
American Journal of Environmental Engineering 2018, 8(4): 128-134

DOI: 10.5923/j.ajee.20180804.07

A Platform for Data Handling, Analysis and Evaluation

of Environmental Engineering Issues and Simulation

Control

Pedro Niederhagebock Sidou
*
, Bardo Ernst Josef Bodmann

Departamento de Eng. Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract Computer clusters are getting more and more employed for highly demanding computational tasks in

environmental engineering, as the new parallel computing technologies are improving steadily and have attained a high

standard. Nevertheless, for a task to execute in a cluster, it needs to be written following paradigms of parallelism, which is

not necessarily dominated by the implementer of a specific problem, such as analysis of meteorological data, simulation of

pollution dispersion among many others. Therefore, the aim of this work is to develop a computer platform capable of

parallelizing, manipulating, analyzing and evaluating meteorological observational data and controlling simulation. Task

specific features can be added to the platform through plugins, rendering it flexible and extensible for a large range of tasks. A

simple plugin was created to validate and evaluate the functionality of the platform with satisfactory results. The test

application considers a simple function to carry out the calculation of the four statistical moments (mean, variance, skewness

and kurtosis) of a given variable in a given time scale. Despite its simplicity, this plugin can already be used for exploring the

relevance of some variables in order to use this information in a procedure for data reduction.

Keywords Climate data analysis, Parallel computing, Plugins

1. Introduction

Working with climate models and weather prediction in

environmental engineering issues normally involves the

manipulation of data which expands in usually more than

three dimensions, i.e. time, longitude and latitude, and others.

When dealing with many variables, long time spans and big

regions, this kind of data can sometimes reach the magnitude

of terabytes (TB). That is why (quasi-)real time simulations

require very powerful computers and very well designed

tools to provide good results in a reasonable time.

Nowadays, the observation made by Moore in 1965 [1],

which states that chips’ performances should double each

two years, is approaching its limit due to the physical

limitations involved in the processor components’ heat

dissipation. Therefore, the computer science community

came to the conclusion that the only way to overcome this

fact and improve computer performance is by using more

than one processing unit and make them work together to

solve a given task. This technique is known as parallelization

* Corresponding author:

pnsidou@gmail.com (Pedro Niederhagebock Sidou)

Published online at http://journal.sapub.org/ajee

Copyright © 2018 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International

License (CC BY). http://creativecommons.org/licenses/by/4.0/

and is getting more and more common in applications such

as web servers, graphic processing units (GPU’s) and

scientific programming.

Obviously, for a task to be treated in parallel, it does not

suffice to tell the computer to do so. Software needs to be

written in a parallel fashion and normally it involves

considerable experience from the programmer. Note, that the

environmental engineer or scientist is not necessarily a

specialist in power computing, so that the present

development is a project to open pathways so that

non-specialists in parallel programming can implement their

projects making use of parallel computing. To this end a

platform is in developments allowing algorithms to use more

than one processor and sharing common variables by

synchronizing and carefully controlling memory access.

However, there exist many technologies for parallelization,

like the Message Passing Interface [2], POSIX threads [3],

OpenMP [4], the OpenCL standard [5] and it can be very

cumbersome to learn and decide which one is the most suited

for a given application.

Another issue faced by environmental engineers, scientists

and/or programmers is the handling of data file formats.

Some of the most known ones are the GRIB [6], HDF and

netCDF [7]. For simple serial operations and data dumping,

there are a couple of existing software like GrADS [8],

NCL [9] and NCO [10] that are available for data access,

manipulation and storage. However, when programming

 American Journal of Environmental Engineering 2018, 8(4): 128-134 129

more complex applications, the developer is obliged to learn

the respective application programming interface (API) and

the file format’s conventions that are in use.

Hence, the specific goal of this work is to report on the

progress of developments of a tool capable of reducing

efforts in creating computer applications oriented to

meteorological and environmental data using paradigms of

power computing. The purposed platform will be released

under the GNU General Public License (GPL) with open

source code, so that in future shared developments and

further improvements by the users community may take

place. Note, that this work reports on the very first β-version

of the platform and that some improvement is still needed to

provide the community with a fully functional and bug free

software. In the following sections a description of the

platform’s structure as well as a simple application case are

provided to demonstrate its potential usage.

