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RESUMO

Anélise da dependéncia entre ativos e suas aplicacoes a geréncia de risco t€ém ganhado muita
tracdo na pesquisa em finangas empiricas. Nesta dissertacdo propomos a nova abordagem para
capturar mudanga de regime na dependencia. nés mostramos com experimentos numéricos de
Monte carlo que nossa abordagem € robusta a ma especifica¢do além de superar os outros modelos
presentes na literatura. Além disso utilizamos nosso modelo para analisar dados de indices
europeus, especificamente os indices de mercado FTSE100(UK), DAX(GER), CAC40(FRA) e
BEL20(BEL). N6s mostramos que ha evidencia de mudanga significativa apés 2016, diminuindo
a dependencia de cauda inferior entre alguns pares de ativos podendo indicar um exito do
BREXIT, ao menos do ponto de vista de expectativas, distanciar o Reino Unido de choques

negativos europeus.

Palavras-chaves:Mudanca de Regime. GAS. Copulas. Dependéncia.



ABSTRACT

Dependence modelling and its applications to risk management have recently gained much
ground as a field of research in empirical finance. In this paper we propose a new approach for
capturing dependence regime switching via copulas, and show through numerical Monte Carlo
simulation exercises that our approach is quite robust to model mispecification. Furthermore we
employ our model in the analysis of European financial data, specifically the European market
indexes FTSE100(UK), DAX(GER), CAC40(FRA) and BEL20(BEL). We show that there is
evidence of a significant change in early 2016, when there is a diminished lower tail dependence
which could be associated with the BREXIT referendum.

Keywords:Markov-Switching. GAS. Copulas. Dependence.
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1 INTRODUCAO

A enciclopédia de filosofia de Stanford apresenta diversas defini¢des de risco e entre
outras coisas descreve o conceito de risco da forma: ““ The relationship between the two concepts
of “risk” and “uncertainty” seems to be in part analagous to that between “truth” and “belief”.”
Esta analogia é especialmente interessante quando lidamos com risco no ambito de mercados
financeiros. De forma mais precisa esta analogia € interessante pois ela induz o leitor a percepg¢ao

de que medidas de risco, como um conceito, devem ser quantificaveis de alguma forma.

Uma das aplicagdes mais comuns do conceito de risco quantificavel foi apresentada por
Markowitz (MARKOWITZ, 1952) onde uma forma estruturada de alocar ativos foi descrita.
Esta forma nada mais é que um balanceamento entre risco e retorno esperado. Em seu trabalho,
Markowitz utiliza do desvio padrdo do retorno dos ativos como uma aproximacao do nivel
associado de risco e com isso permitiu o desenvolvimento de um novo campo de pensamento em
financgas empiricas que lida com otimizacao de portfolios. Além disso este trabalho também inicia
a avaliac@o da dependéncia entre ativos e o risco do portfolio. A estrutura apresentada permitiu
uma explicagdo matemdtica da percep¢do empirica de que a diversificacdo em investimentos
possuia um efeito positivo e era portanto desejada. Além disso permitiu uma perspectiva com

mais nuance das condicdes necessarias para que a diversificacdo tenha de fato efeito positivo.

Desta forma o conceito de dependéncia entre ativos foi introduzido na conversa de
balanceamento do trade-off entre risco e retorno. A dependéncia pode portanto ser vista como
uma fonte de risco ou, por outro lado, uma oportunidade de diversificacdo. Esta percepcao
incentivou a criagdo de diversas medidas de dependéncia permitindo, com cada uma, o melhor

entendimento da intui¢do que segue o conceito de risco.

Além disso, devido a explosdo tecnoldgica dos ultimos 50 anos mercados financeiros tem
se tornado cada vez mais integrados e seu comportamento mais ativo no sentido de responder a
noticias e efeitos de mercado. Este aumento implicou na necessidade de uma forma dindmica
de observar a dindmica da dependéncia. O principal desafio deste tipo de modelo reside na
caracteristica da dependéncia ser naturalmente nao observavel. A Solugao para este problema
foi, até certo ponto, redescoberta por Patton (PATTON, 2006) que adaptou o modelo matematico

proposto por Sklar(SKLAR, 1959) para um cenario dinamico.

A solugdo apresentada residia em utilizar funcdes chamadas Cépulas, a partir das quais
consegue-se construir uma funcdo de verossimilhanca para modelagem dos parametros de
dependéncia e além disso estas fun¢des ainda efetuam a unido de distribui¢des univariadas em
distribui¢des multivariadas. Esta contribuicdo possuiu um efeito ainda maior devido a crescente
literatura de medidas de risco, isto pois ndo s6 medidas praticas de risco mas a maior parte da
construcdo axiomatica de anélise de risco, veja Follmer et al.(FOLLMER; SCHIED, 2002), se
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baseia no uso das fun¢des de distribuicdo para definir medidas de risco. Portanto o aspecto, de
forma ingénua, acidental do uso das fun¢des de copula conseguiu mais uma vez trazer a fronteira

do pensamento de risco e dependéncia para uma mesma andlise.

