to support self-adaptiveness. The

design patterns used to design it contribute to schema reusability and flexibility. To apply

the schema in other scenarios, we need to identify the related entities, contexts, managers,

51

Figure 4.3: Thermal comfort manager requirement conceptual model.

0..*
entity
1

1 inside 11 outside 1

1..*

managers1..*

1..*

outside 1

1..*

inside 1
1

behaviors
1..*

Entity

Office

Context

InsideTemperature OutsideTemperature Manager

TemperatureManager

Behavior

≪Singleton≫
Heating

≪Singleton≫
Refrigeration

≪Singleton≫
Ventilation

belongs

has
has

notifies

monitors
monitors

manages

Source: The authors.

and behaviors, and to specify them as the concrete classes presented in Figure 4.1. How-

ever, we notice that complex scenarios may produce complex models, which may impact

in conceptual model comprehensibility.

The model quality is related to its capability in providing for all stakeholders the

same understanding of what it represents (HULL; JACKSON; DICK, 2011). Therefore,

in a software engineering perspective, besides expressing the real-world abstractions, a

model should do this in an understandable way. Hence, we propose a UML-based DSML

called SaSML that extendsUML introducing a newmodeling element for SaSs conceptual

modeling. It is important to notice that the SaSML first version focuses on conceptual

modeling, which does not limit its potential in terms of SaSs modeling support. Further,

we point out how SaSML may be evolved to support SaSs behavioral modeling.

UML may be extended by modifying the metamodel, which allows modifying the

UML syntax and semantics, or by creating a profile, which allows customizing UML to

a particular domain (STAHL et al., 2006). Once we intended to introduce a new model-

ing element into UML, we extended it through modifying the metamodel, i.e., we worked

directly over its metamodel. We extended the version 2.5.1 of the UML Abstract Syntax

Metamodel1. As can be seen in Figure 4.4, SaSML is composed of two packages. UML

package contains the UMLmetamodel without modifications, i.e., the UML elements syn-

tax and semantics are preserved. Hence, all UMLvalid constructions also are SaSMLvalid

constructions. SaS package contains the UML metamodel extensions needed to specify

modeling elements oriented to SaSs modeling.

We proposed in the SaSML first version a new modeling element called Adaptive

Behavior. Adaptive Behavior is a wrapper that encapsulates the SaSs modeling schema,

1Available at: <https://www.omg.org/spec/UML/20161101/UML.xmi>.

https://www.omg.org/spec/UML/20161101/UML.xmi

52

Figure 4.4: SaSML packages overview.
SaSML

UML SaS

≪extend≫

Source: The authors.

exposing only what needs to be defined at modeling time. We specified Adaptive Behavior

by defining its syntax, semantics, and pragmatics. Syntax is the form of a language, se-

mantics is the meaning of a language, and pragmatics is the implementation of a language

(TURBAK; GIFFORD; SHELDON, 2008).

4.2.1 Adaptive Behavior Syntax

We started the Adaptive Behavior syntax specification by defining its abstract syn-

tax. Abstract syntax establishes the syntax structures without indicating how it appears

(TURBAK; GIFFORD; SHELDON, 2008). In a UML extension, the abstract syntax can

be specified through a metamodel (SHENG; BENATALLAH, 2005). During the element

metamodeling, we attended to some important constraints. The Adaptive Behavior mod-

eling element should:

• not overwrite the UML elements to ensure a full UML reuse;

• be used together with the UML elements related to class diagram.

A challenge to customize UMLbymetamodel modifying is to identify whichmeta-

classes should be extended. To solve this, we applied a top-down analysis strategy, where

we investigated all metaclasses specializations starting from the root metaclass. When

investigating each metaclass, we analyzed its specification to decide whether it applies

or does not apply to Adaptive Behavior. We took as analysis criteria the element pur-

pose, i.e, to be a wrapper for the SaSs modeling schema. In positive case, we selected

the metaclass, otherwise, we discarded the metaclass and its subsequent specializations.

Our intention was to select the deepest metaclasses in the hierarchy, generic enough to

describe Adaptive Behavior.

We started the UML metamodel analysis from the hierarchy root. Element meta-

class generalizes all model constituent elements (OMG, 2017). For this reason, Element

metaclass was selected.

53

Next, we analyzed all Element metaclass specializations. Element metaclass has

15 specializations: Comment, MultiplicityElement, NamedElement, ParameterableEle-

ment, Relationship, TemplateableElement, TemplateParameter, TemplateParameterSub-

stitution, TemplateSignature, ExceptionHandler, Image, Slot, Clause, LinkEndData, and

QualifierValue (OMG, 2017). We selected NamedElement, ParameterableElement,

and TemplateableElement metaclasses because Adaptive Behavior has a name, it may

be a formal template parameter, and it can be defined as a template.

After, we analyzed all NamedElement, ParameterableElement, and Templateable-

Element metaclasses specializations. NamedElement metaclass has 18 specializations:

Namespace, PackageableElement, TypedElement, ActivityGroup, Trigger, Extend, In-

clude, CollaborationUse, Vertex, GeneralOrdering, InteractionFragment, Lifeline, Mes-

sage,MessageEnd, DeployedArtifact, DeploymentTarget, ParameterSet, andRedefinable-

Element. ParameterableElement metaclass has 3 specializations: PackageableElement,

ConnectableElement, and Operation. TemplateableElement metaclass has 4 specializa-

tions: StringExpression, Package, Classifier, and Operation (OMG, 2017). We selected

Namespace, PackageableElement, and Package metaclasses because Adaptive Behav-

ior may be used to group elements, it may be owned by a package, and it provides a

namespace for the grouped elements.

Lastly, we analyzed all Namespace, PackageableElement, and Packagemetaclasses

specializations. Namespace metaclass has 8 specializations: Region, State, Transition,

Package, InteractionOperand, BehavioralFeature, Classifier, and StructuredActivityNode.

PackageableElement metaclass has 10 specializations: Constraint, Dependency, Type,

Event, Observation, ValueSpecification, Package, InformationFlow, GeneralizationSet,

and InstanceSpecification. Package metaclass has 2 specializations: Model and Profile

(OMG, 2017). We selected Package metaclass again. As the metaclass has already been

analyzed and selected, we finished the UML metamodel analysis. Thus, we considered

that Package is the deepest metaclass in the hierarchy, generic enough to describe Adaptive

Behavior.

We present in Figure 4.5 the Adaptive Behavior metamodel, where all the meta-

classes hierarchy can be seen. UML package contains the UML metaclasses extended

to define Adaptive Behavior. Besides the Package metaclass, we also make explicit the

Class metaclass. We extended the Class metaclass to define the Adaptive Behavior struc-

tures. SaS package contains the Adaptive Behavior definition. AdaptiveBehavior is a

concrete metaclass that represents the modeling element itself and it extends the Package

54

concrete metaclass. Manager, Entity, Context, and Behavior are concrete metaclasses that

represent the SaSs modeling schema and they extend the Class concrete metaclass. The

AdaptiveBehavior metaclass has an one-to-one composite association with Entity and it

has one-to-many composite associations with Entity, Context, and Behavior metaclasses.

Additionally, the Entity metaclass has an one-to-many association with Context metaclass.

Figure 4.5: Adaptive Behavior metamodel.
SaSML

UML

SaS ≪extend≫

entities
1..*

contexts
1..*

manager
1

behaviors
1..*

entity1

contexts1..*

Element

NamedElementTemplateableElement ParameterableElement

PackageableElementNamespace RedefinableElement

Package Type

Classifier

BehavioredClassifier StructuredClassifier

EncapsulatedClassifier

Class

Manager

Entity

Context

Behavior

AdaptiveBehavior has has

Source: The authors.

Once the abstract syntax was defined, we specified the Adaptive Behavior concrete

syntax. Concrete syntax establishes the forms that can be used to express the abstract syn-

tax (TURBAK; GIFFORD; SHELDON, 2008). In a UML extension the concrete syntax

can be specified through a notation (SHENG; BENATALLAH, 2005). During the notation

55

designing, we attended to some important constraints. The Adaptive Behavior modeling

element should have:

• a different notation to not be confused with the UML notation;

• a simple notation to allow being drawn by freehand.

We propose the notation presented in Figure 4.6 for Adaptive Behavior. It is com-

posed of three distinct compartments. The first compartment (trapezoid at the top) is to

define the element identifier. The second compartment (rectangle at the middle with “C”

tag) is to define the contextual information. The third compartment (rectangle at the bot-

tom with “B” tag) is to define the behavioral information.

Figure 4.6: Adaptive Behavior notation.

C

B

Identifier Compartment

Context Compartment

Behavior Compartment

Source: The authors.

The element identifier (Identifier Compartment) must represent the adaptive be-

havior general purpose. It can be simple (one word) or compound (more than one word),

but it has to be written clearly and objectively. We present in Figure 4.7 some identi-

fiers examples for an autonomous car. AnticollisionManager represents the behaviors

adaptations required to avoid any collisions. IgnitionManager represents the behaviors

adaptations required to manage engine operation.

Figure 4.7: Adaptive Behavior identifiers examples.

C

B

AnticollisionManager
C

B

IgnitionManager

Source: The authors.

The contextual information (Context Compartment) is a pair composed of a Con-

text and an Entity. A Context must be linked to only one Entity. An Entity must be

linked to at least one Context. Context and Entity identifiers must be a simple or com-

pound representative expression. We present in Figure 4.8 some contexts examples for

an autonomous car. In AnticollisionManager, Velocity is linked to Vehicle and Distance

is linked to Object. This contextual information must be monitored to avoid collisions.

In IgnitionManager, Location, and EngineStatus are linked to Vehicle. This contextual

56

information must be monitored to manage the engine.

Figure 4.8: Adaptive Behavior contexts examples.

C

B

AnticollisionManager

Velocity

Distance

Vehicle

Object

C

B

IgnitionManager

Location

EngineStatus
Vehicle

Source: The authors.

The behavioral information (Behavior Compartment) defines the alternative be-

haviors that a system may have. Each item represents a possible behavior related to adap-

tation purpose, i.e., one of the behaviors that may be taken at runtime in response to entities

context changes. We present in Figure 4.9 some behaviors examples for an autonomous

car. In AnticollisionManager, the system may slow down (Slowdown) or brake (Brak-

ing) to avoid collisions. In IgnitionManager, the system may start (EngineStart) or stop

(EngineStop) the engine.

Figure 4.9: Adaptive Behavior behaviors examples.

C

B

AnticollisionManager

Velocity

Distance

Vehicle

Object

Slowdown

Braking

C

B

IgnitionManager

Location

EngineStatus
Vehicle

EngineStop

EngineStart

Source: The authors.

4.2.2 Adaptive Behavior Semantics

As opposed to Object Management Group (OMG), which presents the UML se-

mantics informally (OMG, 2017), we used a math notation to explain the Adaptive Be-

havior semantics. Hence, we ensured a correct interpretation of the Adaptive Behavior

structures.

LetU be an nonempty finite set of classes, whereU = {cls | cls is a SaSs conceptual

model class}. Let E, C,M , and B be disjoint nonempty subsets of U , where:

• E = {e | e is an Entity subclass};

• C = {c | c is a Context subclass};

• M = {m |m is a Manager subclass};

57

• B = {b | b is a Behavior subclass}.

Thus, we defined the Adaptive Behavior modeling element as a triple (mi, f , B′),

where:

• mi ∈ M is a Manager subclass;

• f : C → E maps a Context subclass to an Entity subclass;

• B′ ⊆ B is a nonempty finite subset of Behavior.

We illustrate in Figure 4.10 the relation between the Adaptive Behavior semantics

and notation. The Adaptive Behavior identifier compartment displays the Manager class

mi, the context compartment displays the surjective function f , and the behavior compart-

ment displays the subset of Behavior B′. The Venn diagrams present abstract examples

for the sets E, C,M , and B.

Figure 4.10: Relation between Adaptive Behavior notation and semantics.

C

B

M

m1

m2 mi

C

c1

c2 ci

E

e1

e2 ei

BB′

bi

b1 b2

Source: The authors.

4.2.3 Adaptive Behavior Pragmatics

We applied the Façade pattern to define the Adaptive Behavior pragmatics. Each

Adaptive Behavior instance encapsulates the subsystem responsible for modeling a spe-

cific adaptive behavior, which is modeled according to the SaSs modeling schema. The

transformation process must be performed according to the following rules:

1. the identifier compartment entry becomes a concrete subclass of Manager abstract

class;

2. for each context compartment entry:

58

(a) the first entry becomes a concrete subclass of Context abstract class;

(b) the second entry becomes a concrete subclass of Entity abstract;

3. each behavior compartment entry becomes a Singleton concrete subclass of Be-

havior abstract class;

4. the Manager concrete subclass must be linked to each Context concrete subclass

by one-to-many simple association;

5. the Manager concrete subclass is defined as the subsystem interface.

