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ABSTRACT

This thesis treats the processes rescheduling problem during application runtime, of-
fering dynamic load rebalancing among the available resources. Since most distributed
computing scenarios involve more and more resources and dynamic applications, the load
is a variable measure and an initial processes-processors deployment may not remain ef-
ficient with time. The resources and the network states can vary during application ex-
ecution, as well as the amount of processing and the interactions among the processes.
Consequently, the remapping of processes to new processors is pertinent to improve re-
source utilization and to minimize application execution time. In this context, this thesis
presents a rescheduling model called MigBSP, which controls the processes migration of
BSP (Bulk Synchronous Parallel) applications. BSP application model was adopted be-
cause it turns parallel programming easier and is very common in scientific applications
development scenarios.

Considering the scope of BSP applications, the novel ideas of MigBSP are threefold:
(i) combination of three metrics - Memory, Computation and Communication - in a scalar
one in order to measure the potential of migration of each BSP process; (ii) employment
of both Computation and Communication Patterns to control processes’ regularity and;
(iii) efficient adaptation regarding the periodicity to launch processes rescheduling. In our
infrastructure, we are considering heterogeneous (different processor and network speed)
distributed systems. The processes can pass messages among themselves and the paral-
lel machine can gather local area networks and clusters. The proposed model provides
a mathematical formalism to decide the following questions about load (BSP processes)
balancing: (i) When to launch the processes rescheduling; (ii) Which processes will be
candidates for migration and; (iii) Where to put the processes that will be migrated actu-
ally.

We used the simulation technique to validate MigBSP. Besides MigBSP, three sci-
entific application were developed and executed using Simgrid simulator. In general, the
results showed that MigBSP offers an opportunity to get performance in an effortless man-
ner to the programmer since its does not need modification on application code. MigBSP
makes possible gains of performance up to 20% as well as produces a low overhead when
migrations do not take place . Its mean overhead is lower than 8% of the normal applica-
tion execution time. This rate was obtained disabling any processes migration indicated
by MigBSP. The results show that the union of considered metrics is a good solution to
control processes migration. Moreover, they revealed that the developed adaptations are
crucial to turn MigBSP execution viable, mainly on unbalanced environments.

Keywords: Communication, Scheduling, Load Balancing, Bulk Synchronous Parallel,
Processes Migration, Heterogeneity, Dinamicity.





RESUMO

MigBSP: Uma Nova Abordagem para o Gerenciamento de Reescalonamento de
Processos em Aplicações Bulk Synchronous Parallel

A presente tese trata o problema do reescalonamento de processos durante a execução
da aplicação, oferecendo rebalanceamento dinâmico de carga entre os recursos dispo-
níveis. Uma vez que os cenários da computação distribuída envolvem cada vez mais
recursos e aplicações dinâmicas, a carga é uma medida variável e um mapeamento inicial
processos-recursos pode não permanecer eficiente no decorrer do tempo. O estado dos
recursos e da rede podem variar no decorrer da aplicação, bem como a quantidade de
processamento e a interação entre os processos. Consequentemente, o remapeamento de
processos para novos recursos é pertinente para aumentar o uso dos recursos e minimizar
o tempo de execução da aplicação. Nesse contexto, essa tese de doutorado apresenta um
modelo de reescalonamento chamado MigBSP, o qual controla a migração de processos
de aplicações BSP (Bulk Synchronous Parallel). O modelo de aplicação BSP foi ado-
tado visto que torna a programação paralela mais fácil e é muito comum nos cenários de
desenvolvimento de aplicações científicas.

Considerando o escopo de aplicações BSP, as novas idéias de MigBSP são em número
de três: (i) combinação de três métricas - Memória, Computação e Comunicação - em uma
outra escala com o intuito de medir o Potencial de Migração de cada processo BSP; (ii)
emprego de um Padrão de Computação e outro Padrão de Comunicação para controlar
a regularidade dos processos e; (iii) adatação eficiente na freqüência do lançamento do
reescalonamento de processos. A infra-estrutura de máquina paralela considera sistemas
distribuídos heterogêneos (diferentes velocidades de processador e de rede). Os processos
podem passar mensagens entre si e a máquina paralela pode agregar redes locais e clusters.
O modelo de reescalonamento provê um formalismo matemático para decidir as seguintes
questões: (i) Quando lançar o reescalonamento dos processos; (ii) Quais processos são
candidatos a migração e; (iii) Para onde os processos selecionados serão migrados.

A técnica de simulação foi usada para validar MigBSP. Além do próprio MigBSP, três
aplicações científicas foram foram desenvolvidas e executadas usando o simulador Sim-
grid. Os resultados mostraram que MigBSP oferece oportunidade de ganhar desempenho
sem alterações no código fonte da aplicação. MigBSP torna possível ganhos de desem-
penho na casa de 20%, bem como produz uma baixa sobrecarga quando migrações são
inviáveis. Sua sobrecarga média ficou abaixo de 8% do tempo de execução normal da
aplicação. Essa taxa foi obtida desabilitando quaisquer migrações indicadas por MigBSP.
Os resultados mostraram que a união das métricas consideradas é uma boa solução para
o controle de migração de processos. Além disso, eles revelaram que as adaptações de-
senvolvidas na freqüência do reescalonamento são cruciais para tornar a execução de
MigBSP viável, principalmente em ambientes desbalanceados.

Palavras-chave: Escalonamento, migração de processos, Bulk Synchronous Parallel,
desempenho, balanceamento de carga.
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1 INTRODUCTION

Nowadays, the use of networks of computers is growing as platform to compute
general-purpose problems. Especially in both resource sharing and high performance
computing areas, we can observe the use of large and heterogeneous distributed systems,
where issues like dynamicity, load balancing and resource management must be carefully
analyzed (AUMAGE; HOFMAN; BAL, 2005; KANG et al., 2009). This growth in scale
occurs because sometimes a single system such as a cluster or a computer does not of-
fer a satisfactory performance or simply does not provide enough capacity of memory or
disk storaging. Concerning this, an idea is to assemble heterogeneous parallel machines
with a low financial cost, simply joining the power of clusters and workstations that be-
long to one or more institutions. Thus, grid networks (or just grids) arise to provide a
distributed computational infrastructure for advanced science and engineering applica-
tions (BATISTA et al., 2008).

The use of parallel machines like grids crucially depends on the availability of a model
of computation simple enough to provide a convenient basis for software development. In
this context, a possibility is to use the Bulk-Synchronous Parallel (BSP) model of compu-
tation to write parallel programs for this infrastructure. This model has been proposed by
L. G. Valiant as an unified framework for the design, analysis and programming of general
purpose parallel computing systems (VALIANT, 1990). BSP applications are composed
by a set of processes that execute supersteps. Each superstep is subdivided into three or-
dered phases: (i) local computations on each process; (ii) global communication actions
using message passing and; (iii) a barrier synchronization.

Initially, BSP was created for homogeneous computing but may be used as an at-
tractive model for heterogeneous and dynamic computing as well (CAMARGO; KON;
GOLDMAN, 2005). BSP becomes attractive due to the simplicity to write parallel pro-
grams, because it is independent of target architectures and provides an idea of execution
cost that combines its three phases. BSP has been used in a number of application areas,
primarily in scientific computing (DOBBER; MEI; KOOLE, 2009). We can cite com-
putational fluid dynamics applications such as those for solving 3D multi-grid viscous
flows and to compute Lattice Boltzmann method. In addition, we have BSP applications
to treat fast Fourier transform, quantum molecular dynamics and dynamic programming-
based algorithms. BSP applications also treat with well-known problems in computer
science like all sums, LU decomposition, sorting and optimal broadcast. Its usage on
grid computing, for example, can be observed on the following works (VASILEV, 2003;
CHEN; TONG, 2004; MARTIN; TISKIN, 2004; GOLDCHLEGER et al., 2005).

BSP model does not specify how the application’s processes should be assigned to
resources. The programmer/user must deal with scheduling issues in order to achieve bet-
ter application efficiency. This issue is important since the barrier phase always wait for
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the slowest process before starting the next superstep (BONORDEN, 2007). This topic
is more relevant when grid environments are considered due to their own characteristics.
Therefore, the task of allocating BSP processes to processors on such architecture often
becomes a problem requiring considerable programmer/user effort. In order to fully ex-
ploit this kind of environment, he/she must know both the parallel machine architecture in
advance and the BSP application code properly. Moreover, each new application requires
another analysis for processes scheduling.

Since resource management and scheduling are key services for grid, issues like load
balancing represent a common concern for most developers. A possibility is to ex-
plore the automatic load balancing at middleware level, linking it to the programming
library. Considering the grain of work as a process of the operating system, an allo-
cation scheme where the processes with longer computing times are mapped to faster
machines can be used. This mechanism occurs before application execution or when
its processes are created on the fly. However, this approach is not the best one for ir-
regular applications and/or dynamic distributed environments, because a good process-
resource assignment performed in the beginning of the application may not remain ef-
ficient with time (AGGARWAL; MOTWANI; ZHU, 2003; HUANG et al., 2006; LOW;
LIU; SCHMIDT, 2007).

At the moment of processes launching, it is not possible sometimes to recognize ei-
ther the amount of computation of each process or the communication patterns among
them. Besides fluctuations in the processes’ computing and communication actions, we
have fluctuations related to the dynamicity presented in grids. In this kind of environment,
processors’ load may vary and networks can become congestioned while the application
is running. Considering both the aspects of dynamicity (application and architecture), an
alternative for obtaining performance is to apply processes rescheduling through their
migration to new resources, offering application runtime load balancing (GALINDO;
ALMEIDA; BADÍA-CONTELLES, 2008; CHEN; WANG; LAU, 2008).

1.1 Objectives

Scheduling schemes for grid systems can be viewed in two levels (FRACHTEN-
BERG; SCHWIEGELSHOHN, 2008). In the first level processors are allocated to a job
and in the second one, processes from a job are (re)scheduled using this pool of proces-
sors. Considering this classification, we developed a model called MigBSP that embraces
this last scheme, offering algorithms for dynamic load (processes from the operating sys-
tem) rebalancing among the resources during application runtime (ROSA RIGHI et al.,
2008). Its parallel machine aims to join the power of clusters, LAN networks and mul-
tiprocessor machines. The main idea of the proposed model is to adjust the conclusion
of both local computation and global communication phases of the BSP processes to
be faster taking profit from information collected at runtime. This adjustment happens
through processes rescheduling. Our main objectives for the development of MigBSP
are described below.

• Employment of a model for parallel programming that comprises a large spectrum
of scientific applications;

• Achieve better execution performance without changes in application’s code and
without previous knowledge about application’s behavior;
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• Consider pertinent data that impulse migration as well as those that act against it in
order to choose the appropriate candidate processes for migration;

• Consider self-organizing and adaptations issues aiming to adjust the model impact
on application execution on the fly.

Generally, dynamic load balancing algorithms are implemented directly with the ap-
plication, resulting in the close coupling between the application and the load balancing
algorithms data structure (CHAUBE; CARINO; BANICESCU, 2007). The task of use
load balancing to allocate, or reallocate, processes to processors on grids often becomes
yet a more complex problem for the programmer due to the dynamicity and heteroge-
neous features of the architecture. One solution was proposed by Bhandarkar, Brunner
and Kale (2000) which developed a middleware for processes rescheduling. The load
balancing is called by the application using a special directive MPI_Migrate(). This strat-
egy imposes the fact that the programmer must know the best places inside the application
for processes migration. Other possibility is to use automatic processes migration without
extra code inside the application. In this way, our idea is to achieve performance without
changing application’s code directly, working at middleware level together with the pro-
gramming library. Thus, we treat the BSP application as a black box that is linked to a
middleware before its execution. In addition, we are working without previous knowledge
about application behavior. All data about it is captured on the fly.

Frachtenberg and Schwiegelshohn (2008) affirm on their paper about new challenges
of parallel job scheduling that there is a need to unify the current scheduling evaluation
metrics in order to be useful and meaningful for the actual use cases. Considering the as-
pects of processes rescheduling, we will consider important data that influence this topic
and combine them in order to create a new single metric to evaluate process migration.
Firstly, we intend to capture data about processes behavior. In this context, both the com-
putation and communication times of each process as well as the number of performed
instructions and data transferred at each superstep will be considered. Furthermore, infor-
mation regarding the parallel architecture must be used, such as the theoretical capacities
and the loads of the processors and the available bandwidth to transfer data between two
end points. Our spectrum of data also considers the migration costs. In this direction, the
process’ memory and the costs related to migration operations must be evaluated.

Nowadays, we can observe that there are approaches that consider only the com-
putation aspect (MORENO-VOZMEDIANO; ALONSO-CONDE, 2005; BONORDEN,
2007; SALEHI; DELDARI, 2006; WANG et al., 2007), while others work only with
communication data (KRIVOKAPIC; ISLINGER; KEMPER, 2000) in their migration
algorithms. Other proposes include one of the aspects above together with migration
costs (VADHIYAR; DONGARRA, 2005a; CHEN; WANG; LAU, 2008). In addition, we
observe that there are some works that consider both computation and communication
aspects, but not treat the migration costs (BHANDARKAR; BRUNNER; KALE, 2000;
LOW, 2002). Our final idea is to combine data about computation and communication
phases of the BSP supersteps, data about parallel machine and information regarding mi-
gration costs in order to create a scalar metric that informs the potential of migration
of each BSP process. Thus, the adjustment performed by MigBSP happens through the
migration of those processes which have long computation time, perform several com-
munication actions with other processes that belong to a same network and present a low
migration cost.
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We observed that some works present fixed parameters. For example, Vadhiyar and
Dongarra computed the migration cost as a fixed value (VADHIYAR; DONGARRA,
2005b). In addition, Bonorden (2007) presents the migration call for BSP processes
at each superstep. Considering that the final objective is to minimize the application exe-
cution time, the adaptivity is a key idea for the model to self-optimize scheduling param-
eters. This self-optimization is important for two reasons: (i) achieve better performance
in migrations; (ii) to generate as low impact from MigBSP in application execution as
possible. Firstly, we work with up to date information in order to measure this cost more
precisely on the fly. Other branch of adaptivity is the management of the interval for
rescheduling launching. The frequency of the processes rescheduling calls will depend
on both the system state (processes are balanced or not among the resources) and the re-
sult of past calls (if they generate processes migration or not). Other branch comprises the
work with two adaptable patterns that act on computation and communication phases of
each process, respectively. Their ideas are to measure the regularity of a process regard-
ing the instructions that it executes and the amount of data that it communicates to other
processes. We have established that processes’ regularity is important for us because we
have expected that a process performs with a similar behavior on the destination place.

1.2 Problem Statement

The abstract goal of our rescheduling model can be stated as follows:

Given a BSP application and a set of processors on which BSP processes may be exe-
cuted, the model must control the remapping of processes to processors in order to reduce
the supersteps’ times.

Our final objective is to reduce the application execution time. For that, we will work
measuring both the computation and communication times on every process at each super-
step. These measurements will serve as a basis for decision-making about the reschedul-
ing launching as well as to decide about which processes are candidates for migration. In
order to achieve our statement above, the model also must cause less intrusion on appli-
cation execution as possible. Since migrations may not take place under some conditions,
such as high latency among the destination and source processors or a high amount of
data is linked to a specific process, the impact of scheduling messages and computation
from the model must be minimized.

1.3 Approach

A practical view of our work can be seen in Algorithm 1. MigBSP provides a math-
ematical formalism that answers the following issues regarding processes migration: (i)
“When” to launch the processes migration; (ii) “Which” processes are candidates for mi-
gration and; (iii) “Where” to put an elected process from the candidates ones. We are not
interested in the keyword “How”, that treats the mechanism used to perform migrations.

Algorithm 1 presents an overview of the processes rescheduling function. This func-
tion may be called several times during application execution and its triggering occurs
according to system feedback. Lines 1 and 2 are responsible to answer the question
“Which”. We will analyze the potential of migration of each BSP process based on three
metrics: (i) Computation; (ii) Communication and; (iii) Memory. This last metric enters
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Algorithm 1 Processes rescheduling function
1: Evaluation of Computation, Communication and Memory Metrics
2: Selecting the candidate processes for migration
3: for each candidate process p do
4: Find a destination processor P
5: if profitable to load balance then
6: Migration of process p to processor P
7: end if
8: end for

in the model as an idea of migration cost and acts against processes transferring. After
that, a mechanism will be applied to choose those processes that are candidates for migra-
tion. For each candidate, it is chosen a destination processor and its migration profitability
to this place is evaluated (line 5). This operation takes into account the external load on
source and destination processors, the simulation of considered process running in the
destination processor, the BSP processes that both processors are executing, as well as
the migration cost of considered process. Finally, for each candidate process is chosen
a new resource or its migration is canceled. Thus, the operations on lines 4 up to 6 are
responsible to answer the question “Where”.

1.4 Document Organization

This document if organized in six chapters. After the introduction chapter, we present
some information regarding the concepts covered in this thesis. Chapter 2 describes some
topics such as scheduling, load balancing, processes migration, grid computing and the
BSP execution model. Chapter 3 presents the state of the art of the systems and algorithms
that perform scheduling, processes migration and load balancing. This chapter also deals
with related work to the BSP model. Its main contribution is the definition of the gaps
that is lacking work to obtain performance on this kind of parallel programming model.

Chapter 5 presents our model for processes rescheduling on BSP applications. This
model is the main focus of this thesis and, then, this chapter is its most important part. We
will describe in this chapter our algorithms that control BSP processes migration, as well
as both the models of application and machine used in the thesis. Chapter 5 shows the
evaluation of the developed model. Intermediaries chapters have a special section called
“Summary” which makes a brief analysis of the thesis’ part in evidence. Finally, we show
Chapter 6 at the end of this document. It makes a conclusion about the text, emphasizing
the MigBSP’s main contributions and results.
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2 FUNDAMENTALS

This chapter has an explanatory character, presenting some terminologies and con-
cepts that will be used on the next chapters of this document. This chapter shows the rele-
vance of processes rescheduling and load balancing in parallel and distributed processing
areas. In special, this chapter covers these topics over heterogeneous and dynamic envi-
ronments. Besides this, this chapter describes the BSP execution model, which will be
employed as a model of application in our model for processes rescheduling.

The present chapter is segmented in six sections. Section 2.1 treats about scheduling.
It presents a widely used taxonomy on this area and introduces the problem of reschedul-
ing. Section 2.2 shows the importance of load balancing and some metrics that may be
considered in this topic. Section 2.3 treats the migration problem technique and the costs
involved on it. In addition, this section will address the issue about how the migration is
triggered and its implementation regarding the programmer’s point of view. Section 2.4
presents some concepts about grid computing. Section 2.5 describes the model for par-
allel programming called BSP (Bulk Synchronous Parallel). This chapter also shows the
places where we can aggregate load-balancing algorithms on BSP applications in order
to achieve better performance. Finally, Section 2.6 presents an abstract of this chapter,
making a relation among the main topics discussed on it.

2.1 Scheduling

The scheduling problem, in a general view, comprises both a set of resources and
a set of a consumers as illustrated in Figure 2.1 (THAIN; TANNENBAUM; LIVNY,
2005). This problem considers the finding of an efficient politic to manage the use of
the resources by several consumers in order to optimize the performance metric chosen
as parameter (YAMIN, 2001). Commonly, a scheduling proposal is evaluated by two
features: (i) performance and; (ii) efficiency. Concerning this, the evaluation comprises
the obtained scheduling as well as the time spent to execute the scheduler policies. For
example, if the parameter to analyze the achieved scheduling is the application execu-
tion time, the lower this value the better the scheduler performance. On the other hand,
the efficiency refers to the policies adopted by the scheduler and can be evaluated using
computational complexity functions (TSENG; CHIN; WANG, 2009).

The general scheduling problem is the unification of two terms in common use in the
literature. There is often an implicit distinction between the terms scheduling and alloca-
tion. Nevertheless, it can be argued that these are merely alternative formulations of the
same problem, with allocation posed in terms of resource allocation (from the resources
point of view), and scheduling viewed from the consumers point of view. In this sense,
allocation and scheduling are merely two terms describing the same general mechanism,
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Figure 2.1: General vision of the scheduling problem (THAIN; TANNENBAUM;
LIVNY, 2005)

but described from different viewpoints (CASAVANT; KUHL, 1988). One important is-
sue when treating scheduling is the grain of the consumers. For example, we can have a
graph of tasks, a set of processes and jobs that need resources to execute (SCHNEIDER
et al., 2009). In this context, scheduling schemes for multi-programmed parallel systems
can be viewed in two levels (FRACHTENBERG; SCHWIEGELSHOHN, 2008). In the
first level processors are allocated to a specific job. In the second level processes from a
job are scheduled using this pool of processors.
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Figure 2.2: Scheduling taxonomy proposed by Casavant and Kuhl (1988)

In order to formalize the classification of schedulers, Casavant and Kuhl (1988) pro-
posed a scheduling taxonomy for general purpose distributed computing systems. Figure
2.2 depicts such taxonomy proposed by these authors. The first division comprises ei-
ther the local or global scheduling. Local scheduling is involved with the assignment of
processes to the time-slices of a single processor. Global scheduling is the problem of de-
ciding where to execute a process, while the job of local scheduling is left to the operating
system of the processor in which the process is ultimately allocated. Global scheduling
can be divided in two approaches, which are denoted below.

• Static;

• Dynamic.

We will define static scheduling considering the scheduling grain as a task. If data such
as information about the processors, the execution time of the tasks, the size of the data,
the communication pattern and the dependency relation among the tasks are known in
advance, we can affirm that we have a static or deterministic scheduling model (TOPCU-
OUGLU; HARIRI; WU, 2002; BEAUMONT; ROBERT, 2002; LU; SUBRATA; ZOMAYA,
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2006). In this approach, each executable image in the system has a static assignment to
a particular set of processors. Scheduling decisions are made deterministically or prob-
abilistically at compile time and remain constant during runtime. The static approach is
simple to be implemented. However, Lu at al. (2006) pointed out that it has two major
disadvantages. Firstly, the workload distribution and the behavior of many applications
cannot be predicted before program execution. Secondly, static scheduling assumes that
the characteristics of the computing resources and communication network are all known
in advance and remain constant. Such an assumption may not be applied on grid environ-
ments, for instance (see Section 2.4).

In the general form of a static task scheduling problem, an application is represented
by a directed acyclic graph (DAG) in which nodes represent application tasks and edges
represent intertask data dependencies (TOPCUOUGLU; HARIRI; WU, 2002). Each node
label shows computation cost (expected computation time) of the task and each edge label
shows intertask communication cost (expected communication time) between tasks. The
objective function of this problem is to map tasks onto processors and order their execu-
tions so that task-precedence requirements are satisfied and a minimum overall comple-
tion time is obtained.

In the case that all information regarding the state of the system as well as the re-
source needs of a process are known, an optimal assignment can be proposed. Even with
all information required for the scheduling, the static method is often computationally
expensive getting to the point of being infeasible. Thus, this fact results in suboptimal so-
lutions. We have two general categories within the realm of suboptimal solutions for the
scheduling problem: (i) approximate and; (ii) heuristic. Approximate scheduling uses the
same methods used in the optimal one, but instead exploring all possible ideal solutions
it stops when a good one is achieved. Heuristic scheduling uses common parameters and
ideas that affect the behavior of the parallel system (MARTÍNEZ-GALLAR; ALMEIDA;
GIMÉNEZ, 2007). For example, we can group processes with higher communication rate
to the same local network or to sort works and processors in lists following some prede-
fined criteria in order to perform an efficient mapping among them (list scheduling) (JIN;
SCHIAVONE; TURGUT, 2008).

Dynamic scheduling works with the idea that a little (or none) a priori knowledge
about the needs and the behavior of the application is available (LI; LAN, 2004; LU;
SUBRATA; ZOMAYA, 2006; WANG et al., 2007; WARAICH, 2008). It is also unknown
in what environment the process will execute during its lifetime. The arrival of new tasks,
the relation among them and data about the target architecture are unpredictable and the
decision of the consumers-resources mapping is taken by the runtime environment. Fol-
lowing the interpretation of Figure 2.2, the responsibility of the global scheduling can be
assigned either to a single processor (physically non-distributed) or practiced by a set of
processors (physically distributed). Within the realm of this last classification, the taxon-
omy may also distinguish between those mechanisms that involve cooperation between
the distributed components (cooperative) and those in which the individual processors
make decisions independent of the actions of the other processors (non cooperative). In
the cooperative case, each processor has the responsibility to carry out its own portion of
the scheduling, but all processors are working toward a common system-wide goal.

Casavant and Kuhl (1988) also presents a horizontal classification for scheduling. In
this context, the scheduling can be viewed as adaptive and non-adaptive. An adaptive
solution to the scheduling problem is one in which the algorithms and parameters used to
implement the scheduling policy change dynamically according to the previous and the
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current behavior of the system. According to Shah et al. (2007), adaptive algorithms are
a special type of dynamic algorithms, where the scheduling parameters/options are opti-
mized based on the global state of the system. An example of such an adaptive scheduler
would be one which takes many parameters into consideration when making its decisions.
In response to the behavior of the system, the scheduler may start to ignore one parameter
or reduce its importance if it believes that parameter is either providing information that is
inconsistent or it is not pertinent to a specific situation. Regarding the structure, Krauter
et al. (2002) also proposed their scheduling taxonomy which is divided in three ways.

• Centralized;

• Hierarchical;

• Decentralized.

A centralized organization is characterized by the presence of only one scheduling
controller. This controller is responsible for the system-wide decision-making. Such an
organization has some advantages including easy management and simple deployment.
Its disadvantages include the lack of both scalability and fault-tolerance. In addition,
centralized schemes usually entail a global synchronization to obtain global information
about the participants (LI; LAN, 2004). In a hierarchical organization, the scheduling
controllers are organized in a hierarchical fashion. One obvious way of organizing the
controllers would be to let the higher level controllers manage larger sets of resources and
lower level controllers manage smaller sets of resources. Compared with the centralized
scheduling, the hierarchical strategy addresses the scalability and fault-tolerance issues.

The decentralized organization is another alternative. It naturally addresses several
important issues such as fault-tolerance, scalability, site-autonomy and multi-policy sche-
duling. Nevertheless, decentralized organizations introduce several problems, such as
management and usage tracking. This scheme is expected to scale well to large network
sizes but it is necessary for the scheduling controllers to coordinate with each other via
some form of resource discovery or resource trading protocols. The overhead of operation
of these protocols will be the determining factor for the scalability of the overall system.
Lack of such protocols may reduce the overhead but the efficiency of scheduling may
also decrease. In addition, other disadvantage of this approach is that local schedulers
may take conflicting decisions regarding the use of the resources, which turn the global
scheduling system inefficient.

The scheduling grain treated by the model described in this thesis is a process of the
operating system. The scheduling of a process treats its initial mapping to a specific
resource. Normally, this procedure is performed either when a new process is created
during application runtime or when the application is launched. The scheduling problem
can be extended and used to redistribute a process during its execution. This situation
characterizes the problem known as rescheduling (HAO et al., 2008). Rescheduling can
be viewed as a technique that reallocates consumers (processes, for example) that are
already assigned to specific set of resources to execute (or continue their executions)
in another one (AGGARWAL; MOTWANI; ZHU, 2003). Rescheduling is pertinent in
dynamic environments like grids, where data obtained previously may not be confirmed
during application runtime. Besides this, this technique is important to treat irregular
applications in which their computation and/or communication behaviors change during
the execution. Processes rescheduling may be implemented using processes migration
techniques and commonly uses load balancing mechanisms on its policies.
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2.2 Load Balancing

The basic idea of load balancing is to attempt to balance the load on all processors
in such a way to allow all processes on all nodes to proceed at approximately with the
same rate (CASAVANT; KUHL, 1988; WARAICH, 2008). The greatest reason to launch
the load balancing is the fact that exists an amount of processing power that is not used
efficiently, mainly in dynamic and heterogeneous environments like grids (YAGOUBI;
MEDEBBER, 2007). In this context, schedulers’ policies can use load balancing mech-
anisms for several purposes, such as: (i) to choose the amount of work to be sent to a
process; (ii) to move work from an overloaded processor to another that presents a light
load; (iii) to choose a place (node) to launch a new process from a parallel application
and; (iv) to decide about processes migration. Load balancing is especially important
for some parallel applications that present synchronization points, in which the processes
must execute together the next step. Following this scenario, Figures 2.3 (a) and (b) show
execution scenarios without and with load balancing, respectively. The situation (b) of
Figure 2.3 may be obtained, for example, through the transferring of heavy processes to
lightly loaded resources or through the work distribution according to processors’ capac-
ity and load.

Processes

Processes

Local
Computation

Barrier

(a) Situation in which the processes are not balanced among the resources

(b) Situation after applying the algorithms for load balancing (processes relocation)

Time

Local
Computation

Barrier

Figure 2.3: Example of situations without and with applying load-balancing algorithms

The most fundamental topic in load balancing consists in determining the measure of
the load. There are many different possible measures of load including: (i) number of
tasks in a queue; (ii) CPU load average; (iii) CPU utilization at specific moment; (iv) I/O
utilization; (v) amount of free CPU; (vi) amount of free memory; (vii) amount of commu-
nication among the processes and so on. Besides this, we can have any combinations of
the above indicators. Considering the scope of processes from the operating system, such
measures will influence in deciding about when to trigger the load balancing, which pro-
cesses will be involved and where are the destination places in which these processes will
execute. Especially on the last topic, other factors to consider when selecting where to put
a process include the nearness to resources, some processor and operating system capa-
bilities, and specialized hardware/software features (LU; SUBRATA; ZOMAYA, 2006).

We must firstly determine when to balance the load to turn the mechanism useful.
Doing so is comprised of two phases: (i) detecting that a load unbalancing exists and; (ii)
determining if the cost of load balancing exceeds its possible benefits. Following Watts
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and Taylor (WATTS; TAYLOR, 1998), load imbalance can be detected in two manners:

• Synchronous load-balancing detection;

• Asynchronous load-balancing detection.

Most scientific codes have inherent synchronization points. These barrier operations
provide a natural and clean point in which load balancing can be launched. When a
barrier is initiated, the average load of all the computers may be determined. If the aggre-
gate efficiency is below some user-specified limit (threshold), the workload is considered
as unbalanced. This approach explains the functioning of the synchronous load balanc-
ing detection. A load unbalancing can also be detected in an asynchronous fashion. A
task/process can keep track of a window of load history. If its percentage utilization dur-
ing this period drops below a critical threshold, it can create a global request for load
balancing. Even if a load imbalance exists, it may be better not to load balance simply
because the cost of its execution would exceed the benefits of a better work distribution.
Therefore, the specification and the measurement of the costs must be carefully analyzed
when defining a load-balancing algorithm in order to perform only productive modifica-
tions.

