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ABSTRACT: Extremely kaolinitic soils of Tertiary age elevations on the Brazilian east 
coast present a wide range of texture, which is recognized as one of the main factors 
controlling the soil organic matter contents. This study aimed to investigate the organic C 
storage of different compartments of kaolinitic soils. The studied soils had a wide particle 
size gradient, were under native forest vegetation, and located on Brazil’s eastern coast 
(Coruripe - CF, Umbaúba - UF, Nova Viçosa - VF, Sooretama - SF, and Itaboraí - IF). The 
forest cover of all sites allows to record soil properties reference values for a land use 
condition closer to that of the original sites. We determined soil organic C (SOC) content 
and SOC stock up to a depth of 1 m, C of topsoil (0.00-0.08 m), aggregate size classes, 
and dissolved organic carbon (DOC) of the soil surface horizon (A horizon). Soil C stocks 
at the 0.00-1.00 m depth ranged from 105 to 137 Mg ha-1 and were not regulated by soil 
texture. The SF soils stored more C up to a depth of 1 m, while lower mean C stocks were 
found for UF and CF soils. Soil texture was not a reliable index to predict the C contents 
of the aggregate size classes of the 0.00-0.08 m layer (within each class and in total, 
using equivalent soil mass of the classes). The most clayey soils had a high percentage 
of 2-4 mm aggregates and, as a consequence, high aggregate stability indices, which are 
positively correlated to silt plus clay contents of the soil surface horizon. The proportion 
of DOC in relation to the total organic C of the surface soil horizon was high for IF and 
UF areas, which are the less preserved forest fragments among all studied fragments.

Keywords: dissolved organic C, aggregate size distribution, Coastal Tablelands, organic 
matter-mineral complexes.
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INTRODUCTION
Soil is the major carbon sink in the world, and the quantification of soil C pools is important 
in terms of C management, flux, forms, bioavailability, and balance under different terrestrial 
ecosystems (Debasish-Saha et al., 2014). Appropriate land use and management help 
to mitigate greenhouse gases and global warming (Lal, 2004) as well as influence of soil 
organic C (SOC) dynamics and, obviously, the sustainability of agricultural lands (Devine et 
al., 2014). In Brazil, weathered soils are characterized by a natural low fertility, and most 
nutrient reservoirs and CEC mainly rely on organic matter stored in the soils (Carvalho et 
al., 2014). Losses of soil organic matter (SOM) with cultivation are directly linked to the 
rapid degradation of soil biological, chemical, and physical properties (Madari et al., 2005). 
Both in natural and cultivated soils, SOM pools and stocks are important indices to infer if 
the soils can sustain high crop yields and nutrient retention over time.

The SOC contents, besides being influenced by land use and management, are highly 
regulated by particle size variations, mainly by the clay fraction and associated minerals. 
The clay + silt content and the mineralogy influence C stabilization via physical and 
chemical mechanisms (Krull et al., 2001; Plante et al., 2006), affecting the type of 
linkage mechanisms between mineral surfaces and organic matter. The content of clay 
+ silt is also associated with increased soil aggregation, which influences the physical 
protection of organic matter, decreasing the accessibility of microorganisms and their 
exoenzymes (Plante et al., 2006).

Areas with extremely kaolinitic soils are strategic and quantitatively important on Brazil’s 
eastern coast. They are associated with Tertiary age elevations, mostly formed by Barreiras 
Formation sediments, and are also called “Coastal Tablelands”. They are located close 
to the coast and are therefore near highly populated urban areas. In most cases, they 
are subject to moisture regimes with sufficient rainfall quantity and distribution, allowing 
competitive agriculture in areas originally under forest vegetation. Considering only their 
less dissected relief landscapes, there are approximately 64,235 km2 covered by Coastal 
Tableland soils, with great predominance of Argissolos Amarelos (Ustults) and, to a lesser 
extent, Latossolos Amarelos (Ustoxs) (Silva et al., 1993; Jacomine, 2001). In contrast to 
the high clay fraction mineralogy homogeneity, the texture variations of local soils are 
erratic and extremely pronounced (Zangrande and Rezende, 1989; Gomes et al., 2012), 
and these variations represent the most intrinsic difference in these soils, influencing 
organic matter dynamics. Many studies in these soils have approached aspects of organic 
carbon dynamics in different soil pools (Silva et al., 2006; Silva et al., 2007; Costa et 
al., 2009; Fontana et al., 2010), but without considering the influence on C pools of the 
wide range of their soil textures within their experimental designs.

The aim of this study was to investigate the organic C storage of different compartments 
of extremely kaolinitic soils. The soils have a wide grain size gradient, are under forest 
native vegetation, and located on Brazil’s eastern coast. The single land use condition, 
forest cover, allows to record property reference values for a land use condition closer 
to the original sites and to understand if the wide particle size gradient influences the 
extremely kaolinitic soil C dynamics. 