We illustrate in Figure 4.11 the application of the Adaptive Behavior implementa-

tion rules. Each Adaptive Behavior entry becomes a concrete class in the SaSs conceptual

model. Each concrete class extends a specific abstract class of the SaSs modeling schema.

Figure 4.11: Adaptive Behavior mapping into SaSs modeling schema.

0..*
entity
1

1
context

1

1..*

managers1..*

1..*

context 1
1

behaviors
1..*

C

B

ManagerOne

ContextOne EntityOne

BehaviorTwo

BehaviorOne

Entity

EntityOne

Context

ContextOne Manager

ManagerOne

Behavior

BehaviorOne

BehaviorTwo

belongs

has

notifies

monitors

manages

Source: The authors.

4.3 Real Scenario Application

Devincenzi et al. (2017) proposed a SaS called TutorApp to motivate the students

from courses based on Problem-Based Learning (PBL) to develop their skills and abilities.

TutorApp is composed of mechanisms called triggers, which are able to recommend spe-

cific Learning Objects (LO) according to the students needs. Each trigger uses a specific

set of contextual information to monitor the students situation and provide proper LOs.

We present in Table 4.3 a requirements specification according to features proposed by

Devincenzi et al. (2017).

59

Table 4.3: TutorApp requirements specification.
Req-4 The location-based trigger SHALL notify the students AS EARLY AS POSSI-

BLE about available sites around them related to course learning goals. It MAY
provide site information whenever they are at a distance of AS CLOSEAS POS-
SIBLE TO 1km.
ENV: Course learning goals and Students location.
MON: Courses tracker and Students tracker.
REL: Courses tracker provides Course learning goals and Students tracker

provides Students location.
DEP: None.

Req-5 The challenge-based trigger SHALL provide the students AS EARLY AS POS-
SIBLE specialized support to solve issues proposed to them. It MAY search for
related case studies whenever a new issue is proposed.
ENV: Students assignments.
MON: Students tracker.
REL: Students tracker provides Students assignments.
DEP: None.

Req-6 The lesson-based trigger SHALL provide the students AS EARLY AS POSSI-
BLE additional courseware to eliminate some conceptual gaps. It MAY reserve
books in the librarywhenever the students have regular performance, OR itMAY
schedule extra lessons whenever the students have low performance.
ENV: Students performance.
MON: Student tracker.
REL: Students tracker provides Students performance.
DEP: None.

Source: Adapted from Devincenzi et al. (2017).

We present in Figure 4.12 the TutorApp conceptual model specified in SaSML.

We create an Adaptive Behavior for each type of trigger proposed by TutorApp. Loca-

tionTrigger models the Req-4 behavior, ChallengeTrigger models the Req-5 behavior, and

LessonTrigger models the Req-6 behavior.

LocationTrigger has two contextual information entries (LearningGoal linked to

Course and Location linked to Student) and one behavioral possibility entry (SiteHigh-

lighting). ChallengeTrigger has one contextual information entry (Assignment linked to

Student) and one behavioral possibility entry (CaseStudySearching). LessonTrigger has

one contextual information entry (Performance linked to Student) and two behavioral pos-

sibilities entries (BookRecomendation and LessonScheduling). In addition, we specified

four supporting classes (Site, CaseStudy, Lesson, and Book), which are associated to a

specific behavioral possibility (SiteHighlighting, CaseStudySearching, LessonSchedul-

ing, and BookRecomendation, respectively).

60

Figure 4.12: TutorApp conceptual model specified in SaSML.

0..*

site1..*

0..*

case1..*

0..*

lesson1..*

0..*

book1..*

C

B

LocationTrigger

Location

LearningGoal

Student

Course

SiteHighlighting

C

B

ChallengeTrigger

Assignment Student

CaseStudySearching

C

B

LessonTrigger

Performance Student

LessonScheduling

BookRecommendation

Trigger

Site CaseStudy Lesson Book

highlights searches schedules
recomends

Source: The authors.

We present next the TutorApp conceptual model specified in UML. These mod-

els were built by applying the transformation rules proposed in Section 4.2.3. For each

Adaptive Behavior modeling element in Figure 4.12, we create an equivalent conceptual

model. We present in Figure 4.13 the LocationTrigger transformation, in Figure 4.14 the

ChallengeTrigger transformation, and in Figure 4.15 the LessonTrigger transformation.

When comparing the two models versions, SaSML and UML, we noted that each

occurrence of Adaptive Behavior is equivalent to a set of UML elements. Besides this,

Adaptive Behavior encapsulates the SaSsmodeling schema presented in Figure 4.1. There-

fore, SaSML models are visually more synthetic than UML models, contributing with the

model comprehensibility.

Figure 4.13: TutorApp Req-4 conceptual model specified in UML.

0..*
entity
1

1
goal

1

1
location

1

1..*
managers

1..*

1..*
goal 1

1..*location 1

0..*
sites
1..*

1

behaviors
1..*

Entity

Course

Student

Context

LearningGoal

Location

Manager

Trigger

LocationTrigger

Behavior

≪Singleton≫
SiteHighlightingSite

belongs

has

has

notifies

monitors

monitors

manages

highlights

Source: The authors.

61

Figure 4.14: TutorApp Req-5 conceptual model specified in UML.

0..*
entity
1

1
assignment

1

1..*
managers

1..*

1..*
assignment 1

0..*
caseStudies
1..*

1

behaviors
1..*

Entity

Student

Context

Assignment

Manager

Trigger

ChallengeTrigger

Behavior

≪Singleton≫
CaseStudySearchingCaseStudy

belongs

has

notifies

monitors

manages

searches

Source: The authors.

Figure 4.15: TutorApp Req-6 conceptual model specified in UML.

0..*
entity
1

1
performance

1

1..*
managers

1..*

1..*
performance 1

0..*

books1..*

0..*

lessons1..*

1

behaviors
1..*

Entity

Student

Context

Performance

Manager

Trigger

LessonTrigger

Behavior

≪Singleton≫
BookRecommendation

≪Singleton≫
LessonScheduling

Book Lesson

belongs

has

notifies

monitors

manages

recomends schedules

Source: The authors.

4.4 Chapter Lessons

In this chapter, we propose a UML-based DSML called SaSML that introduces

a new modeling element called Adaptive Behavior able to synthesize a SaSs modeling

schema based on design patterns. The chapter main points are:

• SaSs modeling schema applies a set of design patterns to capture the SaSs higher-

level abstractions;

• the design patterns usage contribute to a more flexible and reusable SaSs modeling

schema;

• SaSMLwas created bymodifying the UMLmetamodel, ensuring the compatibility

with UML standard elements;

62

• Adaptive Behavior synthesizes a SaSsmodeling schema, exposing onlywhat needs

to be defined at modeling time;

• SaSML models are visually more synthetic than UML models, contributing with

the model comprehensibility.

In next chapter, we report the results of empirical techniques used to evaluate the

SaSs modeling schema and the Adaptive Behavior modeling element. The SaSs modeling

schema correctness and completeness was evaluated by running focus group sessions.

Adaptive Behavior modeling element expressiveness and effectiveness was evaluated by

running an experiment with subjects.

63

5 SASML EMPIRICAL EVALUATION

In this chapter, we report the empirical techniques used to evaluate the SaSsmodel-

ing schema correctness and completeness, and the Adaptive Behavior modeling element

expressiveness and effectiveness. We report in Section 5.1 the SaSs modeling schema

evaluation by running focus group sessions. We report in Section 5.2 the Adaptive Be-

havior evaluation by running an experiment with subjects. Finally, we summarize in Sec-

tion 5.3 the chapter lessons.

5.1 Focus Group Sessions

We applied the focus group technique (BLOOR et al., 2001) to perform a SaSML

preliminary evaluation. The evaluation goal was to verify the SaSs modeling schema

correctness and completeness. The feedback obtained from focus group sessions guided

our decisions and aided us to produce the SaS modeling schema presented in Figure 4.1.

We involved in this evaluation process a set of subjects, which were responsible

for analyzing, discussing, and reporting the collective findings about the proposed models.

To facilitate good discussions and to obtain useful feedback, we invited researchers with

experience in modeling, metamodeling, UML, or SaSs to compose the set of subjects.

The focus group sessions were driven by a moderator, which was responsible for

instigating and limiting the subjects discussions. In each focus group session, the moder-

ator ran the following steps:

1. opening, the moderator introduced general information about the session;

2. background, the moderator provided a conceptual foundation about SaSs;

3. discussion, the subjects evaluated the models and provided feedback;

4. closure, the moderator collected the final opinion about the models.

The main data source was a set of questions collectively answered by the subjects

in the discussion step. In addition, we used alternative ways to collect data during focus

group sessions, such as: audio, video, photos, annotations, and forms. All collected data

was analyzed to identify the proposed models improvement opportunities.

64

5.1.1 Focus Group Execution

We performed 3 focus group sessions between December 2017 and April 2018.

The sessions ran in a reserved room and lasted approximately 3 hours. Each session pro-

duced a set of findings about models correctness and completeness. After each session,

we discussed the findings and promoted improvements in the SaSs modeling schema. The

resulting model was the input to the next focus group session.

We note that each session engaged a different set of subjects, potentiating the dis-

cussions and feedback diversity. We involved a total of 10 subjects, being 7 professors

from 2 universities, 2 graduate students, and 1 practitioner. We summarized in Figure 5.1

the subjects profiles, which was obtained through a questionnaire that asked about their

experience in each related topic.

Figure 5.1: Focus group subjects profile.

Modeling Metamodeling UML SaSs
0

2

4

6

8

10

Related Topic

Ex
pe
rie

nc
e
Le
ve
l

None
Basic
Intermediate
Expert

Source: The authors.

Regarding modeling experience, 1 subject answered Basic level, 4 subjects an-

swered Intermediate level, and 5 subjects answered Expert level. About metamodeling

experience, 2 subjects stated no experience, 2 subjects answered Basic level, 2 subjects

answered Intermediate level, and 4 subjects answered Expert level. Concerning UML ex-

perience, 5 subjects answered Intermediate level and 5 subjects answered Expert level.

Lastly, about SaSs experience, 2 subjects stated no experience, 1 subject answered Basic

level, 4 subjects answered Intermediate level, and 3 subjects answered Expert level.

5.1.1.1 First Session Execution

The first focus group session was performed on December 14, 2017, at 09:00 AM

to 12:00 PM, in the Federal University of Pampa (Unipampa) facilities. This session en-

gaged 4 professors, which discussed about the first SaSs modeling schema version cor-

rectness and completeness.

65

The moderator started the opening step welcoming and thanking the subjects, pro-

viding them with instructions about how the focus group would be performed. The sub-

jects were instructed to try working by themselves, noting that the moderator could inter-

vene to keep the work flowing, but the idea was that they worked without interference.

The moderator also highlighted that every member was free to ask questions and to ex-

press their opinions during the evaluation. This step ended with the signing of the consent

document by the subjects. In the background step, the subjects read support material to

contextualize and motivate the SaSs modeling schema. The moderator answered some

questions to solve conceptual gaps.

Themoderator started the discussion step by introducing the evaluation instrument,

which is available in Appendix B. This step was composed of 3 iterations, in each one,

the moderator provided a SaSs modeling schema increment. In the first iteration, the

moderator presented the context model proposal. In the second iteration, he incremented

the proposal with the behavior model. Lastly, in the third iteration, he completed the

proposal with the adaptivity model. The subjects discussed to build a collective perception

about the SaSs modeling schema correctness and completeness. As an outcome, they

produced the following findings list:

• it is not clear the relationship between context and property;

• complex contexts could be modeled by a composite structure;

• the context model do not express all required structure.

The moderator started the closure step asking to the subjects to express their final

opinions about the models under evaluation. Based on all discussions, they concluded that

the SaSs modeling schema partially meets the required structures for SaSs conceptual

models.

After this focus group session, we analyzed the findings list and the subjects final

opinions. We agreed with their opinions, we accepted all improvement suggestions and

we promoted changes in the context model. We applied the composite pattern in entity and

context modeling and we decomposed the context concept in a more expressive hierarchy.

The refactored SaSs modeling schema was submitted to evaluation in the second focus

group session.

5.1.1.2 Second Session Execution

The second focus group session was performed on January 12, 2018, at 13:00

PM to 16:00 PM, in the Federal University of Rio Grande do Sul (UFRGS) facilities.

66

This session involved 2 professors and 2 graduate students, which discussed about the

second SaSs modeling schema version correctness and completeness. The moderator ran

the opening and background step in the same way as in the previous focus group session.