2. Platform Description

For the first base version, it was stipulated that the

platform should attain the following characteristics:

 Have a light and intuitive user interface so that it can be

easily handled by end users.

 Extend its functionalities by loading third party written

plugins. These new developed functions can produce

results to other plugins by an exchangeable data format,

making it easier to reuse solutions provided by others.

 Be capable to read meteorological data files and load its

content to a variable that can then be used by the

developed functions. In this manner, the platform

abstracts from the user avoiding the need for learning

complicated API’s.

 Automatizing, as far as possible, the parallelization of

operations on meteorological and environmental data.

The plugin developer needs to check only for the

synchronization of some variables when needed.

The platform was developed within the C++

programming language, a language created by Bjarne

Stroustrup and first released in 1985. Despite it has lately lost

attention in favour of some higher level languages like Java

and Python, concerning power computing it is still superior

compared to the latter two when high performance is the key

issue, due to its support to low level C features on the one

hand and the object oriented model paradigm on the other

hand, which allows the creation of more complex structures

in software. In the present version, the platform will support

only plugins written in C++, but will be upgraded to support

other languages in the future.

The platform structure is composed by a core and five

distinct and independent modules: a data manager, a user

interface (UI), a parser, a plugin manager and a task manager.

A brief description of them is provided in the following.

 The core is the part of the framework that is responsible

for managing and providing resources to the other parts

of the program. It is the core which initializes and

terminates all other modules and runs the main loop of

the framework.

 The UI, as its name suggests, is the communication

door of the platform with the user. Given that this

software was designed to be used in clusters, and often

those are used remotely, it is imperative that the user

interface can be transmitted through a connection. For

the first version of the platform, the user interface was

written with the lightweight library for manipulating

terminal characters, ncurses. Therefore it can easily be

transmitted with a protocol like Secure Shell Protocol

(SSH) [11].

Basically, the UI consists of a command prompt that waits

for inputs from the user and a result window to show some

output from the tasks. In the future, this interface will be

upgraded to a more sophisticated scheme so that it better

supports graphic visualization.

 The data manager is simply a module responsible for

storing, creating and deleting the variables in use. The

data model of the platform supports five data types:

integer, numeric, string, point and region. Integer and

numeric variables can have a unit and a time scale

associated to it. The interfaces responsible for holding

the variables have methods to lock them through a

mutex to ensure thread safety in parallel applications.

The point data type is responsible for holding information

relative to a position in space and it can store any number of

variables (for instance: temperature, pressure, humidity, etc.)

and each one of them also have a time scale associated to

them, which may differ from the other scales). A region is a

collection of points, which can be passed as a special

argument to some functions so that operations on them are

treated in parallel.

 Parsing is the process of analysing and interpreting a

given text segment according to a grammar. Parsers are

used in compilers and interpreters to translate a high

level language to machine code and its implementation

can be very complex depending on the context. The one

used in this platform is just an expression parser [12].

The parsing process is divided in two phases. At first, a

lexical analyser splits the input string in basic units of text

called tokens. Each token may be an operator, a variable’s

name, a function ś name, a number or even a string. To do so,

the parser has to constantly communicate with the data

manager and the plugin manager to be sure that a given

symbol exists or not. Secondly follows a procedure that

evaluates the meaning of the tokens followed by taking the

string and generating a parse tree.

 Plugins are the safest way to add functionality to a

software without the need to recompile the whole

system and hence reducing the risk of breaking the

system. These can be written by third party developers

in compliance with a respective application

programming interface (API). After compilation they

130 Pedro Niederhagebock Sidou et al.: A Platform for Data Handling, Analysis and

Evaluation of Environmental Engineering Issues and Simulation Control

may be included into a dynamic library that may be

called by the software.

When the core initializes the plugin manager, it reads all

the libraries stored in the plugins’ directory. Once loaded, the

registered functions are available to be used by the platform.