MATERIALS AND METHODS

Study sites

The sampled areas are located in Coruripe (CF), Alagoas State; Umbaúba (UF), Sergipe 
State; Nova Viçosa (VF), Bahia State; Sooretama (SF), Espírito Santo State; and Itaboraí 
(IF), Rio de Janeiro State (Figure 1), all close to the Brazilian east coast, between the 
parallels 10° S and 22° S. All areas are under tropical rainforest, but the fragments have 
different degrees of conservation (Table 1). 
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Four areas were selected in the Barreiras Formation landscapes and one area in the Macacu 
Formation landscape. Both formations are of Tertiary age, and the soil clay fractions are 
dominated by kaolinite minerals. All soils have cohesive character, varying in depth and 
the degree of expression, mainly as a function of the texture. The CF and UF soils have a 
subsurface fragipan horizon and are moderately well drained, taking into consideration 
that the presence of cemented horizons in Tertiary soils are more common in dry summer 
areas (Gomes et al., 2017), such as CF and UF (Table 1). The morphological differences 
in depth do not influence the soil surface layer, all having a moderate A horizon and 
lacking redoximorphic features. Differences in soil moisture regime may occur, although 
all areas are located in a wet tropical climate. These differences are influenced by the 
dry season (summer or winter, Table 1) and, to a lesser extent, by the presence of 
depth-cemented horizons, soil texture, and the cohesive layer depth, which in turn is 
significantly influenced by soil texture. Regarding the Fe oxide contents (determined by 
sulfuric acid digestion), although all soils have low contents, there is a narrow gradient 
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Figure 1. Map of Brazil with the states boundaries (a); in the map are highlighted the location of 
the study areas: C - Coruripe (Alagoas State); U - Umbaúba (Sergipe State); V - Nova Viçosa (Bahia 
State); S - Sooretama (Espírito Santo State); and I - Itaboraí (Rio de Janeiro State) (b).

Table 1. Characteristics of forest sites

Area Code
Soil class

Texture(2) Slope Chronology/Lithology Annual dry season
Conservation 

of forest 
fragments(3)

Drainage Fe 
oxides(4)

SiBCS(1) Soil 
Taxonomy

% %

Coruripe CF PAdx-f Ustult sandy/fine 
loamy 1-2 Tertiary/Barreiras summer moderate to 

good
moderately 
well drained 3

Umbaúba UF PAdx-f Ustult coarse loamy/
fine loamy 1 Tertiary/Barreiras summer moderate moderately 

well drained 5

Nova Viçosa VF LVex-t Udox clayey (fine/
very fine) 1 Tertiary/Barreiras (with influence 

of Proterozoic materials)
winter (driest month 

with rainfall >60 mm) moderate well drained 8

Sooretama SF PAdx-t Ustult sandy/fine 
loamy 1-2 Tertiary/Barreiras winter good well drained 4

Itaboraí IF LAdx-t Ustox clayey (fine/
very fine) 22-25 Tertiary/Macacu winter tolerable well drained 7

(1) PA = Argissolo Amarelo; LV = Latossolo Vermelho; LA = Latossolo Amarelo; dx =Distrocoeso; ex = Eutrocoeso; f = fragipânico; t = típico. (2) Mean 
of three profiles. (3) Classification based on in loco observations and on the factors described in Machado et al. (2012), Magnago et al. (2014), and 
Uhlmann et al. (2014). (4) Fe oxides in the clay fraction, mean of three samples (one per pedon) of the B diagnostic horizon - extraction performed 
via sulfuric acid digestion.
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that starts at a 3 % Fe oxide content in CF soils and reaches a 8 % Fe oxide content in VF 
soils (Table 1). The VF soils are influenced by granitic gneiss of the Precambrian and, as a 
consequence, they have a higher Fe oxide contents, are redder, and present a greater 
supply of nutrients. In all areas, we selected sampling sites under forest. Three replicate 
sites were sampled for each area, resulting in a total of 15 sampled sites. Soils were 
sampled in profiles up to 1 m depth at each site. The chemical and physical properties 
of the A and B horizons of these soil profiles are shown in table 2.