Themoderator started the discussion step by introducing the evaluation instrument,

which is available in Appendix B. This step was composed of 4 iterations, in each one,

the moderator provided a SaSs modeling schema increment. The iterations quantity was

modified because we observed some difficulties on the subjects understanding the full

context model. Thus, in this session execution, we first introduced the entity model and

then we proposed the context model. The other iterations followed the same strategy of

the first session execution. The subjects discussed to build a collective perception about

the SaSs modeling schema correctness and completeness. As an outcome, they produced

the following findings list:

• the entity model could allow association between entities;

• the context concept could be associated to property concept;

• the behavior model could generalize the action concept;

• the manager concept could be associated to context concept.

The moderator started the closure step asking to the subjects to express their final

opinions about the SaSs modeling schema. As well as in the first session, they concluded

that the SaSsmodeling schema partiallymeets the required structures for SaSs conceptual

models.

After this focus group session, we analyzed the findings list and the subjects final

opinions. We also agreed with their opinions, accepting all improvement suggestions and

promoting changes in the context model. To ensure the models generality, we decided

to base our modeling strategy on a set of design patterns. The refactored SaSs modeling

schema was submitted to evaluation in the third group session.

5.1.1.3 Third Session Execution

The third focus group session was performed on April 20, 2018, at 09:00 AM to

12:00 PM, in the Unipampa facilities. This session engaged 1 professor and 1 practitioner,

which discussed about the third SaSs modeling schema version correctness and complete-

ness. The moderator also ran the opening and background step in the same way as in the

previous focus group sessions.

Themoderator started the discussion step by introducing the evaluation instrument,

which is available in Appendix B. This discussion step was composed of only 1 iteration.

67

We note that models presented in previous sessions were better understood when they

were presented in the full model. Hence, we decided to present to the subjects the full

SaSs modeling schema, which is now based on design patterns. The subjects discussed

to build a collective perception about the model correctness and completeness. As an

outcome, they reported that they did not find relevant improvement opportunities for the

SaSs modeling schema.

The moderator started the closure step asking to the subjects to express their final

opinions about the models under evaluation. At this time, they concluded that the SaSs

modeling schema fully meets the required structures for SaSs conceptual models.

5.1.2 Threats to Validity

We adopted the classification scheme proposed by Cook and Campbell (1979) to

identify threats to the focus group validity.

5.1.2.1 Conclusion Validity

A threat to the focus group conclusion validity is that the researchers may influence

the result searching for a specific feedback. Wemitigated this by carrying out a peer review

process to analyze the data source and to extract the sessions findings. Other threat is that

the moderator may explain the SaSs modeling schema differently in each focus group

session, providing a worse or better explanation. We minimized this by providing textual

documentation to subjects and monitoring the moderator interventions during sessions

executions. Another threat is that some outside element may disturb the subjects during

session executions. We mitigated this by performing the focus group in a reserved room

and asking to the subjects do not use smart phones during the session execution.

5.1.2.2 Internal Validity

A threat to the focus group internal validity is that the historymay affect the session

results because they were performed in different times. We minimized this by negotiating

with the subjects the best day to run the session, so that there was no event or situation

that took away their concentration. Other threat is that the subjects may react negatively

or positively as session time passes. We mitigated this by ensuring a maximum duration

for each session and monitoring the time spent in each discussion iteration. Another threat

68

is that the evaluation instrument may be badly designed. We minimized this by carrying

out a peer review process to verify all material used in sessions.

5.1.2.3 Construct Validity

A threat to the focus group construct validity is that the subjects may do not know

the correctness and completeness meaning. We mitigated this by explaining and exempli-

fying the correctness and completeness meaning at the session opening step. Other threat

is that the subjects may try to guess the expected results by researchers. We minimized

this by masking the focus group goal to the subjects. Another threat is that the researchers

may bias the results based on what they expect from each focus group session. We mit-

igated this by carrying out a peer review process to ensure that there are evidence in the

data source that support the findings.

5.1.2.4 External Validity

A threat to the focus group external validity is that the researchers may select the

wrong subjects to participate in the sessions. We minimized this by inviting to compose

the set of subjects researchers with experience in modeling, metamodeling, UML, or SaSs.

Other threat is that the researchers may provide the subjects with models specified in some

notation unknown for them. We mitigated this by using UML as modeling language.

5.2 Experiment with Subjects

We carried out a controlled experiment with subjects (WOHLIN et al., 2012) to

evaluate the SaSML. The evaluation goal was to verify whether the Adaptive Behavior

modeling element would make explicit and enable the modeling of contextual information

and behavioral possibilities in SaSs conceptual models. The experiment scope1 was:

Analyze the Adaptive Behavior modeling element
for the purpose of evaluation

with respect to expressiveness and effectiveness
from the point view of the researcher

in the context of undergraduate students working with conceptual models.

1The experiment scope was formated according the Goal/Question/Metric (GQM) measurement goal
template (SOLINGEN; BERGHOUT, 1999).

69

We used information retrieval metrics as measure to evaluate Adaptive Behavior,

such as, De Lucia et al. (De Lucia et al., 2010). Hence, we have:

• F-score = 2 ∗ Precision ∗ Recall
Precision+ Recall

;

• Precision =
True Positives

True Positives+ False Positives
;

• Recall =
True Positives

True Positives+ False Negatives
;

• True Positive is the number of relevant items answered by the subject;

• False Positive is the number of non-relevant items answered by the subject;

• False Negative is the number of relevant items not answered by the subject.

5.2.1 Experiment Planning

To evaluate Adaptive Behavior, we ran a specific purpose off-line experiment with

software engineering undergraduate students. During the experiment, they had to inter-

pret and to build conceptual models from real SaSs scenarios. The experiment was orga-

nized according to the “One Factor with Two Treatments and Paired Comparison” stan-

dard design type. The factor was the modeling language and the treatments were the UML

standard elements and the Adaptive Behavior modeling element. We enabled the paired

comparison by collecting the subjects F-Scores before and after introducing Adaptive Be-

havior. Thus, in this experiment, the UML standard elements and the Adaptive Behavior

modeling element were the independent variables whereas F-Scores was the dependent

variable.

Our first goal was to evaluate the Adaptive Behavior expressiveness, i.e., its ability

to make explicit the relevant information in SaSs conceptual models. We advocated that

the subjects would be able to identify contextual information and behavioral possibilities in

Adaptive Behavior. We verified this by comparing the F-scores before (Baseline) and after

(Experimental) introducing Adaptive Behavior. Thus, we formalized our expressiveness

hypotheses as follows:

• H0Exp : F-scoreBaseline = F-scoreExperimental
• H1Exp : F-scoreBaseline ̸= F-scoreExperimental
Our second goal was to evaluate the Adaptive Behavior effectiveness, i.e., its abil-

ity to produce the relevant information in SaSs conceptual models. We advocated that

the subjects would be able to model contextual information and behavioral possibilities

70

with Adaptive Behavior. We also verified this by comparing the F-scores before (Base-

line) and after (Experimental) introducing Adaptive Behavior. Thus, we formalized our

effectiveness hypotheses as follows:

• H0Eff : F-scoreBaseline = F-scoreExperimental
• H1Eff : F-scoreBaseline ̸= F-scoreExperimental
The subjects were selected from a population of software engineering undergradu-

ate students. To ensure a sample with similar skills and abilities, we invited only third-year

and fourth-year students. Third-year students already attended software analysis and de-

sign classes, and they are studying software engineering advanced topics. Fourth-year stu-

dents already attended all curricular content, and they are doing the supervised internship

and the term paper. We used this classification as blocking criteria for this experiment.

We provided to the subjects the material required to carry out the experiment. Be-

sides a supporting documentation, we supplied them with a set of instruments to collect

the experiment data. As can be seen in Appendix C, each instrument proposed a specific

activity to be performed by the subjects. We ran the experiment according to the following

roadmap:

1. reviewing of SaSs, requirements specification, and conceptual modeling;

2. interpreting of a SaSs conceptual model specified in UML;

3. modeling of a SaSs conceptual model with UML;

4. learning of the Adaptive Behavior modeling element;

5. interpreting of a SaSs conceptual model specified with Adaptive Behavior;

6. modeling of a SaSs conceptual model with Adaptive Behavior.

We note that the Baseline data were collected in the steps 2 and 3 whereas the

Experimental data were collected in the steps 5 and 6. The set of activities were elaborated

by the researchers based on SaSs scenarios presented in literature.

5.2.2 Experiment Execution

First of all, we established the experiment potential sample as planning before.

We identified 66 students able to participate in the experiment. From this, 39 students

had signed up to participate and 36 effectively participated. We present in Table 5.1 the

quantity of subjects according to the blocking criteria.

As a matter of schedule, we divided each execution session in 2 meetings, being

the first with 2 hours and the second with 1 hour of duration. We ran the first session on

71

Table 5.1: Subjects quantity according to blocking criteria.
Quantity

Third-year Students 18
Fourth-year Students 18

Total 36
Source: The authors.

May 8 and 10, 2018, and the second session on May 15 and 16, 2018. Each session took

place in an isolated room and was attended by 18 subjects. The researchers guided the

sessions without interfering or providing any support to the subjects.

After all sessions, subjects models were corrected in parallel by two researchers.

The correction process was supported by a reference conceptual model and a set of guide-

lines to reviewers, as can bee seen in Appendix D. The results were analyzed to solve

corrections differences and the data were tabulated to calculate the metrics.

5.2.3 Results and Analysis

The experiment results data are available in Appendix E. Next, we summarize the

data and analyze the results against to the research goals.

5.2.3.1 Expressiveness Analysis

We analyze the Adaptive Behavior expressiveness evaluation result, which is pre-

sented in Figure 5.2. The chart is organized in two data groups, where the left presents the

Third-year Students results and the right presents the Fourth-year Students results. For

each group, it shows the results before (Baseline) and after (Experimental) introducing

Adaptive Behavior to the subjects.

Firstly, we analyze the Third-year Students data behavior. In Baseline, the subjects

median is 0.67, most the subjects have a F-score between 0.36 and 0.80, but some have F-

scores that are as low as 0.00 and as high as 1.00. In Experimental, the subjects median is

1.00, most the subjects have a F-score between 0.83 and 1.00, and there are three outliers

with F-score 0.50. The data centers (medians) clearly show that the Third-year Students

had a better performance after introducing Adaptive Behavior. This is corroborated by

the quartiles behavior: Experimental lower quartile is greater than Baseline upper quar-

tile. Analyzing the data spreads (inter-quartiles), both Baseline and Experimental have a

positive asymmetric distribution, but Baseline has a less homogeneous distribution than

72

Figure 5.2: Adaptive Behavior expressiveness evaluation result.

Third-year Students Fourth-year Students

0

0.2

0.4

0.6

0.8

1

Su
bj
ec
ts
F-
Sc

or
es

Baseline Experimental

Source: The authors.

Experimental.

Secondly, we analyze the Fourth-year Students data behavior. In Baseline, the

subjects median is 0.82, most the subjects have a F-score between 0.73 and 0.83, but some

have F-scores that are as low as 0.62 and as high as 0.91, and there are four outliers with

F-scores 0.25, 0.29, 0.33, and 1.00 respectively. In Experimental, the subjects median is

1.00, most the subjects have a F-score between 0.89 and 1.00, and there are two outliers

with F-score 0.29 and 0.50 respectively. The data centers (medians) clearly show that

the Fourth-year Students had a better performance after introducing Adaptive Behavior.

This is corroborated by the quartiles behavior: Experimental lower quartile is greater than

Baseline upper quartile. Analyzing the data spreads (inter-quartiles), both Baseline and

Experimental have a positive asymmetric distribution and there is no significant difference

between distributions homogeneity.

It is noticeable in Figure 5.2 a visual difference between Baseline and Experimental

results. We performed a hypothesis test to determine whether this difference is statistically

significant. To choose a proper test method, we first verified if the sample comes from

a normal population. According to the Shapiro-Wilk test, we have WF-score = 0.898 <

W(0.05,36) = 0.935 and P-valueF-Score = 0.003 < α = 0.050, meaning that the sample

does not come from a normal population with a 5% significance level. For this reason,

we applied a paired Wilcoxon test to compare the dependent samples. As a result, we

obtained P-value = 0.00008 < α = 0.05, therefore the difference between Baseline and

Experimental results is considered statistically significant.

Based on the hypothesis test result, we can refute the null hypothesis H0Exp and

73

accept the alternative hypothesis H1Exp. Based on the F-Scores behavior, we can say that

the Adaptive Behavior is able to make explicit contextual information and behavioral pos-

sibilities in SaSs conceptual model. We note that these conclusions are restricted by this

experiment scope, not being possible to generalize to other populations.