 The last but not less important module, the task

manager, has the role of controlling and ensuring that

the function’s tasks are executed in the correct order. At

a first instance, the task manager will only support

simple thread parallelization of tasks over regions.

When initialized, the task manager creates a thread pool

with the number of threads depending on the

environment used.

Functions are composed of one or more tasks. These tasks

can be serial or parallel, depending on the nature of the

problem. For parallel tasks, the task manager ensures that the

execution is repeated and finished over all the points of a

given region before starting to execute a new one.

In the future, the task manager will also support the MPI

standard, allowing this platform to parallelize tasks over all

nodes of a cluster. Other features like parallelization over

time and numeric calculations (which requires a much more

sophisticated synchronization scheme) will be added as well.

3. An Application

To validate the platform, we create a simple application.

Motivated by the task of working with very large data sets, it

becomes interesting to extract some information of its

variables before applying analysis. Here, we use a simple

statistical reasoning to reduce the original data set to a

smaller set, that contains only variables that show some

relevance for the specific problem in a given time scale.

To this end we consider the distribution of a random

variable X that can be characterized by its statistic

moments. An effective approach to reduce a data set is

calculating its first moments in different time scales and

observe how they behave. The moment is defined as

[X] n
n E and can be obtained in a unique way from the

moment generating function (MGF) () [()] tX
xM t E e f x .

MGFs have great practical relevance because they uniquely

determine the probability distribution and also have useful

analytical properties that can be handy do solve several

problems. For instance n and ()XM t is given by

equation (1) .

(0)
[]

 n x

n n

dM t
E X

dt
 (1)

Given that, for the test application, we will write a

function plugin that calculates the first four statistic moments

and run it in the platform. When normalized and mean

centered, these first moments for a sample of size N are

known as: mean (), standard deviation (), skewness ()

and kurtosis (), where the last two are given in equations (2)

and (3).

Figure 1. Usage of the new function

 American Journal of Environmental Engineering 2018, 8(4): 128-134 131

3
3

3
1

1 ()
[()]

1

N

k

X X
E

N
 (2)

4
4

4
1

1 ()
[()]

1

N

k

X X
E

N
 (3)

The code for the written plugin can be found in the

appendix, at the end of this document.

4. Testing the Plugin

In order to test the new developed plugin, we applied the

statistic moment function on the 20th century reanalysis

version 2 data set [13]. This data set is an effort between

universities and atmospheric research organizations to

elaborate a data set spanning half of the twentieth and the

21st century until today (1851 - present) assimilating

synoptic pressure [14]. This data set contemplates many

climate variables, some of them are available as a uniform

grid with 2 of spatial separation in latitude and longitude,

and time sampled each six hours and as gaussian T62 grids

with sampling period of three hours. In both cases, the data is

provided in the grib file format.

The platform was run on CentOS Linux based operating

system with 24 cores. The usage of the function can be seen

in Figure 1. At first, the load built-in function reads a file

spanning the years 2008-2009 and puts all the information

into the newly created variable region. If its content is

printed, one observes that it carries the variable surface

pressure sampled four times a day. It also has a 180x91

latitude vs. longitude grid. Then, the function statistic

moments is applied to the variable surface pressure and four

new variables were created. It is also noticeable that these

new variables follow a new time scale, sampled each 5 days.

One noteworthy feature of the function that calculates the

statistic moments is its syntax. The brackets at the end of the

sentence means that the parallelization will be over the

region variable for all the parallel tasks.

5. Results

The result of the applied new function was compared with

some actual data from the weather station of Vitória-ES

(Brazil). This region was chosen due to some research

projects on pollution dispersion the authors are involved in.

The data from this weather station is sampled once a day,

therefore the calculation of the statistic moments was carried

out on this time scale and a point was chosen in the

neighbourhood (20°S 40°W) and both were compared.

The results are shown in Figure 2, where a considerable

agreement may be observed. This result is nothing

extraordinary, since this data set uses the surface pressure as

the only assimilated parameter, so that it is natural to believe

that for this variable the data set is very precise. Nevertheless,

these results imply that the reanalysis data set is a useful data

set for the parameter surface pressure, that the built-in load

function works properly and that the mean was well

calculated with the function statistic Moments.