Sampling and soil analysis

For the C stock calculation, samples of the genetic horizons of each soil profile were 
collected. In each profile, soil was sampled up to a depth of 1 m. On average, each 
sampling site presented between three and six genetic horizons (three horizons in two 
profiles, four horizons in eleven profiles, five horizons in one profile, and six horizons 
in one profile). The samples were air-dried (air-dried fine earth samples - AFE) and 
passed through a 2-mm sieve. In the same genetic horizons, samples were also 
collected using a volumetric ring with a diameter of 4.175 cm and a height of 3.225 
cm. These samples were oven-dried (105-110 °C) and their masses determined to 
calculate bulk density (BD). Soil samples for the aggregate analysis were collected at 
the 0.00-0.08 m layer. These samples were collected in cubes of 0.08-m edge length, 
which were carefully removed with spatulas from the soil profile walls and packed into 
cardboard boxes. The cardboard boxes with the samples were conditioned in plastic 
bags and stored to preserve soil moisture and the structure of the sample. Until 
analysis, the samples were air-dried for 48 h in the shade to avoid sharp variations 
in the soil moisture content. Soil aliquots (30 g) were separated into aggregate size 
classes (fractions) by dry sieving, adapted from the wet sieving method proposed by 
Haynes (2000). We used a mechanical shaker equipped with five sieves (2.0, 1.0, 0.5, 
0.025, 0.105, and 0.053 mm apertures), in which the samples were shaken for 15 min 
at 2.5 cycles per minute (3.5 cm vertical amplitude).

Thus, the weights of four macroaggregate size classes (4-2, 2-1, 1-0.5, and 0.5-0.25 mm) 
and two microaggregate size classes (0.250-0.105 and 0.105-0.053 mm) were determined.

In addition to the weight of the aggregate size classes, parameters expressing the 
aggregate size distribution were determined as follows, in equations 1 and 2:

MWD (mean weight-diameter of aggregates) = ∑i=1 xi wi
n 	 Eq. 1

MGD (mean geometric-diameter of aggregates) = exp
∑i=1 wi logxi

n

∑i=1 wi
n 	 Eq. 2

in which wi is the weight fraction in each aggregate class (g) and xi is the mean diameter 
of each aggregate class (mm), following Kemper and Rosenau (1986)

Table 2. Chemical and physical properties of the A horizon soil samples (n =3)
Area(1) P Mehlich Ca2+ Mg2+ K+ Al3+ H+Al BD Sand Silt Clay

mg dm-3 cmolc dm-3 Mg m-3 dag kg-1

CF 2.20 2.27 0.93 0.09 0.23 2.84 1.15 89 2 9

UF 1.23 1.27 0.63 0.09 0.27 3.09 1.32 81 4 15

VF 5.30 8.30 1.50 0.35 0.00 2.33 1.09 51 8 41

SF 1.32 0.60 0.30 0.04 0.70 5.66 1.24 90 1 9

IF 2.37 0.20 0.20 0.04 2.63 10.50 1.32 54 8 38
(1) All under native forest: CF = Coruripe; UF = Umbaúba; VF = Nova Viçosa; SF = Sooretama; IF = Itaboraí. P was extracted by Mehlich-1 and K+ by HCl 
extraction (Mehlich, 1953); Ca2+, Mg2+, and Al3+ by KCl extraction (McLean et al., 1958); H+Al by calcium acetate extraction at pH 7 (Shaw, 1959); BD 
(bulk density) by the mass:volume ratio in volumetric ring soil samples; and particle size distribution by the pipette method (Gee and Bauder, 1986).
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The DOC was determined in AFE samples of the A horizon of each Pedon. A mixture 
of 10 g of fine earth and 20 mL of distilled water was added to the 35-mL tubes; 
the water-soil mixture was stirred for 1 hour at 0.73 g. In sequence, samples were 
centrifuged (15 min at 1,814 g) to obtain extracts for C analysis (Scaglia and Adani, 
2009). Total organic C (TOC) of the genetic horizon samples, for the different aggregate 
size classes, was measured via soil combustion at a high-temperature combustion 
chamber (950 °C), using a NDRI detector of the Elemental Analyzer (Vario TOC 
Cube model).

The C stock was calculated up to a depth of 1 m for each genetic horizon of each pedon, 
according to Veldkamp (1994), in equation 3:

C stock (Mg ha-1) = TOC (g 100 g-1) × BD (g cm-3) × soil depth (cm)	 Eq. 3

Soil thickness was taken into account when the soil C stocks in the profiles were 
compared, considering the following sampling layers: 0.00-0.17, 0.17-0.42, and 
0.42-1.00 m. These values consider the average depth of the transition between the 
different genetic horizons of the total soils sampled (transitions of AB to BA horizons 
and BA to B horizons).

The TOC in the aggregate size classes (g kg-1) was calculated considering the aggregate 
soil mass of each class, on an equivalent soil mass basis, in equation 4:

TOCag = 
(∑i=1 wi Ci) x 1000n

∑i=1 wi
n 	 Eq. 4

in which wi = weight of aggregates (g) in a size class and Ci = TOC of aggregates 
(g 100 g-1) in a size class.