Mais formalmente Patton (PATTON, 2006) introduziu o uso de cépulas para modelar
a dindmica da dependéncia entre taxas de cambio. O apelo do uso de modelos com copulas
tem a ver com a simplicidade de seu uso. Elas permitem separar distribui¢des marginais de sua
estrutura de dependéncia permitindo uma estimagdo por maxima verossimilhancga relativamente
simples. Outro fato importante € que, ao contrario de outros modelos multivariados, o uso de
copulas permite modelar dependéncia de ordem superior, permitindo comportamento dindmico
para medidas como dependéncia de cauda que podem, para analistas de risco, ser muito mais

informativas.

Apesar desta grande contribuicdo feita por Patton, o entendimento do comportamento
dindmico da dependéncia ainda é um desafio no ambito académico. Diversos modelos tém sido
apresentados para capturar comportamentos diferentes deste componente. Chollete, Heinen
and Valdesogo (CHOLLETE; HEINEN; VALDESOGO, 2009) usam uma mudanga de regime
markoviano mudando a estrutura da copula entre os regimes para um grande niimero de indices
financeiros. Creal, Koopman and Lucas (CREAL; KOOPMAN; LUCAS, 2013) sugerem o
uso de um componente de score auto regressivo (Generalized Autoregressive Score) para ser
o determinante da dindmica da dependéncia, este modelo foi ainda descrito em exaustdo em
Patton (PATTON et al., 2012) e posteriormente desenvolvido em um modelo para alta frequéncia
em Salvatierra and Patton(PATTON et al., 2012) que usa da correlacao realizada intradidria.
Silva Filho, Ziegelmann and Dueker (FILHO; ZIEGELMANN; DUEKER, 2012) combinam a
especificacdo dinamica de Patton (PATTON, 2006) com uma mudanca de regime markoviano para
o intercepto da equagdo de dinamica para a dependéncia, e Bartels and Ziegelmann (BARTELS;
ZIEGELMANN, 2016) utilizam a estrutura GAS em portfolios de alta dimensdo para obter

diversas medidas de risco.

Desta forma € facil perceber que o campo de pesquisa que desenvolve este tipo de
modelos € repleto de inovacdes e tem crescido muito nos ultimos 10 anos. Portanto a proposta
deste trabalho € de contribuir ao presente corpo de pesquisa de duas formas, a primeira contribui-
¢ao € na estrutura do modelo, nosso modelo propde combinar o GAS de Creal, Koopman and
Lucas (CREAL; KOOPMAN; LUCAS, 2013) como motor a dependéncia com a abordagem de
mudanca de regime na dependéncia proposta por Silva Filho, Ziegelmann and Dueker (FILHO;
ZIEGELMANN; DUEKER, 2012). Como Creal et al. demonstrou a utiliza¢cdo dos modelos GAS
permite melhor aderéncia que o modelo ad hoc proposto por Patton (PATTON, 2006) que é o
mesmo que Silva Filho, Ziegelmann and Dueker (FILHO; ZIEGELMANN; DUEKER, 2012)
utilizaram para sua dinamica. Portanto esperamos que nosso modelo seja um bom substituto
nao s por ter melhor desempenho mas também por possuir maior apelo intuitivo. A segunda

contribuicdo deste trabalho serd apresentada num exercicio empirico onde o modelo serd utilizado



12

para analisar trés conjuntos de dados distintos. Além disto a metodologia utilizada € descrita de
forma detalhada no capitulo 2 que apresenta um artigo completo com a introdugdo, descri¢ao

detalhada do modelo proposto juntamente dos resultados obtidos.
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2 MARKOV SWITCHING GAS COPULA MODEL

Stanford encyclopedia of philosophy presents us several useful definitions of risk and,
among other things, it states that the relationship between the two concepts of “ risk” and “
uncertainty ” seems to be in part analogous to that between “ truth” and “belief”. This analogy
is specially informative when dealing with the financial interpretation of risk, as it speaks to
the fact that risk must be observable or quantifiable while on the other hand uncertainty has a
broader interpretation and does not require any quantification, uncertainty is simply present in

the understanding of economic behaviour.

One of the most lasting applications of the concept of quantifiable risk is present in Mar-
kowitz (MARKOWITZ, 1952) where a structured way of balancing risk and reward was devised.
In his seminal paper Markowitz used the standard deviation of returns as a quantifiable proxy for
risk and managed to introduce a new field of financial thought regarding portfolio optimization.
What was also present in his paper was the relationship between assets dependence and the
portfolio risk. His theory managed to circumscribe the empirical perception that investment
diversification was a positive thing, and also helped determine in which instances diversification
led to further benefits.