Scheduling policies use load-balancing techniques in order to achieve better results.
In this manner, it is trivial that we have both the static and dynamic classifications for load
balancing (WARAICH, 2008; LI; LAN, 2004). While static load balancing is performed
with data known at compile time, dynamic one takes profit from updated data collected
on application runtime. This last approach can deal with the dynamism feature inherent to
grid environments as well as present in some irregular applications (ROSA RIGHI et al.,
2009a). Waraich (2008) affirm that there are three major parameters which usually define
the strategy that a specific load balancing algorithm will employ. Following him, these
parameters answer three important questions denoted below:

• Who makes the load-balancing decision;

• Which information is used to make the load balancing decision;

• Where is the load balancing made.

The question about who makes the load balancing decision is answered based on
whether a sender-initiated or receiver-initiated policy is employed. Both policies are used
to share the load from heavily loaded processors to those in which the load is more mod-
erate. In a sender-initiated policy, congestioned nodes attempt to move work to lightly
loaded nodes. On the other hand, lightly loaded nodes look for heavily loaded ones from
which work may be received in receiver-initiated approaches. An example of receiver-
initiated approach is the random stealing, where a node attempts to steal work from a
randomly selected node when it finds its own task queue empty (ZHANG et al., 2005).
Considering the idea of processes rescheduling, a lightly loaded processor could send
messages to other processors indicating that it could handle more work. Thus, an over-
loaded processor can send a process to this lightly loaded processor, contributing to min-
imize the overall time for application execution.

Global and local strategies answer the question about what information will be used
to make the load balancing decision. In global policies, the load balancer uses the per-
formance profiles of all available processes. In local policies, processes are partitioned
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into different groups. Although local information exchange strategies may yield to less
communication costs, global information exchange strategies tend to give more accurate
decisions. The choice of a local or a global policy depends on the behavior that an ap-
plication will exhibit. For global schemes, balanced load convergence is faster compared
to a local scheme since all the processes are considered at the same time. However, this
requires additional communication and synchronization among them (WARAICH, 2008).
Centralized and distributed strategies answer the issue related to where the load balancing
is made. In a centralized scheme, the load balancer is located on the master process and
all decisions are made there. In a distributed scheme, the load balancer is replicated on
all processes.

Following Kwok and Cheung (2004), load balancing algorithms can be analyzed ac-
cording to a framework with four dimensions: (i) location policy; (ii) information policy;
(iii) transfer policy and; (iv) selection policy. These policies are explained in Table 2.1. In
a nutshell, a load balancing system must develop these four policies that include the defi-
nition of the processing grain (tasks or processes, for example), the machines that may be
considered to execute this grain, the load information and how the balancing mechanism
will be activated.

Table 2.1: Four dimensions of a framework for load balancing (KWOK; CHEUNG, 2004)
Dimension Responsibilities

Location
Policy

The objective of this policy is to find a suitable transfer partner for a ma-
chine, once the transfer policy has decided that the machine is a heavily-
loaded state or lightly-loaded one. Common location policies include:
random selection, dynamic selection and state polling.

Information
Policy

This policy determines when the information about the state of other
machines should be collected, from where it has to be collected and
what information is to be collected. Common approaches are: no ex-
change of states, state probing (or demand-driven) in process of load
balancing, periodic exchange (information gathered periodically), state-
change broadcasting and conditional multicasting.

Transfer
Policy

A transfer policy determines whether a machine is in a suitable state
to participate in a task transfer, either as a sender or a receiver. For
example, a heavily loaded machine could try to start process migration
when its load index exceeds a certain threshold.

Selection
Policy

This policy determines which task should be transferred. Once the trans-
fer policy decides that a machine is in a heavily loaded state, the selec-
tion policy selects a task for transferring. Selection policies can be cat-
egorized into two policies: (i) preemptive and; (ii) non-preemptive. A
preemptive policy selects a partially executed task. As such, a preemp-
tive policy should also transfer the task state, which can be very large
or complex. Normally, this transferring operation is expensive. A non-
preemptive policy selects only tasks that did not begin their executions.

Load balancing can be offered directly inside the application code. This approach re-
sults in a close coupling between the load balancing data structures and the application.
Thus, such an implementation cannot be used with other applications owing to the speci-
ficity of the data structure shared both by the application and the algorithm (CHAUBE;
CARINO; BANICESCU, 2007). Even more, sometimes the programmer may not have



34

expertise in optimizing the partitioning algorithm and the implementation of the load
balancing algorithms takes time away from the developers’ primary interest (the applica-
tion). Other possibility is to offer load balancing at middleware level. In this context, a
load-balancing module can be implemented together with the programming library. Con-
sidering the programmer’s point of view, this approach represents an effortless manner to
achieve performance. For example, load-balancing module for BSP processes reschedul-
ing can be implemented directly in programming library. Communication data collected
by communication directives and data about processors’ capacity and load can be used for
decision making of processes relocation. This decision may be taken at the barrier syn-
chronization function, since this point means a pertinent moment to implement processes
migration.

2.3 Processes Migration

A process is an abstraction of the operating system and represents an instance of a pro-
gram in execution. Process migration is the movement of a currently executing process to
a new processor. Migration offers an illusion of computation movement when, in reality,
a new thread or process is being created at the destination where an equivalent state and
environment will be reconstructed and resumed (MILANéS; RODRIGUEZ; SCHULZE,
2008). Figure 2.4 illustrates the execution flow of a migrated process. The transferring of
the process’ state implies on migration costs, which must be considered in viability cal-
culus when a process is tested for migration (NEVES et al., 2007). Processes migration
can be employed for processes rescheduling, allowing the system to take advantage of
changes in processes behavior and/or in network utilization during processes execution.
Thus, dynamic changes on the topology of the application can help in load balancing
or in minimizing the downtime of non-interruptible services. Furthermore, scheduling
algorithms gain more flexibility since the initial processes-resources assignment can be
modified at any moment.

Source
Resource

Destination
Resource

Time Process' state transferring Migration costs

Figure 2.4: Process migration representation (MILOJICIC et al., 2000)

As a general view, processes migration may be used for the following
issues: (i) dynamic load redistribution (KOVACS; KACSUK, 2004; ZHANG et al.,
2005); (ii) high throughput computation, taking profit from idle computation cy-
cles (BONORDEN; GEHWEILER; HEIDE, 2005); (iii) fault tolerance (GEHWEILER;
SCHOMAKER, 2006; NAGARAJAN et al., 2007; WANG et al., 2008); (iv) improve
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data access locality (JENKS; GAUDIOT, 2002) and; (v) for system administration (BEG-
NUM, 2007). Moving the computation closer to the data or to special resources or ser-
vices enhances locality (item iv related above). For instance, if a process is accessing a
huge remote data source, it may be more interesting to move it close to the source of data
instead to move the data up to the machine where this process executes. This results in
lesser communication and delay and makes more efficient the use of network resources.
Locality issue is also relevant when there are networks with different capacities. The
procedure to approximate two processes that have high communication rate to the same
network level tends do minimize the time spent on their interactions.

Processes migration is also important to develop self-management systems. An ex-
ample in this context is the Condor system (THAIN; TANNENBAUM; LIVNY, 2005).
In this system, each computer belongs to a specific user and is available only when its
owner does not use it. Condor migrates a process when the owner of the computer re-
turns. The migration concept is also employed in autonomous objects transferring over
wide area networks (KRIVOKAPIC; ISLINGER; KEMPER, 2000). Each object is inde-
pendent and decides when and where it must migrate in this idea. There are 3 important
components common to any processes migration policy (BOUKERCHE; DAS, 1997):

• Load balancing policy;

• Process migration mechanism;

• Remote execution.

The load balancing policy decides “when” and “where” to transfer a process, refer-
enced by the keyword “Which”. Process migration mechanism decides “how” the system
migrates a process from the source to the destination. Remote execution is responsible
for the process execution on a new machine. The part of the migration policy component
addressed in this thesis is the load balancing. The decision of when is important since it
does not make much sense to perform load balancing if a task is only going to execute
for a short period of time. Load balancing is only useful for long-running tasks with large
CPU and I/O requirements. Besides the answer for the keyword when, our model for BSP
processes rescheduling answers the following issues: (i) which processes are candidates
for migration and; (ii) where to put an elected process from the candidates ones. We do
not have interest in the keyword How, that treats the mechanisms used to implement the
processes migration.

Migration is said to be transparent when the effects of the movement are hidden from
the user and the application. In addition, migration can be initiated either from inside
the computation (proactive or subjective migration) or from outside (reactive, objective,
or forced migration) (MILANéS; RODRIGUEZ; SCHULZE, 2008). While subjective
migration is more frequently found (especially in mobile agent applications), it affects
the clean separation between application and mobility logic. On the other hand, various
issues arise in objective migration. Care should be taken not to interrupt the computation
while the system presents an inconsistent state. While interrupting the computation in the
subjective case is trivial, it is a complex issue for the objective case. Independently of the
used approach, careful placement of migration points is mandatory to avoid an excessive
latency in responding to migration requests. Having too many points may lead to space
and time overhead. In general, it is accepted as enough to place the migration points at
the beginning of loops and function calls (MILANéS; RODRIGUEZ; SCHULZE, 2008).
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2.4 Grid Computing

The grid is a concept of an infrastructure that intends to make use of widespread,
hence loosely-coupled, large scale computational network and resources (CASANOVA,
2002). Its purpose is to superspass limitations on geographical locations and hardware
specifications of computers. One of the promises of grid computing is to enable the exe-
cution of applications across multiple sites. These applications can be bag-of-tasks, work-
flows or parallel applications based on message passing paradigm (NETTO; BUYYA,
2008; SCHNEIDER et al., 2009). In this way, grid platform has been used for exe-
cuting computing-intensive and data-intensive applications such as bioinformatics, high
energy physics, climate modeling, economics, automotive/aerospace industry, and so
forth (CHEN et al., 2008). The term “grid” was introduced in the book “The Grid:
Blueprint of a New Computing Infrastructure”, written by Ian Foster (FOSTER; KESSEL-
MAN, 2003). Foster explains it in analogy to the electrical power grid, which is a singular
entity that connects billions of power outlets and supplies a vast amount of heterogeneous
devices with energy. This was the starting point of a whole new research field that distin-
guishes from conventional distributed computing.
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Figure 2.5: Example of a grid topology

Cluster computing incorporates a lot of properties that describe a grid. A cluster is a
couple of resources to form a virtual singular resource. Usually a middleware manages job
execution and usage of computational nodes. But a cluster is mostly associated with one
organization and is not widespread, like the grid. Cluster nodes are more homogeneous,
meaning they have at least all the same programming model and have mostly all the same
hardware. In addition, clusters are normally static and have a high focus on topology, in
terms of high speed, sophisticated interconnection networks and the way the nodes are
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connected (e.g. torus, tree, hypercube and so on). As computational grids emerged and
got widely used, resources of multiple clusters became dominant computing nodes of the
grid. Cross-cluster process migration can help us to balance the load among multiple grid
nodes with fine granularity (WANG et al., 2007). From the topological point of view, we
can regard a grid computing as a set of clusters in a multi-nodes platform (YAGOUBI;
MEDEBBER, 2007). Each cluster owns a set of worker nodes and belongs to a local do-
main, i.e. a LAN (Local Area Network). Every cluster is connected to the global network
or WAN (World Area Network) by a switch. This idea of grid topology is illustrated in
Figure 2.5.

The emergence of a variety of new applications demands that grids support efficient
data, scheduling and resource management mechanisms (KRAUTER; BUYYA; MAH-
ESWARAN, 2002). Yu and Shi consider that the static scheduling is not the best option
for grid environments (YU; SHI, 2007). Static scheduling does not consider the future
change of grid environment after the resource mapping is made. Most static scheduling
approaches assume that resource set is given and fixed over time. The assumption is not
always valid even with the reservation capability in place. Moreover, the static scheduling
approach cannot utilize new resources after the plan is made and cannot reorganize the
processes-processors mapping.

2.5 Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model was introduced by Leslie Valiant in
1990 as a model that joins both parts of machine architecture and software architec-
ture (VALIANT, 1990). Bulk Synchronous Parallelism can be seen as a style of parallel
programming developed for general-purpose parallelism, which is parallelism across all
application areas and a wide range of architectures. BSP’s most fundamental properties
are(SKILLICORN; HILL; MCCOLL, 1997):

• It is simple to write;

• It is independent of target architectures;

• The performance of a program on a given architecture is predictable.

BSP programs look much the same as sequential programs. Only a bare minimum of
extra information needs to be supplied to describe the use of parallelism. Unlike many
parallel-programming systems, BSP is designed to be architecture-independent. Thus,
programs run unchanged when they are moved from one architecture to another. The
execution time of a BSP program can be computed from the text of the program and a few
simple parameters of the target architecture. This makes design possible, since the effect
of a decision on performance can be determined at the time it is made (VASILEV, 2003;
NICULESCU, 2006). The BSP model comprises a collection of processors, each one
with its own local memory, and a global communication network. Figure 2.6 depicts a
BSP parallel machine. It is important to emphasize that there is not restriction either about
processors proximity or about the type of the network (local or wide area network). BSP
model just requires all-to-all and asynchronous communication among the processes.

In terms of BSP programs, we can affirm that they have both a vertical structure and
a horizontal structure. The vertical structure arises from the progress of a computation
through time. Considering the BSP scope, this structure is a sequential composition of
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Figure 2.6: Simplified vision of a BSP parallel machine (SKILLICORN; HILL; MC-
COLL, 1997)

global supersteps, which conceptually occupy the full width of the executing architecture.
Thus, a BSP application is composed by one or more supersteps. Each superstep is further
subdivided into three ordered phases which will be explained below and illustrated in
Figure 2.7.

• Local computation in each process, using only values stored in the memory of its
processor;

• Communication actions among the processes, involving movement of data between
processors;

• A barrier synchronization, which waits for completing all communication actions.

BSP Processes (Virtual Processes)

Local
Computation

Synchronization
Barrier

Time

Global
Communication

Figure 2.7: Representation of a BSP superstep in BSP model (SKILLICORN; HILL;
MCCOLL, 1997)

The postponing of communications to the end of a superstep is the key idea for im-
plementations of the BSP model (DUTOT et al., 2005). It removes the need to sup-
port nonbarrier synchronizations among processes and guarantees that processes within
a superstep are mutually independent. This makes BSP easier to implement on differ-
ent architectures and makes BSP programs easier to write, to understand, and to analyze
mathematically.
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The use of a barrier by the BSP model, although potentially costly, presents a number
of attractive features. There is no possibility of deadlock or livelock in a BSP program be-
cause barriers make circularities in data dependencies impossible. Therefore, there is no
need for tools to detect and deal with them. Barriers also permit novel forms of fault toler-
ance, because there is a forced synchronization in communication actions(SKILLICORN;
HILL; MCCOLL, 1997; WANG et al., 2008). It is possible to achieve a global state apply-
ing checkpoints on each processes at this phase. Taking into account that a BSP applica-
tion is a sequence of supersteps, if any fault occurs in a certain superstep, the application
needs to rollback for only one superstep. This superstep mechanism makes the model
to be reconfigured easily (MIAO; TONG, 2007). In addition, the barrier moment allows
the easier increment or decrement of processes during application runtime, depending on
the resources availability in the distributed system (GOLDCHLEGER et al., 2005). Con-
sequently, this feature can be seen as a good point to create dynamic BSP applications,
allowing some kind of variation in the number of processes.

The horizontal structure arises from concurrency and consists of a fixed number of
virtual processes (BSP processes). These processes are not regarded as having a particular
linear order and may be mapped to processors in any way. Thus, locality plays no role
in the first placement of processes on processors. The performance of a BSP application
can be characterized by three parameters: (i) p = number of processors; (ii) l = time spent
to perform the barrier synchronization and; (iii) g = rate in which the data accessed in a
random fashion may be delivered. The parameter g is related to the bisection bandwidth
of the communication network and depends on some factors such as: (i) the protocols
used for network communication; (ii) the buffer management by both the processors and
the communication network; (iii) the routing strategy used in the communication network
and; (iv) the BSP runtime system. Summarizing, the cost to start a data transferring at
each superstep is added to g value.

The separation of the local computation, global communication and synchronization
phases permits to calculate the limit times and to predict the application performance just
using simple equations. The cost a superstep can be determined as follows. Supposing
that the work w is the cost of local computations on each process during superstep s, hout
as the amount of messages sent by any process during superstep s, hin as a maximum
amount of messages received by each process during superstep s and l as the barrier
synchronization cost. The time to compute the superstep s can be calculated through
Equation 2.1.

superstep cost = MAXw + MAX{hin,hout} . g + l (2.1)

application cost =
s

∑
s=0

Ws + g .
s

∑
s=0

Hs + s . l (2.2)

Equation 2.1 can be simplified just adopting W and H as the maximum times for
MAXw and MAXh. The total cost of a BSP application is the summing of the partial costs
obtained at each superstep (see Equation 2.2). In Equation 2.2, the variable s represents
the number of supersteps. The cost model also shows how to predict performance across
target architectures. The values of p, w, and h for each superstep, and the number of
supersteps can be determined by inspection of the program code. Values of g, and l can
then be inserted into the cost formula to estimate execution time before the program is
executed. Therefore, the cost model can be used as part of the design process for BSP
programs and to predict the performance of programs ported to new parallel computers.
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Moreover, this idea of cost is useful to guide buying decisions for parallel computers if
the BSP program characteristics of typical workloads are known.

The existence of a cost model that is both tractable and accurate makes it possible
to truly design BSP programs. Concerning this, Table 2.2 presents some initiatives to
improve the performance of a BSP application.

Table 2.2: Mechanisms to improve the performance of BSP applications
Mechanism Description

Balance the
computation

Balance the computation among processes at each superstep, since
the value of w is the maximum over computation times and the bar-
rier synchronization must wait for the slowest process. Consider-
ing a dynamic and heterogeneous parallel architecture, we can also
reschedule the processes among the available resources taking into
account their values of w.

Balance the
communication

Balance the communication among the processes, since h is a max-
imum over fan-in and fan-out of data. This communication equilib-
rium is pertinent when there are communications that use conges-
tioned links or the Internet. We can remap the processes in order to
approximate to the same network level those processes that present a
higher communication pattern.

Reduce super-
steps

Minimize the number of supersteps, since this determines the number
of times l appears in the final cost.

BSP model can be expressed in a wide variety of programming languages and sys-
tems. For example, BSP programs could be written using existing communication li-
braries such as PVM (SUNDERAM, 1990) and MPI (DONGARRA et al., 1995). A
programming library must offer just a barrier synchronization function and asynchronous
communication directives. Compared to PVM and MPI, BSP approach offers the follow-
ing facilities (SKILLICORN; HILL; MCCOLL, 1997): (i) a simple programming disci-
pline (based on supersteps) that determines the correctness of programs easier; (ii) a cost
model for performance analysis and prediction which is simple and compositional and;
(iii) more efficient implementations on many machines. The most common approach for
BSP programming is SPMD (Simple Program Multiple Data) (WILKINSON; ALLEN,
1999) imperative programming using Fortran or C languages. In addition, BSP programs
can use traditional directives for message passing (send and receive) as well as remote
direct memory access (RDMA) mechanisms. Section 3.4 presents some BSP communi-
cation libraries developed for cluster and grid computing.

2.6 Summary

In this chapter we presented a short description of the scheduling, load balancing and
migration topics. Scheduling mechanisms manage the interaction between consumers and
resources. Consumers represent the scheduling grain, which may be represented by a task,
a process or a job, for example. A scheduler acts according to its scheduling policy, which
can offer load balancing in order to maintain all the consumers in the same (or approxi-
mate) execution rate. Methods for load balancing can be classified into two categories: (i)
static and; (ii) dynamic. Static approaches are usually achieved by task/process allocation
beforehand. It requires prior knowledge of tasks/processes (such as execution time) and
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cannot adapt to the runtime load variation. Dynamic approaches are more complex, since
the data capturing and the procedure itself are done at runtime. Since static approaches
usually cannot cope with the dynamic changes on system conditions, dynamic algorithms
are used in practical situations. However, dynamic algorithms must collect, store, and an-
alyze state information, and thus, they incur more overhead than their static counterparts.

Considering the scheduling grain as a process of the operating system, normally its
scheduling to a resource happens before application execution characterizing a static ap-
proach. The procedure to map processes to resources before application execution does
not consider possible modifications on infrastructure. Thus, a pertinent idea is to use
dynamic processes creation taking into account data collect during application runtime.
However, even using a dynamic approach, modifications after process launching occurred
by either environment or application dynamicity may turn the previous scheduling ineffi-
cient in time. In this context, the fact to propose a new scheduling taking into account a
previous one arises and brings the idea of rescheduling.

The support of processes rescheduling made with processes migration is one of the
most important techniques to fully utilize the resources of the entire system. This mecha-
nism can be managed by a dynamic load balancer, which constantly verifies the situation
of both the infrastructure and the application and offers a processes-processors reorgani-
zation in order to maintain a specific level of performance. The rescheduling facilitates the
dynamic load distribution and can improve the performance of both the communication
and computation parts of the application. The computation time can be optimized through
the transferring of processes from overloaded processors to others with moderated load.
The communication can be improved minimizing the costs for message passing among
the processes. It is possible to bring to the same network two processes that present a
higher communication pattern or when an Internet link is observed. In addition, we must
observe the costs for process state transferring when load balancing takes place. This
must be carefully analyzed because sometimes the amount of process memory and/or the
state of the network are issues that turn processes migration inviable. Thus, migration is
useful only in cases where the gain achieved by migration outweighs the incurred cost.

BSP execution model was chosen to develop the algorithms of our processes reschedul-
ing model. BSP model is being demonstrated as a successful paradigm for offering both
predictable performance and architecture independent software. It certainly would be ben-
eficial to transplant the features of BSP model to grid environment so as to create a pro-
gramming model for grid and for performance predictable applications (MIAO; TONG,
2007). BSP presents two points of optimization that will be addressed by MigBSP: (i) in
local computations and: (ii) in global communications. Both points can be improved in a
heterogeneous (in terms of processing capacity and network velocity) and dynamic (use
of processing resources and fluctuations on network bandwidth) distributed systems. An
idea to make viable this improvement in BSP programs is the employment of processes
rescheduling technique together with dynamic load balancing. Processes rescheduling
can contribute to minimize the application execution time and maximizes the use of the
resources. A trivial alternative to launch the rescheduling on BSP programs could be in-
side the barrier synchronization function, since it represents a point in which a consistent
global state is achieved. Moreover, the barrier phase means an easier point to implement
the mechanism for processes migration.
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3 RELATED WORK

This chapter describes some related work that are inserted in the context of the current
thesis document. It shows different systems and algorithms, as well as their approaches
to deal with the following topics: scheduling, load balancing and processes migration.
Furthermore, the present chapter addresses some works related to the BSP model and
grid computing. Lastly, we present a special section that emphasizes the existing gaps
inside the considered context and guides the reader to the next (and the main) chapter of
this thesis.

The present chapter is organized in 4 sections. It is important to notice that this or-
ganization was made just to simplify and clarify the reading of the chapter. We will
present systems and ideas that could be enclosed in more than one section. Section 3.1
treats the scheduling and load balancing topics. Section 3.2 shows some systems that deal
with rescheduling and migration. Section 3.3 shows some related works in the context of
grid computing. Section 3.4 describes some initiatives of BSP systems as well as some
changes and improvements made on such model. Section 3.5 closes the chapter with a
discussion of the main points addressed on it.

3.1 Scheduling

Elsasser, Monien and Preis (ELSASSER; MONIEN; PREIS, 2000) consider the load
balancing topic on heterogeneous environments. The load must be balanced among the
processors proportionally to their given power. In other words, given a network with n
nodes where each node i contains a work load of wi and a weight of ci, calculate a load
balancing flow over the edges of the network such that, after termination, each node i has
the balanced proportional work load wi. wi is computed following Equation3.1.

wi = ∑n
i=1 wi

∑n
i=1 ci

. ci (3.1)

If the global imbalance vector w−w is known, it is possible to solve the problem by
solving a linear system of equations. If only local information about the load imbalance
must be used, the nodes of the graph have to balance the load with their neighbors it-
eratively until the whole network is globally balanced (ELSASSER; MONIEN; PREIS,
2000). This kind of algorithm is called diffusion. Diffusion algorithms assume that a node
of the graph can send and receive messages to/from all its neighbors simultaneously.

Load balancing techniques are also employed in information dissemination systems
like Publish/Subscribe (FIEGE et al., 2006). Cheung and Jacobsen (2006) work with
dynamic load balancing in distributed content-based Publish/Subscribe systems. These
systems may suffer from performance degradation and poor scalability under uneven load
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distributions typical in real-world applications. Formerly, a broker can be overloaded if
the incoming message rate into it exceeds the processing/matching rate supported by the
matching engine. Secondly, the overloading can also occur if the output transmission rate
exceeds the total available output bandwidth. Hence, Cheung and Jacobsen developed a
load balancing algorithm that distributes the load by offloading subscribers from heavily
loaded brokers to less loaded brokers.

Cluster
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Edge Brokers

Sub

Sub Sub

Sub

Sub

Cluster

Pub

Figure 3.1: Publish/Subscribe architecture designed with clusters and managers (CHE-
UNG; JACOBSEN, 2006)

Cheung and Jacobsen developed an architecture called PEER (Padres Efficient Event
Routing), in which organizes the brokers into a hierarchical structure as illustrates Figure
3.1. Brokers with more than one neighboring broker are referred to as cluster-head bro-
kers, while brokers with only one neighbor are referred to as edge brokers. A cluster-head
broker with its connected set of edge brokers forms a cluster. Brokers within a cluster are
assumed to be closer to each other in network proximity. PEER’s organization of brokers
into clusters allows two levels of load balancing: (i) local-level (referred as local load
balancing) where edge brokers within the same cluster load balance with each other and;
(ii) global-level (referred as global load balancing) where edge brokers from two differ-
ent clusters balance the load with each other. Edge brokers only need to exchange load
information with edge brokers in the same cluster, and neighboring clusters can exchange
aggregated load information about their own edge brokers.

Brokers must exchange load information with each other in order to know when and
which brokers are available for load balancing. With this data, a detection algorithm can
then trigger load balancing whenever it detects an overload or a wide load difference with
another broker. The load unbalancing detection runs periodically. Detection allows a
broker/cluster to monitor its current resource usage and also compare it with neighboring
brokers/clusters so that it can invoke load balancing if necessary. The local detection
algorithm running on an edge broker is composed of two steps. The first one identifies
whether the broker itself is overloaded by examining four utilization ratios, namely: (i)
input; (ii) output; (iii) CPU and; (iv) memory utilization. In this point, the parameter
lower overload threshold is introduced to prevent the broker from accepting further load
when one of its utilization ratios exceeds 0.9. If an utilization ratio exceeds the higher
overload threshold at 0.95, then load balancing is invoked immediately.

Legrand et al. (2003) present a load balancing of iterative computations on heteroge-
neous clusters with shared communication links. These authors modeled the computation
and communication costs of an application executed in phases. At each iteration, some
independent calculations carry out in parallel by each process and then some communi-
cations take place. This organization remembers the functioning of the BSP model.
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Kondo et al. (2002) described a client-server scheduling model for global computing.
The application model consists in work units and result units. A client receives work
units, processes them and returns result units. The computation platform is composed by
a central server and a set of clients. A client is defined with characteristics like disk, CPU
and network connection with the server. In addition, a client just executes some work
when its CPU is idle. The model measures the processor speed (Maxcpu), the network
bandwidth (Maxnet) and the disk space (Maxdisk) of each client in order to determine the
number of work units that the server will pass to it. These three values are passed to work
units. They are not combined and the minimum of them gives the amount of work that
the server will pass to a specific client.

Yagoubi and Medebber (2007) proposed a load balancing model for grid environ-
ments. They propose a tree-based model to represent grid architecture in order to manage
the workload. The model is characterized by three main features: (i) it is hierarchical; (ii)
it supports heterogeneity and scalability and; (iii) it is totally independent from any grid
physical architecture. In addition, The main characteristics of the proposed load balanc-
ing strategy are: (i) it uses a task-level load balancing; (ii) it privileges local tasks transfer
to reduce communication costs and; (iii) it is a distributed strategy with local decision
making. The load balancing strategy works with the idea that a grid is composed by a set
of clusters or LANs (Local Area Networks). It works with three levels of management
as we can see in Figure 3.2. In the first level (level 0), a Grid Manager decides to start a
global load balancing between the clusters of the grid. In level 1, each Cluster Manager
decides to start local load balancing. Finally, worker nodes are presented in level 2. They
maintain their workload information and send this data to their own Cluster Managers.

Grid Manager Level 0

Level 1

Level 2

Node

Cluster
Manager

Figure 3.2: Tree-based representation of a grid (YAGOUBI; MEDEBBER, 2007)

In accordance with the hierarchical structure, the Yagoubi and Medebber proposed
two load balancing levels: intra-cluster (or inter-nodes) and intra-grid (or inter-clusters).
The intra-grid load balancing is performed only if some cluster Manager fails to load
balance its workload among their associated worker nodes. The local balancing failure
may be due to either saturation of the cluster or insufficient supply. The main advantage
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of this strategy is to privilege local load balancing in first (within a cluster and then on the
entire grid) (YAGOUBI; MEDEBBER, 2007). The goal of this neighborhood approach is
to decrease the amount of messages exchanged between clusters. As a consequence, the
communication overhead induced by tasks transfer and flow information is reduced.

Orduna et al. (2000) developed a communication-aware task scheduling system for
heterogeneous systems. The interconnection network in heterogeneous systems may be-
come the system bottleneck, particularly when executing applications with huge network
bandwidth requirements, like multimedia and on-demand applications. Concerning this,
they developed a model of communication cost between nodes. They proposed a simple
metric that is the equivalent distance between each pair of nodes. This metric measures
the cost of communicating two nodes without explicitly considering traffic pattern. The
application of this method produces a table Tn of N x N equivalent distances, where N is
the number of nodes in the network.

Garcia and Morales-Luna (GARCÍA; MORALES-LUNA, 2008) designed a model for
task assignment based on the notion of force. The Force-Field task assignment method
takes both communication cost and idle cycles into consideration and combines them into
a scalar force field. The net attraction of each remote node for a particular task will thus
be the strength or affinity for receiving a particular task. This attraction in the force field
will determine which remote computers are assigned the tasks that compose the superstep.
Remote computers which do not have enough resources will produce a repulsive force.

Let the term computational ease refer to the reciprocal of the cost in cycles required to
complete a task. What distinguishes the Force-Field task assignment method is, in general
terms, the fact that force is in inverse ratio to the square of the cost of the communications
and direct ratio to the computational resources at the remote node multiplied with the
computational ease of the task to be assigned. The equation which determines the Force-
Field is obtained through an analogy to Coulomb’s law, as we can see in Equation 3.2.