The C proportion of each aggregate size class was also calculated on equivalent soil 
mass basis, in equation 5; the sum of all classes in %C is equal to 100 %:

%Cag = 
(wi Ci) x 100

∑i=1 wi Ci
n 	 Eq. 5

Statistical analyses

Analysis of variance was performed for several soil properties of genetic horizon samples 
up to a depth of 1 m and at the 0.00-0.08-m soil layer (distribution of aggregate size 
classes, MWD, MGD, TOCag, aggregate size classes C content, and aggregate size classes 
% C). Significant differences between means were assessed by Duncan’s test at p<0.05. 
Pearson’s correlation analysis was performed to verify the association degree of the 
measured variables.

In the discussion of C properties of the aggregate size classes, 13 properties were analyzed 
using multivariate ordination non-metric multidimensional scaling (NMS) with Sorensen 
distances. Prior to analyses, the data were normalized by totals within each variable to 
account for the differences in the variable units. Ordination was performed using the 
PC-ORD v. 6.0 program (McCune and Mefford, 2011) in autopilot mode with the “slow 
and thorough” option selected. The number of dimensions to be interpreted was chosen 
according to the stress and stability of the graphic solutions. The variations among sites 
were also characterized by calculating Pearson’s correlation coefficients between the 
individual values of the variables considered in this study and the NMS scores (axes 1 
and 2). The sum of clay and silt contents was included in the analysis, although it was 
not considered in the ordination step.
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RESULTS AND DISCUSSION

C stock, texture, and bulk density relationships

All layers presented a high amplitude of soil clay contents (83 to 448, 119 to 613, and 
281 to 649 g kg-1 at the 0.00-0.17, 0.17-0.42, and 0.42-1.00 m layers, respectively) 
among the soils of the study areas (Table 3). The BD values did not significantly differ at 
the surface layer (0.00-0.17 m), but increased at deeper soil layers. The UF soils, at the 
0.17-0.42 and 0.42-1.00 m layers, presented BD values higher than in the other areas 
(1.55 and 1.57 Mg m-3, respectively). These BD values, especially at the 0.42-1.00-m layer 
(considering its finer texture), can already represent a degree of mechanical resistance 
that slows root growth (Jones et al., 2003; Reynolds et al., 2007). The BD values depend 
on organic matter, soil texture, particle density of sand, silt, and clay, their packing in 
the soil space, and the soil mass above the soil layer analyzed. All of these factors act 
in different combinations, determining the ample range (0.40-1.8 Mg m-3) of BD values 
normally determined for soil samples, according to Périé and Ouimet (2008).

For all soil layer intervals, the only significant correlations (p<0.01) were found between C 
content and C stock and between clay content and silt + clay content (Table 4). Considering 
the high correlation between C content and C stock at the three layers (r = 0.90, 0.98, 
and 0.92, respectively, for the 0.00-0.17, 0.17-0.42, and 0.42-1.00 m layers), only the 
C stock results will be discussed (Table 5).

Table 3. Profile distribution of clay content and bulk density of soils from different forest areas (n = 3)

Soil layer
Clay Bulk density

SF(1) CF UF IF VF SF CF UF IF VF
m g kg-1 Mg m-3

0.00-0.17 83 a 90 a 150 b 375 c 448 d 1.26 a 1.15 a 1.34 a 1.27 a 1.27 a
0.17-0.42 210 b 119 a 219 b 484 c 613 d 1.36 a 1.39 a 1.55 b 1.38 a 1.41 a
0.42-1.00 281 a 322 ab 386 b 509 c 649 d 1.41 b 1.44 b 1.57 c 1.32 ab 1.28 a

(1) All under native forest: CF = Coruripe; UF = Umbaúba; VF = Nova Viçosa; SF = Sooretama; IF = Itaboraí. 
Means followed by different lowercase letters in a line indicate differences (p<0.05) in clay and bulk density 
values among different forest areas at each soil layer. Clay distribution determined by the pipette method (Gee 
and Bauder, 1986) and bulk density by the mass:volume ratio in volumetric ring soil samples.

Table 4. Correlation matrix of soil C (stock and content) and some soil properties (n = 15)
C stock Organic C Clay Silt + clay