This work helped introduce the concept of dependence between assets into the conver-
sation of risk reward trade-offs. Dependence can therefore be seen as a source of risk or, in
some other sense, as an opportunity for diversification. This awareness of the importance of
dependence between assets provided an additional incentive to the creation of several different
measures of dependence carrying with them different intuitions into the meaning of financial

risk.

However, due to the explosive technological increase in the last 50 years, markets have
become more and more integrated, and their behavior even more responsive to sudden changes
in perception. This increase also led to the necessity of an understanding of the way dependence
dynamics behave. The issue was that of modeling the dynamics of a purely unobervable compo-
nent. Patton (PATTON, 2006) proposed then one attractive solution to this problem by adapting
Sklar’s (SKLAR, 1959) copula framework to a dynamic setting.

More formally Patton (PATTON, 2006) introduced the use of copulas to model the
dynamics of asymmetric dependence structures between exchange rates. The appeal of modeling
dependence with copulas has much to do with the fact that their use is somewhat straightforward
and by separating marginal distributions from dependence structure they allow for estimation
using maximum likelihood. It is also worth noting that unlike other usual models of multivariate
series, copulas allow for the presence of dependence of a higher order. Therefore these models

not only capture linear correlation but also tail dependence which is a deeper measure that
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risk analysts take as much more informative, see Embrechts et al. (EMBRECHTS; MCNEIL,;
STRAUMANN, 2002).

Even with the additional generality brought in the dynamic behavior of the dependence
is still a challenge to be reckoned with. Many different models have been proposed by the current
literature in order to capture different potential behavior. Patton (PATTON, 2006) incorporates
some Ad Hoc drivers to the dependence dynamics acknowledging in his work that there was still
a lack of precise meaning to these driving forces. Chollete, Heinen and Valdesogo (CHOLLETE;
HEINEN; VALDESOGO, 2009) used a Markov switching regime change to define two different
regimes for normal copulas allowing for fluctuation in the dependence structure in a large group
of financial indexes. Creal, Koopman and Lucas (CREAL; KOOPMAN; LUCAS, 2013) suggest
the use of a Generalized autoregressive score (GAS) in order to incorporate some dynamics to
the dependence parameter, this model is then exhaustively described in Patton (PATTON et al.,
2012) and later developed in Salvatierra and Patton (SALVATIERRA; PATTON, 2015) into a
high frequency model using realized correlation. Silva Filho, Ziegelmann and Dueker (FILHO;
ZIEGELMANN; DUEKER, 2012) combines the dependence dynamic specification of Patton
(PATTON, 2006) with a markov switching process for the intercept of the parameter dynamics
equation. Bartels and Ziegelmann (BARTELS; ZIEGELMANN, 2016) uses the GAS structure

for the dynamics dependence in high dimension portfolios to obtain various measures of risk.

Our objective is then to combine some of the strengths of the previously offered models.
Creal, Koopman and Lucas (CREAL; KOOPMAN; LUCAS, 2013) model is by far the more
intuitive in terms of the dynamic driver, so in our proposed model we combine this specification
with a markov switching parameter that allow us to capture discrete swifts in the dependence
structure. We show that our model outperforms the model presented in Silva Filho, Ziegelmann
and Dueker (FILHO; ZIEGELMANN; DUEKER, 2012) in all instances. When compared to
non regime changing models of Creal et al.(CREAL; KOOPMAN; LUCAS, 2013) and Patton
(PATTON, 2006) our model works better when there is regime change, as expected, and in the
absence of regime change our model collapses to Creal’s and their performance follow the same
pattern. Finally we use this model to show that there was a change in regime associated with
the Brexit referendum, in contrast to the results presented by Aristeidis (ARISTEIDIS; ELIAS,
2017).

The paper is then organized in three additional sections. One describing all of the
econometric tools used in the construction of our model, namely the econometric model section.
One section presenting the hypothesis and results of the simulation exercise, containing the main
results. One section with an empirical application of our model to European financial indexes
with an analysis of the potential implications of the regime change making for some interesting

results as well. In the last section we present the concluding remarks.
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2.1 Econometric Model

This section will be divided in two parts, the first goes through some of the basics of
copula theory setting the tools and framework we will use henceforth. In the second part we
present our proposed approach, discuss some of it’s expected properties and put it in perspective

by showing it’s relation to other models in the literature.

2.1.1 Copula basics

Before explaining how Copula theory works with dependence modelling we must first
define what these so called “copulas"are. Copulas are mathematical functions that can connect
univariate marginal distributions in order to obtain a multivariate distribution. One way to look
at it is that any multivariate distribution can be decomposed as a copula function applied to
the specified marginal functions. This result, known as Sklar’s Theorem(SKLAR, 1959) can be
formally stated as

Y=[Y,...,Y,]~F, Y ~F
3C:[0,1" — [0,1] 2.1)
F(y) =C(Fi(1),--- Fayn)) VyeR"

where Y is a n-dimensional random variable, with cumulative distribution function
denoted by F.Then, fori = 1,...,n, F; is the cumulative distribution function of the univariate
variable Y;, the lower case y; represents the realization of the variable Y; and C denotes the copula
function. As one can see, a copula function can be interpreted as a map connecting the univariate

marginal distributions F; to the multivariate distribution F.