5.2.3.2 Effectiveness Analysis

We analyze the Adaptive Behavior effectiveness evaluation result, which is pre-

sented in Figure 5.3. The chart is organized in two data groups, where the left presents the

Third-year Students results and the right presents the Fourth-year Students results. For

each group, it shows the results before (Baseline) and after (Experimental) introducing

Adaptive Behavior to the subjects.

Figure 5.3: Adaptive Behavior effectiveness evaluation result.

Third-year Students Fourth-year Students

0

0.2

0.4

0.6

0.8

1

Su
bj
ec
ts
F-
Sc

or
es

Baseline Experimental

Source: The authors.

Firstly, we analyze the Third-year Students data behavior. In Baseline, the subjects

median is 0.30, most the subjects have a F-score between 0.09 and 0.40, but some have F-

scores that are as low as 0.40 and as high as 0.80. In Experimental, the subjects median is

0.52, most the subjects have a F-score between 0.28 and 0.72, but some have F-scores that

are as low as 0.00 and as high as 1.00. The data centers (medians) clearly show that the

Third-year Students had a better performance after introducing Adaptive Behavior. This

is corroborated by the quartiles behavior: Experimental lower quartile is relatively close

to Baseline upper quartile. Analyzing the data spreads (inter-quartiles), both Baseline and

Experimental have a positive asymmetric distribution, but Experimental has a little less

homogeneous distribution than Baseline.

74

Secondly, we analyze the Fourth-year Students data behavior. In Baseline, the sub-

jects median is 0.29, most the subjects have a F-score between 0.20 and 0.45, but some

have F-scores that are as low as 0.09 and as high as 0.76. In Experimental, the subjects

median is 0.59, most the subjects have a F-score between 0.45 and 1.00, but some have

F-scores that are as low as 0.00 and as high as 1.00. The data centers (medians) clearly

show that the Fourth-year Students had a better performance after introducing Adaptive

Behavior. This is corroborated by the quartiles behavior: Experimental lower quartile is

equal to Baseline upper quartile. Analyzing the data spreads (inter-quartiles), both Base-

line and Experimental have a negative asymmetric distribution, but Experimental has a

less homogeneous distribution than Baseline.

It is also noticeable in Figure 5.3 a visual difference between Baseline and Exper-

imental results. We performed other hypothesis test to determine whether this difference

is statistically significant. Again, we started by verifying if the sample comes from a

normal population. According to the Shapiro-Wilk test, we have WF-score = 0.986 >

W(0.05,36) = 0.935 and P-valueF-Score = 0.920 > α = 0.050, meaning that the sample

comes from a normal population with a 5% significance level. For this reason, we ap-

plied a paired Student’s t-test to compare the dependent samples. As a result, we obtained

P-value = 0.00006 < α = 0.05, therefore the difference between Baseline and Experi-

mental results is considered statistically significant.

Based on the hypothesis test result, we can refute the null hypothesis H0Eff and ac-

cept the alternative hypothesis H1Eff. Based on F-Scores behavior, we can say that Adap-

tive Behavior is able to model contextual information and behavioral possibilities in SaSs

conceptual models. We also note that these conclusions are restricted by this experiment

scope, not being possible to generalize to other populations.

5.2.4 Threats to Validity

We also adopted the classification scheme proposed by Cook and Campbell (1979)

to identify threats to the experiment validity.

5.2.4.1 Conclusion Validity

A threat to the experiment conclusion validity is that the statistical test may not

reveal a true pattern in the data. We mitigated this by maximizing the sample size (∼= 25%

75

of the population) and applying statistical conventional criteria (α = 0.05). Other threat is

that the researcher may have violated some statistical test assumptions. We mitigated this

by choosing a suitable statistical test for each data group (Wilcoxon test for dependent or

independent samples that do not come from a normal population and Student’s t-test for

dependent or independent samples that come from a normal population). Another threat

is that the researchers may search for a specific result. We mitigated this by defining

reference models and guidelines to drive the correction of the models built by the subjects.

Another threat is that the researchers may use measures with low reliability. We

mitigated this by using information retrievemetrics (Precision, Recall, and F-score), which

are well-defined and widely used. Another threat is that the implementation may be differ-

ent among the subjects. We mitigated this by providing textual documentation to subjects

and monitoring the implementation during sessions executions. Another threat is that out-

side elements may disturb the experiment results. We mitigated this by performing the

sessions in a reserved room and asking to the subjects do not use smart phones during

the session execution. Another threat is that the subjects heterogeneity may affect the

results interpretation. We mitigated this by selecting third-year and fourth-year software

engineering undergraduate students and using this classification as blocking criteria.

5.2.4.2 Internal Validity

A threat to the experiment internal validity is that the history may affect the exper-

iment results. We mitigated this by negotiating with the subjects the best day to run the

session so that there was no event or situation that took away their concentration. Other

threat is that the subjects may react positively (learning) or negatively (tired or bored) as

time passes. We mitigated this by ensuring a maximum duration for each session (two

hours) and monitoring the time spent in each activity during each session. Another threat

is that the subjects may respond differently at different times once they know how the test

is conducted. We mitigated this by introducing the activities for all subjects at the same

time and in a specific order, and avoiding any feedback about the activities during the

session execution.

Another threat is that the artifacts used for the experiment execution may be badly

designed. We mitigated this by carrying out a peer review process to verify all material

used in each session. Another threat is that the subjects performance may be very het-

erogeneous. We mitigated this by selecting the subjects from a population with similar

skills and abilities, and applying a blocking strategy to distinguish the subjects maturity.

76

Another threat is that the subjects may leave the experiment execution. We mitigated this

by negotiating with some professors a slot in their class schedule to perform the activi-

ties. Another threat is that the interactions with selection may lead to different behavior

in different groups. We mitigated this by determining a time-box for each activity and

allocating subjects with the same background.

5.2.4.3 Construct Validity

A threat to the experiment construct validity is that the constructs may be insuf-

ficiently defined. We mitigated this using a set of well-defined quantitative measures

(information retrieve metrics). Other threat is that the experiment may under-represent

the construct. We mitigated this by proposing activities based on a set of different but

equivalent scenarios. Another threat is that the treatment application may become the

subjects more receptive to the treatment. We mitigated this by hiding from the subjects

the technique used to analyze the models produced by them.

Another threat is that the treatment may affect positively or negatively the studied

construct. We mitigated this by mapping the relevant attributes to treatment evaluation

(expressiveness and effectiveness). Another threat is that the subjects may try to discover

the experiment purpose. We mitigated this by hiding from the subjects the evaluation

goals. Another threat is that the subjects may bias the results based on their expectations.

We mitigated this by carrying out peer reviews to ensure that the models built by the

subjects were correctly analyzed.

5.2.4.4 External Validity

A threat to the experiment external validity is that the sample may not represent the

population. We mitigated this by selecting subjects according to a required profile (Third-

year and Fourth-year students). Other threat is that the material may not be suitable to

the experiment activities. We mitigated this by using paper and pencil to perform the

modeling activity.

5.3 Chapter Lessons

In this chapter, we report the empirical techniques used to evaluate the SaSs mod-

eling schema correctness and completeness, and the Adaptive Behavior modeling element

77

expressiveness and effectiveness. The chapter main points are:

• the feedback obtained from focus group sessions guided our decisions and aided

us to produce the SaSs modeling schema;

• Adaptive Behavior is able to make explicit contextual information and behavioral

possibilities in SaSs conceptual model;

• Adaptive Behavior is able to model contextual information and behavioral possi-

bilities in SaSs conceptual models;

• the experiment conclusions are restricted by this experiment scope, not being pos-

sible to generalize to other populations.

In next chapter, we summarize the work results and conclusions, moreover, we

discuss some work limitations and propose future work.

78

79

6 CONCLUSIONS

SaSs can autonomously decide how to adapt their behavior at runtime in response

to contextual changes (ANDERSSON et al., 2009; BRUN et al., 2009; CHENG et al.,

2009). Conceptual modeling is the act of creating models that describe problems inde-

pendently of the solutions for purposes of understanding and communication (BATINI;

CERI; NAVATHE, 1992; MYLOPOULOS, 1992; CHEN; THALHEIM; WONG, 1999).

SaSs conceptual modeling is challenging because it is needed to deal with requirements

uncertainty, contextual changes, and behavioral possibilities. This complexity can be

minimized by using DSMLs (FRANK, 2011), which may be created by extending UML

(STAHL et al., 2006).

Our literature investigation revealed that UMLhas been extended to provide proper

support for SaSs conceptual modeling. The class diagram has been widely customized

to support the context-awareness and self-adaptiveness analysis models (SILVA et al.,

2018a). However, we also discovered that none of the studies integrate the context-

awareness and self-adaptiveness modeling. Thus, we propose a UML-based DSML called

SaSML that introduces a new modeling element called Adaptive Behavior able to synthe-

size a SaSs modeling schema based on design patterns.

SaSs modeling schema applies a set of design patterns to capture the higher-level

abstractions related to SaSs domain. The design patterns usage in the SaSs modeling

schema development contributed to a more flexible and reusable model. SaSML was

created by modifying the UML metamodel, ensuring the compatibility with UML stan-

dard elements, therefore, all UML valid constructions also are SaSML valid constructions.

Adaptive Behavior synthesizes a SaSs modeling schema, exposing only what needs to be

defined at modeling time. SaSML models are visually more synthetic than UML models,

contributing with the model comprehensibility.

We evaluated the SaSs modeling schema correctness and completeness by running

focus group sessions. The feedback obtained from the subjects guided our decisions and

aided us to capture the relevant SaSs higher-level abstractions. We evaluated the Adaptive

Behavior modeling element expressiveness and effectiveness by running an experiment

with subjects. The experiment results provide statistical evidence that the proposed UML-

based DSML effectively supports the SaSs conceptual modeling. Adaptive Behavior is

able to make explicit contextual information and behavioral possibilities in SaSs concep-

tual model. Adaptive Behavior is able to model contextual information and behavioral

80

possibilities in SaSs conceptual models.

Our hypothesis is that SaSML contributes to the modeling quality by capturing the

SaSs higher-level abstractions. Whereas themodels quality is related to theirs communica-

tions capability (HULL; JACKSON; DICK, 2011), models are restricted by the languages

expressiveness power (THALHEIM, 2011), and DSMLs provide higher-level abstractions

for mapping a targeted domain (FRANK, 2011). Whereas SaSML is a UML-based DSML

that extends UML introducing a new modeling element, Adaptive Behavior synthesizes

the SaSs modeling schema without losing expressiveness, and the SaSs modeling schema

captures the SaSs higher-level abstractions by applying a set of design patterns. We can

conclude that SaSML contributes to the SaSs conceptual modeling quality, therefore, we

can accept the hypothesis.

6.1 Future Work

TheAdaptive Behavior modeling element introducing by SaSML first version sup-

ports only the structural modeling. Adaptive Behavior specifies the contextual information

and behavioral possibilities related to the adaptation process, but it does not specify which

situation (contextual information instance) triggers each system behavior. We propose ex-

tending UML behavioral modeling elements, state machines for example, to support the

SaSs adaptation rules modeling.

Conceptual models are useful for requirements analysis because they aid in un-

derstanding the situation in which a problem occurs (BOURQUE; FAIRLEY, 2014). The

SaSs modeling schema aids in the modeling process by indicating the main concepts to

be considered during SaSs conceptual modeling. However, higher-level abstractions do

not ensure that the requirements was properly analyzed during the modeling process. We

propose creating a process that drives the work of software engineers during the require-

ments analysis process. The first SaSs modeling process version can be seen in Silva et

al. (2018b) and a draft of the next version can be seen in Appendix F.

SaSML is not yet supported by Computer-Aided Software Engineering (CASE)

tools. A good CASE tool is essential to make SaSML feasible to practitioners and in-

dustry. We have worked towards developing CASE tools for requirements specification

(MORO, 2015) and conceptual modeling (FRANZ, 2017) oriented to SaSs. We propose

developing a CASE tool that supports the Adaptive Behavior modeling element, as well

as transformation of a SaSML model to a UML model.

81

We evaluated SaSML by applying two distinct empirical techniques (Focus Group

and Experiment with Subjects). As in every empirical study, the conclusions are restricted

by the evaluation scope, not being possible to generalize to other populations. We propose

reapplying the experiment in other scenarios and population to maximize the conclusions

generality. We also propose carrying out Case Studies1 to evaluate the Adaptive Behavior

modeling element in a real-life context.

1An empirical technique that uses several evidence sources to investigate one or few software engineering
phenomenon instance within its real-life context (WOHLIN et al., 2012).