Figure 2. Comparison between the Vitória-ES weather station data and

the calculated mean from the reanalysis data

Figure 3. Behaviour of the surface pressure mean for varying time scales

Figure 4. Behaviour of the surface pressure standard deviation for varying

time scales

132 Pedro Niederhagebock Sidou et al.: A Platform for Data Handling, Analysis and

Evaluation of Environmental Engineering Issues and Simulation Control

In Figures 3-4 the surface pressure mean and standard

deviation are shown for varying time scales. The results for

the other statistical moments can be found in the appendix.

6. Scalability

In order to evaluate the scalability of the platform, the

statisticMoments was run with one, 5, 10, 15 and 20 threads

and the results are provided in Figure 5.

These results show that despite the scalability of the

created function for the new platform is not yet close to

benchmark, it still has a visible effect on the function’s

speed-up. Note, that scalability depends a lot on the nature of

the problem and on the way it’s solution was implemented.

Figure 5. Scalability of the function statisticMoments under the developed

platform

7. Conclusions

The present work reported on the status of the

development of a new platform for controlling parallelized

simulations of environmental scenarios as well as

manipulating meteorological observational data. The authors

of this work are aware of the fact that there are still many

improvements to be implemented before releasing this

software, but a first building block to develop a potentially

powerful tool was concluded. A simple test plugin was

created to validate and evaluate the platform. The plugin

works fairly well and can be easily reused with different file

formats due to the ability of the platform to abstract from the

developer the loading of new data with its specific data

formats. The scalability of the plugin is not a benchmark yet,

but acceptable. There may be many reasons for the actual

scaling behaviour, either due to problems of the

communication of the framework with the data server of the

used cluster but also the need to still improve parts of the

plugin/platform design. For future works many opportunities

emerge, namely, the platform’s standard library shall be

extended with tools, other parallelization paradigms shall be

supported, among many other features that are to be included

over the next years.

Appendix

When writing a plugin, a developer should include the

api/FunctionTemplate.hpp. This file provides some

functions and classes to interact with the platform. For

making a customized function, the developer should create a

class that is inherited from the template FunctionTemplate

Type, which defines some important methods called by

the platform and some steps of the function registration. The

simplified fragment of code below illustrates it for the

statistic moments case.

#ifndef STATISTICMOMENTS_HPP
#define STATISTICMOMENTS_HPP
#include "api/FunctionTemplate.hpp"

/*
Customized function to calculate the first 4
statistic moments
*/

class StatisticMoments:
public api::FunctionTemplate<StatisticMoments>
{
 public:
 /*
 Method for configuring the functions tasks
 order. This method must be implemented.
 */
 void setup();
 /*
 Functions tasks
 */
 void initialize();
 private:
 /*
 Interpret functions arguments
 */
 void initializeParameters(types::Ipoint *);
 /*
 Auxiliary nested class for calculating the SM
 of a point. Variable inside this class are
 point specific. Variables outside it, are
 shared among all the points of the region.
 */
 typedef struct PointSM{
 types::Ipoint * _point;
 Time _time1;
 Time _time2;
 CDA_uint _nPoints;
 Variable _variable;
 Variable _mean;
 Variable _stdDev;
 Variable _skew;
 Variable _kurt;
 void calculateMean();
 void calculateStd ();

 American Journal of Environmental Engineering 2018, 8(4): 128-134 133

 void calculateSkew();
 void calculateKurt();
 } PointSM;
 };
#endif

The only method that the programmer needs to implement

is the one inherited from the function ś interface, setup(),

that is gonna be called by the platform before executing the

function. In this method one should register the function ś

tasks that are gonna be called.

To add a serial task, the template method addSerialTask

Task([](*)) inherited from FunctionTemplate should be

called. Similarly, to add a parallel task, the method

addSerialTaskTask ([](Ipoint * point)). The tasks are the

lambda functions passed as arguments to the templated

method. One should notice that the lambda function of

parallel tasks receives a point interface as argument. This

point is the one passed by the task manager when it

parallelizes a given task and consequently it ś possible to

access its data. The variadic template method

checkParametersTypes<typename... Args allows us to check

the types of arguments passed by the user and call different

methods depending of its order. For instance, when called

with 2 string as arguments, operator + must concatenate them,

on the other hand, when called with numbers it should sum

them (the same function, but different tasks instances are

called). To print some output to the screen, the print

templated method should be called.