If we define U; as the probability integral transform, that is U; = Fi(y;),then U; ~
Uniform(0,1). From this we can reinterpret equation one for only two variables as:

Y=1,h'~F, Y~F
3C:[0,1> = [0,1] (2.2)
F(y)=C(U),Up) Vye R

The definition in Sklar’s theorem also implies that there should be an analogous version

for the marginal densities, described as

FO1- ) = c(F1(1), -+ Fa(yn)) X T2 fi (i)

(2.3)

0"C(u 5-ln
.y t) = Tt
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where, for i = 1,...,n, f; is the marginal probability distribution function for the variable y;.
Bringing some intuition to this, if we were to fix ¢(Fi(y1),...,F.(yn)) = 1 we would obtain
the structure of independent marginal distributions that can be separated as a product of the
marginals. The copula structure then enters this framework as an additional term multiplying the
separated marginals. From this structure it is also natural to expect, as we will detail later on,
that the structure of the marginals and copula could be separated to make for a more tractable

estimation structure.

Now for our purposes we will specify the functional form of the copula we will use. With
the aim of being parsimonious our choice is to use the Symmetrized Joe Clayton copula. Before

describing it wee must first describe the Joe Clayton copula, given as

ol
=

Cic(u,v;tV, 1) =1 (1= [(1=u®) O+ (1 =190 —1]~

)

1
~ logy(2—1Y)
—1
=——— and 1V 7" € (0,1
logz(fl’),an T ?T E( ) )7

the Symmetrized Joe Clayton is obtained from a static mixture of this Joe Clayton Copula, given

as

Cyje(u,v; TV, 7) = 0.5(Cje(u, v; 7Y, t5) + Cie(1 —u, 1 — w3tV 2h) Fu+v— 1),

This form has both upper and lower tail dependence given by the parameters 7V and 77,
and when the parameters are equal it has a symmetric dependence structure. These tail depen-
dence parameters are a interesting measure in term of risk management since the lower(upper)
tail dependence represents the probability of having simultaneously low(high) values in terms of

the quantiles. More formally the tail dependences can be described in the copula context as:

e [ower tail

The copula presents lower tail dependence if the above limits exist and the lower tail

dependence is denoted as 7~

e Upper Tail

lime 1 Pr{U > €|V > €] = limg_,; Pr[V > €|U > £] = limg_,; *=2575=¢)

1-¢
The copula presents upper tail dependence if the above limits exist and the upper tail

dependence is denoted as 7V

The use of this structure is therefore very convenient insofar as it allows for a greater va-

riety of dependence structures. With this information we are able to piece together the framework



17

to look at dependence parameters in a dynamic setting. The following section will elucidate the

transition from static to dynamic dependence and introduce our proposed model. n

2.1.2  Dynamic copulas: Markov Switching Gas Proposal

It is clear that the previous representation dealt with an exclusively static framework,
there is no time index in any variable. Interestingly from this structure since we can construct
the multivariate marginal densities, then Equation 3 could, in the right framework, provide a
functional form for a likelihood function. Patton (PATTON, 2006) presents this framework
adapting all of these previous theorems to a conditional form and elaborating on the conditions

necessary for this process to work.

Joe (JOE, 2005) had already showed that the structure in Equation 3 in fact could also
be seen as a opportunity for separating the marginal modelling and the dependence modelling,
and proved in this paper that the 2-step process was asymptotically efficient. Therefore Joe’s
contribution paved the way so that Patton(PATTON, 2006) could isolate the two processes and
model the marginal dynamics as is usual in financial theory. By having this structure in place we
are now able to model the evolution of the dependence and use standard likelihood maximization

to get the parameters for the evolution’s equation.

The only caveat is that the dynamic structure for the dependence has to be specified in
order for maximum likelihood estimation to take place. This raises the question of which model
to use to describe the time dynamics of a parameter that is, by its very nature, unobservable.
Much of the literature that followed from this work tried to explore different specifications and
argued why their models managed to capture certain stylized facts. We will now present our
way to do so and subsequently we will make note of the differences and parallels between our

proposed specification and those previously used in economic modelling literature.

Our proposed dynamic behavior is described by

At = AW, + 05, + A1), (2.4)

where A is an adequate transformation, wy,, is a level parameter that follows an underlying
hidden markov chain, s; is the score function, and A, is the dependence parameter in question. To
make sense of this notation we will describe all of these components below, only we will show

them in a reverse order.