82

83

REFERENCES

AL-ALSHUHAI, A.; SIEWE, F. An Extension of UML Activity Diagram to
Model the Behaviour of Context-Aware Systems. In: 2015 IEEE International
Conference on Computer and Information Technology; Ubiquitous Computing
and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing. Liverpool: IEEE, 2015. p. 431–437. ISBN 978-1-5090-
0154-5.

ALMUTAIRI, S.; BELLA, G.; ABU-SAMAHA, A. Specifying security requirements of
context aware system using UML. In: Seventh International Conference on Digital
Information Management (ICDIM 2012). Macau: IEEE, 2012. p. 259–265. ISBN
978-1-4673-2430-4.

ANDERSSON, J. et al. Modeling Dimensions of Self-Adaptive Software Systems. In:
Software Engineering for Self-Adaptive Systems. Berlin: Springer Berlin Heidelberg,
2009, (Lecture Notes in Computer Science, v. 5525). p. 27–47. ISBN 3642021603.

AYED, D.; DELANOTE, D.; BERBERS, Y. MDD Approach for the Development of
Context-Aware Applications. In: Modeling and Using Context. Berlin: Springer Berlin
Heidelberg, 2007, (Lecture Notes in Computer Science). p. 15–28.

BARESI, L.; PASQUALE, L. Live goals for adaptive service compositions. In:
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems - SEAMS ’10. New York: ACM Press, 2010. p. 114–123.
ISBN 9781605589718. ISSN 02705257.

BATINI, C.; CERI, S.; NAVATHE, S. B. Conceptual Database Design: An
Entity-Relationship Approach. Boston: Addison-Wesley, 1992. 470 p. ISBN
9780805302448.

BECKER, M.; LUCKEY, M.; BECKER, S. Model-driven performance engineering
of self-adaptive systems. In: Proceedings of the 8th international ACM SIGSOFT
conference on Quality of Software Architectures - QoSA ’12. New York: ACM Press,
2012. p. 117. ISBN 9781450313469.

BENCOMO, N. et al. Requirements reflection. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - ICSE ’10. New York: ACM
Press, 2010. v. 2, p. 199. ISBN 9781605587196. ISSN 0270-5257.

BENSELIM, M. S.; SERIDI-BOUCHELAGHEM, H. Extended UML for the
Development of Context-Aware Applications. In: Networked Digital Technologies.
Berlin: Springer, 2012, (Communications in Computer and Information Science, v. 293).
p. 33–43.

BENSELIM, M.-S.; SERIDI-BOUCHELAGHEM, H. Towards A UML Profile for
Context-Awareness Domain. International Arab Journal of Information Technology,
v. 14, n. June, p. 195–207, 2017.

BLOOR, M. et al. Focus Groups in Social Research. London: SAGE Publications,
2001. ISBN 0761957421.

84

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. The Unified Modeling Language User
Guide. 2. ed. Boston: Addison-Wesley, 2005. 496 p. ISBN 0321267974.

BOUDJEMLINE, H. et al. Heavyweight extension to the UML class diagram metamodel
for modeling context aware systems in ubiquitous computing. International Journal
of Pervasive Computing and Communications, v. 13, n. 3, p. 238–251, 2017. ISSN
1742-7371.

BOURQUE, P.; FAIRLEY, R. E. (Ed.). Guide to the Software Engineering Body of
Knowledge. 3. ed. Piscataway: IEEE Press, 2014. 335 p. ISBN 9780769551661.

BRINGS, J.; SALMON, A.; SARITAS, S. Context uncertainty in requirements
engineering: Definition of a search strategy for a systematic review and preliminary
results. In: CEURWorkshop Proceedings. Essen: CEUR, 2015. v. 1342, p. 171–178.

BRUCK, J.; HUSSEY, K. Customizing UML: Which Technique is Right for
You? 2008. Available at: <https://www.eclipse.org/modeling/mdt/uml2/docs/articles/
Customizing_UML2_Which_Technique_is_Right_For_You/article.html>, Accessed on:
08/30/18.

BRUN, Y. et al. Engineering Self-Adaptive Systems through Feedback Loops. In:
Software Engineering for Self-Adaptive Systems. Berlin: Springer Berlin Heidelberg,
2009, (Lecture Notes in Computer Science, v. 5525). p. 48–70. ISBN 3642021603.

CAMBRIDGE. Cambridge Dictionary. Cambridge: Cambridge University Press, 2018.
Available at: <https://dictionary.cambridge.org/>, Accessed on: 08/30/18.

CHEN, P. P.; THALHEIM, B.; WONG, L. Y. Future Directions of Conceptual Modeling.
In: Conceptual Modeling: Current Issues and Future Directions. Berlin: Springer
Berlin Heidelberg, 1999. p. 287–301. ISBN 978-3-540-65926-6.

CHENG, B. H. C. et al. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Software Engineering for Self-Adaptive Systems. Berlin: Springer
Berlin Heidelberg, 2009, (Lecture Notes in Computer Science, v. 5525). p. 1–26. ISBN
978-3-642-02160-2, 978-3-642-02161-9.

COOK, T. D.; CAMPBELL, D. T. Quasi-Experimentation: Design & Analysis Issues
for Field Settings. Boston: Houghton Mifflin, 1979. 420 p. ISBN 9780395307908.

COSTA, P. et al. Situations in Conceptual Modeling of Context. In: 2006 10th IEEE
International Enterprise Distributed Object Computing Conference Workshops
(EDOCW’06). Hong Kong: IEEE, 2006. p. 6–6. ISBN 0-7695-2743-4.

De Lucia, A. et al. An experimental comparison of ER and UML class diagrams for
data modelling. Empirical Software Engineering, v. 15, n. 5, p. 455–492, 2010. ISSN
1382-3256.

DEVINCENZI, S. et al. O uso de tecnologias persuasivas para potencializar o processo
de aprendizagem baseado em problemas. Revista Spacios, v. 38, n. 60, p. 13, 2017. ISSN
07981015.

DEY, A. K. Understanding and Using Context. Personal and Ubiquitous Computing
Journal, v. 1, n. 5, p. 4–7, 2001.

https://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
https://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
https://dictionary.cambridge.org/

85

FRANK, U. Some guidelines for the conception of domain-specific modelling languages.
In: Proceedings of the 4th International Workshop on Enterprise Modelling and
Information Systems Architectures. Bonn: Gesellschaft für Informatik, 2011. p.
93–106. ISBN 9783885792840.

FRANZ, L. P. Extração Automática de Modelos Conceituais a Partir de Requisitos
Para Sistemas Autoadaptativos. 2017. Available at: <http://dspace.unipampa.edu.
br/bitstream/riu/1941/1/Luiz%20Paulo%20Franz%20-%202017.pdf>, Accessed on:
08/30/18.

FREEMAN, E. et al. Head First Design Patterns: A Brain-Friendly Guide.
Sebastopol: O’Reilly Media, 2004. 694 p. ISBN 978-0596007126.

FUENTES, L.; GAMEZ, N.; SANCHEZ, P. Aspect-Oriented Executable UML Models
for Context-Aware Pervasive Applications. In: 2008 5th International Workshop on
Model-based Methodologies for Pervasive and Embedded Software. [S.l.]: IEEE,
2008. p. 34–43. ISBN 978-0-7695-3104-5.

GAMMA, E. et al.Design Patterns: Elements of Reusable Object-Oriented Software.
Boston: Addison-Wesley Professional, 1994. 395 p. ISBN 978-0201633610.

GOGOLLA, M. UML and OCL in Conceptual Modeling. In: Handbook of
Conceptual Modeling. Berlin: Springer Berlin Heidelberg, 2011. p. 85–122. ISBN
978-3-642-15864-3.

HAN, D. et al. FAME: A UML-based framework for modeling fuzzy self-adaptive
software. Information and Software Technology, Elsevier, v. 76, p. 118–134, 2016.
ISSN 09505849.

HEBIG, R.; GIESE, H.; BECKER, B. Making control loops explicit when architecting
self-adaptive systems. In: Proceeding of the second international workshop on
Self-organizing architectures - SOAR ’10. New York: ACM Press, 2010. p. 21. ISBN
9781450300872.

HSU, I.-C. Extending UML to model Web 2.0-based context-aware applications.
Software: Practice and Experience, v. 42, n. 10, p. 1211–1227, 2012. ISSN 00380644.

HULL, E.; JACKSON, K.; DICK, J. Requirements Engineering. 3. ed. London:
Springer, 2011. ISBN 1849964041.

JALALI, S.; WOHLIN, C. Systematic Literature Studies: Database Searches vs.
Backward Snowballing. In: Proceedings of the ACM-IEEE international symposium
on Empirical software engineering and measurement - ESEM ’12. New York: ACM
Press, 2012. p. 29. ISBN 9781450310567. ISSN 19493770.

KAPITSAKI, G. M.; VENIERIS, I. S. PCP: Privacy-aware Context Profile towards
Context- aware Application Development. In: Proceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services -
iiWAS ’08. New York: ACM Press, 2008. p. 104. ISBN 9781605583495.

KEPHART, J.; CHESS, D. The vision of autonomic computing. Computer, v. 36, n. 1,
p. 41–50, 2003. ISSN 0018-9162.

http://dspace.unipampa.edu.br/bitstream/riu/1941/1/Luiz%20Paulo%20Franz%20-%202017.pdf
http://dspace.unipampa.edu.br/bitstream/riu/1941/1/Luiz%20Paulo%20Franz%20-%202017.pdf

86

KITCHENHAM,B.; CHARTERS, S.Guidelines for performing Systematic Literature
reviews in Software Engineering (Version 2.3). 2007. Available at: <http://citeseerx.
ist.psu.edu/viewdoc/download;jsessionid=EC339FBB73AFA1A0175176EBD97F6EFF?
doi=10.1.1.117.471&rep=rep1&type=pdf>, Accessed on: 08/30/18.

KRUPITZER, C. et al. A survey on engineering approaches for self-adaptive systems.
Pervasive and Mobile Computing, v. 17, n. Part B, p. 184–206, 2015. ISSN 15741192.

LEWIS, P. R. et al. A Survey of Self-Awareness and Its Application in Computing
Systems. In: 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing
Systems Workshops. Ann Arbor: IEEE, 2011. p. 102–107. ISBN 978-1-4577-2029-1.

LINSTONE, H. A.; TUROFF, M. The Delphi Method: Techniques and Applications.
Boston: Addison-Wesley, 1975. 621 p. ISBN 978-0-201-04294-8.

LUCKEY,M.; ENGELS, G. High-quality specification of self-adaptive software systems.
In: 2013 8th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). Los Alamitos: IEEE, 2013. p. 143–152. ISBN
978-1-4673-4401-2.

LUCKEY, M. et al. Adapt Cases: Extending Use Cases for Adaptive Systems. In:
Proceeding of the 6th international symposium on Software engineering for adaptive
and self-managing systems - SEAMS ’11. New York: ACM Press, 2011. p. 30. ISBN
9781450305754.

MACÍAS-ESCRIVÁ, F. D. et al. Self-adaptive systems: A survey of current approaches,
research challenges and applications. Expert Systems with Applications, v. 40, n. 18, p.
7267–7279, 2013. ISSN 09574174.

MALAVOLTA, I.; MUCCINI, H.; SEBASTIANI, M. Automatically Bridging UML
Profiles to MOF Metamodels. In: 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications. Funchal: IEEE, 2015. p. 259 – 266. ISBN
9781467375856.

MINTON, E. A.; KHALE, L. R. Belief Systems, Religion, and Behavioral Economics.
New York: Business Expert Press, 2014. ISBN 978-1-60649-704-3.

MOHABBATI, B. et al. Combining service-orientation and software product line
engineering: A systematic mapping study. Information and Software Technology,
v. 55, n. 11, p. 1845–1859, 2013. ISSN 09505849.

MORO, G. B.Uma Ferramenta de Apoio à Especificação de Requisitos para Sistemas
Autoadaptativos. [S.l.], 2015. Available at: <http://dspace.unipampa.edu.br/bitstream/
riu/875/1/Uma%20ferramenta%20de%20apoio%20%C3%A0%20especifica%C3%A7%
C3%A3o%20de%20requisitos%20para%20sistemas%20autoadaptativos.pdf>, Accessed
on: 08/15/18.