F =
q j.Mi, j

r2
i j

(3.2)

The remote computer charge is represented by q j. This variable is the computational
potential of node j and is equivalent to the available computational cycles per unit time.
This number is always positive or equal to zero. The task charge is denoted by Mi, j. This
variable is the computational ease associated to the memory requirements of task i with
regard to node j. This variable will be less than zero, unless the memory resources at
node j are insufficient to satisfy the requirements of task i. The processor distance is
represented by ri, j in Equation 3.2. ri, j is the cost in communications from the remote
node i to the local node j from where the task assignment will take place. If F < 0 , there
is a tendency to move a task towards the remote node, while F > 0 implies repulsion. With
the Force-Field task assignment, the nodes with the most negative forces will be assigned
the tasks: the assignment of tasks to nodes is done simultaneously in such a manner that
the node with the greatest attractive force will receive the task associated with this force.

Topcuoglu et al. (2002) propose two new static scheduling algorithms for a bounded
number of fully connected heterogeneous processors. The first algorithm is called Hetero-
geneous Earliest-Finish-Time (HEFT) while the second one refers to the Critical-Path-on-
a-Processor (CPOP). Although the static scheduling for heterogeneous systems is offline,
in order to provide a practical solution, the scheduling time (or running time) of an algo-
rithm is the key constraint. Therefore, the motivation behind these algorithms is to deliver
good-quality scheduling (or outputs with better scheduling lengths) with lower costs (i.e.,
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lower scheduling times). The HEFT Algorithm selects the task with the highest upward
rank at each step. The selected task is then assigned to the processor which minimizes
its earliest finish time with an insertion-based approach. The upward rank of a task is
the length of the critical path (the longest path) from the task to an exit task, including
the computation cost of the task. The CPOP algorithm selects the task with the highest
(upward rank + downward rank) value at each step. The algorithm targets scheduling of
all critical tasks (tasks on the critical path of the DAG) onto a single processor, which
minimizes the total execution time of the critical tasks.

3.2 Rescheduling and Migration

Bhandarkar, Brunner and Kale (2000) developed a framework to treat the load bal-
ancing in applications modeled as a collection of computing objects which communicate
with each other. This framework is illustrated in Figure 3.3. The main component of the
framework is the distributed database, which coordinates load balancing activities. When-
ever a method of a particular object runs, the time consumed by that object is recorded.
Furthermore, whenever objects communicate, the database records information about the
communication which permit the construction of the object-communication graph. The
proposed framework uses the Charm++ (ZHENG; HUANG; KALé, 2006) tool which of-
fers several advantages for load balancing. Firstly, parallel programs are composed of
many coarse-grained objects, which represent convenient units of work for migration. In
addition, the CPU time and the message track for each object can be captured and ana-
lyzed by the framework at any particular time.

Strategy

CoordinatorDatabase

Object Manager 1 Object Manager 2

Object A[1] Object A[2] Object B[1] Object B[2]

Object B[3]

Application

Converse

Figure 3.3: Components of the load balancing framework on a processor (BHAN-
DARKAR; BRUNNER; KALE, 2000)
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The interaction between objects and load balancing framework occurs through Object
Managers (see Figure 3.3). Object Managers are responsible for creation, destruction and
migration of objects. They also supply the load database coordinator with computational
loads and communication information of the objects they manage. The tests with this
framework were performed using a version of MPI called ArrayMPI and the Converse
runtime system. Periodically, the MPI application transfers control to the load balancer
using a special call MPI_Migrate(). This call allows the framework to invoke a load
balancing strategy and to remap virtual processors (objects) to physical processors. The
authors developed two heuristic strategies for load balancing: (i) greedy and; (ii) based
on Metis tool.

The greedy strategy organizes all objects in decreasing order of their computation
times. The algorithm repeatedly selects the heaviest unassigned object, and assigns it to
the least loaded processor, updating the loads, and readjusting the heap. This strategy does
not consider data about communication. The other strategy uses the Metis tool which is
mainly used tool for partitioning of large structured or unstructured meshes. The object
communication graph that is obtained from the load balancing framework is presented to
Metis in order to be partitioned onto the available number of processors. The objective of
Metis is to find a reasonable load balance, while minimizing the edge-cut. The edge-cut
is defined as the total weight of edges that cross the partitions, which in the case denotes
the number of messages across processors.

Krivokapic, Islinger e Kemper (2000) presented the concepts of migration and load
balancing of objects in WAN environments. For that, these authors developed the Au-
toO system. This system considers objects that migrate autonomously. Its architecture
consists of many sites which execute one or more objects as given in Figure 3.4. Each
site has a Site Manager which supports communication between sites and coordinates the
processes under its control. The wide area network (WAN) environment is composed
by a set of local area networks (LAN). In addition, the authors describe links among the
LANs that will inform the communication costs. The composition of wide area networks
using local area ones is depicted in Figure 3.5. Two migration policies were designed for
this environment: (i) Best-LAN and; (ii) Good-LAN. Both strategies consider only the
problem of determining the LAN an object should migrate to. Within a LAN the object
chooses the site which most accesses came from.

The Best-LAN strategy considers all possible places (LANs) to migrate an object. It
finds the optimal location to an object, but it produces a high computation costs. The
second strategy, Good-LAN, considers a good solution but not necessary the optimal one.
When an object checks whether it should migrate or not, it considers only a certain number
of the latest messages it has received. In order to find the best LAN the object calculates
the communication costs these messages would have caused in case the object had been
located in other LANs of the system. Accesses from within the same LAN are not taken
into account, since the costs they induce are assumed to be much lower than for accesses
from outside the LAN. The costs that would have been encountered in the best LAN, i.e.,
the one with the minimum costs, are denoted as Cbest−lan. The object decides to migrate
in case the profit is higher than a certain threshold t, as explained in inequality 3.3.

Ccurr−lan−Cbest−lan ≥ t (3.3)

The threshold t in Inequality 3.3 presents distinct values depending on the nature of
the communication: (i) inside the same LAN or; (ii) with different LANs. Considering
this, the value of t is computed taking into account the communication costs inside a
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Figure 3.4: Architecture of the system of autonomous objects: AutoO System (KRI-
VOKAPIC; ISLINGER; KEMPER, 2000)
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Figure 3.5: Example of a WAN network structure composed by multiple LAN net-
works (KRIVOKAPIC; ISLINGER; KEMPER, 2000)

LAN (clocal) and between LANs (cglobal). t is the result of the multiplication of c (local or
global) by the number of considered messages. The Algorithm 2 shows the functioning
of the strategy Best-LAN. Considering the notations, Oi means an object located initially
on machine Mi and LAN Li.

The algorithm for Best-LAN firstly verifies the communication costs for a specific
object Oi among all LANs except that it belongs currently. With the best LAN, the al-
gorithm analyses a migration between different LANs based on cglobal . If the inequality
for this migration is false, the migration within the same LAN is tested. The strategy
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Good-LAN takes profit from the hierarchy of set of LANs. These sets are based on the
distance among the networks. In addition, a set can be joined with other ones creating
clusters. The network distance between two clusters is given by average message transfer
time between them which is determined as the average of the distances between each of
the sub-clusters they comprise.

Dynamic load balancing on dedicated heterogeneous system is presented by Galindo
et al. (2008). They present three directives for offering load balancing. Two of them
are used to initiate and finalize the library and the remaining is employed to perform
the load balancing. This last function is called ULL_MPI_calibrate(). It is a collective
function that must be invoked by all processes. The authors explain that although a large
number of balancing algorithms can be found in the literature, they opted for a simple
and efficient strategy that yielded satisfactory results. All processors perform the same
balancing operations as follows. Firstly, the time required by each processor to carry out
the computation in each iteration has to be given to the algorithm. A collective operation is
performed to share these times and other data among all processors. After this operation,
each processor presents:

• T [] is vector where each processor gathers all the times (Ti);

• size_problem is the size of the problem to be computed in parallel;

• counts[] is a vector that holds the sizes of the tasks to be computed on each proces-
sor.

The next step of the algorithm is to verify that the threshold is not being exceeded. If
(Max(T []) - Min(T [])) > Threshold, then the load balancing should be called. The relative

Algorithm 2 Algorithm Migration Best-LAN
1: Ccurr−lan← calculateCommCosts(Li)
2: best-lan← Li
3: Cbest−lan←Ccurr−lan
4: for j=0, LAN L j 6= Li do
5: costs← calculateCommCosts(L j)
6: if costs < Cbest−lan then
7: Cbest−lan← costs
8: best-lan← L j
9: end if

10: end for
11: if Ccurr−lan−Cbest−lan > cglobal . number_of_messages then
12: Return id of the machine in best-LAN with most access
13: end if
14: if Li = best-lan then
15: best-machine← machine within Li where most access came from
16: Cbest−machine← calculateCommCosts(best-machine)
17: CMi ← calculateCommCosts(Mi)
18: if CMi−Cbest−machine > clocal . number_of_messages then
19: Return the id of the best machine
20: end if
21: end if
22: Return the id of Mi
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power RP[] is calculated for each processor and corresponds to the relationship between
the time T [i] invested in performing the computation for a size counts[i]. SRP is the sum
of all RP[i] and is presented in Equation 3.5.

RP[i] =
counts[i]

t[i]
(3.4)

SRP =
Numproc−1

∑
i=0

RP[i] (3.5)

counts[i] = size_problem∗ RP[i]
SRP

(3.6)

Finally, the sizes of the new counts are calculated for each processor following Equa-
tion 3.6. Each processor fits the size of the task allocated according to its own compu-
tational capacity. The system could be extended to run on heterogeneous non dedicated
systems and on systems with dynamic load. For that purpose, the array T [] must be fed
not only with the execution times but with the loading factor on each processor.

Yu and Shi (2007) proposed an adaptive rescheduling strategy for grid workflow
applications. They propose a system design which adapts the Planner to dynamic grid
environments via collaboration with the Executor, as shown in Figure 3.6. The system
consists of two main components:

• Planner - The Planner has a collective set of subcomponents, including Scheduler,
Performance History Repository and Predictor. For each workflow application rep-
resented as a DAG, the Planner instantiates a Scheduler instance. Based on the
performance history and resource availability, the Scheduler inquires the Predictor
to estimate the communication and computation costs with the given resource set. It
then decides on resource mapping, with the goal of achieving optimal performance
for entire workflow and submits the schedule to the Executor.

• Executor. The Executor is an enactment environment for workflow applications. It
can be further decomposed into Execution Manager, Resource Manager and Per-
formance Monitor. The Executor supports advance reservation of resources. The
Execution Manager receives the DAG and executes it as scheduled. If the arriv-
ing schedule is a result of rescheduling, it revokes resource reservation for replaced
schedule before making new reservations.

For a given DAG and a set of currently available resources, the Planner makes the
initial resource mapping as any other traditional static approaches do. The primary dif-
ference is that this approach requires the Planner to listen for and adapt to the significant
events in the execution phase, such as:

• Resource Pool Change - If a new resource is discovered after the current plan is
made, rescheduling may reduce the makespan of a DAG by considering the resource
addition. When resource fails, fault tolerant mechanism is triggered and it is taken
care of by Execution Manager. However, if the failure is predictable, rescheduling
can minimize the failure impact on overall performance.
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Figure 3.6: The vision of the Planer and Executor components in the rescheduling frame-
work proposed by Yu and Shi (2007)

• Resource Performance Variance - The performance estimation accuracy is largely
dependent on history data. An inaccurate estimation leads to a bad schedule. If
the runtime Performance Monitor can notify the Planner of any significant perfor-
mance variance, the Planner will evaluate its impact and reschedule if necessary.
In the meantime, the Performance History Repository is updated to improve the
estimation accuracy in the subsequent planning.

The Planner reacts to an event by evaluating if makespan can be reduced by reschedul-
ing. For example, if a new resource becomes available, the Planner will evaluate if a new
schedule with the extra resource in consideration can produce smaller makespan. If so,
the Planner will replace the current scheduling with a new one and will submit it to the
Executor.

Utrera et al (UTRERA; CORBALAN; LABARTA, 2005) developed dynamic load
balancing in MPI jobs. They propose a mechanism which decides dynamically, without
any previous knowledge of the application, whether to apply Local or Global process
queues to it by measuring its load balancing degree. One important point on this work
is the observation of the authors. Usually the applications at the beginning of execution
have an unbalanced behavior, because processes are created and data is distributed among
them. After that, they normally perform a global synchronization function. So at this
point all the jobs behave as unbalanced ones, after that they start doing regular work. As a
matter of fact, the coefficient of variation (CV) of the number of context switches detected
on processes during the first period is higher than the rest of the execution owing to the
chaotic behavior. This coefficient is used in rescheduling algorithms.

Multi-cluster load balancing based on processes migration is discussed on (WANG
et al., 2007). Following the authors, it is a complicated problem to determine the optimal
location for the job to be migrated, since available resources are usually heterogeneous
and even not measured in the same units. Then, they tried to reconcile these differences by
standardizing the resource measurements and adopt a method based on economic princi-
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ples and competitive analysis. The target node for migration is determined by computing
the opportunity cost for each of the nodes in the local load vector, which is a concept from
the field of economies research.

The key idea is to convert the total usage of several heterogeneous resources, such as
memory and CPU, into a single homogeneous cost. Jobs are then assigned to the machine
where they have the lowest cost, just like in a market oriented economy. A simple way
is to compute the marginal cost of a candidate node. Namely, the amount of the sum
of relative CPU usage and memory usage would increase if the process was migrated
to that node. The goal is to find a node with minimal marginal cost and select it as
destination. The dynamic CPU load-balancing algorithm continuously attempts to reduce
the load differences between pairs of nodes, by migrating processes from high loaded to
less loaded nodes.

Du et al. (2004) present a highly configurable and extensible rule-based mecha-
nism for policy making that supports various system conditions in grid environments.
The authors designed and implemented a runtime system on top of HPCM and MPI-2,
providing resource registration, resource monitoring, process registration and soft-state
management to support dynamic rescheduling of MPI tasks. The system has a rule-based
decision-making component that coordinates with other components of HPCM as a com-
mander, and invokes the migration when it reaches a migration decision according to a
highly configurable and extensible rule-based mechanism.

The model consists of system state monitoring entities, commander entities and a
process registration and decision-making entity. Figure 3.7 shows the system model. A
monitor and a commander entity reside on each host, including candidate destination
hosts. There is also a central or hierarchical registry/scheduler, which can reside on any
host with or without other entities. As shown in Figure 3.7, the monitor registers the
host static information to the registry/scheduler and periodically gathers and updates the
system status to it. The monitor determines the status of its local system resources as free,
busy, overloaded or unavailable. It then reports its system status and other information to
the registry/scheduler. The registry/scheduler analyzes the data from monitors and makes
a decision regarding which process to migrate and where to migrate it.

Commander     Monitor     MPI-2

Process

HPCM

MPI-2       Monitor    Commander

Process

HPCM

Registry / Scheduler

Host A Host B

XML XML

Figure 3.7: The scheduling system model following Du at al. (2004)

The monitors collect various types of information, such as processor utilization and
load, memory state, disk usage and communication data (latency and bandwidth). Based
on such information, the monitor determines the system status according to a rule-based
mechanism. This decision is made locally and specifically according to the rules defined
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for a specific local system. Besides data collected at runtime, the model works with de-
tailed application information. Parameters and resource requirements are encapsulated
in an application schema with XML format. The application schema contains some in-
formation such as: (i) application characteristics, which include data, communication, or
computing intensive; (ii) estimated communication data size; (iii) resources requirement
and; (iv) estimated execution time on workstation with certain computing power.

Continuing the previous work, Du et al. (2007) analyzed the processes migration costs
in shared and distributed environments. A process’s state is represented as S = <App, P,
M, IO, Comm>. The parameters comprise the execution state P, the memory state M, the
I/O state IO and the communication state Comm. f (S) is a function that means the size of
S. In HPCM, data collection, transmission and restoration phases overlap with each other.
Lastly, the migration cost can be represented by Equation 3.7.

c = α0 + µ f (S) (3.7)

α0 is a small migration overhead that is application specific. If the application has a
large amount of referenced or dynamic allocated memory blocks, α0 is bigger. µ is called
migration processing rate and it is represented as seconds per byte. µ is proportional to
the reciprocal of the current available bandwidth, b ji, between the source and destination
node, that is µ = α1

b ji
. α1 is an application dependent constant that reflects the overlapping

factor among the migration phases denoted above.
The authors developed a dynamic task scheduling system to reallocate applications

at runtime dynamically. To choose a machine as the destination machine, they calculate
the expected application execution time after migration and the cost of migration. Let m j
denote the source machine and mi is the migration destination machine. Let w′j denote the
unfinished workload on m j. The completion time of the unfinished workload w′j, Tji, is
calculated following Equation 3.8. T (S′i) represents the execution time of the application
with unfinished workload on machine mi.

Tji = c ji +T (S′i) (3.8)

After receiving a triggering signal, the scheduling algorithm lists a set of idle machines
that are lightly loaded over an observed time period. For each machine, it is computed the
migration costs (Equation 3.7) and the mean of the remote task execution time T (S′i). If
the time with migration is lower than the actual scheduling, the migration is performed.

Huang et al. (HUANG et al., 2006) present a performance evaluation of AMPI (Adap-
tive MPI). The key concept behind AMPI is processor virtualization. Standard MPI pro-
grams divide the computation onto P processes, and typical MPI implementations simply
execute each process on one of the P processors. In contrast, an AMPI programmer di-
vides the computation into a number V of virtual processors (V Ps) and AMPI runtime
system maps these V Ps onto P physical processors. The runtime system has the opportu-
nity of adaptively mapping and remapping the programmer’s virtual processors onto the
physical machine.

The automatic load balancing idea is described as follows. If some of the physi-
cal processors become overloaded, the runtime system can migrate a few of their vir-
tual processors to relatively underloaded physical processors. The runtime system can
make such load balancing decision based on automatic instrumentation. AMPI is built on
CHARM++ and shares its runtime system and inherits its features. During the execution
of an AMPI program, the load balancing framework collects workload information and
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object communication pattern on each physical processor in the background. At load bal-
ancing time, load balancer uses this information to redistribute the workload, migrating
the AMPI threads from overloaded processors to underloaded ones.

Thread migration in AMPI can be done either automatically or with user’s help in
transferring thread’s stack and heap allocated data. Isomalloc stacks and heaps provide
a clean way of moving thread’s stack and heap data to a new machine by preserving
the same address of data across processors. For Isomalloc heaps, user’s heap data is
given a globally unique virtual address. Then, the heap can be moved to a new machine
without changing its address. Isomalloc stacks that AMPI threads run on are allocated
from Isomalloc heap. Thus migration is transparent to the user code. Alternatively, users
can write their own helper functions to pack and unpack heap data on both processors of
a migration. This is useful when application developers wish to reduce the data volume
by using application-specific knowledge and/or by packing only variables that are live at
the time of migration.

Li and Lan (2005) proposed a migration scheme called DistPM which combines
a novel hierarchical approach with real-time performance evaluation. The migration
scheme was developed to deal with the heterogeneous and dynamic features of distributed
systems. In particular, a heuristic method based on a linear programming algorithm was
developed in order to reduce the overhead entailed in migrating workload over shared net-
works across heterogeneous distributed platforms. One important idea behind the work
of Li and Lan is the concept of groups. A group is defined as a set of homogeneous
processors connected with dedicated system area networks. A group can be a shared-
memory parallel computer, a distributed-memory parallel computer or a cluster of Linux
PCs. Each group has two special processes: (i) group coordinators and; (ii) migration
gateways.

Each group elects a process as the group coordinator, and a global coordinator is
elected from the group coordinators. A coordinator is in charge of collecting group load
information, monitoring and predicting both system and application status regarding this
group. During each load balancing step, each group coordinator gathers its current load
information of the group and reports the information to the global coordinator. Then,
this last entity makes a data partition decision with the global knowledge. The princi-
ple behind the two-layer coordinators is to maintain the advantages of global knowledge
and scalability in the same time while reducing the number of messages among remote
processes. In each group, multiple processes are designated as the migration gateways.
They are responsible for moving excess workload from overloaded groups to underloaded
groups along migration channel. During data migration step, each gateway combine mul-
tiple intra-cluster messages into one single message and then sends it to a correspond-
ing gateway in a remote group. The goal here is to minimize the occurrence of remote
communications across clusters with high latency and fully utilize the high bandwidth
provided in the networks.

Chen, Wand and Lau treat with processes reassignment with reduced migration cost
in grid load rebalancing (CHEN; WANG; LAU, 2008). They propose a heuristic that is
based on local search and several optimizing techniques which include the guided local
search strategy and the multi-level local search. The searching integrates both the changes
of workload and the migration cost introduced by a process movement into the movement
selection. Furthermore, the searching enables a good tradeoff between low-cost move-
ments and the improving balance level. The algorithm focuses the search in the solution
space surrounding the initial assignment, which has a strong likelihood of containing the
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desired low-cost solution. By a guided local search technique, the algorithm is able to
generate diverse searching trajectories leading to different candidate reassignments, thus
increasing the chance to find a reassignment with lower cost. A multi-level local search is
proposed, where different restrictions on acceptable migration costs are defined to control
the sub-steps of each local search step. The migration cost is a function of two practical
parameters: process size and communication bandwidth.

Local search starts with an initial assignment, and searches for a better assignment
through a sequence of small steps. A small step refers to one or two process movements
between a pair of machines. The authors use 1-move to denote moving a process from
one machine to another and 1-swap to denote the exchange of two processes between two
machines. Instead of considering movements between all machine pairs, Chen, Wand
and Lau permit only movements between the machine with the maximum load level and
another machine.

Batista et al. (2008) work with self-adjustment of resource allocation for grid appli-
cations. Figure 3.8 presents the self-adjustment idea proposed by Batista et al.. In the
step 3 we have the resources monitoring in order to detect any variation in availability
of resources, either decreasing or increasing. Step 5 derives a new DAG representing
current computational and data transfer demands and produce a schedule for these tasks.
Step 7 compares the cost of the solution derived in Step 5 with the cost of the current
solution. The cost of the solution derived in Step 5 should include the cost of migrating
tasks. A task is only worth moving if a reduction in execution time compensates for the
cost. Finally, Step 8 migrates tasks to the designated hosts on the basis of the most recent
schedule. Rescheduling decisions consider resource availability and current execution
status, as well as the initial scheduling. The proposed procedure does not deal with un-
certainties in task demands. Moreover, the programmer must indicate checkpoints inside
tasks for their rescheduling and migration.

3.3 Grid Computing

This section will explain some works in the field of grid computing. The idea is to
start with general ideas and algorithms about scheduling and rescheduling, as well as load
balancing and migration in grid computing. After that, we will discuss some systems that
present these facilities.

Self-Organization based on Agents

Cao (2004) presented a self-organizing strategy based on agents for grid load bal-
ancing. In this work, an agent-based self-organization strategy is proposed to perform
a complementary load balancing for batch jobs with no explicit execution deadlines. In
particular, an ant-like self-organizing mechanism is introduced and proved to be powerful
to achieve overall grid load balancing through a collection of very simple local iterations.
The iterative algorithm proceeds as follows.

1. An ant wanders from one agent to another randomly and tries to remember the
identity of an agent that is most overloaded;

2. After a certain number of steps (m), the ant changes the mode to search a most
underloaded agent, though still wandering randomly;
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Figure 3.8: Self-Adjustment idea presented by Batista et al. (2008)

3. After the same m steps, the ant stops for one step to suggest the current two remem-
bered agents (considered to be most overloaded and underloaded, respectively) to
balance their workload;

4. After load balancing is performed, the ant is initialized again and starts a new loop
from step 1.

The resource manager works with n and m parameters, where n represents the amount
of ants and m the number of steps that each one performs at each iteration. The load



58

balancing speed can be improved increasing the number of ants. If a large amount of
them are active simultaneously, the load balancing is done more quickly. On the other
hand, this causes a larger costs due to a higher communication among the agents. Besides
this issue, if an interaction includes a low number of steps m, one ant will start the load
balancing with high frequency.

Salehi e Deldari (2006) affirm that the algorithm proposed by Cao (2004) is inefficient
since each ant wanders always 2m + 1 steps at each iteration in order to execute the load
balancing. Thus, they proposed an echo system where the ants are created according to
the demand. They are created when the system is drastically unbalanced and commit
suicide when detecting equilibrium in the environment. Each ant in this new algorithm
wanders m steps (this value is determined adaptatively) instead 2m + 1. Besides this, in
their solution, at the end of m steps, k overloaded nodes are balanced with underloaded
ones, instead just one in the first approach.

Utility Computing

Utility computing is becoming a popular way of exploiting the potential of compu-
tational grids. In utility computing, users are provided with computational power in a
transparent manner similar to the way in which electrical utilities supply power to their
customers. Aiming to take full advantage of utility computing, an application needs to be
mobile; that is, it needs to be able to migrate between heterogeneous computing platforms
while it is executing. Furthermore, it needs to be able to adapt to the computing resources
at each site, such as the number of available physical processors.

Fernandes, Pingali and Stodghill (FERNANDES; PINGALI; STODGHILL, 2006) de-
scribe the PC3 system, which converts C/MPI codes into mobile programs almost trans-
parently. Because it is based on portable application-level checkpointing, it enables the
state of running applications to be saved so that the application can be restarted on differ-
ent architectures, operating systems and MPI implementations. Moreover, the number of
processors on these machines can be different. PC3 system is based on three key ideas,
listed below.

• Over-decomposition - The authors decompose the original MPI application into a
large number of virtual processes. This allows us to execute the application on
different numbers of processors and obtain good load-balance by appropriately as-
signing virtual processes to physical processors.

• Application-level checkpointing - The authors use a pre-compiler to instrument a C
program so that it can save and restore its own state without relying on operating
system or hardware support. Unlike system-level checkpointing systems like Con-
dor that are tied to particular architectures and operating systems, application-level
checkpointing provides an approach for making programs self-checkpointing and
self-restarting.

• Coordination layer - To save the state of a parallel program while it is executing, it
is necessary to coordinate the state-saving by the different processes. If the program
is written in a bulk-synchronous manner, the state of the computation can be saved
at global barriers. However, following the authors, some programs such as many
mesh generators do not have global barriers. To checkpoint such programs, PC3
system uses a coordination protocol implemented by a thin software layer, which
intercepts all calls made by the program to the MPI library.
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The system uses type information to save the state of the MPI processes in a portable
manner, and uses either barrier or non-blocking protocols for coordinating the MPI state.
The experimental results indicate that the overheads of checkpointing are less than 2% on
average for the benchmarks used in the paper.

GridWay Resource Manager

The GridWay framework is a Globus compatible environment, which simplifies the
user interfacing with the grid (MORENO-VOZMEDIANO; ALONSO-CONDE, 2005).
It provides resource brokering mechanisms for the efficient execution of jobs on the
grid, with dynamic adaptation to changing conditions. The main component of Grid-
Way framework is the Dispatch Manager, which is responsible for job scheduling. It is
also responsible for allocating a new resource for the job in case of migration (reschedul-
ing). The migration of a job or a job subtask can be initiated for the following reasons:
(i) a forced migration requested by the user; (ii) a failure of the target host and; (iii) the
discovery of a new better resource, which maximizes the optimization criterion selected
for that job.

GridWay resource broker supports scheduling and migration under different user op-
timization criteria (time optimization and cost optimization). The goal of the time opti-
mization criterion is to minimize the completion time for the job. To meet this optimiza-
tion criterion, the Dispatch Manager must select those computing resources being able to
complete the job as faster as possible, considering both the execution and the file trans-
fer times. Thus, the mechanism returns a prioritized list of resources, ordered by a rank
function that must comprise both the performance of every computing resource and the
file transfer delay. The time optimization rank function used in this implementation can
be seen in Equation 3.9.

T R(r) = PF(r) . (1 − DF(r)) (3.9)

In Equation 3.9, T R(r) means the time optimization rank function for resource r and
PF(r) is a performance factor for resource r. In addition, DF(r) is a file transfer delay
factor for resource r. PF(r) is computed as the product of the peak performance (MHz)
of the target machine and the average load of the CPU in the last 15 minutes. DF(r) is
a weighted value in the range [0-1], which is computed as a function of the time elapsed
in submitting a simple job to the candidate resource. To avoid worthless migrations, the
rank function of the new discovered resource must be at least 20% higher than the rank
function of the current resource. Otherwise the migration is rejected.

The goal of the cost optimization criterion is to minimize the CPU cost consumed
by the job. In this model, the authors only considered the computation expense (i.e. the
CPU cost). To minimize the CPU cost, the resource selector must know the rate of every
available resource, which is usually given in the form of price (Grid $) per second of CPU
consumed. Once the resource selector has got the price of all the resources, it returns an
ordered list using the rank function described in Equation 3.10. As in the first case, the
migrations only occur if a profit greater then 20% is reached with the new resource.

CR(r) =
PF(r)

Price(r)
(3.10)

Montero, Huedo and Llorente developed a grid resource selection for opportunistic
job migration (MONTERO; HUEDO; LLORENTE, 2003). They put this functionality on
GridWay resource broker. In (MONTERO; HUEDO; LLORENTE, 2003), the Dispatch
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Manager wakes up at each discovery interval and tries to find a better host for each job by
activating the resource selection process. In order to evaluate the benefits of job migration
from the current execution host (hn−1) to each candidate host (hn), Montero, Huedo and
Llorente define the migration gain (Gm) following Equation 3.11.

Gm =
Texe(hn−1, tn−1)−Texe(hn, tn)

Texe(hn−1, tn−1)
(3.11)

Texe(hn−1, tn−1) is the estimated execution time on current host when the job was sub-
mitted to that host, and Texe(hn, tn) is the estimated execution time when the application
is migrated to the new candidate host. The migration is granted only if the migration gain
is greater than an user-defined threshold, otherwise it is rejected. Note that although the
migration threshold is fixed for a given job, the migration gain is dynamically computed
to take into account the dynamic data transfer overhead, the dynamic host performance
and the application progress. The migration gain was fixed to 10% in the experiments
presented in (MONTERO; HUEDO; LLORENTE, 2003).

Hierarchical Scheduling in EasyGrid

The EasyGrid middleware is a hierarchically distributed Application Management
System embedded into MPI applications to facilitate their efficient execution in com-
putational grids (BOERES et al., 2005). The overhead of employing a distinct AMS
(Application Management System) to make each application system aware does however
bring at least two benefits. Firstly, the scheduling policies adopted can be tailored to the
specific needs of each application leading to improved performance. Secondly, distribut-
ing the management effort amongst the applications themselves makes grid management
more scalable. Figure 3.9 depicts the AMS-based MPI system. The AMS is embedded
automatically into an user’s parallel MPI application without modifications to the original
code.
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Figure 3.9: The subsumption architecture of an MPI AMS management pro-
cess (BOERES et al., 2005)
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Each EasyGrid AMS is a three level hierarchical management system composed of
the following entities: (i) a single Global Manager (GM), at the top level, which super-
vises the sites in the grid where the application is running (or could execute); (ii) at each
of these sites, a Site Manager (SM) is responsible for the allocation of the application pro-
cesses to the resources available at the site and; (iii) Host Manager (HM) which resides
on each resource and takes the responsibility for scheduling, creation and execution of
the application processes associated with that respective host. Figure 3.10 illustrates an
example of an hierarchical grid structure with these three entities.