0.00-0.17 m
Organic C 0.90**

Clay 0.13 0.16
Silt + clay 0.11 0.17 0.99**

Bulk density -0.36 -0.63* 0.18 0.16
0.17-0.42 m

Organic C 0.98**

Clay -0.01 -0.02
Silt + clay 0.04 0.03 0.99**

Bulk density -0.19 -0.35 -0.06 -0.05
0.42-1.00 m

Organic C 0.92**

Clay 0.01 0.19
Silt + clay 0.10 0.28 0.98**

Bulk density -0.01 -0.39 -0.51 -0.51
* and ** = level of significance of 5 and 1 %, respectively. 
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The soil with the sandier texture (SF) had the highest C mean stock at the most superficial 
layer (48.2 Mg ha-1), although the differences were only significant in comparison with the 
mean of the UF sites (31.9 Mg ha-1). Thus, the lowest C stock of the surface layer occurred 
in UF, which has an intermediate clay content (coarse loamy texture class on A horizon). 
In the subsequent soil layer, 0.17-0.42 m, the soils from the SF area continued to show the 
highest C stock value (43.5 Mg ha-1), which was significantly different from the CF and VF 
carbon stock means (21.1 and 26.9 Mg ha-1, respectively). At the deepest layer (0.42-1.00 
m), soils from SF presented the second highest C stock value (45.8 Mg ha-1), which did not 
significantly differ from the highest value found in soils of the IF area (57.6 Mg ha-1). The 
mean of the three layers confirms the highest C stocks (137.5 Mg ha-1) for soil samples 
from the SF area and the lowest values for UF soil samples (104.5 Mg ha-1).

Several studies have found a positive relationship between the fine fraction content 
(clay or clay + silt) and the soil C stock (Gatto et al., 2010; Heywood and Turpin, 2013; 
Wiesmeier et al., 2013; Grüneberg et al., 2014). According to Plante et al. (2006), although 
clay functions as a matrix for organic C stabilization, the fine material content by itself 
is not necessarily a reliable index to predict soil C content and soil C stock, an assertion 
that is corroborated for data from all soil layers (Figure 2). Components interact with SOM 
compounds through different and complex mechanisms, even for specific environments, 
such as the low-activity clay soils studied. The importance of the relationship between 
texture and SOC of these soils was highlighted by Feller and Beare (1997). However, for a 
soil database with a high presence of oxides in the clay fraction (mainly soils associated with 
the Cerrado region of Brazil), they do not consider the existence of a subset of low-activity 
clay soils with the predominance of kaolinite, such as the soils studied here. A lack of 
correlation between the C and silt + clay contents was observed by Gomes et al. (2012) in 
a soil extremely kaolinitic and with low Fe oxide content from the Brazilian coastal plains, 
showing a contrast with the well-established correlations for oxidic soils of the Brazilian 
Cerrado (Zinn et al., 2007). Blocky structure, low porosity, and low permeability of the 
extremely kaolinitic soils (Ferreira et al., 1999; Resende et al., 2011) may impact the stock 
of OC and, subsequently, decrease the protective effect of the fine fraction (clay) and imply 
a physical protection in the sandy texture surface of thick horizons. This condition may 
change if the clay content does not increase with depth or occurs at depths as a result of 
a relatively drier soil moisture regime (Gomes et al., 2012). A possible effect of the higher 
Fe oxide content of the VF soils (Table 1) on the soil structure was not observed, with all 
soils presenting subsurface diagnostic horizons with a blocky structure (data not shown). 
Even more scarce are the data sets that show larger C stocks in sandy soils, such as 
observed in Spodosols, compared with finer textured soils in Denmark (Vejre et al., 2003; 
Ladegaard-Pedersen et al., 2005).

Another factor that may influence soil C stock results is the length of the dry season for 
each study area. The two areas with the lowest C stock values (in two of the three layers 
- 0.00-0.17 and 0.42-1.00 m - and in the total depth range) were UF and CF, although this 
difference is not necessarily significant to other areas, especially for C stored in the VF 

Table 5. Soil organic C stock under different native forest areas

Soil layer
Soil organic C stock

SF(1) CF UF IF VF
m Mg ha-1

0.00-0.17 48.2 b 40.2 ab 31.9 a 41.0 ab 46.1 b
0.17-0.42 43.5 c 21.1 a 31.5 abc 36.7 bc 26.9 ab
0.42-1.00 45.8 ab 43.6 a 41.2 a 57.6 b 37.4 a
0.00-1.00 138 b 105 a 105 a 135 ab 111 ab

(1) All under native forest: CF = Coruripe; UF = Umbaúba; VF = Nova Viçosa; SF = Sooretama; IF = Itaboraí. 
Different lowercase letters in a line indicate differences (p<0.05) among different forest areas at each soil 
layer. The C stock was calculated according to Veldkamp (1994).
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soils. These two areas (UF and CF) experience the driest quarter of the year from October 
to December, which overlaps with the high-temperature period in the southern hemisphere 
(spring-summer). In the other areas, the driest quarter (June to August) overlaps with the 
period of milder temperatures (Silva et al., 1993; Feitoza, 1998; Gonçalves, 2014). This 
coincidence between the drought period and high temperatures is a stressful feature from 
the point of view of biomass production. Although it is not reflected in the vegetation type 
(forest), it may influence soil C accumulation and other factors which regulate soil C stocks, 
such as mean temperature, time, and residue C inputs (Stevenson, 1994).