MYLOPOULOS, J. Conceptual modelling and Telos. In: LOUCOPOULOS, P.;
ZICARI, R. (Ed.). Conceptual Modeling, Databases, and Case An integrated view of
information systems development. New York: John Wiley and Sons, 1992. p. 49–68.
ISBN 0471554626.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EC339FBB73AFA1A0175176EBD97F6EFF?doi=10.1.1.117.471&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EC339FBB73AFA1A0175176EBD97F6EFF?doi=10.1.1.117.471&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EC339FBB73AFA1A0175176EBD97F6EFF?doi=10.1.1.117.471&rep=rep1&type=pdf
http://dspace.unipampa.edu.br/bitstream/riu/875/1/Uma%20ferramenta%20de%20apoio%20%C3%A0%20especifica%C3%A7%C3%A3o%20de%20requisitos%20para%20sistemas%20autoadaptativos.pdf
http://dspace.unipampa.edu.br/bitstream/riu/875/1/Uma%20ferramenta%20de%20apoio%20%C3%A0%20especifica%C3%A7%C3%A3o%20de%20requisitos%20para%20sistemas%20autoadaptativos.pdf
http://dspace.unipampa.edu.br/bitstream/riu/875/1/Uma%20ferramenta%20de%20apoio%20%C3%A0%20especifica%C3%A7%C3%A3o%20de%20requisitos%20para%20sistemas%20autoadaptativos.pdf

87

OMG, O. M. G. OMG Unified Modeling Language - Version 2.5.1. 2017. Available at:
<https://www.omg.org/spec/UML/2.5.1/>, Accessed on: 08/30/18.

OREIZY, P. et al. An architecture-based approach to self-adaptive software. IEEE
Intelligent Systems, v. 14, n. 3, p. 54–62, 1999. ISSN 1094-7167.

OXFORD.Oxford Dictionaries. 2018. Available at: <https://en.oxforddictionaries.com/
>, Accessed on: 08/30/18.

PATIKIRIKORALA, T. et al. A systematic survey on the design of self-adaptive software
systems using control engineering approaches. In: 2012 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
Zurich: IEEE, 2012. p. 33–42. ISBN 978-1-4673-1787-0.

PMI. A Guide to the Project Management Body of Knowledge. 5. ed. Newtown
Square: Project Management Institute, 2013. 580 p. ISBN 978-1-935589-67-9.

ROUSSOPOULOS, N.; KARAGIANNIS, D. Conceptual Modeling: Past, Present and
the Continuum of the Future. In: BORGIDA, A. T. et al. (Ed.). Conceptual Modeling:
Foundations and Applications. Berlin: Springer-Verlag, 2009, (Lecture Notes in
Computer Science). p. 139–152. ISBN 978-3-642-02462-7.

SALEHIE, M.; TAHVILDARI, L. Self-Adaptive Software: Landscape and Research
Challenges. ACM Transactions on Autonomous and Adaptive Systems, v. 4, n. 2, p.
1–42, 2009. ISSN 15564665.

SAWYER, P. et al. Requirements-Aware Systems: A Research Agenda for RE for
Self-adaptive Systems. In: 2010 18th IEEE International Requirements Engineering
Conference. Sydney: IEEE, 2010. p. 95–103. ISBN 978-1-4244-8022-7. ISSN
1090-705X.

SHALLOWAY, A.; TROTT, J. R. Design Patterns Explained: A New Perspective
on Object Oriented Design. 2. ed. Boston: Addison-Wesley, 2004. 480 p. ISBN
978-0321247148.

SHENG, Q.; BENATALLAH, B. ContextUML: A UML-Based Modeling Language
for Model-Driven Development of Context-Aware Web Services Development. In:
International Conference on Mobile Business (ICMB’05). Sydney: IEEE, 2005. p.
206–212. ISBN 0-7695-2367-6.

SHVETS, A. Design Patterns Explained Simply. Kyiv: Source Making, 2018. 119 p.

SILVA, J. P. S. da et al. A systematic literature review of UML-based domain-specific
modeling languages for self-adaptive systems. In: Proceedings of the 13th International
Conference on Software Engineering for Adaptive and Self-Managing Systems -
SEAMS ’18. New York: ACM Press, 2018. p. 87–93. ISBN 9781450357159.

SILVA, J. P. S. da et al. Improving self-adaptive systems conceptual modeling. In:
Proceedings of the 33rd Annual ACM Symposium on Applied Computing - SAC
’18. New York: ACM Press, 2018. p. 1292–1299. ISBN 9781450351911.

https://www.omg.org/spec/UML/2.5.1/
https://en.oxforddictionaries.com/
https://en.oxforddictionaries.com/

88

SILVA, J. P. S. da et al. Towards a Domain-Specific Modeling Language for
Self-adaptive Systems Conceptual Modeling. In: XXXII Brazilian Symposium on
Software Engineering (SBES 2018). New York: ACM Press, 2018. p. 6. ISBN
978-1-4503-6503-1/18/09.

SIMONS, C.; WIRTZ, G. Modeling context in mobile distributed systems with the
UML. Journal of Visual Languages & Computing, v. 18, n. 4, p. 420–439, 2007. ISSN
1045926X.

SIQUEIRA, B. R. et al. Characterisation of Challenges for Testing of Adaptive Systems.
In: Proceedings of the 1st Brazilian Symposium on Systematic and Automated
Software Testing - SAST. New York: ACM Press, 2016. p. 1–10. ISBN 9781450347662.

SOLINGEN, R.; BERGHOUT, E. The goal/question/metric method. London:
McGraw-Hill, 1999. 216 p. ISBN 0077095537.

SOMMERVILLE, I. Software Engineering. 9. ed. Boston: Addison Wesley, 2010.
ISBN 0137035152.

SOUZA, V. E. S. et al. Requirements-driven software evolution. Computer Science -
Research and Development, v. 28, n. 4, p. 311–329, 2013. ISSN 1865-2034.

SOUZA, V. E. S. et al. Awareness requirements for adaptive systems. In: Proceeding
of the 6th international symposium on Software engineering for adaptive and
self-managing systems - SEAMS ’11. New York: ACM Press, 2011. p. 60. ISBN
9781450305754.

STAHL, T. et al.Model-Driven Software Development: Techonolgy, Engineering,
Management. Chichester: John Wiley and Sons, 2006. 428 p. ISBN 9780470025703.

STÖRRLE, H. How are Conceptual Models used in Industrial Software Development?
In: Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering. New York: ACM Press, 2017. p. 160–169.

THALHEIM, B. The Theory of Conceptual Models, the Theory of Conceptual Modelling
and Foundations of Conceptual Modelling. In: EMBLEY, D. W.; THALHEIM, B. (Ed.).
Handbook of Conceptual Modeling. Berlin: Springer Berlin Heidelberg, 2011. p.
543–577. ISBN 978-3-642-15864-3.

TURBAK, F.; GIFFORD, D.; SHELDON, M. A. Design Concepts in Programming
Languages. Cambridge: MIT Press, 2008. 1322 p. ISBN 9780262201759.

Van Velsen, L. et al. User-centered evaluation of adaptive and adaptable systems: a
literature review. The Knowledge Engineering Review, v. 23, n. 03, p. 261–281, 2008.
ISSN 0269-8889.

VASSEV, E.; HINCHEY, M. Knowledge Representation for Adaptive and Self-aware
Systems. In: WIRSING, M. et al. (Ed.). Software Engineering for Collective
Autonomic Systems. Cham: Springer, 2015, (Lecture Notes in Computer Science,
v. 8998). p. 221–247. ISBN 978-3-319-16309-3, 978-3-319-16310-9.

89

WENZL, S. S.; STREMBECK, M. Modelling context-aware RBAC models for mobile
business processes. International Journal of Wireless and Mobile Computing, v. 6,
n. 5, p. 448, 2013. ISSN 1741-1084.

WEYNS, D.; AHMAD, T. Claims and Evidence for Architecture-Based Self-adaptation:
A Systematic Literature Review. In: Software Architecture. Berlin: Springer Berlin
Heidelberg, 2013, (Lecture Notes in Computer Science, v. 7957). p. 249–265. ISBN
978-3-642-39030-2.

WEYNS, D. et al. A survey of formal methods in self-adaptive systems. In:
Proceedings of the Fifth International C* Conference on Computer Science and
Software Engineering - C3S2E ’12. New York: ACM Press, 2012. p. 67–79. ISBN
9781450310840.

WHITTLE, J. et al. RELAX: a language to address uncertainty in self-adaptive
systems requirement. Requirements Engineering, v. 15, n. 2, p. 177–196, 2010. ISSN
0947-3602.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication
in software engineering. In: Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering - EASE ’14. New York: ACM
Press, 2014. p. 1–10. ISBN 9781450324762. ISSN 09505849.

WOHLIN, C. et al. Experimentation in Software Engineering. Berlin: Springer-Verlag,
2012. 249 p. ISBN 9783642290435.

YANG, Z. et al. A Systematic Literature Review of Requirements Modeling and Analysis
for Self-adaptive Systems. In: Requirements Engineering: Foundation for Software
Quality. Cham: Springer International Publishing, 2014, (Lecture Notes in Computer
Science, v. 8396). p. 55–71. ISBN 978-3-319-05842-9.

YUAN, E.; ESFAHANI, N.; MALEK, S. A Systematic Survey of Self-Protecting
Software Systems. ACM Transactions on Autonomous and Adaptive Systems, v. 8,
n. 4, p. 1–41, 2014. ISSN 15564665.

90

91

APPENDIX A— ACADEMIC WORKS

Related to the Thesis

Works published in proceedings:

1. SILVA, João Pablo Silva da et al. Improving self-adaptive systems conceptual

modeling. In: 33rd ACM SYMPOSIUM ON APPLIED COMPUTING, 2018,

Pau. Proceedings of the 33rd Annual ACM Symposium on Applied Comput-

ing. New York: ACM Press, 2018. p. 1292 – 1299.

2. SILVA, João Pablo Silva da et al. A systematic literature review of UML-based

domain-specific modeling languages for self-adaptive systems. In: 13th INTER-

NATIONAL CONFERENCE ON SOFTWARE ENGINEERING FOR ADAP-

TIVE AND SELF-MANAGING SYSTEMS, 2018, Gothenburg. Proceedings of

the 13th International Conference on Software Engineering for Adaptive and

Self-Managing Systems. New York: ACM Press, 2018. p. 87 – 93.

3. SILVA, João Pablo Silva da et al. Towards a domain-specific modeling language

for self-adaptive systems conceptual modeling. In:XXXII BRAZILIAN SYM-

POSIUM ON SOFTWARE ENGINEERING, 2018, São Carlos. Proceedings of

the XXXII Brazilian Symposium on Software Engineering. New York: ACM

Press, 2018. p. 87 – 93.

4. TORRES, Rafael; FRANZ, Luiz Paulo; SILVA, João Pablo Silva da. Um Edi-

tor para a Linguagem de Especificação de Requisitos RELAX. In: 1ª ESCOLA

REGIONAL DE ENGENHARIA DE SOFTWARE, 2017, Alegrete. Anais da 1ª

Escola Regional de Engenharia de Software. Alegrete: Unipampa, 2017. p. 33

– 40.

Term paper advisory:

1. AMARAL, Eduardo Florindo. Uma Abordagem para Especificação de Requi-

sitos Sensíveis ao contexto Baseado em Casos de Uso para Sistemas Autoad-

aptativos. 2017. Term Paper – Software Engineering Undergraduate Program,

Federal University of Pampa, Alegrete, 2017.

2. FRANZ, Luiz Paulo. Extração Automática deModelos Conceituais a Partir de

Requisitos para Sistemas Autoadaptativos. 2017. Term Paper – Software En-

gineering Undergraduate Program, Federal University of Pampa, Alegrete, 2017.

3. LIMA, Mário Alan de Oliveira. Um Projeto de Interface para Ferramentas de

92

Modelagem UML Baseadas em Eclipse. 2017. Term Paper – Software Engi-

neering Undergraduate Program, Federal University of Pampa, Alegrete, 2017.

4. MORO, Gabriel Bronzatti. Uma Ferramenta de Apoio à Especificação de Req-

uisitos para Sistemas Autoadaptativos. 2015. Term Paper – Software Engineer-

ing Undergraduate Program, Federal University of Pampa, Alegrete, 2015.

Not Related to the Thesis

Book chapters published:

1. TOLFO, Cristiano; SILVA, João Pablo Silva da. Ensino de Gestão de Projetos de

Software Mediado pela Aprendizagem Baseada em Problemas. In: TOLFO, Cris-

tiano (Org.). Aprendizagem Baseada em Problemas na Engenharia de Soft-

ware: Relatos de Experiência. Bagé: Ediurcamp, 2018. p. 115 – 133.

2. SILVA, João Pablo Silva da et al. Aprendizagem Baseada em Problemas Aplicada

no Ensino de Abordagens Ágeis. In: TOLFO, Cristiano (Org.). Aprendizagem

Baseada em Problemas na Engenharia de Software: Relatos de Experiência.

Bagé: Ediurcamp, 2018. p. 93 – 113.