GDS

SDS SDS SDS

HDS

HDS

HDS HDS HDS HDS HDS

Site 1

Site 2 Site 3

Figure 3.10: AMS hierarchical schedulers (BOERES et al., 2005)

The EasyGrid AMS can perform static and dynamic scheduling. In the first case,
the parallel application is represented by directed acyclic graphs (DAGs) and the relevant
characteristics of the target system (e.g. computing power, communication costs) are
captured by an architectural model. In a DAG G = (V,E,ε,ω): the set of vertices, V
, represent tasks; E, the precedence relation among them; ε(v) is the amount of work
associated to task v ∈ V ; and ω(u,v) is the weight associated to the edge (u,v) ∈ E,
representing the amount of data units transmitted from task u to v. In dynamic scheduling
approach, EasyGrid AMS only reschedules processes which have yet to be created. The
dynamic schedulers are associated with each of the management processes distributed in
the three levels of the AMS hierarchy. As shown in Figure 3.10, the Global Dynamic
Scheduler (GDS), at the top level, is executed in the GM, while each SM has a Site
Dynamic Scheduler (SDS) and HM, a Host Dynamic Scheduler (HDS) respectively.

Collectively, the dynamic schedulers repeatedly estimate the remaining execution time
of the application workload on each resource and, consequently, the makespan of the ap-
plication. They verify if the allocation needs to be adjusted and, if necessary, activate the
rescheduling mechanism. Since existing processes are not migrated, the AMS dynamic
scheduling strategy is based on anticipation. Processes are rescheduled before any imbal-
ance affects the performance. The interval between the scheduling events depends on the
variation in the performance offered by grid resources and the threshold values.

Self-Adaptivity on GrADS

Vadhiyar and Dongarra discuss the design and implementation of a software system
that dynamically adjusts the parallelism of applications executing on computational grids
in accordance with the changing load characteristics of the underlying resources (VAD-
HIYAR; DONGARRA, 2005a). The migration framework implements tightly coupled
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policies for both suspension and migration of executing applications. The suspension and
migration policies consider both the load changes on systems as well as the remaining
execution times of the applications. In their framework, the migration of applications
depends on:

• The amount of increase or decrease in loads on the resources;

• The point during the application execution lifetime when load is introduced into the
system;

• The performance benefits that can be obtained for the application due to migration.

The migration framework is primarily intended for rescheduling long running appli-
cations. The migration is dependent on the ability to predict the remaining execution
times of the applications, which in turn is dependent on the presence of execution models
that predict the total execution cost of the applications. The ability to migrate applica-
tions in the GrADS system is implemented by adding a component called Rescheduler
to the GrADS architecture. Migrator, Contract Monitor and Rescheduler are the three
main components of GrADS. Migrator is responsible to effectivate the migration, while
the Contract Monitor monitors the applications’ progress. Rescheduler decides when to
migrate an application and the set of resources.

The authors implemented an user-level checkpoint library called SRS (Stop Restart
Software). This library is implemented on top of MPI and hence can be used only with
this kind of parallel programs. The rescheduler is a daemon that operates in two modes:
(i) migration on request and; (ii) opportunistic migration. When the Contract Monitor
detects intolerable performance loss for an application, it contacts the Rescheduler re-
questing it to migrate the application. This is called migration on request. In other cases
when Contract Monitor does not contact the Rescheduler for migration, the Resched-
uler periodically queries the GrADS repository for recently completed applications. The
rescheduler determines if performance benefits can be obtained for an executing applica-
tion by migrating it to free resources. This is called opportunistic rescheduling.

GrADS project minimizes the overall job completion time, also know as
makespan (BERMAN et al., 2005). Based on the total percentage completion time for the
application and the total predicted execution time for the application with the new sched-
ule, the rescheduler calculates the remaining execution time (ret_new) of the application.
The rescheduler also calculates ret_current, the remaining execution time if the applica-
tion continues executing on the original set of machines. Considering this, the rescheduler
calculates the rescheduler gain as reveals Equation 3.12.

rescheduler_gain =
(ret_currrent− (ret_new+900))

ret_current
(3.12)

The number 900 in the numerator of the fraction is the worst case time in seconds to
reschedule the application. If the rescheduling gain is greater than 30%, the rescheduler
migrates the application. Berman et al. (BERMAN et al., 2005) presented new scheduling
and rescheduling algorithms for GrADS. Firstly, the rank of the resource r j is calculated
by using a weighted sum of the expected execution time on the resource and the expected
cost of data movement for the component ci. Equation 3.13 explains how the rank can be
calculated.

rank(ci,r j) = w1.eCost(ci,r j)+w2.dCost(ci,r j) (3.13)
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The expected execution time is expressed by eCost, while dCost is the cost of data
movement. A performance matrix is constructed in order to evaluate the ranks of the
processes. Each element of the matrix pi, j denotes the rank value of executing the ith

component on the jth resource. This matrix is used by the scheduling heuristics to obtain
a mapping of components onto resources. Such a heuristic approach is necessary since
the mapping problem is NP-complete. The authors apply three heuristics to obtain three
mappings and then select the schedule with the minimum makespan. The heuristics are:
(i) min-min; (ii) max-min and; (iii) sufferage.

Normally, a contract violation activates the GrADS rescheduler. The rescheduling
process must determine whether rescheduling is profitable, based on the sensor data, es-
timation of the remaining work in the application, and the cost of moving the application
to new resources. If rescheduling appears profitable, the rescheduler computes a new
schedule and contacts rescheduling actuators located on each processor. There are two
techniques for rescheduling: (i) rescheduling by stop and restart and; (ii) rescheduling by
processor swapping. In the first approach, the application is suspended and migrated only
when better resources are found for application execution. Although very flexible, the
natural stop, migrate and restart approach to rescheduling can be expensive. The process
swapping method is an alternative. To enable swapping, the MPI application is launched
with more machines than will actually be used for the computation. Some of these ma-
chines become part of the computation (the active set) while some do nothing initially
(the inactive set). During execution, the Contract Monitor periodically checks the perfor-
mance of the machines and swaps slower machines in the active set with faster machines
in the inactive set.

InteGrade Middleware

Andrei et al. (2005) developed an implementation of the BSP model for the InteGrade
middleware. Its usability is focused on computers sharing located in laboratories, local
networks and clusters. InteGrade takes profit from the power of idle computers to execute
useful applications. The user may specify execution prerequisites such as software and
hardware platforms, minimal requirements of memory, as well as a rule like: select the
highest available CPU.

InteGrade presents local and global resource managers, called LRM and GRM re-
spectively. They cooperate in order to treat the resource management. LRM is executed
in each cluster node, collecting data about its state, CPU, memory and network usage.
LRM managers send these data to GRM periodically. GRM uses them aiming to per-
form the scheduling inside a cluster. Thus, GRM selects the candidate nodes based on
available resources and application requirements. It negotiates with the nodes and ap-
plies the reservation for application execution. GRM is also responsible for inter-cluster
communication.

3.4 Bulk Synchronous Parallel Model

BSP is a model for parallel programming that was planned for applications that ex-
ecute on homogeneous and dedicated resources. However, we can use it on grid com-
puting. Thus, some researchers attempt to apply the BSP model to the grid environ-
ment. Vasil P. Vasilev (2003) proposes a BSPGRID model, which exploits the bulk syn-
chronous paradigm to allow existing algorithms to be easily adapted and used in grids.
By modifying the BSPGRID model, Jeremy M. R. and Alexander V. provide the Dy-
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namic BSP (MARTIN; TISKIN, 2004), which deals with fault tolerance issue in grid
environments. Tong W. et al. present the BSP-G (WEIQIN; JINGBO; LIZHI, 2003), a
BSP development library based on the services of Globus Toolkit. Song Jiong et al. put
forward a ServiceBSP model, which deals with the QoS issue on grid services (SONG;
TONG; ZHI, 2006).

Besides computational grids, the rules of the BSP model is useful in data-grids. Data-
grids are becoming increasingly important for sharing large data collections, achieve-
ments and resources. Chen and Tong (CHEN; TONG, 2004) had the idea that a superstep
in the BSP model should be able to help data-grid access and storage in regular sequence.
When services are not isolated from each other in multi-user environment, this should be
able to avoid, in the process of data access and storage, the occurrence of four types or
phenomena: (i) Lost update; (ii) Dirty read; (iii) Non-repeatable read and; (iv) Phantom.
Following the document, we will present some initiatives that are based on BSP model.
These initiatives provide a middleware for specific functionalities without changing the
BSP model or propose some extension in this model to work with specific situations.

ServiceBSP Model

Jiang et al. (JIANG; TONG; ZHAO, 2007; ZHU; TONG; DONG, 2006; SONG;
TONG; ZHI, 2006) developed the ServiceBSP model. ServiceBSP model combines par-
allel computing model BSP and the concept of service. In this context, load balancing is
also a demand driven issue. The dynamic load balancing proposed by the authors is based
on a load rank of the nodes. Service Scheduling Agent sends the new task to the currently
lightest node. In proposed method, the authors access the load of all the nodes relying on
dynamic load value. They calculate the value taking such factors into account as CPU,
memory resource, number of current tasks, response time, the number of network links,
etc. A load value of a node owning only one task can be described by follow Equation
3.14.

Vi = M1∗V cpu+M2∗V mem+M3∗Vio+M4∗Vtasks+M5∗V network+M6∗V response
(3.14)

Vcpu, Vmem, Vio, Vtasks, Vnetwork, Vresponse respectively represent the usage
ratio of CPU, the usage of memory, the number of current tasks, the number of network
links, response time. The load value of a node owning several tasks is V where V=∑n

i=0Vi.
Using the current load value V, the authors can calculate a new value when a new task is
joining.

H-BSP: Hierarchical Bulk Synchronous Parallel Model

The original BSP model does not take into account the locality of the processor and the
hardware that is being used to execute the application. In order to complete this gap, Cha
and Lee created the model H-BSP (Hierarchical Bulk Synchronous Parallel) (CHA; LEE,
2001). H-BSP adopts BSP as its sub-model and offers an mechanism to take advantage
of processor locality and thus enables the development of more efficient algorithms. In
addition to the basic BSP principle, H-BSP uses a special mechanism to split the entire
system into a number of smaller groups. The system is dynamically split or merged at
runtime. Each group behaves as an independent BSP system and they communicate in an
asynchronous fashion.

Figure 3.11 illustrates, with an example, how an H-BSP algorithm works in general.
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Figure 3.11: Concepts of H-BSP involving three levels of hierarchy (CHA; LEE, 2001)

The level-1 BSP, called a root BSP, initially consists of 6 processors. It then splits into two
level-2 groups; 2-processor BSP and 4-processor BSP. The split process continues until
no further split is possible in the group; i.e. all BSP groups are a single processor group.
The dynamically created BSPs run, within each group, in a bulk synchronous fashion but
they are independent of each other and run asynchronously. At any time, only the leaf
BSP groups are in active state. Their parents, the non-terminal BSP groups, should wait
until their children BSPs (leaf BSPs) terminate.

Dynamic BSP Model

Martin and Tiskin (2004) present a significant modification to the BSPGRID ap-
proach, which will enable to address the heterogeneity issues, as well as fault-tolerance.
They created the Dynamic BSP model, which offers a more flexible programming model,
with the ability to spawn additional processes within supersteps when required. The
essence of DynamicBSP is to use the task-farm model to implement BSP supersteps,
where the individual tasks correspond to processes (see Figure 3.12). The authors propose
a mechanism to avoid the data bottleneck. Their model consists of: (i) a master processor
(task server); (ii) worker processors and; (iii) a data server (which can either be imple-
mented as distributed shared memory or remote/external memory). In each superstep
there is a bag of virtual processors to be run on a pool of available physical processors.

The master processor is responsible for task scheduling, memory management, and
resource management. At the beginning of each superstep, a virtual processor number is
distributed to each physical processor, which then has the responsibility to retrieve local
data from the data server, perform the required computations, write back the modified
data, and then inform the master processor that it has finished the task. The master pro-
cessor maintains a queue of pending virtual processors and dynamically assigns them to
waiting physical processors. As soon as all the virtual processors have been executed on
a particular superstep, the global shared memory is restored to a consistent state and the
next superstep commences. If a physical processor fails to complete its task within a rea-
sonable time, then it is considered as dead and its work is reallocated to another physical
processor within the same superstep.
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Figure 3.12: Example of DynamicBSP application execution (MARTIN; TISKIN, 2004)

HBSP: Heterogeneous Bulk Synchronous Parallel Model

The Heterogeneous Bulk Synchronous Parallel (HBSP) model is a generalization of
the BSP model (WILLIAMS; PARSONS, 2000). BSP is inappropriate for heterogeneous
parallel systems since it assumes all components have equal computation and commu-
nication abilities. HBSP enhances the applicability of BSP by incorporating parameters
that reflect the relative speeds of the heterogeneous computing components. An HBSP
computer is characterized by the following parameters.

• The number of processor-memory components p labeled P0, ...,Pp−1;

• The gap g j j ∈ [0...p−1], a bandwidth indicator that reflects the speed with which
processor j can inject packets into the networks;

• The latency L, which is the minimum duration of a superstep, and which reflects
the latency to send a packet through the network as well as the overhead to perform
a barrier synchronization;

• Processor parameters c j for j ∈ [0...p−1], which indicates the speed of processor
j relative to the slowest processor, and;

• The total speed of the heterogeneous configuration c = ∑p−1
i=0 ci.

For notational convenience, Pf and Ps represent the fastest and the slowest processors,
respectively. The communication time and the computation speed of the fastest (slowest)
processor are g f (gs) and c f (cs), respectively. The authors assume that cs is normalized
to 1. If ci = j, then Pi is j times faster than Ps. Execution time of an HBSP computer is
determined as follows. Each processor, Pj, can perform wi, j units of work in wi, j

c j
time units

during superstep i. Let wi = max(wi, j
c j

) represent the largest amount of local computation
performed by any processor during superstep i. Let hi, j be the largest number of packets
sent or received by processor j in superstep i. Thus, the execution time of superstep i is
reached by Equation 3.15

S = wi +max{g j.hi, j}+L (3.15)
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The overall execution time is the sum of the superstep execution times. The more
complex cost does not change the basic programming methodology, which relies on the
superstep concept. Furthermore, when c j = 1 and g j = gk, where 0 ≤ j,k ≤ p, HBSP is
equivalent to BSP.

PUBWCL: Paderborn University BSP-based Web Computing Library

Bonorden developed the PUBWCL library (BONORDEN; GEHWEILER; HEIDE,
2005). The Paderborn University BSP-based Web Computing Library (PUBWCL) is
a library for parallel algorithms designed according to the BSP model and intended to
utilize the unused computation power on computers distributed over the Internet. Partici-
pants willing to donate their unused computation power have to install a PUBWCL client.
Whenever an user wants to execute a BSP program, the system chooses a subset of these
clients to run the program.

PUBWCL can migrate BSP processes during the barrier synchronization (and addi-
tionally at arbitrary points specified by the developer of a BSP program). Furthermore,
BSP processes can be restarted on other clients when a PC crashes or disconnects from
the Internet unexpectedly. This feature is also used to enable load balancing strategies to
abort a BSP process if it does not finish within some deadline, and restart it on a faster
client. The author reduces the scheduling problem for a BSP algorithm with n super-
steps to n subproblems, namely scheduling within a superstep. Bonorden implemented
the following load balancing strategies.

• Algorithm PwoR - Whenever a superstep is completed, all clients are checked
whether the execution of the BSP processes on them took more than r times the
average execution duration. In this case, the BSP processes are redistributed among
the active clients such that the expected execution duration for the next superstep is
minimal, using as little migrations as possible.

• Algorithm PwR - Using the load balancing algorithm Parallel Execution with Restarts
(PwR), the execution of a superstep is performed in phases. The duration of a phase
is r times the running time of the ds.p∗e-th fastest of the (remaining) BSP processes,
where p∗ is the number of processes of the BSP program that have not yet com-
pleted the current superstep. At the end of a phase, all incomplete BSP processes
are aborted. In the next phase, they are restored on faster clients.

• Algorithm SwoJ - While the two load balancing strategies PwoR and PwR execute
all BSP processes in parallel, the load balancing algorithm Sequential Execution
without Just-in-Time Assignments (SwoJ) executes only one process of a BSP pro-
gram per client at a time. The other BSP processes are kept in queues. Like PwR,
SwoJ operates in phases. At the end of a phase all uncompleted BSP processes are
aborted and reassigned.

• Algorithm SwJ - Like SwoJ, the load balancing algorithm Sequential Execution
with Just-in-Time Assignments (SwJ) executes only one process of a BSP program
per client at a time and keeps the other processes in queues, too. The main differ-
ence, however, is that these queues are being balanced. More precisely, whenever a
client has completed the execution of the last BSP process in its queue, a process is
migrated to it from the queue of the most overloaded client.



68

Bonorden also developed an extension of the PUB library to support processes migra-
tion (BONORDEN, 2007). He implemented three strategies for load balancing. The first
one is a centralized method in which one node gathers the load of all nodes and makes
all migration decisions. The others employ distributed method without global knowledge.
All load balancing strategies are explained in detailed below.

• The global strategy - All nodes send information about their CPU-Power and their
actual load to one master node. This node calculates the least (Pmin) and the most
(Pmax) loaded node and migrates one virtual processor from Pmax to Pmin if neces-
sary.

• Simple distributed strategy - Every node asks a constant number c of randomly
chosen other nodes for their load. If the minimal load of all the c nodes is smaller
than the own load minus a constant d ≥ 1, one process is migrated to the least
loaded node.

• Global prediction strategy - Each node has an array of the loads of all other nodes
but these entries are not up to date all the time. Each node sends its load periodically
to k uniformly at random chosen nodes in the network.

All these strategies use the one minute load average methodology. In addition, they all
take into consideration neither the communication among the processes, nor the migration
costs.

3.5 Summary

Considering the spectrum of related work presented in this chapter, we can emphasize
some positive features of the studied systems and algorithms. They are presented below:

• Hierarchical Scheduling - The notion of the hierarchical and cooperative schedul-
ing is a pertinent idea to divide the scheduling work (LI; LAN, 2005; CHA; LEE,
2001). We observed that the use of coordinators is being employed in this con-
text (CHEUNG; JACOBSEN, 2006; BOERES et al., 2005; KRIVOKAPIC; IS-
LINGER; KEMPER, 2000). Each coordinator can interact with local nodes under
its jurisdiction and passes scheduling messages to other coordinators in the same
level or above it in the hierarchy.

• Multiple metrics to compute the load - The combination of two or more metrics
such as computation and communication to compute the migration candidates is im-
portant on dynamic and heterogeneous environments as the grids can be modeled.
This combination provides a more precise on the fly decision making to achieve per-
formance during application runtime (HEISS; SCHMITZ, 1995; BHANDARKAR;
BRUNNER; KALE, 2000; KONDO et al., 2002; HARCHOL-BALTER; DOWNEY,
1997; YOUNG et al., 2003).

• Automatic rescheduling - The act to perform the load rebalancing automatically
through migration is pertinent since direct modifications in application code are
not needed. Besides this topic, other is the fact that any interactions from the
programmer/user in the environment are not necessary during application runtime.
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Taking into account the scope of proposals that follow this idea, we can cite (KRI-
VOKAPIC; ISLINGER; KEMPER, 2000; THAIN; TANNENBAUM; LIVNY, 2005;
VADHIYAR; DONGARRA, 2005a; CAO, 2004; HUANG et al., 2006; UTRERA;
CORBALAN; LABARTA, 2005).

• High Throughput Computing - This area explores computing cycles of idle ma-
chines. Normally, the projects here use machines that are located around the world
through Internet connection (THAIN; TANNENBAUM; LIVNY, 2005; KONDO
et al., 2002; BONORDEN; GEHWEILER; HEIDE, 2005; GOLDCHLEGER et al.,
2005).

• Performance prediction - The application execution time prediction is explored in
the following publications (HARCHOL-BALTER; DOWNEY, 1997; VADHIYAR;
DONGARRA, 2005a; SPOONER et al., 2003). In addition, the use of metadata that
save previous processing results and network data is explained in ICENI Middle-
ware (YOUNG et al., 2003). In general, the use of data of previous executions in
order to obtain better application performance is discussed in (YU; SHI, 2007;
MONTERO; HUEDO; LLORENTE, 2003; VADHIYAR; DONGARRA, 2005a;
DU et al., 2004; LI; LAN, 2005). Besides this, Krivokapic, Islinger and Kem-
per (2000) employ the communication metric in order to select the target destina-
tion of migration tasks. Their idea is to find out the best location taking into account
that future accesses will be similar to those occurred in the recent past. Goldchleger
et al. (GOLDCHLEGER et al., 2004) developed usage patterns to perform task
scheduling. In local level, LUPA (Local Usage Pattern Analyzer) modules obtain
data about how users explore resources like CPU, memory and disc. These data
are captured as temporal series and are used to predict how free or busy a specific
resource will be during the day.

• Self-Organizing feature - Self-organizing capability using agents aiming to to pro-
vide migration-based load balancing is described by Cao (2004), as well by Salehi
and Tahvil (2005). Following this branch of self-organizing, Vadhiyar and Don-
garra (VADHIYAR; DONGARRA, 2005a) present the migration facility on GrADS
using a performance detector that verifies the application execution and activates the
processes migration mechanism automatically.

• Dynamic control of new resources - DynamicBSP (MARTIN; TISKIN, 2004) mid-
dleware changes the BSP model in order to provide flexibility and fault-tolerance.
This middleware acts following the master-slave paradigm. It turns possible the
master to launch slave processes in new resources during application runtime. Each
process can create other ones, making the development of divide-and-conquer ap-
plications easier.

• Considering the memory data on processes migration viability calculus - LSF schedul-
ing system (LUMB; SMITH, 2004) analyses the amount of process memory to
decide about the viability of its migration. Furthermore, we can cite the effort
performed by Heiss and Schmitt (HEISS; SCHMITZ, 1995). They present a de-
centralized and dynamic load balancing model that considers the migration costs to
decide the transferring, or not, of one or more tasks.

• Use of cluster and local networks - The union of several clusters as a viable en-
vironment for parallel computing was demonstrated in (YOUNG et al., 2003). In
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addition, the use of two or more local networks (LANs) to compose a wide area net-
work environment was explored in (KRIVOKAPIC; ISLINGER; KEMPER, 2000;
YAGOUBI; MEDEBBER, 2007).

Considering the item that comprises the use of several metrics in order to compose the
notion of load, there are works that join the computation and communication parts of ap-
plications (BHANDARKAR; BRUNNER; KALE, 2000; CHEUNG; JACOBSEN, 2006;
MORENO-VOZMEDIANO; ALONSO-CONDE, 2005; YOUNG et al., 2003). The ob-
servation of the costs related to the processes migration, as well as the transferring rate
between nodes is a tactic utilized by Harchol-Balter and Downey (HARCHOL-BALTER;
DOWNEY, 1997). Kondo et al. (2002) execute the processes migration in client-server
environments with the following metrics: (i) CPU; (ii) network (bandwidth between the
client and the server) and; (iii) disc. The authors normalize these values to work units and
they take the lowest value to decide the load to be sent to a specific client.

Heiss and Schimitz (HEISS; SCHMITZ, 1995) developed a load balancer where the
load of each task is represented by a particle. Such work considers the processors load, the
communication among the tasks and the amount of data to be migrated. Moreover, such
paper considers static information about the behavior of the tasks (number of instructions,
interactions among tasks and amount of memory). Furthermore, the migration of tasks
is performed only to a neighbor node (direct connection in the processors graph) if com-
pared with the node that them reside currently. Du, Sun and Wu (DU; SUN; WU, 2007)
model the processes migration on distributed, shared and heterogeneous environments.
This model considers the states of the memory, of the process itself, of the I/O operations
as well as network communication with other processes. Considering these parameters,
the authors decide a new destination to a migratable process. Nevertheless, the authors
do not specify either when the migration takes place or how the processes are elected
for migration. Finally, considering the spectrum of related work presented in this chap-
ter, we may conclude that there are not inittiatives that work in the communication and
computation parts of an application and consider the migration costs when transferring
processes.

After observing the related work described in this chapter, we can indicate some
points that may represent limitations and future research opportunities. Formerly, some
work are based on the assumption that the total application workload is know in advance
(in compilation time) (GODFREY; KARP, 2006; ELSASSER; MONIEN; PREIS, 2000;
SPOONER et al., 2003; HEISS; SCHMITZ, 1995). However, sometimes it is not possible
to obtain the application composition previously (mainly at middleware level). Secondly,
the use of a minimum percentage of gain to effectivate the migration is fixed in the follow-
ing works (VADHIYAR; DONGARRA, 2005a; MORENO-VOZMEDIANO; ALONSO-
CONDE, 2005). The former use 30% while the other use 20% for the percentage value.
In this same context, Vadhiyar and Dongarra set the value for the migration costs in 900
seconds. This approach is not the better one in dynamic and non-dedicated environments,
where fluctuations on network bandwidth and on machines utilization are common. Fur-
thermore, a fixed period for rescheduling launching is demonstrated in the following
approaches (HERNANDEZ; COLE, 2007; MONTERO; HUEDO; LLORENTE, 2003;
UTRERA; CORBALAN; LABARTA, 2005). Lastly, some work require explicit calls
for rescheduling in the application code directly. This is observed in (BHANDARKAR;
BRUNNER; KALE, 2000) through calls to MPI_Migrate() directive. Thus, this mecha-
nism implies in modifications in application code and in the fact that the programmer/user
must know the behavior of her/his application deeply.
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The application model chosen to construct our rescheduling model is BSP. This model
is attractive for dynamic and heterogeneous environments. In this way, there are two ap-
proach aspects presented in the literature (SONG; TONG; ZHI, 2006): (i) develop a plat-
form that supports BSP applications execution on dynamic and heterogeneous environ-
ments and; (ii) apply modifications on BSP model in order to fit it to a target environment.
BSP-G is an example of the first approach. This BSP implementation does not change the
concept of the model. It uses the Globus toolkit to execute the grid services. On the other
hand, models like HBSP and DynamicBSP are examples of BSP extensions that present
adaptations for heterogeneous computing, case of the first model, and for fault tolerance,
case of DynamicBSP.

Considering the BSP applications context, we can present two initiatives for processes
migration. The first one describes the PUBWCL (Paderborn University BSP-Based Web
Computing Library) library (BONORDEN; GEHWEILER; HEIDE, 2005). PUBWCL
takes profit from idle computing power of computers around the world using Internet
links. The load balancing algorithms can perform processes migration during the super-
step execution as well as at its end. They use information like the mean conclusion times
of each superstep. Other work includes an extension of PUB library to support processes
migration (BONORDEN, 2007). As the previous work, this also considers processors and
computing times features. Furthermore, this Bonorden’s work just include migration at
the end of superstep, where the impact of the modification will be observed in the next
one. The strategies implemented in (BONORDEN, 2007) take into consideration neither
the processes communication nor the migration costs.
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4 MIGBSP: PROCESSES RESCHEDULING MODEL

Considering the related work mentioned on last chapter, we developed a model for
processes rescheduling called MigBSP. MigBSP acts over BSP (Bulk Synchronous Par-
allel) applications, controlling the migration of processes to new resources during their
executions. Its final objective is to decrease the load unbalancing among processes, lev-
eling and decreasing the time of their executions at each superstep. Aiming to reach this
objective, we analyze data from both communication and computation parts of each BSP
superstep as well as information related to migration costs.

This chapter presents MigBSP and its new ideas for processes rescheduling on BSP
applications. We organized it as follows. Section 4.1 shows in details the motivation to
develop MigBSP. This section also presents some issues related to processes migration
on BSP applications. Section 4.2 presents our proposal of rescheduling model. Section
4.3 describes both the model of communication and parallel machine that will be used
in the model. The definition of MigBSP is detailed in Section 4.4. Section 4.5 treats
about the moment to trigger the processes rescheduling. Section 4.6 shows the algorithms
used to choose the candidate processes for migration. Section 4.7 describes how the des-
tination processor for a candidate processes for migration is selected. In addition, this
section describes the considered calculus to measure the transferring viability of candi-
date processes. Section 4.8 is responsible to show the parameters of the model. Section
4.9 performs a theoretical analysis of the load balancing employed by MigBSP. Finally,
Section 4.10 summarizes the chapter and emphasizes the main contributions of MigBSP.

4.1 Motivation

As we introduced in Chapter 1 and based on the work opportunities described in Sec-
tion 3.5, we summarize our motivation to develop the present thesis in the following way.
The remaining of this section will explain in details the motivation and important deci-
sions for developing our BSP processes rescheduling model.

• Launch processes rescheduling automatically, without changes in application code
and without any previous knowledge about both application and execution infras-
tructure;

• Use of relevant data and profit from BSP structure to decide the candidate processes
for migration;

• Observation of the variance on processes behavior and on infrastructure data during
application runtime in order to choose the candidate processes for migration and to
launch the rescheduling mechanism at sliding intervals of supersteps.
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First of all, we intend to develop a model for processes rescheduling that works au-
tomatically and without previous knowledge of the application behavior. The term auto-
matic means that the user/programmer will not put explicitly calls for processes reschedul-
ing inside her/his application. While the application is running, the model collects data
about the processes and the execution infrastructure. These information will indicate the
next rescheduling invocation transparently. Figure 4.1 illustrates our idea regarding the
use of the model. The user/programmer does not need to change any line of code in her/his
application. He/she compiles the application with an adapted library that uses both the im-
plementation of the rescheduling model and a specific library used for BSP programming.
The result is a binary that can be executed in a distributed system together with the im-
plementation of the model. Lastly, our motivation consists in executing BSP applications
faster without preliminary executions. Our mechanism represents an effortless manner
to try performance improvements in BSP applications. Thus, the user/programmer may
concentrate herself/himself especially on application development.

BSP Application

Programming Library 
+ Rescheduling 

Model

Implementation of 
the Rescheduling 

Model

BSP Programming 
Library

Binary: BSP 
Application + Model

Execution in the 
Distributed System 

together with 
Rescheduling 
Middleware

Compilation
and Linking Submission

Figure 4.1: Model idea: from the application compilation up to its execution in the dis-
tributed system

Other relevant idea of the rescheduling model refers to the treatment of pertinent in-
formation for processes migration on dynamic and heterogeneous environments. Firstly,
the main metric to perform load balancing in distributed systems is the computational
load of the nodes or the computational time spent by each process/task to execute a set
of instructions. Aiming to demonstrate a possible problem in this approach, we created
an hypothetical infrastructure with two clusters and a migration situation between them.
We modeled two clusters as Cluster1 and Cluster2. Both have 10 nodes, each one with
one processor. In addition, each cluster has Gigabit Ethernet connection for communica-
tion intra cluster. The connection between them comprises links through the Internet with
mean capacity of 10 Mbits/s. Cluster1 has nodes with 500 MHz while the second one
presents nodes which have capacity of 1 GHz.