The third element is A,_1, it incorporates an auto regressive dynamic to the dependence,
where « is an auto regressive coefficient and A, is the dependence parameter in the previous
instant. This particular component was used in Patton (PATTON, 2006),Creal et al. (CREAL;
KOOPMAN; LUCAS, 2013) and Silva Filho et al. (FILHO; ZIEGELMANN; DUEKER, 2012)

and in many other empirical papers. The auto regressive structure should be stationary which
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would make the o bounded in (—1, 1). The trait we intend to capture in using an autoregressive
component is that the dependence should be somewhat dependent in its past values and that
shocks to it should have an effect on future values and this effect should decrease as time goes

on.

The second element is s;, it is a component proposed by Creal, Koopman and Lucas
(CREAL; KOOPMAN; LUCAS, 2013) where s; is called a Score component. This score is a
useful interpretation of the point wise derivative of the likelihood function. Formally it can be

described as

St :SIVH vt - alnf(ytu{ihgz[il;g)? St - S(ta)’t717¢¢t71;6)7 (25)

I

and for our purposes S; is the Identity matrix of order k where k is the number of dependence

parameters, that is,

St = . (2.6)

Intuitively this mechanism makes use of the interpretation of the model’s pdf as a
likelihood function, and the score itself is the pointwise derivative of the likelihood conditioned
on the information at r — 1. Interpreting the likelihood function along with the meaning of a
derivative we can intuit that the score term gives the direction the likelihood would go if the
parameter was changed by a small positive amount. Therefore having a positive score value
would mean that a slightly higher dependence better might be better, pointwise, using this
mechanism as a driver means that in each step we are updating our variable in the direction that

would bring the likelihood closer to a maximum.

From this brief discussion it is easy to see how more intuitive this driver is. Furthermore,
it is also worth noting that since the score is the derivative of the pdf, this driver uses all of the
information imbued in the copula structure. As a contrast we can look at Patton (PATTON, 2006)
where different drivers are assumed for each different dependence parameter in a way that only
somewhat relates to the parameters themselves and does not make direct use of the information
provided in the copula structure. The advantage in using the Score lies in making use of the

copula structure in a more imperative way.

The first element is w,,, this element is variable and can assume one of two values in
each point in time, more formally
wo lf ny = 0
W, 1= .
" wy if m=1
In this structure m; follows a first order markovian process with two distinct states and is called
the state variable.To capture this last component we make use of the filter proposed by Kim(KIM,

1994). Here we can see the potential of discrete jumps between two states and capturing such
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behavior is extremely important in financial markets because new government policies, financial
crisis or even technological innovation can often be viewed in this framework. This supports
the argument that states are not permanent from a financial perspective therefore we should not

think of assets dynamics as being set in stone.

This structure comes with some challenges in implementation. The main challenge
lies in making markov switching stucture operational since dependence is by its very nature
unobservable. When we conseider the traditional filter by Kim (KIM, 1994) we know that the
smoothing part of the filter relies on taking the last observed value and using it to refit the
dynamics going backwards and therefore minimizing in-sample missteps. From the unobservable
characteristic, it is clear that this second step could hardly be performed, and therefore some
accommodations had to be made. To make the filter operable we create distinct states that follow
our proposed dynamic completely described by input parameters, then we make use of these two
virtual states and apply the filter to obtain a likelihood value for the entire dynamic structure,
from there it is natural to perform a maximum likelihood estimation of the optimal parameters.
And furthermore, since we make no constraints forcing parameters to be distinct our model has

shown empirically that it can easily entertain the notion no changes in regime.

In summary, our construction incorporates a more parsimonious view into the dynamic
behavior of the dependence, we allow it to fluctuate between two different states and in doing so
we can perhaps gain insight regarding economic conditions each state is associated with. This type
of change was first proposed by Silva Filho, Ziegelmann and Dueker (FILHO; ZIEGELMANN;
DUEKER, 2012), but in their structure the main driver is given as in the Ad Hoc measures Patton
(PATTON, 2006) proposed.

In this description we have described all of the econometric structure used henceforth
can now properly evaluate our model. The results will be presented in two sections. The first is a
detailed analysis of our model’s performance when compared to other dependence models in
the literature. In order to do so we use the Models depicted in Oswaldo Filho, Ziegelmann and
Dueker (FILHO; ZIEGELMANN; DUEKER, 2012), along with some non regime switching
counterparts as described in Creal et al.(CREAL; KOOPMAN; LUCAS, 2013) and in Patton
(PATTON, 2006). The second is an empirical application where we use our model to analyse
European markets and see whether we can find any evidence of regime change in the dependence
between the pairs FTSE100xDAX, FTSE100xCAC40 and FTSE100xBEL20.

2.2 Simulation Results

In this section we will consider our simulated data to evaluate the performance of our
model. In the this effort we have made four different generating models, each associated with
a distinct model in the previously discussed literature. For making this analysis as thorough as

possible we have used the Symmetrized Joe Clayton Copula as our main engine, this means that
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the model with regime change, have it on both tails each following a slightly different dynamic
but with the same underlying unobservable component driven by a two state Markov Switching

Process.