Works published in proceedings:

1. ECAR, Miguel da Silva; Kepler, Fabio Natanael; SILVA, João Pablo Silva da.

Cosmic User Story Standard. In: INTERNATIONAL CONFERENCE ON AG-

ILE SOFTWARE DEVELOPMENT, 2018, Porto. XP 2018: Agile Processes in

Software Engineering and Extreme Programming. Berlin: Springer, 2018.

2. ECAR, Miguel da Silva; SILVA, João Pablo Silva da; Kepler, Fabio Natanael.

AutoCosmic: COSMIC Automated Estimation and Management Tool. In: XIV

BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS, 2018, Caxias do

Sul. Proceedings of the XIV Brazilian Symposium on Information Systems.

New York: ACM Press, 2018.

3. MENEZES, Stefane et al. Empirical Evaluation of Formal Method for Require-

ments Specification in Agile Approaches. In: XIV BRAZILIAN SYMPOSIUM

ON INFORMATION SYSTEMS, 2018, Caxias do Sul. Proceedings of the XIV

Brazilian Symposium on Information Systems. New York: ACM Press, 2018.

4. CHEIRAN, Jean Felipe Patikowski et al. Problem-Based Learning to Align The-

ory and Practice in Software Testing Teaching. In: 31st BRAZILIAN SYMPO-

SIUM ON SOFTWARE ENGINEERING, 2017, Fortaleza. Proceedings of the

93

31st Brazilian Symposium on Software Engineering. New York: ACM Press,

2017. p. 328 – 337.

5. RODRIGUES, Peterson Luiz da Rosa et al. Coding Dojo as a transforming prac-

tice in collaborative learning of programming. In: 31st BRAZILIAN SYMPO-

SIUM ON SOFTWARE ENGINEERING, 2017, Fortaleza. Proceedings of the

31st Brazilian Symposium on Software Engineering. New York: ACM Press,

2017. p. 348 – 357.

6. ECAR, Miguel da Silva; SILVA, João Pablo Silva da. Multivocal Literature Re-

view on User StoryModels for COSMIC Sizing. In: 1ª ESCOLAREGIONALDE

ENGENHARIA DE SOFTWARE, 2017, Alegrete. Anais da 1ª Escola Regional

de Engenharia de Software. Alegrete: Unipampa, 2017. p. 41 – 48.

7. RODRIGUES, Peterson Luiz da Rosa et al. DevOps adoption in junior enterprise:

an experience report of software development. In: 1ª ESCOLA REGIONAL DE

ENGENHARIA DE SOFTWARE, 2017, Alegrete. Anais da 1ª Escola Regional

de Engenharia de Software. Alegrete: Unipampa, 2017. p. 89 – 96.

8. KRUG, Thiago Cassio et al. SOFIA: Um Sistema de Suporte para as Inspeções

de Software. In: 1ª ESCOLA REGIONAL DE ENGENHARIA DE SOFTWARE,

2017, Alegrete. Anais da 1ª Escola Regional de Engenharia de Software. Ale-

grete: Unipampa, 2017. p. 143 – 150.

9. RODRIGUES, Peterson Luiz da Rosa et al. Métodos Formais como Condutores

para Especificação de Requisitos Aplicados em Metodologias Ágeis de Desen-

volvimento. In: ESCOLA REGIONAL DE INFORMÁTICA, 2016, Rondonópo-

lis. Anais da Escola Regional de Informática. Rondonópolis: UFMT, 2016.

10. SILVA, João Pablo Silva da et al. OntoQAI: An Ontology to Support Quality

Assurance Inspections. In: 29st BRAZILIAN SYMPOSIUM ON SOFTWARE

ENGINEERING, 2015, Belo Horizonte. Proceedings of the 29st Brazilian Sym-

posium on Software Engineering. Washington: IEEE, 2015.

Term paper advisory:

1. ECAR, Miguel da Silva. AutoCosmic: Platform for COSMIC Automated Es-

timation and Management. 2017. Term Paper – Software Engineering Under-

graduate Program, Federal University of Pampa, Alegrete, 2017.

2. RODRIGUES, Peterson Luiz da Rosa. Estudos Empíricos sobre a Aplicabili-

dade de Especificação Formal de Requisitos em Projetos Ágeis. 2017. Term

Paper – Software EngineeringUndergraduate Program, Federal University of Pampa,

94

Alegrete, 2017.

3. CHAGAS, Jonas Maria. Um Plano de Medição para as Disciplinas de Res-

olução de Problemas do Curso de Engenharia de Software. 2016. Term Paper

– Software Engineering Undergraduate Program, Federal University of Pampa,

Alegrete, 2016.

4. GIORDANO, Douglas Montanha. UML Sketch Recognizer: Um aplicativo

para reconhecimento de esboços de diagramas de classe em fotos. 2015. Term

Paper – Software EngineeringUndergraduate Program, Federal University of Pam-

pa, Alegrete, 2015.

5. MACHADO, Ricardo Burg. Uma Arquitetura Web para Sistemas de Infor-

mações Geográficas aplicada a Geotecnia. 2015. Term Paper – Software Engi-

neering Undergraduate Program, Federal University of Pampa, Alegrete, 2015.

6. BRUNING, Eduardo. Uma Ferramenta de Modelagem Colaborativa de Dia-

gramas de Classes. 2015. Term Paper – Software Engineering Undergraduate

Program, Federal University of Pampa, Alegrete, 2015.

95

APPENDIX B — FOCUS GROUP INSTRUMENTS

First Session Instrument

We present below a first self-adaptive systems conceptual modeling schema ver-

sion. The group should evaluate and discuss the model correctness and completeness,

using as criteria its own abilities and skills.

1..*
1

1 1..*
1..*

1..*

1

1

1..*
1

2..*

1

1

1

1..*

1

1

1..*

1..*
1..*

Property

Context Behavior

Action

AtomicAction CompositeAction

Entity

PlacePerson Object

Manager

Sensor Actuator

Group Findings

96

Second Session Instrument

We present below a second self-adaptive systems conceptual modeling schema

version. The group should evaluate and discuss the model correctness and completeness,

using as criteria its own abilities and skills.

2..*
1

1

1..*

0..*

1

1

1

2..*

1

1

0..*

2..*

0..*

2..*

1

11

1..*
1

1

1

1..*
1

1..*
1..*

Property Context

AtomicContext CompositeContext

IntrinsicContext

RelationalContext

Entity

CompositeEntity AtomicEntity

Object

Sensor

Manager

Actuator

Person Place

Action

AtomicAction CompositeAction

Behavior

Group Findings

97

Third Session Instrument

We present below a third self-adaptive systems conceptual modeling schema ver-

sion. The group should evaluate and discuss the model correctness and completeness,

using as criteria its own abilities and skills.

0..*1

1 1

1..*

1..*

1..*

1
1 1..*

Entity

EntityOne

Context

ContextOne Manager

ManagerOne

Behavior

BehaviorOne

BehaviorTwo

Group Findings

98

99

APPENDIX C— EXPERIMENTWITH SUBJECTS INSTRUMENTS

First Activity

The conceptual model below specifies the entities and relationship of a blood pres-

sure monitoring requirement for a health care system. Analyze the model and answer the

questions.

1

1

0..*

1

1 1..*
Patient

BloodPressure

BloodPressureManager Action

MedicineAdvising

MedicalCalling RestRecommendation

1. What items refers to contextual information?

(a) BloodPressureManager

(b) MedicineAdvising

(c) Patient

(d) BloodPressure

(e) MedicalCalling

(f) RestRecommendation

(g) Action

2. What items refers to adaptive behavior?

(a) RestRecommendation

(b) Action

(c) MedicalCalling

(d) MedicineAdvising

(e) BloodPressure

(f) Patient

(g) BloodPressureManager

100

Second Activity

The requirement below specifies a learning support requirement for a smart tutor

system. Analyze the requirement and formulate a conceptual model in UML notation.

The system SHALL provide support material to students according to their learning needs.
It MAY provide courseware whenever identify student conceptual gaps, OR it MAY provide
examples whenever are required student development activities.
ENV: Course teaching plan and Students performance.
MON: Courses tracker and Students tracker.
REL: Courses tracker provides Course teaching plan and Students tracker provides

Students performance.
DEP: None.

Subject Answer

101

Third Activity

The conceptual model below specifies the entities and relationships of a river water

level monitoring requirement for a smart city system. Analyze the model and answer the

questions.

1 1..*

C

B

LevelRiverMonitor

WaterLevel River

CityEvacuation

DamElevation

FloodgatesOpening
CivilDefense

1. What items refers to contextual information?

(a) CivilDefense

(b) LevelRiverMonitor

(c) WaterLevel

(d) FloodgatesOpening

(e) DamElevation

(f) River

(g) CityEvacuation

2. What items refers to adaptive behavior?

(a) DamElevation

(b) LevelRiverMonitor

(c) CivilDefense

(d) FloodgatesOpening

(e) River

(f) CityEvacuation

(g) WaterLevel

102

Fourth Activity

The requirement below specifies an energy supply management for a company.

Analyze the requirement and formulate a conceptual model in SaSML notation.

The system SHALL manage the energy supply to minimize the energy cost. It MAY turn
on the power generator whenever consumption is low and tariff is high, OR it MAY buy
electricity in any other situation.
ENV: Company energy consumption and Distributor energy tariff.
MON: Consumption tracker and Cost tracker.
REL: Consumption tracker provides Company energy consumption and Cost tracker

provides Distributor energy tariff.
DEP: None.

Subject Answer

103

APPENDIX D— EXPERIMENTWITH SUBJECTS GUIDELINES

First Activity

Activity answers:

1. What items refers to contextual information?

• BloodPressureManager

• Patient

2. What items refers to adaptive behavior?

• RestRecommendation

• MedicalCalling

• MedicineAdvising

Correction criteria:

Measure Definition
True-positive Items marked by the subject that exist in the answers.
False-positive Items marked by the subject that do not exist in the answers.
False-negative Items not marked by the subject that exist in the answers.

Second Activity

Activity answer:

1 1

1 1..*

1
0..*

1

0..*
1 1..*

Student StudentPerformance

MaterialProvider

CourseTeachingPlanCourse

Action

CoursewareProviding

ExampleProviding

Correction criteria:

Measure Definition
True-positive Items modeled by the subject that exist in the answer.
False-positive Items modeled by the subject that do not exist in the answer.
False-negative Items not modeled by the subject that exist in the answer.

104

Third Activity

Activity answers:

1. What items refers to contextual information?

• WaterLevel

• River

2. What items refers to adaptive behavior?

• DamElevation

• FloodgatesOpening

• CityEvacuation

Correction criteria:

Measure Definition
True-positive Items marked by the subject that exist in the answers.
False-positive Items marked by the subject that do not exist in the answers.
False-negative Items not marked by the subject that exist in the answers.

Fourth Activity

Activity answers:

C

B

EnergyManager

EnergyTariff

EnergyConsumption

Distributor

Company

EnergyAcquisition

EnergyProduction

Correction criteria:

Measure Definition
True-positive Items modeled by the subject that exist in the answer.
False-positive Items modeled by the subject that do not exist in the answer.
False-negative Items not modeled by the subject that exist in the answer.

105

APPENDIX E — EXPERIMENTWITH SUBJECTS RESULTS DATA

First Activity

Subject Blocking TP FP FN Precision Recall F-measure
S1 Third-year 5 2 0 0.71 1 0.83
S2 Fourth-year 1 2 4 0.33 0.2 0.25
S3 Fourth-year 5 3 0 0.63 1 0.77
S4 Third-year 4 1 1 0.8 0.8 0.8
S5 Fourth-year 5 2 0 0.71 1 0.83
S6 Fourth-year 5 2 0 0.71 1 0.83
S7 Third-year 4 3 1 0.57 0.8 0.67
S8 Fourth-year 4 2 1 0.67 0.8 0.73
S9 Third-year 1 1 4 0.5 0.2 0.29
S10 Third-year 5 5 0 0.5 1 0.67
S11 Third-year 3 4 2 0.43 0.6 0.5
S14 Third-year 0 5 5 0 0 0
S15 Third-year 0 4 5 0 0 0
S16 Fourth-year 4 1 1 0.8 0.8 0.8
S17 Fourth-year 5 2 0 0.71 1 0.83
S18 Third-year 2 4 3 0.33 0.4 0.36
S19 Fourth-year 5 1 0 0.83 1 0.91
S20 Fourth-year 5 2 0 0.71 1 0.83
S21 Fourth-year 5 2 0 0.71 1 0.83
S22 Fourth-year 5 2 0 0.71 1 0.83
S23 Fourth-year 5 2 0 0.71 1 0.83
S25 Fourth-year 4 1 1 0.8 0.8 0.8
S26 Third-year 5 0 0 1 1 1
S27 Fourth-year 4 4 1 0.5 0.8 0.62
S28 Third-year 2 2 3 0.5 0.4 0.44
S29 Third-year 5 3 0 0.63 1 0.77
S30 Third-year 4 2 1 0.67 0.8 0.73
S31 Fourth-year 2 5 3 0.29 0.4 0.34
S32 Third-year 1 1 4 0.5 0.2 0.29
S34 Third-year 4 3 1 0.57 0.8 0.67
S35 Third-year 5 1 0 0.83 1 0.91
S36 Fourth-year 5 0 0 1 1 1
S38 Third-year 5 5 0 0.5 1 0.67
S39 Fourth-year 4 1 1 0.8 0.8 0.8
S40 Third-year 5 2 0 0.71 1 0.83
S41 Fourth-year 1 1 4 0.5 0.2 0.29

True-positive (TP), False-positive (FP), and False-negative (FN).