Suppose that the initial processes-resources assignment maps all 6 application pro-
cesses on Cluster1. Each process is mapped to a different node. Concerning this, we
can design a possible scenario of a computation-based processes rescheduling where pro-
cess p1 is chosen for migration from cluster Cluster1 to Cluster2. This decision takes
into consideration that this process is the slowest one and can run two times faster on
Cluster2. Figure 4.2 depicts both situation: (i) before rescheduling of p1 and; (ii) af-
ter the migration. We can observe that scenario 4.2(b) resulted in a slower application,
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since all communications to process p1 must go through the low bandwidth link that ex-
ists between the clusters. Therefore, it is important that load balancing and rescheduling
strategies for grid and multi-cluster environments consider communication speed between
the sites. This can lead in better decision when considering this kind of environment.

Besides computation, other possibility is apply load balancing through processes re-
location taking into account only the communication metric. Now, suppose that p1 is
running on Cluster2 while the other processes remain on cluster1. Moreover, we have
Fast Ethernet link between the clusters in this context. This situation is revealed in Fig-
ure 4.3 (a). If a migration of p1 from Cluster2 to Cluster1 takes place, we will verify
that its time to finish the computation phase will double if it is compared with the initial
situation. Although the communications become faster, the performance of p1 will com-
promise the application time as a whole. It is simple to observe that communication based
load balancing in heterogeneous systems must be accompanied with other techniques to
fully exploit the characteristics of this environment.

BSP Processes

Time

p1 p2 p3 p4 p5 p6

BSP Processes

Local
Computation

Synchronization
Barrier

Global
Communication

p1 p2 p3 p4 p5 p6

(a) Before Applying Process Rescheduling (b) After Applying Process Rescheduling

Figure 4.2: Migration of process p1 from cluster Cluster1 (slower) to Cluster2 (faster)
considering a network with low bandwidth between them

BSP Processes

Time

p1 p2 p3 p4 p5 p6

BSP Processes
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Synchronization
Barrier
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p1 p2 p3 p4 p5 p6

(a) Before Applying Process Rescheduling (b) After Applying Process Rescheduling

Figure 4.3: Migration of process p1 from Cluster2 (faster) to Cluster1 (slower) consider-
ing a network with high bandwidth between the clusters

A more refined load balancing approach can employ both computation and commu-
nication strategies on its decision of which processes should migrate. For example, a
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process that is running in an overload processor can migrate to lightly loaded one that
belongs to a cluster in which the considered process establishes high communication
patterns. Concerning this, it is possible to reduce the superstep time on heterogeneous
systems through the adjustment of both computation and communication phases. Despite
this is true, processes migration can become sometimes the bottleneck for executing appli-
cations as depicts Figure 4.4. This situation occurs if the gain with processes rescheduling
is lower than the migrations costs. The migration costs are related to the amount of vir-
tual memory of the process, the migration of any specific data needed by the process,
operating system overhead, the latency and the bandwidth between two endpoints and the
costs related to the migration tool. This last item can cover checkpoint treatment, data
serialization, reconstruction of the communication channels and so on.

Time

BSP Processes (Virtual Processes)

Local
Computation

Synchronization
Barrier

Global
Communication

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Local
Computation

Synchronization
Barrier

Global
Communication

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Superstep 1

Superstep 2

Migration costs

Figure 4.4: Communication and computation-based processes rescheduling with high mi-
gration costs

Figure 4.4 illustrates a situation where p10 and p11 are previously executing in a
slower cluster, while the other processes are running in a faster cluster. The migration
model decides to migrate p10 and p11 to the cluster which the remaining processes belong
to. This target cluster presents more computing power. Analyzing the situation of Figure
4.4(b) where processes relocation reduces superstep time but causes large overhead, it is
possible yet to achieve final improvements in application time. In this case, we will need
a more elevated number of supersteps in order to amortize the impact of the migration
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costs. Thus, the number of supersteps to be executed after performing migrations is a
relevant factor when considering BSP processes rescheduling.

Finally, other important issue on BSP processes rescheduling is the model adaptation
to changes on the processes’ behavior and on the execution environment. Considering that
a migration procedure may present high costs, it must be triggered according to the past
behavior of the processes efficiently. Thus, we can predict their behavior on destination
resources as a function of their past execution. For example, a process that presents a
large variation in the number of instructions that executes at each superstep should be
elected as a bad candidate for migration, because it should not recover the costs employed
on its migration in performance improvements. Figure 4.5 shows a simple execution with
three supersteps of a hypothetical BSP application. A rescheduling strategy can decide
that process p6 is not a good candidate, because it presents large disparities in the amount
of executed instructions. Here we suppose that the variation on p6 did not occur by any
changes in resource’s load.
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Communication

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

Superstep 1

Superstep 2

Superstep 3

Figure 4.5: Observation of the processes’ behavior in order to choose the candidates for
migration

The organization in phases allows the detection of patterns of computation and com-
munication easily. Moreover, it is possible to take profit from the BSP structure to launch
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the procedure of processes rescheduling automatically. The mechanism of rescheduling
at each superstep can be onerous and can become the bottleneck of the application ex-
ecution. On the other hand, a strategy that uses thresholds for both computation and
communication phases in order to control the gap between the fastest and the slowest
times can be utilized on processes rescheduling at variable interval. Furthermore, a mi-
gration of only one process at each rescheduling launching cannot solve the performance
problem, since the bottleneck can just pass from one process to another. Considering that
a BSP application shows a communication behavior like demonstrated in Figure 4.5. In
addition, the processes are mapped to 2 identical clusters and a low bandwidth is verified
between them. Thus, the migration of only one process from Cluster2 to Cluster1 will
not contribute for decreasing the application time. In this case, the bottleneck remains
on inter-cluster communication. Depending on the resources availability on Cluster1, a
better load balancing approach may occur by migrating all processes from Cluster2 to
Cluster1.

4.2 Proposal

Concerning the motivations expressed above and the spectrum of work opportunities
described in Section 3.5, we developed a model for BSP processes rescheduling called
MigBSP (ROSA RIGHI et al., 2008; PILLA et al., 2009). The main objective of MigBSP
is to reduce the application execution time through the control of processes migration
between resources. The listing below presents the design decisions that guide MigBSP’s
development.

• MigBSP’s work grain is a process of the operating system. A process is viewed
as a region of code as well as allocated data up to the current execution point.
MigBSP controls the processes relocation to different processors available in the
considered distributed system. Furthermore, MigBSP does not deal with the initial
processes-resources scheduling. This first mapping may be done arbitrarily and it
is not addressed in the scope of this thesis;

• Processes rescheduling is performed in a dynamic manner, where necessary data for
its functioning are captured during application execution. Moreover, MigBSP does
not know either the number of instruction or communicated bytes at each super-
step previously. Then, our migration model does not consider the total application
workload, since it does not know this information;

• Both local computation and global communication phases of a BSP superstep are
affected by MigBSP execution. The main idea of MigBSP is to reduce the length
of the supersteps modifying the processes initial location and, thus, their respective
computation and communication times;

• MigBSP controls the processes migration automatically without programmer and
system administrator interventions. We are not using explicit function calls in ap-
plication code. MigBSP acts at middleware level, not imposing modification on
application level.

• The model for processes rescheduling was developed specifically for programs or-
ganized in synchronous phases, as suggest the execution rules of the BSP model.
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We made our load balancing decision taking in mind the BSP organization and its
synchronous character.

• The adaptation issue is pertinent for MigBSP model. In this context, we created two
adaptations that act over the frequency of the rescheduling calls (see Subsections
4.5.1 and 4.5.2 for details). Both take profit from data collect during application
runtime, aiming to reduce or extend the interval for rescheduling tests based on
the system state: (i) processes are balanced or not and; (ii) if a pattern without
migrations is described in the last attempts for processes rescheduling.

• Combination of multiple metrics to select the candidate processes for migration.
The key idea behind this item is to consider relevant metrics for processes migra-
tion in distributed memory systems. We will analyze the metrics that act in favor
of processes transferring as well as those that represent forces against migration.
According to Du et al. (DU; SUN; WU, 2007), an appropriate rescheduling should
consider the migration costs to avoid unproductive migrations.

• We prioritized the use of heuristics to choose the candidate processes for migra-
tion as well as the target processors for them. This decision was took in order
to turn MigBSP competitive. MigBSP must handle fast scheduling algorithms in
order to reduce its overhead on application execution. Our idea is to reduce the
model’s penalties when migrations are inviable (when migration costs are high, for
instance).

• MigBSP verifies the regularity of the BSP processes when selecting them as good
migration candidates or not.

Figure 4.6 (a) shows a superstep k of an application in which the processes (load)
are not balanced among the resources. Figure 4.6 (b) depicts the expected result with
processes redistribution at the end of superstep k, which will influence the execution of
the following supersteps (k + 1 and so on). MigBSP provides a mathematical formalism
that answers the following issues regarding processes migration and load balancing: (i)
“When” to launch the processes migration; (ii) “Which” processes are candidates for mi-
gration and; (iii) “Where” to put an elected process from the candidates ones. MigBSP
does not address the keyword “How”, that treats the mechanism used to perform migra-
tions.

MigBSP can be seen as a processes rescheduling model. In this way, according to dis-
tributed systems scheduling taxonomy of Casavant and Kuhl (1988), the present model
can be enclosed on dynamic and global items. The dynamic item considers that informa-
tion for processes scheduling are collected at application runtime. The role of scheduling
is spread among the several processes that cooperate among themselves in order to im-
prove resource utilization (processors and communication network). Thus, the model
performs a physically distributed and cooperative scheduling. The achieved scheduling
is sub-optimal and employs heuristics. Finally, following the horizontal classification
of Casavant and Kuhl, the idea is to present an adaptive scheduling that can change its
execution depending on the environment feedback.
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(a) Superstep k: Processes are not balanced among the resources
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Figure 4.6: Observation of supersteps in different situations

4.3 Models of Parallel Machine and Communication

The BSP processes rescheduling model works over an heterogeneous and dynamic
distributed environment. The heterogeneous issue considers the processors’ capacities
(all processors have the same machine architecture), as well as network bandwidth and
level (Fast and Gigabit Ethernet and multi-clusters environments, for instance). The dy-
namic behavior deals with environment changes occurred at application runtime (such as
network congestion and fluctuations on processors’ load). Moreover, the dynamic be-
havior can also occur at process level, owing to some BSP processes may need more
computing power and/or increase their network interaction with other processes during
application execution.

Considering the paragraph above, we might say that MigBSP works over grids. Thus,
the model of machine can include single-processor and multiprocessors machines, local
networks as well as clusters. It is assumed that the parallel machine system consists of a
collection of Sets S connected by a communication network, as shown in Figure 4.7. A
Set might be a LAN network or a cluster. Each Set contains one or more nodes. Lastly,
each node offers one or more processors for BSP processes execution. Each processor
may have different processing power. Moreover, we do not assume variations in the
number of processes and processors. Besides this, our model of grid does not work with
faults in both processes execution and distributed infrastructure (network and processors)
perspectives. We do not apply restrictions in the number of administrative domains. The
model may join wide area networks where the communication latency is known costly.
The main idea of our machine model is to aggregate the processing power of machines
already present in one institution or in institutions that describe cooperative work.

The use of Sets, nodes and processors classify MigBSP scheduling as hierarchical. We
are basing our concepts on a notion of hierarchy (local and global) that is presented in the
InteGrade scheduler (GOLDCHLEGER et al., 2004). The vision of hierarchy is important
to optimize the passage of scheduling information. Besides nodes, a Set encompasses a
Set Manager. The scheduling mechanism is located in every BSP process (additional code
in barrier function) and in each Set Manager. This last entity captures data of a specific
Set and exchanges them among other managers. We may observe the used hierarchical
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notion in the example illustrated in Figure 4.8.
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Figure 4.7: Model of Parallel machine with all-to-all asynchronous communication
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Figure 4.8: Instance of the hierarchical notion with Sets and Set Managers abstractions

Our communication model affirms that the Sets are fully interconnected, meaning
that there exists at least one communication path between any two nodes. The only way
for inter-node communication is through message passing. This communication is asyn-
chronous, where the sending is non blocking while the receiving is blocking. Here, it
is important to emphasize another restriction over the meaning of grid in the context of
MigBSP. The underlying network protocol always guarantee that messages sent across the
network are received in the order sent. In addition, the machine model guarantees that a
message sent by one endpoint is received by another one since a link exists between them.
Moreover, there is no efficient broadcasting service available and any link connection is
represented by a bandwidth.
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BSP model obligates asynchronous communication among the processes (SKIL-
LICORN; HILL; MCCOLL, 1997). Considering this, we have the possibility to offer this
facility through either asynchronism on both sending and receiving directives or only over
the sending one. We opted for the last approach, since we can capture the communica-
tion time on the blocking receiving directive. Its implementation may take the initial and
the final time for transferring a message to a destination process and may capture the in-
teraction pattern to the target Set that this process belongs to. On the other hand, other
possibility could be offer both communication directives in an asynchronous fashion. In
this context, the first non-blocking communication call could trigger the initial communi-
cation time. In addition, we can wait for completion of all pending communications and
take the final time in the beginning of the barrier function. The problem of this strategy is
the fact that it considers the whole communication time. Using it, we cannot measure the
interaction for different Sets when considering more than 2 processes in the system.

4.4 MigBSP Definition

Firstly, each BSP process is mapped to a physical processor that belongs to a node
in the distributed system. The treatment of this first mapping is not addressed in this
thesis. The produced scheduling at the beginning of superstep k (identified as Sk) may
be densely represented in a two dimension codification scheme (see Figure 4.9). The
rescheduling problem is defined by the reallocation tests of a collection of a processes (p
= {p0, p1, p2, ... , p(a−1)}) to a set of b processors (P = {P0,P1,P2, ...,P(b−1)}). In
the codification of Figure 4.9, Sk means the distribution of the BSP processes to processors
during the kth superstep. In this representation, Mi, j explains the mapping of process j to
processor i. If Mi, j is equal to 1, we can affirm that p j ∈ Pi and if it is equal to 0, p j /∈ Pi .
A process belongs only to one processor during a specific superstep. In other words, each
column of the two-dimension representation presents an unique value 1. On the other
hand, a processor can execute more than one process. Therefore, each line may show
more than once the value 1.

Sk =

p0 p1 · · · p(a−2) p(a−1)
P0 M0,0 M0,1 · · · M0,a−2 M0,a−1
P1 M1,0 M1,1 · · · M1,a−2 M1,a−1
...

...
...

...
...

P(b−2) Mb−2,0 Mb−2,1 · · · Mb−2,a−2 Mb−2,a−1
P(b−1) Mb−1,0 Mb−1,1 · · · Mb−1,a−2 Mb−1,a−1

Figure 4.9: Representation of the scheduling sk during the execution of superstep k

MigBSP = {S, N, P, BSP, λ , σ , S1, NS, CN, I}.

MigBSP model is defined by the MigBSP notation expressed above. S, N, P and
BSP represent the Sets, the nodes, the processors and the BSP processes. λ means the
mapping of nodes to Sets. σ is the mapping of processors to nodes. S1 indicates the
first processes-processors scheduling, i.e., the scheduling that will be used to execute
superstep 1. NS defines the set of network segments (one hop link) that will be used
to compose the topology. CN is a set which each element is composed by one or more
network segment and two nodes. Thus, CN shows all connections between any two nodes



83

in our architecture. Consequently, we can have the connections among the processors.
Lastly, I represents the collection of initial parameters of our rescheduling model. This
collection will be explained during the current chapter and summarized in Section 4.8.

4.5 Decision About Rescheduling Launching: “When”

The decision for processes remapping is taken at the end of a superstep (after barrier
synchronization and before the next superstep). We are employing the reactive migration
approach (MILANéS; RODRIGUEZ; SCHULZE, 2008), where the processes relocation
is launched from outside the application transparently (in this case, at middleware level by
MigBSP). The adopted migration point was chosen because in this moment it is possible
to analyze data from all BSP processes at their computation and communication phases.
In other words, at this point we have information about the slowest process, the amount of
instructions performed by each one and the communication scheme among the processes.
Aiming to generate as less intrusion in the application as possible, we applied two adap-
tations. They provide an adaptable interval between two calls for processes rescheduling.
Both adaptations are discussed in the following subsections.

Each end of barrier synchronization represents a global consistent state. Besides a
good point for migration launching, the end of barrier represents a pertinent time to set
checkpoints for fault-tolerance (MIAO; TONG, 2007). Because an application is a se-
quence of supersteps, if any fault occurs in a certain superstep, the application needs to
rollback for only one superstep. Therefore, this migration point was also chosen owing to
it facilitates the processes transferring implementation. A local checkpoint can indicate
the state of a candidate process for migration and may be sent from the source to the target
processor in migration moment.

4.5.1 First Adaptation: Controlling the Rescheduling Interval based on the Pro-
cesses Balance

To turn viable the adaptivity on processes rescheduling calling, it was used an index
α (α ∈ N∗) which informs the used interval of supersteps to apply the processes migra-
tion. This index increases if the system tends to the stability in conclusion time of each
superstep and decreases on the contrary. The last case means that the frequency of calls
increases to turn the system more stable quickly. In order to allow a sliding α , it is neces-
sary to verify if the distributed system is balanced or not. To treat this issue, the time of
each BSP process is collected at the end of every superstep. Thus, the times of the slowest
and the fastest processes are captured, and an arithmetic average of times is computed.
Using these three values, it is possible to measure the balance among the BSP processes.

The distributed system is considered stable if both Inequalities 4.1 and 4.2 are true.
In both inequalities, D informs the percentage of how far the time of the slowest and the
fastest processes can be from the average. D value is passed in model initialization. Figure
4.10 reveals our idea to define balancing (stable) and unbalancing situations graphically.
Algorithm 3 shows how the α value is computed during application runtime. Another
variable called α ′ was employed to save the temporary value of α . Thus, α ′ will indicate
the next superstep interval to activate the load balancing. α ′ suffers a variation of one
unity at each superstep depending on the state of the system.

time o f the slowest process < average time . (1+D) (4.1)



84

time o f the f astest process > average time . (1−D) (4.2)

Average (A) of 
the superstep 

time of all  processes

A . (1-D) A . (1+D)

execution time

BalancingUnbalancing Unbalancing

Figure 4.10: Analysis of both balancing and unbalancing situations which depend on the
distance D from the average time A
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Figure 4.11: Overview of BSP application execution with MigBSP

In Algorithm 3, t (k ≤ t ≤ k + α − 1) is the index of superstep and k represents the
superstep that comes after the last call for load rebalancing or it is 1 when the application
is beginning (k and α will have the same meaning in all algorithms). α ′ does not have
an upper bound, but its lower value is the initial value of α . The idea of the model is to
minimize its intrusion in application execution while the system stays stable, postponing
the processes rescheduling activation according to α . Figure 4.11 illustrates the execu-
tion line of a BSP application. α ′ is computed according data collected by each process
between two calls for BSP processes rescheduling.

In implementation view, BSP processes save their superstep time in a vector and pass
it to their Set Managers when rescheduling is activated. Following this, all Set Man-
agers exchange their informations. Set Managers have the times of each BSP process and
compute both Inequalities 4.1 and 4.2. Therefore, each manager knows the α ′ variation
locally.

Every load balancing strategy must answer the question about the correct moment to
come into operation. We are using α index to control this moment, which could be com-
puted internally or externally to MigBSP. We opted to compute α internally to MigBSP
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Algorithm 3 Computation of α
1: for t from superstep k to superstep k +α−1 do
2: if Inequalities 4.2 and 4.1 are true then
3: Increase α ′ by 1
4: else if α ′ > initial α then
5: Decrease α ′ by 1
6: end if
7: end for
8: Call for BSP processes reassignment
9: α = α ′

for simplicity mainly. We took profit from BSP organization to save BSP processes infor-
mation without extra costs. We know all data about both computation and communication
phases of a BSP superstep at barrier moment. Thus, we analyze these data for scheduling
calculus. On the other hand, monitoring tools like Ganglia and Monalisa could be used
to compute α externally. However, we pretermited this option since these tools must be
supplied with data that we already know at middleware level. Furthermore, additional
communications and synchronizations between BSP processes and the monitoring tool
lead to costs that we can avoid.

4.5.2 Second Adaptation: Controlling the Rescheduling Interval based on the Num-
ber of Calls without Migrations

Other adaptation considers the management of D (see Inequalities 4.1 and 4.2) based
on the frequency of migrations. The idea is to increase D if processes rescheduling is
activated for ω consecutive times and none migrations happen. The increase of D enlarges
the interval in which the system is considered stable as well, causing the increase of α ′
consequently. On the other hand, D can decrease down to a limit if each call produces
the migration of at least one process. Algorithm 4 presents how D is controlled at each
rescheduling call.

Algorithm 4 Stability of the system according to D
1: γ ← Consecutive rescheduling calls without migrations
2: if γ ≥ ω then
3: if D + D

2 < 1 then
4: D← D + D

2
5: end if
6: else if D > initial D and γ = 0 then
7: D← D - D

2
8: end if

D computation is done by each Set Manager, which knows if migrations occurred or
not during the call for processes rescheduling. This adaptation is important when the mi-
gration costs are high. Thus, although a process is selected for migration, its transferring
will not take place and the system will remain with the same processes-resources configu-
ration. Therefore, it is pertinent to increase D (and consequently, the value of α) in order
to minimize MigBSP impact on application execution in this situation.
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4.5.3 Analyzing the Number of Rescheduling Calls

Firstly, we will demonstrate the number of calls when the system remains stable dur-
ing application execution, which characterizes the best case. Migrations performed in
this situation do not change the system state, i.e., they do not provide unbalancing among
the processes’ times. α doubles after each call for process rescheduling, providing a ge-
ometric progression with ratio 2. Equation 4.3 shows the value of α (ac) when cth call
for processes rescheduling takes place. Initial α is the first element in the progression.
Therefore, we can obtain the number of supersteps to reach the cth rescheduling call as
follows: S = ∑c

i=1 ac. Adopting initial α 4, α will be equal to 32 when the fourth call for
processes rescheduling occurs. Thus, the sum of 4+8+16+32 represents the amount of
supersteps until this moment.

ac = α . 2c−1 (4.3)

In the worst case, the system begins unstable and α remains the same at each call
for processes rescheduling (we are not considering the dynamic behavior in this analy-
sis). During instability phase, α is constant (ac = α) and the number of supersteps at
rescheduling call with order c is S = ∑c

i=1 ac. The number of supersteps can be modeled
as an arithmetic progression with ratio α . During this phase, we have three possibilities
of progress when a call is achieved: (i) migrations are done; (ii) ω attempts for processes
migrations are crossed without processes transferring; (iii) migrations do not take place
and the amount of calls without migrations is lower than ω . Both cases i and ii can make
the system stable. In the second case especially, D increases if a pattern with ω calls
without migration occurs, increasing the stability tendency of the system. The third case
means that the system remains unstable and the next call for processes rescheduling will
be done at α next supersteps.

Considering an application with s supersteps, calls for processes rescheduling will
take place at least l (Max(l) | s≥∑l

i=1 α.2i−1) and at most s
α times. For example, MigBSP

will launch processes rescheduling at most 25 times and at least 4 times over a BSP
application with 100 supersteps and initial α equal to 4. The choice of both D and α
parameters influence the behavior of the rescheduling model. The greater the value of D,
the greater the possibility to establish a stable system. The appropriate value of α will
depend on the application’s behavior.

4.6 Decision About the Candidates for Migration: “Which”

The answer for “Which” is solved through our decision function called Potential of
Migration (PM). Each BSP process i computes n functions PM(i, j), where n is the num-
ber of Sets and j means a specific Set. The key idea to use this approach (processes and
Sets) consists in not performing all available processes-resources tests at the rescheduling
moment. PM(i, j) is found through the combination of Computation, Communication
and Memory metrics. As the own names suggest, the first two work at the computation
and communication phases of a superstep, respectively. Memory metric acts in MigBSP
as an idea of migration costs. It will indicate the process transferring viability. The result
of each metric presents the same unit, enabling us to combine them properly. We will
explain in details the PM computation and the metrics whose compose it in the following
subsections.
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4.6.1 Computation Metric

Each process i computes Comp(i, j) functions. Comp(i, j) informs the Computation
metric for process i and a specific Set j. The data used to calculate this metric start at
superstep k and finish at superstep k+α−1. The relation of these data are organized in the
following manner: (i) computation time prediction of process i; (ii) Computation Pattern
of process i in order to observe the stability, or regularity, in the number of instructions
during the supersteps crossing and; (iii) performance degree of Set j.

For every superstep t (k ≤ t ≤ k + α − 1), the number of processor’s instructions (It)
and the time of conclusion of the computation phase (CTt) are stored. The value of It is
used to evaluate the process stability (regularity), that is represented by the Computation
Pattern called Pcomp(i). This pattern is a real number enclosed in an [0,1] interval. A
Pcomp(i) close to 1 means that the process i is regular in the number of instructions that
executes at each superstep. On the other side, this pattern will be close to 0 if the process
suffers large variations in the amount of executed instructions. Its initial value is 1 for all
processes because it is made an assumption that all processes are stable. Logically, this
value goes down if this bet is not proven.

Pcomp(i) of process i increases or decreases depending on the prediction of the amount
of performed instructions at each superstep. PIt(i) represents this prediction for superstep
t and process i. It is based on the Aging concept (TANENBAUM, 2003). Following
this scheme, the prediction of instructions of a specific superstep depends on the data
regarding itself and all previous supersteps up to the first one after the reassignment call.
For instance, PIt(i) at superstep K + 3 needs data from supersteps k + 3, k + 2, k + 1 and
k. The Aging concept uses the idea that the prediction value is more strongly influenced
by recent supersteps. The generic formula to compute the prediction PIt(i) for process i
and superstep t is shown below.

PIt(i) =
{

It(i) i f t = k
1
2PIt−1(i)+ 1

2 It(i) i f k < t ≤ k +α−1

The advantage of this prediction scheme is that only data between two processes reas-
signment activations (among the supersteps k and k + α−1) is used. This scheme saves
memory and contributes to decrease the prediction calculation time. On the other hand,
the value of Pcomp(i) persists during the BSP application execution independently of the
amount of calls for reassignment. Pcomp(i) is updated following the Algorithm 5. We con-
sider the system stable if the forecast is within a δ margin of fluctuation from the amount
of instructions performed. For instance, if δ is equal to 0.1 and the number of instructions
is 50, the prediction must be between 45 and 55 to increase the Pcomp(i) value.

Algorithm 5 Computation Pattern Pcomp(i) of the process i
1: for t from superstep k to superstep k +α−1 do
2: if PIt(i)≥ It(i).(1−δ ) and PIt(i)≤ It(i).(1+δ ) then
3: Increases Pcomp(i) by 1

α up to 1
4: else
5: Decreases Pcomp(i) by 1

α down to 0
6: end if
7: end for

The computation pattern Pcomp(i) is an element in Comp(i, j) function. Other one is
a computation time prediction CT Pk+α−1(i) of the process i at superstep k + α − 1 (last
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superstep executed before processes reassignment). Analogous to PI prediction, CT P
also works with Aging concept. Supposing that CTt(i) is the computation time of the
process i during superstep t, then the prediction CT Pk+α−1(i) is computed as follows.

CT Pt(i) =
{

CTt(i) i f t = k
1
2CT Pt−1(i)+ 1

2CTt(i) i f k < t ≤ k +α−1

Finally, Comp(i, j) presents an index ISetk+α−1(j). This index informs the average
capacity of performance of the Set j at k + α − 1th superstep. For each processor in
a Set, its load is multiplied by its theoretical capacity. Concerning this, Set Managers
compute a performance average of their Sets and exchange this value. Each manager
calculates ISet( j) for each Set normalizing the performance average of each Set by its
own average. In the sequence, all Set Managers pass ISet( j) index to the BSP processes
under its jurisdiction.

Comp(i, j) = Wcomp . Pcomp(i) . CT Pk+α−1(i) . ISetk+α−1( j) (4.4)

Equation 4.4 shows the function to calculate the Computation metric for process i to
set j. Coefficient Wcomp is a constant used to represent the weight of this metric. The
equation value is high if the BSP process presents stability on its executed instructions,
has a large computation time and an efficient Set is involved. However, Comp(i, j) is
close to 0 if the process is unstable and/or it finishes its computation phase quickly. The
model aims to migrate a delayed BSP process that presents a good behavior (amount of
instructions that performs is regular) on the resource which belongs currently, because it
can follow this actuation in another resource. In addition, we are considering the target
Set in order to evaluate its capacity to receive a process.

4.6.2 Communication Metric

Communication metric is expressed through Comm(i, j), where i denotes a BSP pro-
cess and j the target Set. This metric treats the communication (just receiving actions)
involving the process i and all processes that belong to Set j. One process may migrate
to another processor that belongs to its same Set. In order to compute Comm(i, j), data
collected at superstep k up to k + α − 1 are used. We present the information needed to
compute this metric in the following itemization.

• Regularity regarding the number of received bytes by one process;

• Prediction time of data receptions of a process BSP in relation to different Sets.

Each process maintains a communication time for a specified Set at each superstep
and a pattern of communication called Pcomm(i, j). This pattern is a real number within
the [0,1] interval. Its alteration depends on the prediction PBt(i, j), which deals with
the amount of bytes involved during receptions performed by process i from sendings
executed by processes that belong to Set j at superstep t. Analogous to Computation
metric, PBt(i, j) is based on Aging concept and is organized as follows.

PBt(i, j) =
{

Bt(i, j) i f t = k
1
2PBt−1(i, j)+ 1

2Bt(i, j) i f k < t ≤ k +α−1

In PB(i, j) context, Bt(i, j) is a notation used to assign the number of received bytes by
process i at superstep t from sendings of processes that belong to Set j. Algorithm 6 uses
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this prediction to compute Pcomm(i, j). This algorithm uses a variable β which informs
the acceptable variation in communication prediction. Similarly to δ , if β 0.1 and Bt i, j
is 100, we must have our prediction between 90 and 110 in order to configure superstep t
as regular.

Algorithm 6 Communication Pattern Pcomm(i, j)
1: for t from superstep k to superstep k +α−1 do
2: if (1−β ).Bk(i, j)≤ PBk(i, j) and (1+β ).Bk(i, j)≥ PBk(i, j) then
3: Increases Pcomm(i, j) by 1

α up to 1
4: else
5: Decreases Pcomm(i, j) by 1

α down to 0
6: end if
7: end for

Pcomm(i, j) is the first element in Comm(i, j). The second one is communication time
prediction BT Pk+α−1(i, j) involving the process i and Set j at superstep k+α−1. In order
to compute this prediction, the communication time of receivings BTt(i, j) from process
i of sendings from processes that belong to Set j at superstep t is used. Concerning this,
BT Pk+α−1(i, j) is achieved as follows.