The two areas with the highest C stocks, considering all the C stored in the soil layers 
(SF and IF), have a quite antagonistic conservation status (Table 1). The SF area has 
extremely conserved fragments, and the sites are located in the Sooretama Ecological 
Reserve, with more than 20,000 hectares of preserved forest area, contiguously disposed 
(Magnago et al., 2014). The IF area has highly altered fragments (by human action) 
and is in an initial regeneration stage (Uhlmann et al., 2014). Regarding the other three 
areas, they are in intermediate stages of conservation when compared to SF and IF forest 
fragments, showing that this factor (degree of forest fragment conservation) did not act 
in a linear way influencing the C stock in the soil profiles.

The comparison of the absolute values of C stock has, as an initial difficulty, the almost 
absence of studies that have soil sampling up to 1 m depth. The scarcity of these studies 
generates data scarcity for this soil depth (1 m), even in the northern hemisphere 
(Wiesmeier et al., 2013), which has far more measurements than Brazil (Jobbágy and Jackson, 
2000). Regardless of the region where C stored in soil was determined, the C stock values 
found in this study (105 to 138 Mg ha-1) are typical for tropical soils (120 to 224 Mg ha-1), 
according to an ample review published by Marques et al. (2016). In addition, many results 
are not based on the direct measurement of C and their conditioning factors, such as soil 
properties, but on the modeling of several factors linked to soil C stock calculation (Lindner 
and Karjalainen, 2007). Thus, in some cases, databases used for C modeling studies are 
built without strict environmental contextualization (Luyssaert et al., 2010).
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Figure 2. Relationship between soil organic carbon stock and clay fraction content for the native 
forest sites.
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For Brazil, with many studies analyzing soil C by the wet combustion method, this 
comparison is even more complicated, considering the large difference in the C contents 
obtained from the Walkley-Black method and through dry combustion of organic matter 
(Sato et al., 2014). Determination of C in automatic analyzers results in higher C amounts 
than those found by wet digestion, taking into account that, in the dry combustion 
methods, samples are burnt at 950 °C, as performed in this study, which assures the 
digestion of pyrogenic and recalcitrant C pools, which may be found in tropical soils. 
One example of this was the soil C stock mean obtained by Curcio et al. (2014) in the 
same area of the IF sites, which was 98 Mg ha-1 to a depth of 1 m, approximately 28 % 
lower than that obtained in this study.

Aggregate size distribution - 0.00-0.08 m layer

All areas had a high proportion of macroaggregates (minimum at UF, with an average 
of 78.3 %). Native forest fragments, protected by a dense vegetation and free of any 
mechanized soil disturbance, tend to have a stable soil surface structure, which allows 
rapid water infiltration and prevents crusting, thus protecting the soil from rainwater 
erosion (Madari et al., 2005).

The proportion of larger aggregates (2-4 mm size class) followed a texture gradient 
between areas. As a result, the VF and IF sites (clayey surface texture) had more than a 
double of the 2-4 mm size class aggregates relative to other forest areas, besides higher 
MWD and MGD values (Table 6).

Although UF shows approximately twice the silt + clay content than SF, its >0.25 mm 
aggregates proportion (macroaggregates) was relatively lower, which may be related to 
the differential forest fragment preservation. Among the forest fragments, Umbaúba is 
the least preserved, while the Sooretama is the best-preserved fragment (Table 1). The 
other sandy surficial group, CF, showed the worst aggregation indices.

The influence of the texture on the aggregation properties was evidenced by the significant 
correlation (p<0.01) between silt + clay and mass proportions in different aggregate 
size classes (r = 0.95 for 4-2 mm class, r = -0.91 for 0.5-0.25 mm class, and r = -0.79 
for 0.25-0.105 mm class), MWD (r = 0.94) and MGD (r = 0.90), although we did not 
consider wet stability here, which hampers a discussion about the real stability of these 
aggregates. Even so, it is important to stress that the stability of aggregates, in wet or 
dry conditions, is extremely dependent on soil texture as well as SOM (Carrizo et al., 
2015), as demonstrated by Gomes et al. (2012) for kaolinitic soils of tertiary landscapes 
such as those studied here.

Table 6. Average values of percentage of mass by aggregate classes of soils of different areas from Brazilian East Coast, 0.00-0.08 m 
soil layer

Area(1) Silt + 
clay(2)