For the statistic moments function, the simplified setup()

method is shown:

void StatisticMoments::setup(){

 addSerialTask([this] () {initialize(); });

 addParallelTask([this](types::Ipoint * point){

 PointSM pointSM;
 /*
 call methods from pointSM to calculate
 statistic moments of the point.
 */
 });
 }

As it can be seen 2 tasks are registered. First a serial one to

set the arguments common to all points and then a parallel

one to calculate the moments. The function uses an auxiliary

nested class to make sure that the point ś own properties are

not shared. This can demand more memory, but should run

faster than when sharing them. The parallel task only start

it ś execution when the serial one is finished.

Finally, the code below shows the PointSM

calculateMean() method. The calculation of the other

statistic moments is similar and are not going to be shown.

 void StatisticMoments::PointSM::calculateMean(){

 VariablePtr varStart;

 VariablePtr varEnd;

 VariablePtr meanPtr;

 /*

 start pointer to the variable value

 */

 varStart = _variable->getValue();

 /*

 end pointer

 */

 varEnd = varStart + _nPoints;

 /*

 pointer to the mean variable that is going to

 be calculated

 */

 meanPtr = _mean->getValue();

 /*

 Iterations through the whole time dimension

 /*

 while(varEnd < _variable->getValue()

 + _variable->getLength()){

 *meanPtr = std::accumulate(varStart,varEnd,

 0,[this](CDA_numeric a, CDA_numeric b){

 return a+b;

 });

 *meanPtr = *meanPtr /(_nPoints-1);

 meanPtr++;

 varStart = varEnd;

 varEnd = varStart + _nPoints;

 }

 }

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated
circuits, Reprinted from Electronics, volume 38, number 8,
April 19, 1965, pp.114 ff.”, IEEE Solid-State Circuits Society
Newsletter, vol. 11, no 3, p. 33–35, 1965.

[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, e J. Dongarra,
MPI - The Complete Reference. 1996.

[3] C. Kessler e J. Keller, “Models for Parallel Computing:
Review and Perspectives”. 2007.

[4] L. Dagum e R. Menon, “OpenMP: an industry standard API
for shared-memory programming”, IEEE Computational
Science and Engineering, vol. 5, no 1, p. 46–55, jan. 1998.

[5] L. Howes e A. Munshi, “The OpenCL Specification”.
Khronos, 21-jun-2015.

[6] WMO, “Guide to GRIB”, 2017. [Online]. Disponível em:
https://www.wmo.int/pages/prog/www/WDM/Guides/Guide
-binary-2.html. [Acessado: 27-jun-2017].

[7] R. Rew et al., “NetCDF: Introduction and Overview”, 2017.
[Online]. Disponível em:

134 Pedro Niederhagebock Sidou et al.: A Platform for Data Handling, Analysis and

Evaluation of Environmental Engineering Issues and Simulation Control

https://www.unidata.ucar.edu/software/netcdf/docs/index.ht
ml. [Acessado: 29-nov-2017].

[8] B. Doty, “Grads”. 1995.

[9] D. Brown, R. Brownrigg, M. Haley, e W. Huang, “NCAR
Command Language (NCL)”. UCAR/NCAR - Computation
al and Information Systems Laboratory (CISL), 2012.

[10] C. Zender, “NCO User Guide”. 2017.

[11] T. Ylonen e C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture”. 2006.

[12] J. de Jong, “Tutorial - How to create an expression parser”.
2006.

[13] G. P. Compo et al., “The Twentieth Century Reanalysis
Project”, Q.J.R. Meteorol. Soc., vol. 137, no 654, p. 1–28, jan.
2011.

[14] G. P. Compo et al., “NOAA/CIRES Twentieth Century
Global Reanalysis Version 2c”. UCAR/NCAR - Research
Data Archive, 2015.