In this experiment we use the sample size T = 2000 and make 1000 replicas using the
same underlying dynamic. For the simulation we will then create time series with a Monte Carlo
experiment using four different structures. First we will only name the dependence dynamics

structures and relate them to the paper they were drawn from.

e ARMA(1,10)
This is the dependence structure as proposed by Patton (PATTON, 2006).

e MS - ARMA(1,10)
This is the dependence structure as proposed by Silva Filho, Ziegelmann and Dueker
(FILHO; ZIEGELMANN; DUEKER, 2012).

e GAS
This is the dependence structure as proposed by Creal, Koopman and Lucas (CREAL;
KOOPMAN; LUCAS, 2013).

e MS-GAS This is the dependence structure we are proposing

We have generated data with all the four models and used all four to evaluate their relative

performance. The full dynamic structure is described below

o MS GAS
t(m;) = AN(—0.87(m;) 4+ 1.05(1 —m;) — 0.5t | 4+0.5s%)
T/ (m;) = A(—0.81(m;) +1.2(1 —m,) —0.81'_| +0.4s)

where s! is the score function in relation to the corresponding tail i.

e MS ARMA(1,10)

10

1
t(my) = A(—0.87(m;) + .2(1 —m;) —0.797" | + 270 Y ui—j—vij])
j=1

1 10
o/ (m;) = A(—0.81(m;) +.2(1 —m;) — 0.9, + 396 Y lw—j—vi—jl)
j=1

e GAS
T = A(—0.87 — 0.57" | +0.55%)

7 = A(—0.81—0.87" | +0.4s))
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e ARMA(1,10)

1 10
T = A(—0.87—-0.797" , +275 Y i j—vij])
Jj=1

1 10
rf:A(—o.81—0.9rL1+31—0 lu—j—vi_j|)
j=1

With the simulated data we use these same specifications, to estimate and evaluate
the models, determine whether they are numerically consistent and if they can be accurately
estimated. We analyse our results with two different measures, we take the mean error of all
estimated models for all samples and use them to get boxplots, this first measure tells us whether
our estimated dependence is biased, our second measure is the mean squared error for each

sample to form boxplots.

Figura 1 — Markov Switching Gas Generating Model
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In Figure 1 we can see that in term of mean squared error the model with gas driver
and one regime comes close to our proposed one, but it is clearly far more biased. This is
consistent with the fact that it only captures one of the two regimes. The other two models
perform significantly worse than our model both in bias and in mean squared error. In Figure 2
we see that our model only performs slightly worse than the real generating model, wich once
again is the one regime GAS model. The other two performs significantly worse, which is also
expected. In Figure 3 we see that our model outperforms even the generating model, both in bias
and in variance and it is the best performing one. Lastly in Figure 4 is the only case which our
model is outperformed, but only by the true generating model, its main contender the 2 regimes
ARMAC(1,10) proposed by Silva Filho and Ziegelmann (FILHO; ZIEGELMANN; DUEKER,

2012) is therefore outperformed in every sample.

Figura 2 — Gas Generating Model
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Figura 3 — Markov Switching ARMA(1,10) Generating Model
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Figura 4 — ARMA(1,10) Generating Model
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2.3 Empirical Results

In this section we will perform our empirical analysis to investigate if there were any
significant dependence shifts in European markets. This work was motivated by the recent
Brexit referendum that took place in 23 June 2016 deciding whether the United Kingdom would
continue to be a part of the European Union. We were led by the question of whether this change
could have had a significant effect for the Financial Markets of the countries involved. We will

first present some intuitive appeal informing our choice of data the statistical description and .

As mentioned the motivation for this analysisis to look into the possible effects of the
BREXIT referendum, we know that Aristeidis (ARISTEIDIS; ELIAS, 2017) has looked into
this, using the model in Silva Filho et al (FILHO; ZIEGELMANN; DUEKER, 2012) and using
intraday data to try and capture moment changes in regime. In contrast to this application we

select a different data structure and our results contradict the findings in Aristeidis.

We use daily closing prices for the FTSE100, DAX, CAC40 and BEL20 indexes. These
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Tabela 1 — Descriptive Statistics

FTSE100 DAX CAC40 BEL20

nobs 2058.000 2058.000 2058.000 2058.000

Mean 0.012 0.033 0.012 0.020

Median 0.034 0.080 0.035 0.033
Variance 0.935 1.555 1.683 1.229

Stdev 0.967 1.247 1.297 1.108
Skewness -0.187 -0.285 -0.146 -0.063
Excess Kurtosis 2.497 2.655 3.934 4.513

Fonte: Elaboracao do Autor

represent the three largest indexes in Europe (FTSE100, DAX, CAC40) and one additional
medium sized index. This choice seems natural since in empirical finance literature indexes are
commonly used as representatives of the entire market. So in our analysis each of these indexes
is supposed to represent a different European country, FTSE100, DAX, CAC40 and BEL20
represent United Kingdom, Germany, France and Belgium, respectively. The first three are not
only the largest indexes but are also representative of the three largest economies in the European

common market being commonly used as measures of economic activity in Europe.