Aggregate size class
MA MWD MGD

2-4 mm 1-2 mm 0.5-1 mm 0.25-0.50 mm 0.105-0.25 mm 0.053-0.105mm
g kg-1 % mm

CF 90 20 a 26 a 14 b 18 d 15 e 7 b 78 a 1.07 a 0.87 a

SF 100 25 b 36 b 15 b 15 c 7 c 3 a 91 c 1.30 b 1.03 b

UF 190 32 b 28 ab 12 b 13 c 10 d 6 b 84 b 1.39 b 0.99 b

IF 460 62 d 31 ab 2 a 3 a 1 a 1 a 98 d 2.19 d 1.37 d

VF 490 53 c 21 a 13 b 8 b 4 b 1 a 95 d 1.94 c 1.22 c
(1) All under native forest: CF = Coruripe; UF = Umbaúba; VF = Nova Viçosa; SF = Sooretama; IF = Itaboraí. (2) Mean value (n = 3). MA = macroaggregates; 
MWD = mean weight-diameter of aggregates; MGD = mean geometric-diameter of aggregates. Mean values followed by different letters in the same 
column are significantly different by Duncan’s test, p<0.05. Silt+Clay distribution was determined by the pipette method (Gee and Bauder, 1986); 
aggregate size classes by was determined dry sieving, adapted from Haynes (2000); and MWD and MGD were determined by Kemper and Rosenau (1986).
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Organic C content and its distribution among aggregate size classes - 
0.00-0.08 m layer

The C content tended to be higher in larger aggregate classes from each site, although 
significant differences only occurred in CF and UF. Among the different areas, significant 
differences were observed only in the 0.105-0.053 mm class (Table 7). The TOCag, expressed 
on an equivalent soil mass basis, did not differ among different locations.

The C distribution in each site clearly decreased from larger to smaller aggregate classes. 
This behavior was similar to that observed in other studies (Six et al., 2000; Castro Filho 
et al., 2002; Barreto et al., 2009). On sites with clayey soils (VF and IF), there was a 
higher percentage of carbon in the 2-4 mm size class compared to other sites.

The comparison of C content and C distribution values among aggregate size classes was 
influenced by the high standard deviations (highest value 75 %, C content of the 1-2 mm 
aggregate size class in VF). These high standard deviation values can be attributed to 
the great heterogeneity of the forest soils, which vary greatly in terms of quantity of 
roots and plant residues, depending on the plant species present (Barreto et al., 2009).

Taking into account the difficulty to understand the behavior of different forest soils in relation 
to C properties of the aggregate size classes by univariate analysis, NMS ordination was 
applied (Figure 3 and Table 8). Two dimensions of the ordination explained 90 % of the data 
variability, 49 % on Axis 1 and 41 % on Axis 2. The distribution of sites along Axis 1 was 
negatively correlated with the C content variables of each aggregate class and the sum of 
organic C of soil aggregates (mostly p<0.01), but was not correlated with topsoil texture; 
it should be noted that texture (silt + clay content) was not included in the NMS analysis 
(Table 8). The relatively lower values of the UF sites found in these variables (Table 7), isolate 
this area in Axis 1, whereas the areas CF, SF, VF and IF present overlap on the left side of the 
same axis. On Axis 2, the distribution of sites was influenced by the C distribution properties 
in the different class aggregates. The % C in the 2-4 mm aggregate class was negatively 
correlated (p<0.01) with this axis, while the % C of other aggregate size classes was positively 
correlated. In addition, soil surface horizon texture also showed a strong correlation with 
Axis 2 (p<0.01). On Axis 2, these correlations showed a behavior gradient of the studied 
sites that partially followed the texture gradient among the soils of these sites (Figure 3).

Table 7. Organic C content of aggregate size classes; C distribution by aggregate size classes (%C - expressed on an equivalent soil 
mass basis), and sum of organic C of soil aggregates (TOCag - expressed on an equivalent soil mass basis), in different forest areas, 
0.00-0.08 m soil layer

Area(1)
Aggregate size class Sum of 

classes4-2 mm 2-1 mm 1.0-0.5 mm 0.5-0.25 mm 0.25-0.105mm 0.105-0.053 mm
Organic C content of soil aggregate size classes TOCag

g kg-1

CF 52.3 Da 49.5 CDa 47.7 CDa 43.3 BCa 32.7 Aa 40.0 Bb 44.9 a
SF 51.9 Aa 39.6 Aa 44.8 Aa 40.4 Aa 42.3 Aa 13.3 Aa 42.5 a
UF 24.2 Da 22.0 CDa 20.9 BCa 18.7 ABa 15.9 Aa 17.8 Aa 21.0 a
IF 41.6 Ba 41.3 Ba 38.6 Ba 40.9 Ba 40.4 Ba 30.9 Aab 41.2 a
VF 47.1 Aa 45.6 Aa 45.8 Aa 44.9 Aa 38.6 Aa 47.0 Ab 45.7 a

C distribution by soil aggregate size classes (%C)
%

CF 23.3 CDa 28.1 Da 14.9 ABCb 16.9 BCd 10.5 ABc 6.3 Ab 100
SF 31.4 Cab 30.8 Ca 15.5 Bb 14.7 Bcd 6.8 ABb 0.8 Aa 100
UF 35.8 Db 29.1 Ca 11.5 Bb 11.5 Bbc 7.2 ABb 4.9 Ab 100
IF 61.9 Cc 31.4 Ba 1.8 Aa 2.7 Aa 1.5 Aa 0.7 Aa 100
VF 54.5 Fc 20.9 Ea 12.4 Db 7.7 Cab 3.5 Ba 1.0 Aa 100