BT Pt(i, j) =
{

BTt(i, j) i f t = k
1
2BT Pt−1(i, j)+ 1

2BTt(i, j) i f k < t ≤ k +α−1

Comm(i, j) = Wcomm . Pcomm(i, j) . BT Pk+α−1(i, j) (4.5)

The function that computes Communication metric is presented in Equation 4.5. Co-
efficient Wcomm informs the weight of Communication metric. The result of Equation 4.5
increases if the process i has a regularity considering the received bytes from processes of
Set j and performs slower communication actions to this Set. The value of Comm(i, j) is
close to 0 if process i presents large variations in the amount of received data from Set j
and/or few (or none) communications are performed with this Set. MigBSP does not take
into consideration the number of messages, but the amount of bytes involved in commu-
nication (data receiving). Thus, the situation where 50 bytes are passed in 50 messages of
1 byte is equal to other where 50 bytes divided in two messages. Nevertheless, we know
that in each communication interaction a latency is present to open the communication
channel. The latency is not used as isolated parameter in MigBSP, but together with the
communication time.

4.6.3 Memory Metric

Function Mem(i, j) represents the Memory metric and evaluates the migration costs to
transfer the image of process i to a resource in Set j. This metric just uses data collected
at the superstep in which the load rebalancing will be activated (where α is achieved).
Memory Metric works with the following factors related below.

• The quantity of bytes in memory of each BSP process;

• Data transferring time between the Set Manager of the BSP process and the man-
ager of the target Set;

• Costs relates to the adopted migration mechanism.
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Firstly, the memory space in bytes of considered process is captured through M(i).
After that, the transfer time of 1 byte to the destination Set is calculated through T (i, j)
function. The communication involving the Set Manager of the process i is established
with the Set Manager of each considered Set j. Finally, it is calculated the time spent on
migration operations in Mig(i, j) function. These operations are dependent of the operat-
ing system, as well as the tool used to provide processes migration. They can include, for
example, connections reorganizations, memory serialization, checkpoint recovery, time
spent to create another process in the target host, and so on.

Mem(i, j) = Wmem . ( M(i) . T (i, j) + Mig(i, j) ) (4.6)

Equation 4.6 shows the elements of Mem(i, j). In this equation, Wmem is a coefficient
that refers to the weight of this metric. Analyzing Memory metric, each BSP process will
compute n times Mem(i, j), where n is the number of Sets in the environment. The lower
the value of Mem(i, j) the easier the transferring of process i to Set j. On the other hand,
as Mem(i, j) increases, the migration costs of the process i to Set j grows as well.

4.6.4 Potential of Migration

Aiming to generate the Potential of Migration (PM) of each process, we use the notion
of force from Physics. In Physics, force is an influence that can make an object accelerate
and is represented by a vector. A vector has a size (magnitude) and a direction. Analyzing
the force idea, each studied metric can be seen as a vector that acts over an object. In our
case, this object is the migration of a BSP process. Vectors ~Comp and ~Comm represent
the Computation and Communication metrics, respectively. Both vectors have the same
direction and stimulate the process migration. On the other hand, the Memory metric rep-
resents the migration costs and is symbolized by vector ~Mem. This vector works against
the migration, since its direction is opposite to ~Comp and ~Comm. Each vector is used
to compute the resultant force. If two forces present the same direction, the length of
the resultant force is the sum of the magnitude of the forces that act over the object. On
the other hand, if the forces presents opposite direction, we subtract the smallest by the
largest to measure the resultant force.

Computation Metric

BSP Processes
Migration

Communication Metric

Memory Metric

FavourOpposite

Figure 4.12: Computing the resultant force (Potential of Migration) considering three
metrics: (i) Computation and Communication metrics act in favor of migration; (ii) Mem-
ory metric works in the opposite direction as migration costs

Figure 4.12 shows the actuation of Computation, Communication and Memory met-
rics to compute the Potential of Migration. In processes reassignment model context, the
Potential of Migration of a process i to Set j is denoted by PM(i, j) and is computed by
Equation 4.7. Comp(i, j), Comm(i, j) and Mem(i, j) represent the Computation, Commu-
nication and Memory metrics, respectively. Considering that Comp(i, j) and Comm(i, j)
can have their values close to 0, then PM(i, j) can receive negative values. The greater
the value of PM(i, j), the more prone the BSP process will be to migrate. A high PM(i, j)
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means that process i has high computation time, high communication with processes that
belong to Set j and presents low migration cost to this Set.

PM(i, j) = Comp(i, j)+Comm(i, j)−Mem(i, j) (4.7)

Each process i will compute n times Equation 4.7 locally, where n is the amount of
Sets in the environment. After that, process i sends its highest Potential of Migration to
its Set Manager. All Set Managers exchange their PM values. Figure 4.13 presents an
example with this message exchange among the Set Managers. Our strategy was based
on the previous work of Shah et al (SHAH; VEERAVALLI; MISRA, 2007). However,
they apply data exchange at each fixed period interval of time and this procedure involves
just communication among all processes.

PM(0, 2)

PM(1, 0)

PM(2, 2)

PM(3, 1)

PM(4, 0)

PM(5, 2)

PM(6, 2)

PM(4, 0), PM(5, 2), PM(6, 2)

PM(0, 2), PM(1, 0)

PM(4, 0),PM(5, 2), PM(6, 2)

PM(0, 2), PM(1, 0)

PM(2, 2), PM(3, 1)

PM(2, 2), PM(3, 1)

A collection of the 
highest  PM(i,j) of  each 
process i in the Set

Set Manager

BSP process

Node

Scheduling Messages

Set 0 Set 1

Set 2

Figure 4.13: Message passing among the Set Managers with a collection of the highest
PM(i, j) of each BSP process

We applied list scheduling in order to select the candidates for migration. Each Set
Manager creates a decreasing ordered list based on the highest PM of each BSP process.
Negatives values for PM are discarded from the list. MigBSP uses this list to apply one of
two possible heuristics in order to select the candidates processes for migration. The first
heuristic chooses processes that have PM higher than a MAX(PM).x, where MAX(PM)
is the highest PM and x a percentage. The second heuristic chooses one BSP process, the
first of the list, whose has the highest PM value. Each selected process is passed to the
MigBSP’s algorithm which treat the the election of a new target processor to execute it.

4.7 Decision About the Destination of Processes: “Where”

Process migration happens after the barrier synchronization of superstep which α is
reached (see subsection 4.5). In this moment, all BSP processes are waiting for MigBSP
migration actions before the beginning of the next superstep. An elected process i has a
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target Set j informed on its Potential of Migration PM(i, j). Thus, the pertinent question
is to choose which the processor (and consequently the node) of this Set may be the desti-
nation of the process. Algorithm 7 lists the steps to answer the question “Where”, which
choose a target processor for each candidate process. Firstly, the Set Manager of process i
contacts the manager of the Set j asking it for a processor to receive a process. This man-
ager verifies the resources under its responsibility and elects the destination processor.

Algorithm 7 Choosing a target processor to a candidate process i
1: Set Manager SMi signalizes process i and informs it that it is a candidate for migra-

tion;
2: Set Manager SMi calls the destination Set Manager SM j and asks it for a processor;
3: Set Manager SM j selects a processor in its jurisdiction through an evaluation function;
4: Set Manager SM j returns information about the chosen processor to SMi. The former

also passes information regarding the execution time of process i in this processor;
5: Set Manager SMi predicts the evaluation performance of process i, computes the mi-

gration gains and launches the process migration if it is viable.

The manager of the destination Set calculates the time which each processor takes
to compute the work assigned to it. This is performed through Equation 4.8. time(p)
captures the computation power of processor p taking into account the external load (pro-
cesses that do not belong to BSP application). load(p) represents the CPU load average
on the last 15 minutes. This time interval was adopted based on work of Vozmediano
and Conde(MORENO-VOZMEDIANO; ALONSO-CONDE, 2005). Equation 4.8 also
works with instruction summing of each BSP process assigned to processor p in the last
executed superstep. In this context, M(i, p) is equal to 1 if the process i is executing on
processor p. The processor p with the shortest time(p) is chosen to be tested to receive
a BSP process. After that, this Set Manager computes Equation 4.9 based on data from
process i, as well as from its own Set.

time(p) =

∑
i,p:M(i,p)=1

Ik+α−1(i)

(1− load(p)) . cpu(p)
(4.8)

t1 = time(p)+Bk+α−1(i, j) . T (i, j) + Mem(i, j) (4.9)

The idea of Equation 4.9 is to simulate the execution of considered process in the
destination Set taking into account the migration costs. In this situation, time(p) is the
simulation of the execution of process i on target processor p. In the same way, T (i, j)
refers to the transferring rate of 1 byte of process i inside the Set j (communication estab-
lished with the Set Manager). Mem(i, j) is the Memory Metric and is associated with the
migration costs (Wmem equal to 1) . Contrary to time(p) and T (i, j), Mem(i, j) involves the
current location of process i and target Set j. The manager of Set j sends to the manager
of process i the destination processor p and t1 value.

t2 = time(p′)+Bk+α−1(i, j) . T (i, j) (4.10)

The actual Set Manager of process i computes Equation 4.10 which aims to analyze
the execution of the process considering its current location. In this situation, p′ is the
current processor of process i and T (i, j) means the transfer rate between the current Set
Manager of process i and the target manager of Set j. In both Equations 4.9 and 4.10,
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Bk+α−1(i, j) refers to the number of received bytes of process i from sendings of processes
that belong to Set j at superstep k + α − 1. Process i will migrate from p′ to p only
if t2 > t1. This migration approach was based on a previous work from Du, Sun and
Wu (2007).

4.8 Model Parameters

Besides the number of processes, processors, Sets and the first processes-resources
mapping, MigBSP needs a collection of parameters to initialize its functioning. Consid-
ering this, we present them using the following notation expressed below.

I = {D, α , δ , β , Wcmp, Wcom, Wmem}.

For instance, the set I = {0.2, 10, 0.1, 0.2, 1, 1, 1, 0.3} means that MigBSP works with
D equal to 0.2. Thus, the times of the slowest and the fastest processes must be at most
20% away from the average time to consider the processes as balanced. The value 10 is
passed for the initial α . This parameter is responsible to control the interval of supersteps
for the next processes rescheduling call. α is updated at each rescheduling activation and
will indicate if the processes are in time equilibrium or not.

The third and the fourth elements in I receive the values 0.1 and 0.2. The former refers
to δ , which acts on Computation metric. δ is used to to verify if the prediction of instruc-
tion is close or not to the real number of executed instructions. Therefore, this parameter
is used to increase or decrease the value of Computation Pattern of each BSP process.
The prediction of instructions should be at most 10% above or below from the number
of instruction to characterize a hit. The value 0.2 is passed to β and its management is
analogous to δ for Communication metric. If the amount of bytes received by process i
from sendings of processes that belong to Set j is 200, then the communication prediction
must be between 160 and 240 in order to increase the value of the Communication Pattern
of process i related to Set j. The following three parameters describe the weight of the
studied metrics. Considering that each metric may be viewed as a force that acts over the
process migration, each metric weight may represent the angle of force incidence. Thus,
the value 1 could be the highest while 0 the lowest.

4.9 Load Balancing Decisions Analysis

Section 2.2 in Chapter 2 presented a study about load balancing. In this section, Kowk
and Cheung (KWOK; CHEUNG, 2004) arranged the load balancing topic in four classes:
(i) location policy; (ii) information policy; (iii) transfer policy and; (iv) selection policy.
Observing the context of MigBSP, location policy treats the selection of a target resource
for a candidate process for migration. The target resource choosing is performed by the
Set Manager of the Set which is indicated in the PM(i, j). This manager computes the
function time(p) in order to evaluate which processor finishes all the work assigned to
it (amount of instructions of the BSP processes that it executes) in the least time. After
this procedure, the verification of the migration viability occurred. This last test considers
both the communication and migration costs issues.

Information policy determines which data are collected for load balancing execution.
MigBSP analyses information from three source metrics: (i) Computation; (ii) Commu-
nication and; (iii) Memory. The selection of the first two is explained because a BSP
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application is divided in supersteps, each one with a computation and communication
phases. The computation part captures information about the amount of instruction exe-
cuted at superstep as well as the processing time spent to compute it. The communication
part treats data about the communicated bytes and the time spent in this phase during the
superstep execution. On the other hand, data referred to memory are useful to measure the
process transferring cost to continue its execution on another processor. In this context,
we observed the the time to transfer the whole memory image of the process between the
current and the target Set and the time to perform specific process migration operations.

Transfer policy leads with issues like the moments where the load transferring takes
place, who takes the initiative to implement it and which resources enter as possible candi-
dates to receive a process. Firstly, the BSP processes rescheduling launching is triggered
when the interval α between supersteps is reached. This value is variable and depends
on the environment stability (if processes are balanced or not) and if a pattern without
migrations is observed on last rescheduling calls. MigBSP employs the sycnhronous
load balancing detection approach (WATTS; TAYLOR, 1998), since all Set Managers
know exactly the next moment for processes rescheduling and begin this procedure syn-
chronously. Besides this, our model was designed to be implemented at middleware level.
Concerning this, MigBSP does not impose modifications in application code proposing
a migration know as objective (see Subsection 2.3 for details). Moreover, it is impor-
tant to emphasize that the processes rescheduling attempting is not launched by either an
overloaded or an idle processor. Finally, all processors that belong to the target Set are
candidates to receive a process. They are evaluate and the most suitable among them is
selected for migration viability testing.

Selection policy treats with issues like which processes are selected for migration.
MigBSP chooses these candidate processes using its decision function called PM (Po-
tential of Migration). This function was developed based on the notion of force from
physics. PM is the resultant force of the following forces that act over the candidate pro-
cess for migration: (i) Computation; (ii) Communication and; (iii) Memory. The greater
the PM(i, j), the larger the possibility to migrate process i to Set j. Each process i passes
to its Set Manager its largest PM(i, j) at the rescheduling moment. After that, the Set
Managers exchange data among themselves. Lastly, each Set Manager has a list of the
largest PM(i, j) of each process and apply one of the two heuristics to select the candi-
date processes for migration: (i) the processes with PM larger than Max(PM).x where
x is a percentage are selected and; (ii) Only the process with the highest PM is taken as
candidate.

MigBSP uses a global strategy for load balancing (ZAKI; LI; PARTHASARATHY,
1997). In global schemes, the load balancing decision is made using a global knowledge,
i.e., data from all processes take part in the synchronization operation for processes re-
placement decisions. The list of the highest PM of all BSP processes is known by all
Set Managers when attempting for migration. The main advantage of global schemes is
that we can apply better load balancing decisions once data from all processes are consid-
ered. However, the synchronization is the most expensive part of this approach (ZAKI;
LI; PARTHASARATHY, 1997). However, we take profit from BSP model organization,
which already imposes a barrier synchronization among the processes. Therefore, we do
not need to pay an addition cost to use the global approach which causes its selection for
developing MigBSP.

Inside global classification (WARAICH, 2008), MigBSP presents a hybrid load bal-
ancing between centralized and distributed approaches. While the centralized one works



95

with a process whose is a master balancer, the distributed approach informs that the load
balancer is replicated on all the processes. The profile information is broadcast to every
other processor in this last technique. Differently from them, MigBSP employs the con-
cept of Set Managers whose are responsible for load balancing computation. Thus, we do
not need to perform a broadcast among all processes and we do not have a central point
of control, which naturally presents scalability problems.

4.10 Summary

MigBSP answers the following issues about processes migration: (i) “When” to launch
the migration; (ii) “Which” processes are candidates for migration and; (iii) “Where” to
put an elected process. The decision for processes remapping is taken at the end of a
superstep (after the barrier). This migration point was chosen because in this moment it is
possible to analyze data from all BSP processes at their computation and communication
phases. Aiming to generate the least intrusiveness in application as possible, we applied
two adaptations that control the value of α . α is updated at each rescheduling call and
will indicate the interval to the next one. Aiming to store the variations on system state, a
temporary variable called α ′ is used and updated at each superstep through the increment
or decrement of one unit. α is filled with α ′ value in the moment of rescheduling call.
The adaptations’ ideas are: (i) to postpone the rescheduling call if the system is stable
(processes are balanced) or to turn it more frequent, otherwise; (ii) to delay this call if a
pattern without migrations on ω past calls for rescheduling is observed. Aiming to ana-
lyze the system stability, the times of the slowest and fastest processes at each superstep
are captured as well as the average time is computed. A variable D is used to indicate
a percentage of how far the slowest and the fastest processes may be from the average
to consider the processes as balanced. According to Shah et al. (SHAH; VEERAVALLI;
MISRA, 2007), MigBSP should be classified as an adaptive scheduler whose parameters
change based on the global state of the system (see Section 2.1 for details).

The answer for “Which” is solved through our decision function called Potential of
Migration (PM). Each process i computes n functions PM(i, j), where n is the number
of Sets and j means a Set. The idea consists in performing a subset of the processes-
resources tests at the rescheduling moment. PM(i, j) is found using Computation, Com-
munication and Memory metrics. The relation among them is based on the notion of force
from physics. Computation and Communication act in favor of migration, while Memory
works in an opposite direction. Computation metric - Comp(i, j) - considers a Compu-
tation Pattern Pcomp(i) that measures the stability of a process i regarding the amount of
instructions at each superstep. This value is close to 1 if the process is regular and close to
0 otherwise. This metric also performs a computation time prediction based on all com-
putation phases between two activations of processes rescheduling. For this prediction
it is used the Aging concept (TANENBAUM, 2003). In the same way, Communication
metric - Comm(i, j) - computes the Communication Pattern Pcomm(i, j) between processes
and Sets. Furthermore, this metric uses communication time prediction considering data
between two rebalancing activations. Memory metric - Mem(i, j) - considers process
memory, transferring rate between considered process and the manager of target Set, as
well as migration costs.

PM(i, j) selects the candidate processes for resource relocation. PM(i, j)=Comp(i, j)+
Comm(i, j)−Mem(i, j). A high PM(i, j) means that process i has high computation time,
high communication with processes that belong to Set j and presents low migration costs.
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BSP processes calculate PM(i, j) locally. At each rescheduling call, each process passes
its highest PM(i, j) to its Set Manager. This last entity exchanges the PM of its processes
to other managers. There are two heuristics to choose the candidates, both based on a
decreasing ordered list of PMs. The heuristics are: (i) processes that have PM higher than
a MAX(PM).x are candidates, where x is a percentage; (ii) choose just one process.

PM(i, j) of a candidate process i is associated to a Set j. The manager of this Set
will select the most suitable processor to receive the process i. Before any migration, its
viability is verified considering the following data: (i) the external load on source and
destination processors; (ii) the BSP processes that both processors are executing; (iii)
the simulation of considered process running on destination processor; (iv) the time of
communication actions considering local and destination processors, and; (v) migration
costs. Concerning this, we computed two times: t1 and t2. t1 means the local execution
of process i, while t2 encompasses its execution on the other processor and includes the
migration costs. For each candidate is calculated the migration gain and its transferring
viability.

Since the processes scheduling problem is NP-hard, heuristics are sought to tackle
the problem (TSE, 2009). Heuristics are intended to gain computational performance at
the cost of accuracy or precision. Especially on scheduling topic, heuristic techniques
allow us to obtain a satisfactory mapping in a reasonable time (MARTÍNEZ-GALLAR;
ALMEIDA; GIMÉNEZ, 2007; TSENG; CHIN; WANG, 2009). Concerning this, MigBSP
uses heuristics in two situations: (i) to compute the decision function PM and; (ii) to select
the candidate processes for migration. Our idea was to offer a competitive scheduling
model in two ways. The former one considers the performance gains with processes
relocation through good decisions on choosing the candidates processes for migration as
well as the processors to receive them. The second way is responsible to perform the
scheduling computation and communication actions in an acceptable time. This issue is
pertinent mainly when migrations are inviable.
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5 MIGBSP MODEL EVALUATION

This chapter presents the strategies that were used to evaluate and validate MigBSP.
Moreover, it presents the MigBSP’s results on executing relevant BSP applications. We
will present the situation where the employment of our model achieves better performance
than application execution simply. Furthermore, we will explain in details the situations
in which MigBSP includes an overhead in the total time of the BSP application. The
simulation technique was utilized to validate MigBSP. This technique facilitates the man-
agement of the nodes, the networks as well as the BSP processes properly. It also makes
both the implementation of processes migration and the MigBSP execution with different
parameters easier.

Chapter 5 is segmented in 7 sections organized as follows. Section 5.1 describes the
main objectives of this chapter. Section 5.2 characterizes the requirements for simulating
MigBSP. The descriptions of the evaluation methodology, the different execution scenar-
ios and our multi-cluster topology are expressed in Section 5.3. Sections 5.4, 5.5 and 5.6
show the results when simulating three applications with MigBSP. These sections are the
core of this chapter, since they will inform the MigBSP’s behavior and its viability, or not,
for obtaining better performance on BSP-based application executions. Finally, Section
5.7 shows the main topics written in this chapter and directs the reader to the Conclusion
chapter.

5.1 Objectives

The main aim of this evaluation chapter is to demonstrate the viability of MigBSP to
reschedule BSP processes. Therefore, our idea is to present that application execution
should be faster with MigBSP. In addition, we must explain the situation where MigBSP
does not collaborate to enhance application performance. An obvious approach for ob-
taining valid results is to conduct experiments on production platforms, or at least on
large testbeds. Unfortunately, this often proves infeasible. Real-world platforms may
not be available for the purpose of experiments, so as not to disrupt production usage.
Results are often non-reproducible due to resource dynamics (e.g., time-varying and non-
deterministic network usage, unpredictable host failures). Furthermore, experiments on
real-world platforms may be prohibitively time consuming especially if large numbers of
experiments are needed to explore many scenarios with reasonable statistical significance.

Given all difficulties detailed in the last paragraph, the majority of published re-
sults are obtained in simulation (MARTÍNEZ-GALLAR; ALMEIDA; GIMÉNEZ, 2007;
NGUYEN et al., 2008; GROEN; HARFST; ZWART, 2009). Thus, we agree that the best
approach to test MigBSP algorithms and to facilitate results reproduction is the use of
simulation. Concerning this, we studied in details the functioning of the BSP model as
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well as a spectrum of applications that are based on it (MCCOLL, 1995; SKILLICORN;
HILL; MCCOLL, 1997; LEE, 2004; LOW; LIU; SCHMIDT, 2007). This study resulted
in the following applications that will be analyzed to validate MigBSP.

(i) Lattice Boltzmann application - This application is large used in computational fluid
dynamics area. Moreover, this application was chosen because its algorithm may be
easily adapted to a large serie of other computing areas.

(ii) Smith-Waterman application - This application is based on dynamic programming
and it is characterized by variation in the computation intensity along the matrix
cells.

(iii) LU decomposition application - This application presents an algorithm where a ma-
trix is written as the product of a lower triangular matrix and an upper triangular
matrix. The decomposition is used to solve systems of linear equations as well as to
turn the calculation of the determinant of a matrix easier.

The evaluation of these three applications will point general situations where the mi-
grations are profitable and where MigBSP execution just introduces more overhead on
application execution. The analysis of the tested applications represents the main objec-
tive of MigBSP evaluation. While the first application is regular, the other two present
an irregular behavior. The regularity issue treats the processes’ activities at each super-
step. Thus, the behaviors of the BSP processes on the last two applications change along
the execution due to fluctuations on the number of instructions and/or on the amount of
communicated bytes that the processes perform at each superstep.

5.2 Simulating MigBSP Model

We studied grid application simulators to develop MigBSP and the considered BSP
applications. A simulator must present at least the following characteristics to complete
our requirements.

• Processes creation - Each process must execute a specific region of code or a func-
tion.

• Message passing-based application development - The simulator must allow all-to-
all message passing among the application processes. In addition, it is preferable
that it offers asynchronous communication, since BSP model affirms the interaction
among the processes must occur in this manner.

• Processes migration - A mechanism for process relocation to another resource must
be available.

• Special directives - The simulator must present directives to capture the current
simulation time, the number of instructions as well as the communicated bytes in
message passing actions.

The last phase of a BSP superstep is the synchronization barrier. It is possible to
implement it using simple send-receive communication directives. In addition, asyn-
chronous communication can be designed using a synchronous communication directive,
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a communication request queue and a special thread that handles the queue. After the
description of the requirements, we verified different simulators organized as follows: (i)
MicroGrid (LIU; CHIEN, 2004); (ii) Simgrid (CASANOVA; LEGRAND; QUINSON,
2008); (iii) Gridsim (SULISTIO et al., 2007); (iv) Optorsim(CAMERON et al., 2004).
These four simulators offer the construction of a heterogeneous environment regarding
the speed of both the communication networks and the processors.

MicroGrid1 provides transparent virtualization of resources, networks and informa-
tion services, allowing the direct study of complex applications. OptorSim2 are specifi-
cally designed to study data replication on grids. GridSim 3 was initially intended for grid
economy, even if it became used in other areas of grid computing. Simgrid4 aims to facil-
itate research in the area of distributed and parallel application scheduling on distributed
computing platforms. This last simulator was chosen as execution tool since it fills out
our requirements and it is widely used by the scientific community5.

We are using MSG interface from Simgrid. This interface allows the study of CSP-
based (concurrent sequential processes) applications. MSG offers an API for managing
functions of processes (agents), hosts and tasks. In addition, MSG provides functions for
operating system management. The main functions of this last area treat the execution
of a task, the process sleeping, time capturing as well as the sending and the receiving of
tasks to/from other processes.

5.2.1 Platform and Processes Deployment Definition

Simgrid allows us to specify two kinds of files (MUNCK; VANMECHELEN; BROECK-
HOVE, 2009): (i) computing platform and; (ii) processes deployment. Both are written in
XML format. The former contains the description of hosts, network routes and inter-hosts
network connections. Concerning the host features, we can fill its power and availability.
Network links represent one-hop network connections. They are characterized by their
identification and their bandwidth. The latency is optional with a default value of 0.0.
Figure 5.1 (a) depicts a platform example with two nodes (hosts). Simgrid assumes that
each host has just one processor. The code to build this infrastructure is shown in Figure
5.2.

Figure 5.1 also illustrates the deployment of the processes. The code for this deploy-
ment is expressed in Figure 5.3. Firstly, each process must be mapped to a host. This
procedure determines the first processes-processors assignment and must be provided by
the programmer/user. MigBSP may change this mapping during application runtime.
XML definition allows us to specify arguments for each process. Considering Figure 5.1
(a), the process whose executes on Node1 defines the receiver node as its argument.

The assembly of a cluster may occur through the definition of multiple hosts and
routes. However, the last version of Simgrid simplifies the creation of large-scale clusters
in few lines (using the tag called Set). The Set tag of Simgrid platform file requires the
filling of the prefix, the suffix and the radical parameters. Thus, we can establish large-
scale clusters in few lines. For each Set in Simgrid we can write the power of each host as
well as the backbone network which connects its nodes. Figure 5.1 (b) illustrates a multi-
cluster platform. Its development requires the specification of two clusters, a network link

1http://www-csag.ucsd.edu/projects/grid/microgrid.html
2http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html
3http://www.gridbus.org/gridsim/
4http://simgrid.gforge.inria.fr/
5http://simgrid.gforge.inria.br/doc/people.html
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(a) Simple simulation platform with 2 nodes and a deployment of processes on it

(b) Organization of a multi-cluster platform

Figure 5.1: Simple execution infrastructure with two BSP processes

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="2">
<host id="Node1" power="500000000"/>
<host id="Node2" power="1000000000"/>
<link id="link" bandwidth="1000000000" latency="0.001"/>
<route src="Node1" dst="Node2">
<link:ctn id="link"/>

</route>
<route src="Node2" dst="Node1">
<link:ctn id="link"/>

</route>
</platform>

Figure 5.2: Simgrid XML file for platform description

<?xml version=’1.0’?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="2">
<process host="Node1" function="sender">
<argument value="Node2"/>
</process>
<process host="Node2" function="receiver"/>

</platform>

Figure 5.3: Simgrid XML file for processes deployment

and a connection between the clusters.
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5.2.2 Writing BSP Application

Simgrid application is written in C programming language. This application must im-
plements the functions described in the deployment file. Both platform and deployment
files are passed as parameters when executing a Simgrid application. Although the simu-
lation creates a virtual distributed system, its execution is local just using one computer.
We can write a Simgrid application according to either SPMD (Simple Program Multiple
Data) or MPMD (Multiple Program Multiple Data) style. Each process should use the
directive MSG_Process_self_PID() to indicate specific sub-regions of code to execute.

Simgrid relies on a concept of task that can be either computed locally or transferred
to another processor in the simulated infrastructure. Simgrid developers agree that this
abstraction is the right one for scheduling algorithms. A task may then be defined by
a computing amount, a message size and some private data. Simgrid application must
use this abstraction to express computation. Therefore, we must estimate the number of
computing instructions from a code of a real application to create a task which will sim-
ulate the same (or approximate) computing time. MSG_task_execute() function executes
a task and waits for its termination. MSG_get_clock() function is used to capture the
current simulation time. Its usage before and after executing a task shows the time spent
to compute it in the host which the process belongs to.

Simgrid offers synchronous message passing communication natively. MSG_task_put
puts a task on a channel of a host and waits for the end of the transmission. MSG_task_get-
_from() listens on channel and waits for receiving a task from host. Clock directive may
be used to save the communication time. Simgrid does not provide the barrier and collec-
tive communication functions. Process migration is offered by Simgrid through function
MSG_process_change_host(). This function returns automatically and does not im-
pose any cost related to migration. We can use the function MSG_process_sleep()
to obtain a delay on process execution, simulating the migration costs involved on its
transferring. Finally, the simulation returns the total time (in seconds) for application ex-
ecution. This time is different from the real observed one. For example, a simulated time
of 234.34s can last just 4.00s of simulation in the real world.

5.2.3 MigBSP Development

We implemented the barrier mechanism using a simple centralized algorithm. The
process with identification equal to 1 receives messages from all other processes. When it
receives the last message, it signalizes them to start the computation of the next superstep.
We opted for this algorithm for simplicity. Thus, we can focus our effort on developing
MigBSP algorithms. Both executions with and without our model use the same barrier
implementation. Each process captures its superstep time at the barrier function. They
save this time in a local vector at each superstep and just pass this vector to their Set
Manager when rescheduling is activated. This strategy is useful to minimize network
interactions among BSP processes and their respective Set Managers. Barrier function is
also used to update the Computation, Communication and Memory metrics. In addition,
the control of α ′ and the call for processes scheduling attempting (when α is reached) are
implemented at this moment.

We developed wrappers to save the computation and communication times. They act
over the MSG_task_execute() and MSG_task_get_from() functions. In the beginning
of each function we capture the number of instructions or bytes and take the initial clock.
At the end of them, we take the clock again in order to evaluate the total time to execute
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the procedure. MigBSP works with asynchronous communication on sending operations.
Given that MigBSP does not offer asynchronous communications natively, we created an
auxiliary thread and a request queue per processes for treating these operations. Auxiliary
thread executes a loop which pulls the first element of the queue and proceeds with the
requisition. The thread is killed after passing the last application superstep.