The choice of Belgium might be more contentious, because the argument can be made as
to how representative is this small to medium sized economy is in the bigger European structure
this argument is, however, the very thought behind our choice we want to look at the disparity in

behavior when we pair UK with a relatively small economy.

After all, in comparing Germany and France with the UK we are investigating dependence
structures between the largest players, in contrast when we look at the dependence between UK
and Belgium there might be other effects in play. Perhaps the Belgium market is not as well
diversified meaning there could still be structural inefficiencies making it harder to perceive any
dependence shifts. Otherwise the Belgium economy might be too correlated with the economic
environment in its big neighbours from trade balances also making dependence fluctuations
harder to capture. Arguable as it is we keep this choice because we want to try to perceive any

differences in pairing big markets and pairing one big and one small market.

The data we used goes from January 4 of 2010 up to April 3 of 2018. This period covers
the emergence of the Greek Sovereign debt crisis along with the following waves of European
debt crisis, and goes all the way to almost two years after the decision of the United Kingdom to
leave the European Common Market. One compelling argument for analysing this incident is

that the economic implications of the british decision are yet to make themselves clear.

We transform these closing prices in daily returns as is usual in empirical finance literature
and present the descriptive statistics of the returns on Table 1, with this information we gather

that all the series have evidence of non normal marginal distributions, they all have negative
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Tabela 2 — Marginal models

Parameter FTSE100 DAX CAC40 BEL20
arl -1.0720  -0.6698 -0.7519  -0.7780
(0.0212) (0.0215) (0.0069) (0.0222)
ar2 -0.4922
(0.0201)
mal 1.0687 0.7037  0.7611  0.8225
(0.0184) (0.0213) (0.0065) (0.0204)
ma2 0.45225
(0.0188)
omega 0.0342 0.0382  0.0370  0.0465
(0.0089) (0.0107) (0.0097) (0.0150)
alphal 0.0979 0.0908 0.1046  0.1029
(0.0141) (0.0142) (0.0121) (0.0177)
betal 0.8874 0.9026  0.8916  0.8783
(0.0187) (0.0173) (0.0151) (0.0254)
etall 1 1 1 1
(0.1421) (0.1216) (0.0817) (0.1262)
skew 0.8765 0.9031  0.9061  0.9170
(0.0236) (0.0202) (0.0247) (0.0280)
shape 9.6937 6.5530 7.0721  7.8567
(1.7170)  (0.9735) (1.0976) (1.2415)
Log likelihood -2521.1 -3059.78 -3100.7 -2808.2
Akaike 2.4598 29813  3.0211  2.7369
Bayes 24871 3.0032 3.043  2.7588
Shibata 2.4597 2.9813 3.021  2.7368
ARCH Lag[7] p-value 0.9992 0.9777  0.7284  0.8678
Anderson Darling p-value 0.956 0.306 0.998 0.971
Komolgorov Smirnov p-value 0.805 0.311 0.995 0.906
Cramer von mises p-value 0.92 0.246 0.997 0.949

Fonte: Elaboracdo do Autor

Skewness, albeit quite low for the Belgium index, and they all have significant excess kurtosis.
There is also presence of significant serial correlation both for the level and for the volatility of
of all indexes. From this we proceed to model the marginal distributions using ARMA-GARCH
models with non normal distributions for the errors( skewed t distribution), we tested ARMA
models up to ARMA(S,5) and volatility models of the GARCH family up to GARCH(2,2) with
three different volatility specifications( GARCH (BOLLERSLEV, 1986), TGARCH(ZAKOIAN,
1994) and GJR-GARCH (GLOSTEN; JAGANNATHAN; RUNKLE, 1993)).

We present the marginal models and estimated parameters in Table 2. Also in Table
2 we present several tests to check whether the marginal models are well specified, all the
models pass the tests and we can conclude that the transforms of the marginal distributions can

be Uniform(0,1) allowing us to proceed to copula estimation. We abstained from describing



Figura 5 — Residuals dispersion- Evidence of Tail Dependence
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the marginal models in the econometric section, but for more detail see Zakoian (ZAKOIAN,
1994), Bollersev (BOLLERSLEV, 1986) and Glosten, Jagannathan and Runkle (GLOSTEN;
JAGANNATHAN; RUNKLE, 1993) .

For a more intuitive appeal we show the dispersion graphics of each pair of indexes in
Figure 5. with this in sight it is clear that the series probably present tail dependence given that
we can see clustering in the upper right hand corner, as well as in the lower left hand corner
in all the figures. This overlook informs our decision of which copula to use, leading us in the
choice of the Symmetrized Joe Clayton Copula since it has both upper and lower tail dependence
parameters and it can lead to symmetric distributions or not. This is one of the most versatile
copulas allowing to capture many different stylized fact of financial assets. In Table 3 we present

the estimated parameters for the Symmetrized Joe Clayton copula.