(1) All under native forest: CF = Coruripe; UF = Umbaúba; VF = Nova Viçosa; SF = Sooretama; IF = Itaboraí, n = 3. Values followed by different capital 
letters in the same row and lowercase letters in the same column are significantly different by Duncan’s test (p<0.05). Organic C content of aggregate 
size classes was measured using an Elemental Analyzer (Vario TOC Cube model).
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Dissolved organic C - A horizon

The DOC was higher in clayey soils (VF and IF, Figure 4a), and there was a significant 
and positive correlation between DOC and silt + clay content (r = 0.67, p<0.05). The 
average DOC values were below those found by Scaglia and Adani (2009) for forest soils.

The significant correlation of DOC with soil texture was not repeated between the DOC 
proportion relative to TOC and soil texture (r = 0.29), and the DOC proportion relative to 
TOC was higher in UF and IF soils (average of 1.07 and 1.29 %, respectively, Figure 4b). 
These are the two areas where the forest fragments were less conserved, and the data 
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Figure 3. Ordination obtained by the non-metric multidimensional scaling, representing the similarity 
between forest areas, according to the variation in 13 C aggregate size classes properties (C content 
aggregate size classes; C distribution by aggregate size classes; and sum of organic C of aggregates 
size classes), 0.00-0.08 m soil layer. Standard deviation for each group (n = 3) along the axes 1 and 
2 is scaled by the bars. C = Coruripe; U = Umbaúba; V = Nova Viçosa; S = Sooretama; I = Itaboraí.

Table 8. Pearson correlation coefficients between C aggregate size classes properties (0.00-0.08 m 
soil layer) and non-metric multidimensional scaling (NMS) axes (Figure 3)

Properties
Correlation coefficient (r)

Axis 1 Axis 2
Silt + clay content of A horizon(1) -0.37 -0.78**

Organic C content of 2-4 mm aggregate size class -0.89** 0.20
Organic C content of 1-2 mm aggregate size class -0.89** 0.07
Organic C content of 0.5-1 mm aggregate size class -0.91** 0.16
Organic C content of 0.25-0.5 mm aggregate size class -0.97*** 0.03
Organic C content of 0.105-0.25 mm aggregate size class -0.94** -0.09
Organic C content of 0.053-0.105 mm aggregate size class -0.69* -0.01
Sum of organic carbon of soil aggregates -0.94** 0.05
C distribution - 2-4 mm aggregate size class -0.28 -0.88**

C distribution - 1-2 mm aggregate size class 0.04 -0.20
C distribution - 0.5-1 mm aggregate size class 0.07 0.82**

C distribution - 0.25-0.5 mm aggregate size class 0.26 0.92**

C distribution - 0.105-0.25 mm aggregate size class 0.31 0.94**

C distribution - 0.053-0.105 mm aggregate size class 0.41 0.74**

(1) The silt + clay content of the A horizon was not included in the NMS analysis. *, **, and *** = significant at 5, 
1, and 0.1 % probability, respectively.



Gomes et al. Carbon stocks and pools in relation to the texture of kaolinitic soils…

12Rev Bras Cienc Solo 2018;42:e0170260

indicated that, although the DOC content was strongly related with soil organic matter 
(Gregorich et al., 2000; Kalbitz et al., 2000), some factors related to land use (in the 
case of a forest fragment, the conservation degree) can influence this relationship. 
Nevertheless, the DOC values reflect their low proportions in relation to soil organic C 
(McGill et al., 1986; Chantigny, 2003; Marschner and Kalbitz, 2003).

ACKNOWLEGMENTS
The authors thank Capes (PROEX-AUXPE 593/2018) for the scholarships and financial 
support provided for this study. We also would like to thank to Fapemig and CNPq for 
funding this study and scholarship provided. 

CONCLUSIONS
Mean C stock values in the 0.00-1.00 m layer of kaolinitic forest soils of the Brazilian 
east coast varied from 105 (Umbaúba and Coruripe soils) to 137 Mg ha-1 (Sooretama 
soils). Variation in soil C stock is not explained by soil texture. This correlation also did 
not occur for the C content of all aggregate size classes and the total C of aggregate 
size classes at the 0.00-0.08 m soil layer.

The distribution of C in the largest aggregate class (2-4 mm) of the 0.00-0.08 m layer 
and the dissolved organic C from the A horizon were positively correlated with the silt 
+ clay content of the surface horizon.

The dissolved organic C proportion relative to total organic C of the surface horizon of 
forest soils was higher in the less preserved forest fragments (Itaboraí and Umbaúba sites).
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