The deployment file firstly describes the processes that act as Set Managers. They
execute the function manager() and receive as parameter a list which informs the nodes
under its jurisdiction. The deployment follows with the sequence of BSP processes. The
deployment file indicates the target node, a function called superstep() and the identifica-
tion of the Set Manager when completing the data about a specific BSP processes. The Set
Managers reach the processes varying their nodes under their responsibilities and verify-
ing the BSP processes that are executing on them. Each process interacts with its Manager
through the identification passed as parameters when it was initialized. The call for pro-
cesses rescheduling returns one or more candidate processes, depending on the employed
heuristic. The migration procedure is performed through a combination of the function
MSG_process_change_host() execution followed by a delay equal to Memory metric
Mem(i, j) value considering a process i and a Set j. Function MSG_process_sleep() is
used to offer the delay facility.

5.3 Scientific Methodology

This section describes some decisions for evaluating MigBSP. Firstly, we present how
we obtained an estimative of the migration costs to transfer a process in our infrastructure.
Following this, we discuss in details the different scenarios for testing MigBSP. The key
idea on this topic is to evaluate different execution situations to get conclusions about the
MigBSP’s behavior easier. Finally, we show the infrastructure testbed that was assembled
to evaluate MigBSP as well as the initial processes-resources deployment on it.

5.3.1 Analyzing the Migration Costs

Aiming to work with migration costs close to the real situations, we implemented a
simple application and tested it with AMPI communication library. Our results can be
seen in details in (PILLA; ROSA RIGHI; NAVAUX, 2008). The key idea of the tests
was to observe the migration costs of a process when varying the memory space allo-
cated in it. We reserved three machines and created two processes in order to perform
the tests. The first process allocates a specific amount of data and calls the directive
AMPI_MigrateTo(destination). Besides this, it sends two messages to the second pro-
cess, one before and another after migration. The second process was created on the
machine that was not involved in the migration of the first process. It measure the time
between the two messages through the directive MPI_Wtime().

The tests were executed in three Pentium III 1.2 GHz nodes of the Corisco cluster lo-
cated at the Institute of Informatics from UFRGS. The nodes are connected through a 100
Mbit/s network. The number of bytes allocated by the first process varies from 50 bytes
up to 107 bytes. The application was tested 50 times for each amount of considered bytes
and an arithmetic average was measured. Figure 5.4 depicts the results when executing
the synthetic application. The results increase almost linearly when increasing the amount
of process’ data. We observed 1.21 seconds when migrating a process that allocated 10
MBytes of data. This time represents a rate close to 70% of the theoretical capacity of the
network. The results indicate a viable way to use AMPI as tool to implement MigBSP in
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Figure 5.4: Migration time with AMPI when varying the allocated data in the transferred
process

the future.
Our experimental tests measured the migrations costs in a single cluster since AMPI

offers treatment for this kind of architecture. However, MigBSP works with the idea of
an architecture composed by multiple sites. In this context, we developed a technique to
measure an estimative of AMPI migration costs for our purposes. Firstly, we modeled
the time to migrate a process (mt1) presented on y axis in Figure 5.4 as the process’ size
divided by the cluster bandwidth. Considering that the process’ image remains the same,
the migration time on a multi-cluster environment (mt2) is measure as mt1 . bw1

bw2
. bw2 means

the average bandwidth from the source up to the destination processor in the multi-cluster
environment. For instance, if we use 100Mbits/s and 0.2s as bw1 and mt1 to migrate a
process with 1 Mbyte in memory, new mt2 in a multi-hop network with mean bandwidth
of 60Mbits/s will be 0.33s.

5.3.2 Scenarios of Tests

We modeled three scenarios to evaluation MigBSP: (i) Application execution simply;
(ii) Application execution with MigBSP scheduler without applying migrations and; (iii)
Application execution with MigBSP scheduler allowing migrations. Table 5.1 summa-
rizes the observed scenarios. Our idea with this organization is to show the normal behav-
ior of MigBSP (scenario iii) and the situation where all migrations are inviable (scenario
ii). Scenario ii measures the overhead related to scheduling computation and the costs of
message exchanging among Set Managers as well as message passing between BSP pro-
cesses and their respective Set Managers. In other words, scenario ii consists in perform-
ing all scheduling calculus and all decisions about which processes will really migrate,
but it does not comprise any migrations actually. Scenario iii enables migrations and adds
the migrations costs to those processes that migrated from one processor to another.

The comparison between scenarios i and ii refers to the overhead imposed by MigBSP
on application execution when migrations do not take place. Scenario ii always present
times larger than scenario i. The difference between them represents exactly the overhead
imposed by MigBSP. The analysis of scenarios i and iii will show the final gain or loss
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Table 5.1: Different scenarios for evaluating MigBSP
Tested scenarios Application execution MigBSP execution Enabling Migrations

Scenario i •
Scenario ii • •

Scenario iii • • •

of performance when processes migration is applied. If the application execution time is
reduced when using migrations, we can affirm that the relocation of one or more BSP pro-
cesses outperforms the costs related to both the MigBSP scheduling and the transferring
of migrated processes. The verification of both scenarios ii and iii is pertinent to ob-
serve the modification in time from a situation that we just have the overhead of MigBSP
scheduling to another which migrations may occur.

5.3.3 Multi-Cluster Testbed Architecture

As grid technologies gain in popularity, separate clusters are increasingly being inter-
connected to create multi-cluster computing architectures for the processing of scientific
and commercial applications (ZHANG; KOELBEL; COOPER, 2009). Considering this,
we modeled an infrastructure with 5 clusters as illustrated in Figure 5.5. All processors
have the same machine architecture. Each cluster is mapped to a Set which presents the
execution of the Set Manager on its first node. Our infrastructure is heterogeneous in
terms of processing capacity of the nodes as well as in terms of bandwidth of the network
links. In addition, we do not apply variations of performance on the nodes nor on the
network links.

Any node inside our parallel architecture offers just one processor for executing BSP
processes. Figure 5.6 illustrates the initial processes-processors mapping for our tests.
The basic idea is to fill one cluster and then to pass to another one. We map one process
per node owing to each one has a single processor. If the amount of process is greater
than processors, the mapping begins again from the first Set. This happens when 200
processes must be mapped on our infrastructure. The next sections will discuss the results
of MigBSP when executing different BSP applications. We are using the notation {(px,
ny)} for denoting a process px that is executing or was reassigned to run in the node ny.

5.4 Lattice Boltzmann Method

The Lattice Boltzmann method is a powerful technique for the computational mod-
eling of a wide variety of complex fluid flow problems (SCHEPKE CLAUDIO; MAIL-
LARD, 2007). It is a discrete computational method based upon the Boltzmann equation.
It considers a typical volume element of fluid to be composed of a collection of particles
that are represented by a particle velocity distribution function for each fluid component
at each grid point.

5.4.1 Modeling

We modeled a BSP implementation of a 2D-based Lattice Boltzmann Method to Sim-
grid using vertical domain decomposition (ROSA RIGHI et al., 2009b). The data volume
is divided into spatially contiguous blocks along one axis. Multiple copies of the same
program run simultaneously, each operating on its own block of data. Each copy of the
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Figure 5.5: Heterogeneous testbed infrastructure with 5 Sets

Initial Processes-Resources Mapping

10 processes     = L {1-10}

200 processes   = L {1-20}, C {1-16}, F {1-6}, I {1-112}, A {1-20}, L {1-20}, C {1-6}

25 processes     = L {1-20}, C {1-5}

50 processes     = L {1-20}, C {1-16}, F {1-6}, I {1-8}

100 processes   = L {1-20}, C {1-16}, F {1-6}, I {1-58}

Figure 5.6: Initial processes-resources mapping

program runs as an independent BSP process. At the end of each iteration, data for the
planes that lie on the boundaries between blocks are passed between the appropriate pro-
cesses and the superstep is completed. An abstract view of the problem may see in Figure
5.7.
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Figure 5.7: Different matrix partition organizations when varying the number of used
processes

Besides Lattice Boltzmann, the developed scheme encompasses a broad spectrum of
scientific computations, from mesh based solvers, signal processing to image processing
algorithms. The considered matrix requires the computation of 1010 instructions and oc-
cupies 10 Megabytes in memory. These values were adopted based on real executions of
Lattice Boltzmann method in our clusters at UFRGS, Brazil. As we can observe in Figure
5.7, matrix partition will influence the number of instructions to be executed per process
and, consequently, its size in memory. Nevertheless, the quantity of communication re-
mains the same independent of the used partition scheme. It is important to emphasize
that our modeling may be characterized as regular, where each superstep presents the same
number of instructions to be computed by processes as well as the same communication
behavior.

When using 10 processes, each one is responsible for a sub-lattice computation of
109 instructions, occupies 1.5 Megabyte (500 Kbytes is fixed to other process’ data) and
passes 100 Kilobytes of boundary data to its right neighbor. In the same way, when 25
processes are employed, each one computes 4.108 instructions and occupies 900 Kbytes
in memory. Finally, initial tests were executed using α equal to 4, 8 and 16. Furthermore,
we employed ω equal to 3, 0.5 for initial D and used heuristic two to choose the candidate
process for migration. This heuristic affirms that at most 1 process will migrate at each
rescheduling call.

5.4.2 Results

Table 5.2 presents the times when executing 10 processes. Firstly, we can observe that
MigBSP’s intrusivity on application execution is short when comparing both scenarios i
and ii (overhead lower than 5%). The processes are balanced among themselves with this
configuration, causing the increasing of α at each call for processes rescheduling. This
explain the low impact when comparing scenarios i and ii. Besides this, MigBSP decides
that migrations are inviable for any moment, independing on the amount of executed
supersteps. In this case, our model causes a loss of performance in application execution.
We always obtained negative values of PM when processes rescheduling was tested. This
fact resulted in an empty list of candidate processes for migration.

The results of the execution of 25 processes are presented in Table 5.3. In this context,
the system remains stable and α grows at each rescheduling call. One migration occurred
{(p21,a1)} when testing 10 supersteps and using α equal to 4. Our notation informs that
process p21 was reassigned to run on node a16. A second and a third migrations hap-
pened when considering 50 supersteps: {(p22,a2), (p23,a3)}. They happened in the next

6Processes organization as well as the first processes-resources mapping can be seen in Figures 5.5 and
5.6
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Table 5.2: Evaluating 10 processes on three considered scenarios (time in seconds)
Super-

Scenario i
α = 4 α = 8 α = 16

step Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii
10 6.70 7.05 7.05 7.05 7.05 6.70 6.70
50 33.60 34.59 34.59 34.26 34.26 34.04 34.04

100 67.20 68.53 68.53 68.20 68.20 67.87 67.87
500 336.02 338.02 338.02 337.69 337.69 337.32 337.32

1000 672.04 674.39 674.39 674.06 674.06 673.73 673.73
2000 1344.09 1347.88 1347.88 1346.67 1346.67 1344.91 1344.91

Table 5.3: Evaluating 25 processes on three considered scenarios (time in seconds)
Super-

Scenario i
α = 4 α = 8 α = 16

steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii
10 3.49 4.18 4.42 4.42 4.44 3.49 3.49
50 17.35 19.32 20.45 18.66 19.44 18.66 19.42

100 34.70 37.33 38.91 36.67 37.90 36.01 36.88
500 173.53 177.46 154.87 176.80 161.48 176.80 179.24

1000 347.06 351.64 297.13 350.97 303.72 350.31 317.96
2000 694.12 699.47 592.26 698.68 599,14 697.43 613.88

Table 5.4: Evaluating 50 processes on three considered scenarios (time in seconds)
Super-

Scenario i
α = 4 α = 8 α = 16

steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii
10 2.16 2.95 3.20 2.95 3.17 2.16 2.16
50 10.78 13.14 14.47 12.35 13.32 12.35 13.03

100 21.55 24.70 26.68 29.91 25.92 23.13 24.63
500 107.74 112.46 106.90 111.67 115.73 111.67 117.84

1000 215.48 220.98 199.83 220.19 207.78 219.40 226.43
2000 430.95 436.79 408.25 435.88 417.56 434.68 434.30

Table 5.5: Evaluating 100 processes on three considered scenarios (time in seconds)
Super-

Scenario i
α = 4 α = 8 α = 16

steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii
10 1.22 2.08 2.24 2.08 2.21 1.22 1.22
50 5.94 8.59 9.63 7.71 8.48 7.71 8.19

100 11.86 15.40 16.99 14.52 16.24 13.63 14.94
500 59.25 64.57 62.55 63.68 67.25 63.68 69.37

1000 118.48 124.69 113.87 123.80 119.06 122.92 129.46
2000 236.96 243.70 224.48 241.12 232.87 239.23 241.52

two calls for processes rescheduling (at supersteps 12 and 28). When evaluating 2000 su-
persteps and maintaining this value of α , eight migrations take place: {(p21,a1), (p22,a2),
(p23,a3), (p24,a4), (p25,a5), (p18,a6), (p19,a7), (p20,a8)}. We analyzed that all migra-
tions occurred to the fastest cluster (Aquario). In addition, the first five migrations moved
processes from cluster Corisco to Aquario. After that, three processes from Labtec cluster
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Table 5.6: Evaluating 200 processes on three considered scenarios (time in seconds)
Super-

Scenario i
α = 4 α = 8 α = 16

steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii
10 1.04 2.86 3.06 1.95 2.11 1.04 1.04
50 5.09 10.56 17.14 9.65 11.06 7.82 8.15

100 10.15 16.53 25.43 15.62 21.97 14.71 16.04
500 50.66 57.84 68.44 56.93 71.42 55.92 77.05

1000 101.29 108.78 102.59 107.84 106.89 105.25 117.57
2000 200.43 209.46 194.87 208.13 202.22 204.69 211.69

16 48 112 240 496

Supersteps

8 24 56 120 248

4 12 60 124 50828 252 1020

504 1016

1008

(a) Using α = 4

(b) Using α = 8

(c) Using α = 16

BSP Processes Rescheduling Call

Figure 5.8: Amount of rescheduling calls with α 4, 8 and 16 when 25 processes and 2000
supersteps are evaluated

were chosen for migration. Concluding, we obtained a profit of 14% after executing 2000
supersteps in comparison of scenarios i and iii when α equal to 4 is used.

Analyzing scenario iii with α equal to 16, we detected that the first migration is post-
poned, which results in a larger final time when compared with lower values of α . With α
4 for instance, we have more calls for processes rescheduling with migrations during the
first supersteps. This fact will cause a large overhead to be paid during this period. These
penalty costs are amortized when the amount of executed supersteps increases. Thus,
the configuration with α 4 outperforms other studied values of α when 2000 supersteps
are evaluated. Figure 5.8 illustrates the frequency of processes rescheduling calls when
testing 25 processes and 2000 supersteps. We can observe that 6 calls are done with α
16, while 8 are performed when initial α changes to 4. Considering scenarios ii, we con-
clude that the greater is α , the lower is the model’s impact if migrations are not applied
(situation in which migration viability is false).

Table 5.4 shows the results when the number of processes is increased to 50. The pro-
cesses are considered balanced and α increases at each rescheduling call. In this manner,
we have the same configuration of calls when testing 25 processes (see Figure 5.8). We
achieved 8 migrations when 2000 supersteps are evaluated: {(p38,a1), (p40,a2), (p42, a3),
(p39, a4), (p41, a5), (p37, a6), (p22, a7), (p21, a8)}. MigBSP moves all processes from
cluster Frontal to Aquario and transfers two process from Corisco to the fastest cluster.
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Using α 4, 430.95s and 408.25s were obtained for scenarios i and iii, respectively. Be-
sides this 5% of gain with α 4, we also achieve a gain when α is equal to 8. However, the
final result when changing initial α to 16 in scenario iii is worse than scenario i, since the
migrations are delayed and more supersteps are need to achieve a gain in this situation.

Table 5.5 presents the execution of 100 processes over the tested infrastructure. As the
situations with 25 and 50 processes, the environment when 100 processes are evaluated
is stable and the processes are balanced among the resources. Thus, α increases at each
call for processes rescheduling. The same migrations occurred when testing 50 and 100
processes, since the configuration with 100 just uses more nodes from cluster ICE. In gen-
eral, the same percentage of gain was achieve with this amount of processes if compared
with the execution of 50 processes.

The results of scenarios i, ii and iii with 200 processes is shown in Table 5.6. We
have an unstable scenario in this situation, which explains the fact of a large overhead
in scenario ii. Considering this scenario, α will begin to grow after ω calls for pro-
cesses rescheduling without migrations. Taking into account scenario iii and α equal to
4, 2 migrations are done when executing 10 supersteps: {(p195,a1), (p197,a2)}. Besides
these, 10 migrations take place when 50 supersteps were tested: {(p196,a3), (p198,a4),
(p199,a5), (p200,a6), (p38,a7), (p39,a8), (p37,a9), (p40,a10), (p41,a11), (p42, a12)}. De-
spite the happening of these migrations, the processes are still unbalanced with adopted
value of D and, then, α does not increase at each superstep. After these migrations,
MigBSP does not indicate the viability of other ones. Thus, after ω calls without migra-
tions, MigBSP enlarges the value of D and α begins to increase following adaptation 2
(see Section 4.5 for details).
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Figure 5.9: Analyzing the gain with processes migration considering both scenarios i and
iii and 2000 supersteps

The graph in Figure 5.9 depicts the MigBSP’s performance when migrations and 2000
supersteps are considered. Firstly, we observed that the greater is the number of processes,
the better is the achieved results in scenario i. On the other hand, it is clear that this gain
tend to stabilize up to a situation where a larger number of processes does not imply
in a better performance. We verified the following issues about migrations. MigBSP
obtained better results when 25 processes were tested. As we increase the number of
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Figure 5.10: Observing MigBSP overhead when executing Lattice Boltzmann method
with α 4. Performance Function (PF) on x axis means time in scenario ii

time in scenario i

BSP processes, the considered amount of computation assigned to each one decreases
as well. In addition, the greater is the number of processes, the higher is the flow of
communications in the system. Therefore, we need more supersteps to obtain a gain with
migrations when we enlarge the amount of evaluated processes.

Figure 5.10 shows the overhead of MigBSP when it uses 4 as initial α . The main
observation from it is the conclusion that we pay a large overhead when testing few su-
persteps. This is explained by the fact that MigBSP indicates migrations in the first super-
steps and, consequently, a high cost is spent on such operations. The shorter is the number
of supersteps, the shorter is the execution time to overlap the costs related to migrations.
The evaluation of 10 supersteps is an instance of this assumption. The performance of
scenario ii with 200 processes and 10 supersteps is larger then twice the time of scenario
i. On the other hand, the simulation of 2000 supersteps comprises a scenario where the
costs initially paid are amortized by a large execution with processes replacement. In this
context, MigBSP represents a cost lower than 5% when executing 2000 supersteps.

Table 5.7 presents the barrier times captured when 2000 supersteps were tested. More
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Table 5.7: Barrier times on two situations

Processes
Scenario i - Without processes mi-
gration

Scenario iii - With processes mi-
gration

10 0.005380s 0.005380s
25 0.023943s 0.010765s
50 0.033487s 0.025360s

100 0.036126s 0.028337s
200 0.043247s 0.031440s

especially, the time is captured when the last superstep is executed. We implemented
a centralized master-slave approach for barrier, where process 1 receives and sends a
scheduling message from/to other BSP processes. Thus, the barrier time is captured on
process 1. The times shown in the third column of Table 5.7 do not include both schedul-
ing messages and computation. Our idea is to demonstrate that the remapping of processes
decreases the time to compute the BSP supersteps. Therefore, process 1 can reduce the
waiting time for barrier computation since the processes reach this moment faster. Ana-
lyzing such table, we observed that a gain of 22% in time was achieved when comparing
barrier time on scenarios i and iii with 50 processes. The gain was reduced when 100
processes were tested. This occurs because we just include more nodes from cluster ICE
with 100 processes if compared with the situation where 50 are considered.

5.5 Smith-Watermann Application

Our second tested application is based on dynamic programming (DP), which is a
popular algorithm design technique for optimization problems (LOW; LIU; SCHMIDT,
2007). Dynamic programming is a method for solving problems exhibiting the properties
of overlapping subproblems and optimal substructure (LOW; LIU; SCHMIDT, 2007). DP
algorithms can be classified according to the matrix size and the dependency relationship
of each matrix cell. An algorithm for a problem of size n is called a tD/eD algorithm if
its matrix size is O(nt) and each matrix cell depends on O(ne) other cells. In this thesis
we concentrate on the parallelization of DP algorithms of the type 2D/1D. These 2D/1D
DP algorithms are all irregular with load computation density changes along the matrix’s
cells. In particular, we observed the functioning of Smith-Waterman algorithm (SMITH,
1988) that is a well-known 2D/1D algorithm for performing local sequence alignment.

5.5.1 Modeling

Smith-Waterman algorithm proceeds in a series of wavefronts diagonally across the
matrix. Figure 5.11 (a) illustrates the concept of the algorithm for a 4×4 matrix with a
column-based processes allocation. The more intense the shading, the greater is the load
computation density of the cell. Each wavefront corresponds to a BSP superstep. For
instance, Figure 5.11 (b) shows a 4×4 matrix that presents 7 supersteps. The computation
load is uniform inside a particular superstep, growing up when the number of the superstep
increases. Both organizations of diagonal-based supersteps mapping and column-based
processes mapping bring the following conclusions (ROSA RIGHI et al., 2009a): (i)
2n− 1 supersteps are crossed to compute a square matrix with order n and; (ii) each
process will be involved on n supersteps.

Each BSP process computes a block of data and sends it to other process at every
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Figure 5.11: Different views of Smith-Waterman irregular application

superstep. Figures 5.11 (b) and (c) show the communication actions among the processes.
Considering that cell x,y (x means a matrix’ line, while y is a matrix’ column) needs data
from the x,y− 1 and x− 1,y other ones, we will have an interaction from process py to
process py + 1. We do not have communication inside the same matrix column, since it
corresponds to the same process.

The configuration of scenarios ii and iii depends on the Computation Pattern Pcomp(i)
of each process i. Pcomp(i) increases or decreases depending on the prediction of the
amount of performed instructions at each superstep. We consider a specific process as
regular if the forecast is within a δ margin of fluctuation from the amount of instructions
performed actually. In our experiments, we are using 106 as the amount of instructions
for the first superstep and 109 for the last one. The increase of load computational density
among the supersteps is uniform. In other words, we take the difference between 109 and
106 and divide by the number of involved supersteps in a specific execution. Considering
this, we applied δ equal to 0.01 (1%) and 0.50 (50%) to scenarios ii and iii, respectively.
This last value was used because I2(1) is 565.105 and PI2(1) is 287.105 when a 10×10
matrix is tested (see details about the notations in Subsection 4.6.1). The percentage
of 50% enforces instruction regularity in the system. Both values of δ will influence the
Computation metric, and consequently the choosing of candidates for migration. Scenario
ii tends to obtain negatives values for PM since the Computation Metric will be close to
0. Consequently, no migrations will happen on this scenario.

We tested the behavior of square matrixes of order 10, 25, 50, 100 and 200. Each
cell of a 10×10 matrix needs to communicate 500 Kbytes and each process occupies 1.2
Mbyte in memory (700 Kbytes comprise other application data). The cell of 25×25 ma-
trix communicates 200 Kbytes and each process occupies 900 Kbytes in memory and so
on. Initial tests were executed using α equal to 2, 4, 8 and 16. Furthermore, we employed
ω equal to 3, initial D equal to 0.5 and used heuristic one to choose the candidates for
migration with x equal to 80%. This heuristic takes data from the list that gathers the
highest PM of each process and selects a percentage of processes as candidates.

5.5.2 Results

Table 5.8 presents the execution evaluation of BSP-based Smith-Waterman applica-
tion. MigBSP executes 19 supersteps when crossing a 10×10 matrix. Adopting this size
of matrix and α 2, 13.34s and 14.15s were obtained for scenarios i and ii which represents
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a cost of 8%. The higher is the value of α , the lower is the MigBSP overhead on appli-
cation execution. This occurs because the system is stable (processes are balanced) and
α always increases at each rescheduling call. Three calls for processes relocation were
done when testing α 2 (at supersteps 2, 6 and 14). The rescheduling call at superstep 2
does not produce migrations. At this step, the load computational density is not enough to
overlap the consider migration costs involved on process transferring operation. The same
occurred on the next call at superstep 6. The last call happened at superstep 14, which
resulted on 6 migrations: {(p5,a1), (p6,a2), (p7,a3), (p8,a4), (p9,a5), (p10,a6)}. MigBSP
indicated the migration of processes that are responsible to compute the final supersteps.

The execution with α equal to 4 implies in a shorter overhead since two calls were
done (at supersteps 4 and 12). Observing scenario iii when testing a 10×10 matrix, we
do not have migrations in the first call, but eight occurred in the other one. Processes 3 up
to 10 migrated in this last call to cluster Aquario. α 4 outperforms α 2 for two reasons:
(i) it does lesser rescheduling calls and; (ii) the call that causes processes migration was
done at a specific superstep in which MigBSP takes better decisions. α 16 produces
a migration of the last four processes after superstep 16. Migrations close to the final
supersteps can be viewed as a good strategy, since the last processes are responsible for
the largest computational loads. However, the remaining supersteps may not be enough
to take profit from the migrations if the call is much closer to the end of the application.

Table 5.8: Evaluation of scenarios i, ii and iii when varying the matrix size

Scenarios
Matrix size

10×10 25×25 50×50 100×100 200×200
Scenario i 13.34s 40.74s 92.59s 162.66s 389.91s

Scen. ii

α = 2 14.15s 43.05s 95.70s 166.57s 394.68s
α = 4 14.71s 42.24s 94.84s 165.66s 393.75s
α = 8 13.78s 41.63s 94.03s 164.80s 392.85s
α = 16 13.42s 41.28s 93.36s 164.04s 392.01s

Scen. iii

α = 2 13.09s 35.97s 85.95s 150.57 374.62s
α = 4 11.94s 34.82s 84.65s 148.89s 375.53s
α = 8 13.82s 41.64s 83.00s 146.55s 374.38s
α = 16 12.40s 40.64s 85.21s 162.49s 374.40s

The system stays stable when the 25×25 matrix was tested. α 2 produces a gain of
11% in performance when considering 25×25 matrix and scenario iii. This configuration
presents four calls for processes rescheduling, where two of them produce migrations.
No migrations are indicated at supersteps 2 and 6. Nevertheless, processes 1 up to 12
are migrated at superstep 14 while processes 21 up to 25 are transferred at superstep 30.
These transferring operations occurred to the fastest cluster. In this last call, the remaining
execution presents 19 supersteps (from 31 to 49) to amortize the migration costs and to get
better performance. The execution when using α 8 and scenario iii brings an overhead
if compared with scenario i. Two calls for migrations were done, at supersteps 8 and
24. The first call causes the migration of just one process (number 1) to a1 and the
second one produces three migrations: {(p21,a2),(p22,a3),(p23,a4)}. We observed that
processes p24 and p25 stayed on cluster Corisco. Despite performed migrations, these
two processes compromise superstep that includes them. Both are executing on slower
cluster and barrier synchronization always waits for the slowest process.
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Maintaining the 25×25 matrix size and adopting α 16, we have two calls for migra-
tion: at supersteps 16 and 48. This last call migrates p24 and p25 to cluster Aquario.
Although this movement is pertinent to get performance, just one superstep is executed
before finalizing the application. MigBSP does not have knowledge about application be-
havior and migrations are indicated even when the application is close to finish. Therefore,
the migrations at superstep 48 contributed to increase overhead instead gain in application
performance.

50 processes and 99 supersteps were evaluated when the 50×50 matrix was consid-
ered. In this context, α also increases at each call for processes rescheduling. We ob-
served that an overhead of 3% was found when scenario i and ii were compared (using
α 2). In addition, we observed that all values of α achieved a gain of performance in
scenario iii. Especially when α 2 was used, five calls for processes rescheduling were
done (at supersteps 2, 6, 14, 30 and 62). Migrations were not indicated in the first three
calls. The greater is the matrix size, the greater is the number of supersteps needed to
make migrations viable. This happens because our total load is fixed (independent of the
matrix size) but the load partition increases uniformly along the supersteps (see Section
5.5.1 for details). Process 21 up to 29 are migrated to cluster Aquario at superstep 30,
while process 37 up to 42 are migrated to this cluster at superstep 62. Using α equal to
4, 84.65s were obtained for scenario iii which results a gain of 9%. This gain is greater
than that achieved with α 2 because now the last call for processes rescheduling is done
at superstep 60. The same processes were migrated at this point. However, there are two
more supersteps to execute with new processes location using α equal to 4.

Three calls for processes rescheduling were done with α8 (at supersteps 8, 24 and
56). Just the last two produce migration. Three processes are migrated at superstep 24:
{(p21,a1),(p22,a2),(p23,a3)}. Process 37 up to 42 are migrated to cluster Aquario at
superstep 56. This last call is efficient since it transfers all processes from cluster Frontal
to Aquario. Two calls for processes relocation were done with α 16. At superstep 16,
process 1 up to 15 are migrated to cluster Aquario. MigBSP selected as candidates for
migration at superstep 48 the processes from p37 to p42. However, just five migrations
occurred because cluster Aquario presents only 20 processors and p37 remains in the
same previous location.

The execution with the 100×100 matrix shows good results with processes replace-
ment. Six rescheduling calls were done when using α 2. At the first three (supersteps 2,
6 and 14) no migrations occur. Process 21 up to 29 are migrated to cluster Aquario after
crossing superstep 30. In addition, process 37 to 42 are migrated to cluster Aquario at su-
perstep 62. Finally, MigBSP indicates 7 migrations at superstep 126, but just 5 occurred:
p30 up to p36 to cluster Aquario. These migrations complete one process per node on
cluster Aquario. MigBSP selected for migration those processes that belonged to cluster
Corisco and Frontal, which are the slower clusters on our infrastructure testbed. α equal
to 16 produced 3 attempts for migration when 100×100 matrix is evaluated (at supersteps
16, 48 and 112). All of them triggered migrations. In the first call, the 11 first processes
are migrated to cluster Aquario. All process from cluster Frontal are migrated to Aquario
at superstep 48. Finally, 15 processes are selected as candidates for migration when the
application finishes the computation of 112 supersteps. They are: p21 to p36. This spec-
trum of candidates is equal to the processes that are running on Corisco. Considering this,
only 3 processes were migrated actually: {(p34,a18),(p35a19),(p36,a20)}.

Table 5.8 also shows the application performance when the 200×200 matrix was
tested. The overhead of our model is smaller than 2% for scenario ii. Furthermore, satis-
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Figure 5.12: Migration behavior when testing a 200×200 matrix with initial α equal to 2

factory results were obtained with processes migration. The system stays stable during all
application execution. Despite having more than one process mapped to one processor,
sometimes just a portion of them is responsible for computation at a specific moment.
This occurs because the processes are mapped to matrix columns, while supersteps com-
prise the anti-diagonals of the matrix. Figure 5.12 illustrates the migrations behavior
along the execution with α 2.