In analysing Figure 6 we see that the Lower tail dependence did suffer some changes in
regime, primarily around 2013 and more persistently after 2016 for both FTSE100xDAX and
FTSE100xCAC40. When we look at Figure 6a we see that there were some inklings of a regime



Figura 6 — Symmetric Joe Clayton Copula - Dependence Dynamics
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(b) Upper Tail - FTSE100xDax
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Tabela 3 — Dependence Parameters

FTSE100xDAX FTSE100xCAC40 FTSEI100xBEL20

w) 0.8758966 1.07667349 0.3943487
w? -1.2271633 -0.52834201 -1.7148759
w) 0.9063016 1.25213919 0.4548315
wl1 -0.5469227 -0.86258818 -0.89898
Oy 0.2208016 0.05114637 0.1245811
ol 0.6815526 0.62243721 0.8127119
oy 0.1456375 0.01752216 0.8060495
oy 0.1343687 -0.16185481 -0.3072627
p00 0.6701717 0.57112243 0.8131067
pll 0.5321212 0.43949405 0.8179543

Fonte: Elaboracao do Autor

change around 2013 going from a 0.3 lower tail to a very low value of about 0.05, then it returns
to the initial regime and after 2016 the change seems to be more persistent. From Figure 6¢ we
see that throughout the sample there were relatively frequent changes from one regime to the
other in the years from 2012 to 2016 but for the most part the dependence stayed in the high level
of 0.35, however after 2016 the regime change seems to have occurred less often and the lower
level for the dependence of about 0.06 is more predominant. For the pair FTSE100xBEL20 we

found no evidence of changes in the level of dependence.

With this result we can infer that after 2016 the British index seems to have isolated
itself from shocks that affect the other two large european markets, this result could be of great
importance politically as it suggests that exiting the european union might have had the desired
result in sense in increasing isolation and maybe even stepping aside from the repercussions
of the, lately frequent, sovereign debt crisis. Furthermore we can observe that the upper tail
dependence has not suffered any significant changes in regime. These results for positive shocks
could mean that in terms of growth, the underlying factors that boost these economies might not
be directly related to the existence of the common market one other possible underlying reason
could be a significant diversification of all these markets, making positive technology shocks

more frequently happen in unison.

2.4 Concluding Remarks

In this paper we have proposed a new model to deal with regime change in dependence
modelling with copulas. We have proved with a monte carlo experiment that our model outper-
forms the model proposed in Silva Filho and Ziegelmann (FILHO; ZIEGELMANN; DUEKER,
2012). When compared with some of the other models in the literature, specifically Creal, et al.
(CREAL; KOOPMAN; LUCAS, 2013) and Patton (PATTON, 2006), our model’s performance
is robust and shows mostly improvements, being always at least as good as the other models.
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In the empirical section we have applied our model to european markets indexes and
showed that, contrary to the findings in Aristeidis (ARISTEIDIS; ELIAS, 2017), there was a
change in the tail dependence between some markets. Namely the lower tail dependence between
FTSE100 and DAX , and between FTSE100 and CAC40 have shown evidence of changes in
regime. The disparity in our results from Aristeidis’s might be atributed to distinct data collection

choices and also to our superior model.

The empirical findings are especially interesting for allowing a glimpse into the real
effects of BREXIT. From a political perspective , if nothing else, the UK seems to have achieved
its goal a increasing isolation to european shocks. Also interesting is the fact that the separation
has led to changes only in relation to negative shocks, making the net effect potentially positive

insofar as positive shocks are still received.
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3 CONSIDERACOES FINAIS

Nesta dissertacdo propomos uma forma inovadora de modelar dependéncia entre ativos.
Em relacdo a seu competidor direto, proposto por Silva Filho Ziegelmann e Dueker (FILHO;
ZIEGELMANN; DUEKER, 2012), nosso modelo se mostra claramente superior. Além disso
quando comparado com sistemas mais simples como em Creal, et al. (CREAL; KOOPMAN;
LUCAS, 2013) e em Patton (PATTON, 2006) sua performance se mantém robusta.

Na abordagem empirica identificamos mudanga de regime na cauda inferior da dependen-
cia entre FTSE100 e CAC40, assim como na dependencia entre FTSE100 e DAX. Este resultado
vai em desacordo com o encontrado por Aristeidis (ARISTEIDIS; ELIAS, 2017), entretanto as
distin¢des entre os dados utilizados na andlise pode ser apontada como potencial causa deste

contraste.

O resultado empirico € especialmente interessante pois permite um vislumbre dos efeitos
reais da separacdo do Reino Unido da Unido Europeia. Da perpectiva politica a decisdo parece
ter, se nada mais, alcancado o objetivo de aumentar o grau de separacdo do Reino Unido. Mais
interessante ainda € que a separacdo se mostra clara apenas se tratando de choques negativos,
indicando que seu efeito pode ser visto como primariamente positivo ao isolar o reino unido de

choques negativos ao mercado europeu.
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