106

Second Activity

Subject Blocking TP FP FN Precision Recall F-measure
S1 Third-year 12 3 3 0.8 0.8 0.8
S2 Fourth-year 8 6 7 0.57 0.53 0.55
S3 Fourth-year 5 6 10 0.45 0.33 0.38
S4 Third-year 6 12 9 0.33 0.4 0.36
S5 Fourth-year 4 12 11 0.25 0.27 0.26
S6 Fourth-year 1 8 14 0.11 0.07 0.09
S7 Third-year 1 11 14 0.08 0.07 0.07
S8 Fourth-year 3 10 12 0.23 0.2 0.21
S9 Third-year 3 6 12 0.33 0.2 0.25
S10 Third-year 1 12 14 0.08 0.07 0.07
S11 Third-year 3 8 12 0.27 0.2 0.23
S14 Third-year 6 13 9 0.32 0.4 0.36
S15 Third-year 6 11 9 0.35 0.4 0.37
S16 Fourth-year 3 4 12 0.43 0.2 0.27
S17 Fourth-year 2 12 13 0.14 0.13 0.13
S18 Third-year 8 3 7 0.73 0.53 0.61
S19 Fourth-year 4 7 11 0.36 0.27 0.31
S20 Fourth-year 5 6 10 0.45 0.33 0.38
S21 Fourth-year 7 9 8 0.44 0.47 0.45
S22 Fourth-year 9 7 6 0.56 0.6 0.58
S23 Fourth-year 11 3 4 0.79 0.73 0.76
S25 Fourth-year 9 7 6 0.56 0.6 0.58
S26 Third-year 1 4 14 0.2 0.07 0.1
S27 Fourth-year 3 13 12 0.19 0.2 0.19
S28 Third-year 2 10 13 0.17 0.13 0.15
S29 Third-year 5 7 10 0.42 0.33 0.37
S30 Third-year 1 11 14 0.08 0.07 0.07
S31 Fourth-year 7 9 8 0.44 0.47 0.45
S32 Third-year 1 6 14 0.14 0.07 0.09
S34 Third-year 8 10 7 0.44 0.53 0.48
S35 Third-year 6 9 9 0.4 0.4 0.4
S36 Fourth-year 3 12 12 0.2 0.2 0.2
S38 Third-year 1 8 14 0.11 0.07 0.09
S39 Fourth-year 4 11 11 0.27 0.27 0.27
S40 Third-year 9 6 6 0.6 0.6 0.6
S41 Fourth-year 2 9 13 0.18 0.13 0.15

True-positive (TP), False-positive (FP), and False-negative (FN).

107

Third Activity

Subject Blocking TP FP FN Precision Recall F-measure
S1 Third-year 5 1 0 0.83 1 0.91
S2 Fourth-year 5 0 0 1 1 1
S3 Fourth-year 5 0 0 1 1 1
S4 Third-year 5 0 0 1 1 1
S5 Fourth-year 5 0 0 1 1 1
S6 Fourth-year 3 4 2 0.43 0.6 0.5
S7 Third-year 2 1 3 0.67 0.4 0.5
S8 Fourth-year 5 0 0 1 1 1
S9 Third-year 5 0 0 1 1 1
S10 Third-year 5 2 0 0.71 1 0.83
S11 Third-year 5 0 0 1 1 1
S14 Third-year 5 0 0 1 1 1
S15 Third-year 5 0 0 1 1 1
S16 Fourth-year 5 1 0 0.83 1 0.91
S17 Fourth-year 4 0 1 1 0.8 0.89
S18 Third-year 5 1 0 0.83 1 0.91
S19 Fourth-year 5 0 0 1 1 1
S20 Fourth-year 5 0 0 1 1 1
S21 Fourth-year 5 0 0 1 1 1
S22 Fourth-year 5 0 0 1 1 1
S23 Fourth-year 5 0 0 1 1 1
S25 Fourth-year 4 0 1 1 0.8 0.89
S26 Third-year 5 0 0 1 1 1
S27 Fourth-year 4 0 1 1 0.8 0.89
S28 Third-year 5 0 0 1 1 1
S29 Third-year 2 1 3 0.67 0.4 0.5
S30 Third-year 5 0 0 1 1 1
S31 Fourth-year 4 0 1 1 0.8 0.89
S32 Third-year 2 1 3 0.67 0.4 0.5
S34 Third-year 4 0 1 1 0.8 0.89
S35 Third-year 5 0 0 1 1 1
S36 Fourth-year 5 0 0 1 1 1
S38 Third-year 5 2 0 0.71 1 0.83
S39 Fourth-year 5 0 0 1 1 1
S40 Third-year 5 0 0 1 1 1
S41 Fourth-year 1 1 4 0.5 0.2 0.29

True-positive (TP), False-positive (FP), and False-negative (FN).

108

Fourth Activity

Subject Blocking TP FP FN Precision Recall F-measure
S1 Third-year 3 13 6 0.19 0.33 0.24
S2 Fourth-year 9 0 0 1 1 1
S3 Fourth-year 5 4 4 0.56 0.56 0.56
S4 Third-year 3 9 6 0.25 0.33 0.28
S5 Fourth-year 5 4 4 0.56 0.56 0.56
S6 Fourth-year 0 11 9 0 0 0
S7 Third-year 5 3 4 0.63 0.56 0.59
S8 Fourth-year 9 0 0 1 1 1
S9 Third-year 9 0 0 1 1 1
S10 Third-year 3 14 6 0.18 0.33 0.23
S11 Third-year 5 6 4 0.45 0.56 0.5
S14 Third-year 6 6 3 0.5 0.67 0.57
S15 Third-year 0 13 9 0 0 0
S16 Fourth-year 3 7 6 0.3 0.33 0.31
S17 Fourth-year 3 6 6 0.33 0.33 0.33
S18 Third-year 5 0 4 1 0.56 0.72
S19 Fourth-year 9 4 0 0.69 1 0.82
S20 Fourth-year 9 0 0 1 1 1
S21 Fourth-year 7 6 2 0.54 0.78 0.64
S22 Fourth-year 5 8 4 0.38 0.56 0.45
S23 Fourth-year 5 3 4 0.63 0.56 0.59
S25 Fourth-year 5 8 4 0.38 0.56 0.45
S26 Third-year 9 0 0 1 1 1
S27 Fourth-year 5 3 4 0.63 0.56 0.59
S28 Third-year 5 3 4 0.63 0.56 0.59
S29 Third-year 3 3 6 0.5 0.33 0.4
S30 Third-year 4 8 5 0.33 0.44 0.38
S31 Fourth-year 9 0 0 1 1 1
S32 Third-year 1 9 8 0.1 0.11 0.1
S34 Third-year 4 7 5 0.36 0.44 0.4
S35 Third-year 9 0 0 1 1 1
S36 Fourth-year 9 6 0 0.6 1 0.75
S38 Third-year 4 2 5 0.67 0.44 0.53
S39 Fourth-year 9 0 0 1 1 1
S40 Third-year 9 0 0 1 1 1
S41 Fourth-year 3 6 6 0.33 0.33 0.33

True-positive (TP), False-positive (FP), and False-negative (FN).

109

APPENDIX F — ADAPTIVE BEHAVIOR MODELING PROCESS

We propose a process that drives the software engineers work during the require-

ments analysis. It establishes an iterative and incremental cycle, which receives a require-

ment written in RELAX and produces a conceptual model specified in SaSML.

The process tasks define the procedures to extract from a requirement specification

the information required to specify an Adaptive Behavior instance. Each task receives as

input a requirement specification fragment and produces as output an Adaptive Behavior

compartment.

SaSs Conceptual Modeling

RELAXed
Requirement

SaSML Con-
ceptual Model

Define the Adap-
tation Manager

Define Contex-
tual Information

Define Behav-
ioral Possibilities

RELAX SHALL
Statement

Adaptive Behavior
Identifier Compartment

RELAX ENV
Property

Adaptive Behavior
Context Compartment

RELAX
MAY..ORMAY
Statement

Adaptive Behavior
Behavior Compartment

110

Task 1: Define the Adaptation Manager

The first task aims to extract the adaptation manager from the requirement. It re-

ceives as input a RELAXSHALLStatement and produces as output theAdaptive Behavior

identifier compartment. The task steps are:

1. read the RELAX SHALL statement text;

2. identify the requirement main goal;

3. create an Adaptive Behavior element;

4. define a identifier that expresses the requirement goal;

5. write the identifier in Adaptive Behavior identifier compartment.

Task 2: Define Contextual Information

The second task aims to extract the contextual information from the requirement. It

receives as input a RELAX ENV Property and produces as output the Adaptive Behavior

context compartment. The task steps are:

1. read the RELAX ENV property text;

2. identify the contexts that define entities situation;

3. identify the entities related to the contexts;

4. write the context and entities in Adaptive Behavior context compartment;

5. link each context to its respective entity.

Task 3: Define Behavioral Possibilities

The third task aims to extract the behavioral possibilities from the requirement. It

receives as input a RELAXMAY..ORMAYStatement and produces as output theAdaptive

Behavior behavior compartment. The task steps are:

1. read the RELAX MAY..ORMAY statement texts;

2. identify the behavioral possibilities;

3. write a behavior for each possibility in Adaptive Behavior behavior compartment.

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Hypothesis
	1.4 Methodology
	1.5 Contributions
	1.6 Organization

	2 Conceptual and Technological Background
	2.1 Self-adaptive Systems
	2.1.1 SaSs Requirements Specification Language

	2.2 Conceptual Modeling
	2.2.1 UML as Conceptual Modeling Language

	2.3 Domain-Specific Modeling Languages
	2.3.1 UML-Based DSML

	2.4 Design Patterns
	2.4.1 Singleton Design Pattern
	2.4.2 Façade Design Pattern
	2.4.3 Private Class Data Design Pattern
	2.4.4 Observer Design Pattern
	2.4.5 State Design Pattern

	2.5 Chapter Lessons

	3 UML-based DSML for SaS Literature Review
	3.1 Related Work
	3.2 Review Protocol
	3.2.1 Search Process
	3.2.2 Selection Process
	3.2.3 Data Extraction Strategy

	3.3 Review Results
	3.3.1 What modeling issues have motivated UML customization?
	3.3.2 How UML has been customized to support SaSs modeling?

	3.4 Threats to Validity
	3.5 Chapter Lessons

	4 UML-based DSML for SaS Conceptual Modeling
	4.1 SaSs Conceptual Modeling Schema
	4.2 UML Extension for SaSs Conceptual Modeling
	4.2.1 Adaptive Behavior Syntax
	4.2.2 Adaptive Behavior Semantics
	4.2.3 Adaptive Behavior Pragmatics

	4.3 Real Scenario Application
	4.4 Chapter Lessons

	5 SaSML Empirical Evaluation
	5.1 Focus Group Sessions
	5.1.1 Focus Group Execution
	5.1.1.1 First Session Execution
	5.1.1.2 Second Session Execution
	5.1.1.3 Third Session Execution

	5.1.2 Threats to Validity
	5.1.2.1 Conclusion Validity
	5.1.2.2 Internal Validity
	5.1.2.3 Construct Validity
	5.1.2.4 External Validity

	5.2 Experiment with Subjects
	5.2.1 Experiment Planning
	5.2.2 Experiment Execution
	5.2.3 Results and Analysis
	5.2.3.1 Expressiveness Analysis
	5.2.3.2 Effectiveness Analysis

	5.2.4 Threats to Validity
	5.2.4.1 Conclusion Validity
	5.2.4.2 Internal Validity
	5.2.4.3 Construct Validity
	5.2.4.4 External Validity

	5.3 Chapter Lessons

	6 Conclusions
	6.1 Future Work

	References
	Appendix A — Academic Works
	Appendix B — Focus Group Instruments
	Appendix C — Experiment with Subjects Instruments
	Appendix D — Experiment with Subjects Guidelines
	Appendix E — Experiment with Subjects Results Data
	Appendix F — Adaptive Behavior Modeling Process