ICE 56% ICE 56%

Labtec 20% 

Labtec 17%
Aquario 10%

Aquario 26%

Frontal 3%

Corisco 11%

Corisco 1%

(a) Processes-Sets situation when 
beginning BSP application
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after concluding the last superstep

Figure 5.13: Different situations of processes location (in percentage) when testing a
200×200 matrix

We performed 8 calls for processes rescheduling when using α 2 and considering sce-
nario iii on 200×200 matrix evaluation. No migrations were done at supersteps 2,6 and
14. The migration costs overlap the possible gains with processes relocation on these sit-
uations. Processes 21 up to 31 are migrated to cluster Aquario at superstep 30. Moreover,
all processes from cluster Frontal are migrated to Aquario at superstep 62. Seven pro-
cesses are candidates for migration at superstep 126: p30 to p36. However, only p31 up
to p36 are migrated to cluster Aquario. These migrations happen because the processes
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initially mapped to cluster Aquario do not collaborate yet with BSP computation. Mi-
grations are not viable at superstep 254. In this moment, the initial processes mapped to
cluster Aquario are active, increasing the cluster load as a whole and avoiding migrations
to it. Finally, 12 processes (p189 to p200) are migrated to cluster Aquario when super-
step 388 is crossed. At this time, all previous processes allocated to Aquario are inactive
and the migrations are viable again. However, just 10 remaining supersteps are executed
to amortize the processes migration costs. Figure 5.13 depicts both processes-resources
mapping when starting and ending the treatment of the 200×200 matrix. We observed
that slower clusters tend to loss processes to faster ones, since analyzed application may
be classified as CPU-bound.
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Figure 5.14: MigBSP overhead for Smith-Waterman BSP application. Performance Func-
tion (PF) on x axis means time in scenario ii

time in scenario i

Lastly, Figures 5.14 and 5.15 describe the comparisons between scenarios i and ii
and between the former with scenario iii, respectively. The larger is the matrix order, the
lower is the MigBSP’s overhead. This is explained because α increases at each reschedul-
ing call. Thus, a larger number of superstep means a better opportunity to amortize the
scheduling costs. While initial value of α does not present significant impact on the first
comparison, its choice is important when testing MigBSP on scenario iii. Figure 5.15
shows α 4 as the best choice in average. An application with lower values of α tend to
present more calls with migrations. On the other hand, first migrations are postponed with
higher values of initial α . Thus, their results may not outperform the migration costs.
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5.6 LU Decomposition Application

Consider a system of linear equations A.x = b, where A is a given n×n non singular
matrix, b a given vector of length n, and x the unknown solution vector of length n. One
method for solving this system is by using LU Decomposition technique. This technique
comprises the decomposition of the matrix A into a lower triangular matrix L and an upper
triangular matrix U such that A = LU . A n×n matrix L is called unit lower triangular if
li,i = 1 for all i,0≤ i < n, and li, j = 0 for all i, j where 0≤ i < j < n. An n×n matrix U
is called upper triangular if ui, j = 0 for all i, j with 0≤ j < i < n.
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Figure 5.16: L and U matrixes decomposition using the same memory space of the origi-
nal matrix A0

On input, A contains the original matrix A0, whereas on output it contains the values of
L below the diagonal and the values of U above and on the diagonal such that LU = A0.
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Figure 5.16 (a) illustrates the organization of LU computation. The values of L and U
computed so far and the computed sub-matrix Ak may be stored in the same memory
space of A0. Algorithm 8 presents a sequential algorithm for producing L and U in stages.
Stage k first computes the elements uk, j, j ≥ k, of row k of U and the elements li,k, i > k,
of column k of L. Then, it computes Ak+1 in preparation for the next stage. Algorithm 9
presents the functioning of the previous algorithm using just the elements from matrix A.
Figure 5.16 (b) presents the data that is necessary to compute ai, j in the last statement of
the Algorithm 9. Besides its own value, ai, j is updated using a value from the same line
and another from the same column.

5.6.1 Modeling

This section explains how we modeled the LU sequential application on a BSP-based
parallel one. Firstly, the bulk of the computational work in stage k of the sequential
algorithm is the modification of the matrix elements ai, j with i, j ≥ k + 1. Aiming to
prevent communication of large amounts of data, the update of ai, j = ai, j +ai,k.ak, j must
be performed by the process whose contains ai, j. This implies that only elements of
column k and row k of A need to be communicated in stage k in order to compute the new
sub-matrix A(k).

An important observation is that the modification of the elements in row A(i,k + 1 :
n−1) uses only one value of column k of A, namely ai,k. The provided notation A(i,k+1 :

Algorithm 8 Algorithm for LU Decomposition
1: for k=0 to n-1 do
2: for j=k to n-1 do
3: uk, j = ak

k, j
4: end for
5: for i=k+1 to n-1 do
6: lk

i,k =
ak

i,k
uk,k

7: end for
8: for i=k+1 to n-1 do
9: for j-k+1 to n-1 do

10: ak+1
i, j = ak

i, j− li,k . uk, j
11: end for
12: end for
13: end for

Algorithm 9 Algorithm for LU Decomposition using the same matrix A
1: for k=0 to n-1 do
2: for i=k+1 to n-1 do
3: ai,k = ai,k

ak,k

4: end for
5: for i=k+1 to n-1 do
6: for j-k+1 to n-1 do
7: ai, j = ai, j−ai,k . ak, j
8: end for
9: end for

10: end for
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n−1) denotes the cells of line i varying from column k +1 to n−1. If we distribute each
matrix row over a limit set of N processes, then the communication of an element from
column k can be restricted to a multicast to N processes. Similarly, the modification of
the elements in column A(k + 1,n : −1, j) uses only one value from row k of A, namely
ak, j. If we distributed each matrix column over a limit set of M processes, then the com-
munication of an element of row k can be restricted to a multicast to M processes.

Considering the statements above, we are using a Cartesian scheme for the distribution
of matrices. The square cyclic distribution is used as particularly suitable for matrix
computations such as LU decomposition(BISSELING, 2004). For them, it is natural to
organize the processes by two-dimensional identifiers P(s, t) with 0≤ s < M and 0≤ t <
N, where the number of processes p = M.N. Figure 5.17 depicts a 6×6 matrix mapped
to 6 processes, where M = 2 and N = 3. Assuming that M and N are multiple n, each
process will store nc (number of cells) cells in memory (see Equation 5.1).
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Figure 5.17: Cartesian distribution of a 6×6 (n×n) matrix over 2×3 (M×N) processors.
The label "st" in the cell denotes its owner, process P(s, t)

nc =
n
M

.
n
N

(5.1)

A parallel algorithm uses data parallelism for computations and the need-to-know
principle to design the communication phase of each superstep. Following the concepts of
BSP, all communication performed during a superstep will be completed when finishing it
and the data will be available at the beginning of the next superstep(BONORDEN, 2007).
Concerning this, we modeled our algorithm using three kinds of supersteps. They are
explained in Table 5.9. The element ak,k is passed to the process that computes ai,k in the
first kind of superstep.

The computation of ai,k is expressed in the beginning of the second superstep. This
superstep is also responsible for sending the elements ai,k and ak, j to ai, j. First of all, we
pass the element ai,k, k +1≤ i < n, to the N−1 processes that execute on the respective
row i. This kind of superstep also comprises the passing of ak, j, k + 1 ≤ j < n, to M−
1 processes which execute on the respective column j. The superstep 3 considers the
computation of ai, j, the increase of k (next stage of the algorithm) and the transmission
of ak,k to ai,k elements (k + 1 ≤ i < n). The BSP application will execute one superstep
of type 1 and will follow with the interleaving of supersteps 2 and 3. Concerning this, a
n×n matrix will trigger 2n+1 supersteps in our LU modeling.

We modeled the Cartesian distribution M×N in the following manner: (i) 5× 5 for
25 processes; (ii) 10×5 for 50 processes; (iii) 10×10 for 100 processes and; (iv) 20×10
for 200 processes. In addition, we are using square matrices with order 500, 1000, 2000
and 5000. Lastly, initial tests were executed using 4, 3 and 0.5 for α , ω and D. Similarly
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Table 5.9: Modeling three types of supersteps
Type of superstep Steps and explanation

First
Step 1.1 : k = 0
Step 1.2 - Pass the element ak,k to cells which will compute ai,k
(k +1≤ i < n)

Second

Step 2.1 : Computation of ai,k (k + 1 ≤ i < n) by cells which own
them
Step 2.2 : For each i (k +1≤ i < n), pass the element ai,k to other
ai, j elements in the same line (k +1≤ j < n)
Step 2.3 : For each j (k+1≤ j < n), pass the element ak, j to other
ai, j elements in the same column (k +1≤ i < n)

Third

Step 3.1 : For each i and j (k + 1 ≤ i, j < n), calculate ai, j as
ai, j +ai,k.ak, j
Step 3.2 : k = k +1
Step 3.3 : Pass the element ak,k to cells which will compute ai,k
(k +1≤ i < n)

to Smith-Watermann application, the tests with BSP-based LU application used heuristic
one to choose the candidates for migration with x equal to 80%.

5.6.2 Results

Table 5.10 presents the results when evaluating the 500×500, 1000×1000 and 2000×
2000 matrices. The tests with the first matrix size show the worst results. Firstly, the
higher the number of processes, the worse the performance, as we can observe in sce-
nario i. The overhead related to communication and synchronization as well as the short
computing grain are the reasons for the observed times. Secondly, MigBSP indicated
that all migration attempts were inviable due to low computing and communication loads
when compared to migration costs. Considering this, both scenarios ii and iii have the
same time results. Even when there were candidates for migration with 25 processes,
their transferring did not take place. α increased at each of the 8 rescheduling calls with
this amount of processes. The execution when changing the number of processes reached
negative values of PM, since Computation metric and nc are reduced when increasing the
number of processes (see Equation 5.1). Contrary to the execution with 25 processes, the
system starts unbalanced when using 100 processes. Thus, α keeps the same value at
the first three rescheduling calls (at supersteps 4, 8 and 12). MigBSP’s adaptivity idea is
useful in this situation, because D is enlarged after ω calls without migration. This proce-
dure causes an increase in the period of processes rescheduling, minimizing the model’s
interference on application execution. Thus, 11 calls for migration were done with 100
processes and a 500×500 matrix.

The first rescheduling call does not cause migrations when testing a 1000×1000 ma-
trix with 25 processes. After this call at superstep 4, the next one at superstep 11 informs
the migration of 5 processes from cluster Corisco. They were all transferred to cluster
Aquario, which has the highest computation power. MigBSP does not point migrations in
the future calls. α always doubles its value at each rescheduling call since the processes
are balanced after the mentioned relocation. MigBSP obtained a gain of 12% of perfor-
mance with this configuration when comparing scenarios i and iii. Maintaining this size of
matrix and 50 processes, 6 processes from Frontal were migrated to Aquario at superstep
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Table 5.10: Results when executing LU application linked to MigBSP middleware (time
in seconds)

Processes
500×500 matrix 1000×1000 matrix 2000×2000 matrix

Scen. Scen. Scen. Scen. Scen. Scen. Scen. Scen. Scen.
i ii iii i ii iii i ii iii

25 1.68 2.42 2.42 11.65 13.13 10.24 90.11 91.26 76.20
50 2.59 3.54 3.34 10.10 11.18 9.63 60.23 61.98 54.18

100 6.70 7.81 7.65 15.22 16.21 16.21 48.79 50.25 46.87
200 13.23 14.89 14.89 28.21 30.46 30.46 74.14 76.97 76.97

9. Although these migrations are profitable, they do not provide stability to the system
and the processes remain unbalanced among the resources. Migrations are inviable in
the next 3 calls at supersteps 15, 21 and 27. MigBSP launches our second adaptation on
rescheduling frequency in order to alleviate its impact and α begins to grow until the end
of the application. The tests with 50 processes obtained gains of just 5% with processes
migration. This is explained by the fact that nc is decreased in this configuration when
compared to the one with 25 processes. In addition, as the LU execution continues, the
computation required at each superstep is reduced as well. Thus, the more advanced the
execution, the lesser the gain with migrations. This happens since the communication cost
from either cluster Labtec or Corisco with Aquario is higher than the cost observed with
cluster Frontal. The tests with 100 and 200 processes do not present migrations because
the forces that act in favor of migration (Computation and Communication metrics) are
weaker than the Memory metric in all rescheduling calls.

The execution with a 2000× 2000 matrix presents good results because the comput-
ing grain is increased. We observed a gain of 15% with processes relocation when testing
25 processes. All processes from cluster Corisco were migrated to Aquario in the first
rescheduling call (at superstep 4). Thus, the application can take profit from this reloca-
tion in its beginning, when it demands larger computing cycles. The time for concluding
LU application is reduced when passing from 25 to 50 processes as we can see in scenario
i. However, the use of MigBSP resulted in lower gains. Scenario i presented 60.23s while
scenario iii achieved 56.18s (9% of profit). When considering 50 processes, 6 processes
were transferred from cluster Frontal to Aquario at superstep 4. The next call occurs at
superstep 9, where 16 processes from cluster Corisco were elected as migration candi-
dates to Aquario. Still, MigBSP indicated the migration of only 14 processes, since there
were only 14 processors unoccupied in the target cluster. The execution of 100 processes
presented the same migration behavior when 50 were tested. However, the performance
gain was reduced to 4% with 100 processes given the reduction of computation load per
process.

We observed that the higher the matrix order, the greater the gain with processes mi-
gration. Considering this, we evaluated a 5000×5000 matrix as can be seen in the Figure
5.18. MigBSP obtained performance improvements in all tests with scenario iii. The sim-
ple movement of all process from cluster Corisco to Aquario represented a gain of 19%
when executing 25 processes. The tests with 50 processes obtained 852.31s and 723.64s
for scenario i and iii, respectively. Scenario iii for this matrix size achieved the same mi-
gration behavior of the tests with the 2000×2000 matrix. However, the increase of matrix
order represented a gain of 15% (order 5000) instead of 10% (order 2000). This analysis
helps us to verify our previous hypothesis about performance gains when enlarging the
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matrix. Finally, the tests with 200 processes indicated the migration of 6 processes (p195
up to p200) from cluster Corisco to Aquario at superstep 4. The nodes that belong to
Corisco just execute one BSP process and nodes from Aquario begin to treat 2 processes
with this transferring. The remaining rescheduling calls informs the processes that are
executing on Labtec as those with the higher values of PM. However, their migration are
not profitable. The final execution with 200 processes achieved 460.85s and 450.33s for
scenarios i and iii, respectively.

5.7 Summary

This chapter presented our validation for MigBSP through using three BSP appli-
cations. Both applications and MigBSP scheduler were written with Simgrid simula-
tor. This simulator was chosen since it turns the processes management easier and offers
multi-cluster platforms creation. In addition, Simgrid is an active project, both in terms
of research and development. Our evaluation encompasses the analysis of three differ-
ent scenarios:(i) Application execution simply; (ii) Application execution with MigBSP
without applying migrations and; (iii) Application linked to MigBSP scheduler when al-
lowing migrations. We assembled an infrastructure with five Sets, where each node has
a single processor. These Sets represent an adaptation of a real infrastructure with five
clusters located at Federal University of Rio Grande do Sul, Brazil. Labtec, Corisco and
Frontal clusters have their nodes linked by Fast Ethernet, while ICE and Aquario are clus-
ters with a Gigabit connection. The migration costs were based on real executions with
AMPI (HUANG et al., 2006).

Lattice-Boltzmann application evaluation showed us that when we have a short num-
ber of supersteps, we do not have time to outperform the employed costs in eventual
migrations. This situation was observed when testing 10 and 50 supersteps. On the other
hand, the bigger the number of supersteps the greater the gain with processes migration as
we can verify with 2000 supersteps. After executing the migrations with 200 processes,
the system remains unbalanced and after crossing 3 (value of tested ω) we enlarge D.
This procedure represents MigBSP’s second adaptation, where we try to increase α even
if the system is unstable in order to decrease MigBSP overhead on application execution.
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Initially, MigBSP was developed to deal with processes that present a regular behav-
ior. However, it allows to fill parameters that turn possible to adjust its functioning to
treat irregularity in an efficient manner. In this context, we tested MigBSP over dynamic
programming-based Smith-Waterman application, which the computing density increases
when increasing the crossed supersteps as well. While each anti-diagonal of the matrix
means a supersteps, we modeled each matrix row to be computed by a specific process.
The main conclusions on this application were: (i) the option to migrate a percentage of
processes instead just one was pertinent, since we can relocate all processes from a slower
cluster to a faster one; (ii) a simple way to obtain performance is designing α in order to
trigger the rescheduling call close to the end of the application, since MigBSP tends to
select those processes that have more computational load to migrate; (iii) the greater is
the load computational density of the last supersteps, the better will be the results with the
migration of the last processes and; (iv) the application behavior implies that the proces-
sors can present variations on their load during the crossing of supersteps, changing their
viability to receive processes.

Our last application comprises a BSP-version of the widely used LU decomposition.
As observed on past tests, MigBSP showed again a low overhead when comparing scenar-
ios i and ii of this application. For instance, it imposes 3% of cost with 50 processes and
a 2000× 2000 matrix. This feature is due to the simplicity of the PM (Potential of Mi-
gration) calculus as well as to the MigBSP adaptations regarding rescheduling frequency.
PM evaluation considers the hierarchy organization with Sets and processes, not involv-
ing all processes-resources tests. MigBSP adaptations work to turn the model viable,
especially when migrations cause performance gains but the system remains unbalanced.
This occurred with a 1000× 1000 matrix and 50 processes. The analysis of scenario iii
showed us that the larger the matrix size, the bigger the gain with migrations in the first
supersteps. Thus, the remaining supersteps may happen with a more optimized organiza-
tion. The tests with a 5000×5000 matrix represent the best rate scenario iii

scenario i in our results.
Gains of 19% and 15% were obtained when executing 25 and 50 processes with migra-
tions to the fastest cluster. Moreover, contrary to other situations, this matrix size enables
migrations when using 200 processes due to its larger computing grain.

Considering the spectrum of these three applications, we can take the following con-
clusions in a nutshell: (i) the larger the computing grain, the better the gain with processes
migration; (ii) MigBSP does not indicate the migration of those processes that have high
migration costs when compared to computation and communication loads; (iii) MigBSP
presented a low overhead on application execution when migrations are not applied; (v)
our tests prioritizes migrations to cluster Aquario since it is the fastest one among consid-
ered clusters and tested applications are CPU-bound and; (vi) MigBSP does not work with
previous knowledge about application. Thus, it indicates processes migration even when
the application is close to finish. In this situation, migration brings an overhead since the
remaining time for application conclusion is too short to amortize the considered costs.
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6 CONCLUSION

BSP applications are composed by a set of processes that execute supersteps. Each
superstep comprises both phases of computation and communication, ending with a bar-
rier synchronization among the processes. This model does not specify how the processes
must be mapped to the resources, leaving this issue to the user/developer. The time of
each superstep is determined by the slowest process, due to the use of a synchronization
barrier. Consequently, the processes-resources mapping is an important topic to achieve
good performance when running BSP-based applications. Especially, this scheduling is
yet more important on heterogeneous and dynamic environments like computational grids
and multi-clusters.

Historically, the scheduling optimization was achieved by hand-tuning the software
system to fit its needs on the computing environment. Although high optimization can
be achieved, this process can be tedious and needs considerable expertise. Besides this,
the hand-tuning mechanism was not portable across different computing environments
and each different application required a new effort for processes scheduling. Despite the
initial scheduling being strongly relevant to get better performance, the initial processes-
processors mapping may not remain efficient during time. Thus, a possibility comprises
the redistribution of processes during runtime through load rebalancing and processes mi-
gration. In this context, some initiatives use explicit migration calls that must be placed in
application code(BHANDARKAR; BRUNNER; KALE, 2000; GALINDO; ALMEIDA;
BADÍA-CONTELLES, 2008). In this technique the developer must still know details
about both the parallel machine architecture and the application code. A different ap-
proach for load rebalancing happens at middleware level. With this, we can attempt
to gain performance in an effortless way. Commonly, this approach does not require
changes in the application code nor previous knowledge about the system. Therefore,
the developer can focus his/her attention in the application correctness without worrying
about migration decisions and implementation. Processes (re)allocation is hidden from
the user, which will just perceive the changes in the execution time of the application.

This thesis presented a model for processes rescheduling called MigBSP. Its idea is
to offer load (BSP processes) rebalancing among the resources in order to reduce the
application’s time. MigBSP acts at middleware level, without the need of any additional
code in the application as well as without previous knowledge about both the application
behavior and parallel machine organization. Our model employs self-adaptive strategies
for processes rescheduling launching, examining the characteristics of the processes and
choosing the software parameters needed to achieve high efficiency and low intrusion on
application execution. Furthermore, MigBSP work with the idea of hierarchy with Sets
and Set Managers abstractions. They are employed in order to reduce the spectrum of
rescheduling tests when attempting for migration. Each Set can be understood as a site



126

like a cluster, local network or supercomputer. Each one presents a Set Managers which
controls the data about BSP processes under its jurisdiction. The scheduling mechanism
is located at each BSP process (inside communication and barrier functions) and at every
Set Manager.

The adjustment provided by MigBSP occurs through the migration of those processes
which have long computation time, perform several communication actions with other
processes who belong to a same Set and present low migration costs. We opted to work
with a global knowledge approach to choose the candidate processes for migration. Since
the organization of BSP applications present barriers at each superstep natively, we use
them to collect information from all process. With this, we don’t have pay additional
costs of synchronization. After chosen the candidates, each one is evaluate for migrating
or not. This procedure involves the analysis of two times. The former considers that the
tested process remains in the current resource. The second time includes the migration
costs and represents an estimative of process’ execution on the target processor.

6.1 Main Contributions

MigBSP offers a new approach for treating with processes migration on BSP applica-
tions. Under the scope of BSP model, MigBSP’s contribution are threefold:

(i) Combination of three metrics - Computation, Communication and Memory - to eval-
uate the Potential of Migration (PM) of each BSP process at every rescheduling call;

(ii) Efficient adaptations that act on the periodicity of calls for processes rescheduling;

(iii) Employment of both Computation and Communication Patterns to analyze the reg-
ularity (stability) of each process on the instructions that it executes as well as on
the communicated bytes at superstep.

The combination of the employed metrics demonstrated a pertinent strategy for deci-
sion making when choosing the candidate processes for migration. We analyzed metrics
that act in favor of migration, representing the activity of the processes, and a metric that
works in an opposite direction, meaning an idea of migration costs. While Computation
and Communication metrics enter in the model in the former case, the Memory metric
enters in the last case to observe migrations viability. These metrics are used to compute
our decision function called Potential of Migration (PM). PM of a process i to a target
Set j is reached according to Equation 6.1.

PM(i, j) = Comp(i, j)+Comm(i, j)−Mem(i, j) (6.1)

The higher the value of PM(i, j), the higher the odds to migrate the involved process
to the target Set. PM’s concept is analogous to the idea of force from physics. A friction
force (Memory metric) acts over a body (BSP processes) as a counterforce to any other
force attracting the body. Any attracting force (Computation and Communication met-
rics) must exceed the friction in magnitude to actually move the body. In addition, other
scientific idea behind PM calculus is the use of processes and Sets for testing migrations,
not involving all possible processes-processors tests at the rescheduling moment. We em-
ployed this heuristic to obtain a satisfactory scheduling, both in terms of performance
(makespan) and consumed time (efficiency). The use of a heuristic allows MigBSP to
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achieve low overhead on application execution, while takes profitable decisions on BSP
processes rescheduling BSP processes as revealed by Chapter 5.

MigBSP performs the call for migration testing after the barrier synchronization, be-
tween two supersteps. However, we agree that this call at each end of superstep is an
onerous task. We based our assertion on the fact that migrations may not occur at each
superstep and this configuration would lead to additional costs simply. Consequently, we
developed two adaptations that manage an sliding interval between migrations attempts.
This interval is controlled by a variable called α . The adaptations’ ideas are: (i) to post-
pone the rescheduling call if the system is stable (processes are balanced) or to turn it
more frequent, otherwise; (ii) to delay this call if a pattern without migrations in ω calls
is observed. Especially, this last adaptivity is suitable on situations in which profitable
migrations take place but the processes remain unbalanced among the resources. In this
situation, we enlarge α even if MigBSP detects unbalancing in the system. Thus, MigBSP
can decrease its impact on application execution after performing migrations.

We establish that processes’ regularity is important for us, because we expect that
migrated processes perform a similar behavior on the destination place. Thus, we use
Computation and Communication patterns in our equations to measure the regularity of
the processes. The idea here is to observe the migrations behavior on dynamic applica-
tions. A process is regular on its computation phase if it performs an approximate number
of instructions at each superstep. While the Computation pattern - Pcomp(i) - just con-
siders a specific process i, Communication pattern - Pcomm(i, j)- involves a process and a
target Set. The regularity on communication phase treats the number of communicated
bytes at each superstep. Both patterns are close to 1 if the process can be considered reg-
ular and close to 0 on the contrary. Before starting the BSP application, MigBSP assumes
that all processes are stable. Still, the value of their patterns will decrease if this initial
assumption is proved wrong.

6.2 Results Remarks

We studied and implemented the functioning of three applications in order to validate
MigBSP. Both MigBSP and applications were tested through simulation with the Simgrid
Simulator. We evaluated the following BSP applications: (i) Lattice-Boltzmann method
that models fluid dynamics; (ii) Dynamic programming-based Smith-Waterman method
used in DNA sequencing operations and; (iii) LU decomposition method which is em-
ployed to make equations solving easier. Firstly, we concluded that MigBSP presented a
low overhead on application execution. The higher the number of supersteps the lower
the relative overhead imposed by MigBSP. Taking into consideration all spectrum of eval-
uations, the mean overhead for our model is lower than 8%. For instance, expenses like
2.8%, 2.4% and 6.5% were found when testing 100 processes on the first, second and third
BSP applications, respectively. These percentages were brought comparing the scenarios
where the application was executed simply and that where it was executed with MigBSP
without allowing migrations. These rates were reached due to both model’s adaptations
on rescheduling frequency and fast calculation of PM.

Other relevant point treats the executions where MigBSP does not point out migra-
tions. MigBSP does not indicate the migration of those processes that have high migra-
tion costs when compared to computation and communication loads. For instance, the
execution of Lattice-Boltzmann application with 10 processes does not produce any pro-
cesses relocation. In this case, the processes run together in only one cluster and their
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transferring to the fastest cluster are inviable. Migrations did not take place when using
200 processes and matrices order of 500, 1000 and 2000 on LU application too. In this
case, the main reason is the short computing grain when managing matrices sizes like
informed. Considering this, MigBSP adds an overhead on normal application execution
inevitably.

Lastly, we must mention the situations where MigBSP represents a good option to
get better performance. We tested MigBSP over an heterogeneous multi-cluster architec-
ture. Thus, we observed that our model took decisions to migrate processes to the fastest
cluster. The earlier the processes reassignment the greater the migration gains since the
processes can execute in a more optimized fashion. For example, 14.7% and 11.6% of
gains in time were verified when running the first application with 25 processes. The
former percentage is related to execution with α equal to 4, which outperforms α 16 (the
other rate) because the migrations were done earlier with lower value of α in this situa-
tion. Moreover, we analyzed that the larger the computing grain the larger the gain with
processes migrations to faster resources on CPU-bound applications. The execution of
LU application with MigBSP over a 5000× 5000 matrix produces a reduction on appli-
cation time up to 19%. The gain is limited to 15% when changing the matrix order to
2000. Furthermore, contrary to other situations in this application, the magnitude of 5000
enables migrations with performance profits when using 200 processes due to the larger
computing load of the processes.

6.3 Future Works

The continuation of this thesis consists of works in the following directions:

(i) Use of a new heuristic to choose the processes that will be migrated;

(ii) Analysis of Computation and Communication patterns that act over a collection of
supersteps instead of every superstep;

(iii) Evaluation of MigBSP with different observations of migration costs;

(iv) Test of MigBSP when changing the availability of the resources along the applica-
tion execution.

PM(i, j) of a candidate process i is associated to a Set j. Currently, the manager of this
Set will select the most suitable processor under its control to receive the process i. Other
possible idea could be apply backtracking algorithm in order to evaluate which migrations
are really viable. The algorithm assembles a tree with q+1 levels, where q is the quantity
of entries in the list of PMs. Formerly, we create an initial node (root) that represents the
current scheduling. After that, we measure the performance of this node using the fitness
function. This function will show the estimated time to execute the application given the
parameters captured in runtime. From the root node we create r other nodes, where r is
the number of processors in Set j. This Set is indicated by the first PM in the list of PMs.
For each new node, we also calculate the fitness function and compared it with the rate
of the father node. If the result of the child node is higher than the result of its father,
this child node is eliminated from the tree automatically. The key idea is to abandon each
partial candidate as soon as we can determine that it cannot be seen as a efficient solution.
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For every following level l (l ≥ 2), we create r new nodes for each father node, where
r is the number of processors in the Set j indicated by (l−1)th PM(i, j) in the list. Simi-
larly, each new node is evaluated using the fitness function and it is eliminated according
to rule described above. The Construction of the tree finishes when either there are not
more PMs in the list or when all nodes in the last level were eliminated. Each node of
the tree represents a new scheduling and comprises the modification of just one cell in
scheduling matrix of its father. Concerning this, we have a space of pertinent schedulings
that can occur in the system. The processes that will migrated are found in the following
manner. The node with the lowest evaluation is found and a path is created from it up to
the root node. Each node in this path corresponds a processor that will receive the process
i marked in the PM(i, j) of the specific node level.

The second activity includes the observation of a regular behavior in application exe-
cution taking into account more than one superstep. For example, a process may execute
100, 150 and 200 instructions at the former three supersteps of the application. The fol-
lowing three superstep can repeat these magnitudes characterizing a regular behavior. The
focus here is to find out a possible interval of supersteps where a regular behavior happens.
Henceforth, MigBSP can increase the possibilities to migrate the considered process since
it has higher odds to follow its current behavior on the target resource. The analysis of this
branch of work will begin with the studies from Tanbeer, Ahmed and Jeong (TANBEER;
AHMED; JEONG, 2009).

Our third direction for future work consists in evaluating MigBSP with different ob-
servations of migration costs. In other words, the idea here is to employ a different way
for getting MEM(i, j) metric. Our tests completed this metric based on executions with
AMPI communication library. Therefore, we agree that the presented results showed
MigBSP’s behavior for this specific situation. Considering this, our idea is to fill out
Memory metric field with migrations costs data from other migration libraries/mecha-
nisms. In this way, we will analyze the previous work from Neves et al. (NEVES et al.,
2007) which comprises an evaluation of processes migration using virtual machines. Fi-
nally, we know that large-scale grids present resources availability problems. Thus, we
intend to evaluate MigBSP when modifying this issue. Simgrid offers availability treat-
ment through files that describe the resources’ state along the time.
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